JPH11158606A - Wear resistant film - Google Patents

Wear resistant film

Info

Publication number
JPH11158606A
JPH11158606A JP9324596A JP32459697A JPH11158606A JP H11158606 A JPH11158606 A JP H11158606A JP 9324596 A JP9324596 A JP 9324596A JP 32459697 A JP32459697 A JP 32459697A JP H11158606 A JPH11158606 A JP H11158606A
Authority
JP
Japan
Prior art keywords
titanium
film
titanium nitride
plane
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9324596A
Other languages
Japanese (ja)
Other versions
JP4174841B2 (en
Inventor
Kazuhiko Oda
一彦 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32459697A priority Critical patent/JP4174841B2/en
Publication of JPH11158606A publication Critical patent/JPH11158606A/en
Application granted granted Critical
Publication of JP4174841B2 publication Critical patent/JP4174841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a film having excellent wear resistance and durability by specifying respective X-ray diffraction line intensity ratios, from (200) plane and (111) plane in parallel to the surface of a substrate, and lattice constants of titanium nitride, titanium-carbide, and titanium-carbonitride films formed by a vapor phase synthesis method, respectively. SOLUTION: The X-ray diffraction line intensity ratio I(200)/I(111) and the lattice constant are regulated to >=5 and 0.4231 to 0.4252 nm in the case of titanium nitride, >=4 and 0.4316 to 0.4338 nm in the case of titanium carbide, and >=4 and 0.997 0.424173x+0.432740(1-x)] to 1.003 0.44173x+0.42740(1-x)} nm when the ratio between carbon and nitrogen is (1-x):x in the case of titanium carbonitride, respectively. When a lamination coating film of two or more layers is formed, it is preferable that titanium nitride film, titanium carbide film, and titanium carbonitride film, each having 0.1-20 μ film thickness, are contained. For example, it is desirable to use a combination of titanium nitride, chromium nitride, and base material or a combination of titanium carbide, titanium carbonitride, titanium nitride, and base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、切削工具、金型、
機械部品など耐摩耗性が要求される部材などに適用され
る耐摩耗性表面処理に関するものである。
TECHNICAL FIELD The present invention relates to a cutting tool, a mold,
The present invention relates to a wear-resistant surface treatment applied to members requiring wear resistance, such as mechanical parts.

【0002】[0002]

【従来の技術】窒化チタンは、fcc構造の化合物で、
ビッカース硬度が約2000と極めて高く、その優れた
耐摩耗性から工具・金型などに広く適用されている。一
方、炭化チタンや炭窒化チタンも、窒化チタンと同様に
fcc構造を有する化合物で、炭化チタンのビッカース
硬度は約3000、炭窒化チタンのビッカース硬度は炭
素と窒素との比により2000から3000の値をと
る。窒化チタンと同様に、耐摩耗性に優れるため、工具
・金型に使用されている。窒化チタン、炭化チタン、炭
窒化チタンは、各種PVD法やCVD法などの気相合成
法を用いて合成される。具体的には、PVD法では、ホ
ロカソードイオンプレーティング法、カソードアークイ
オンプレーティング法、熱電子励起型アークイオンプレ
ーティング法、高周波イオンプレーティング法などの各
種イオンプレーティング法、マグネトロンスパッタ法、
非平衡型マグネトロンスパッタ法、DCスパッタ法など
の各種スパッタ法、イオンビームを使用するイオンミキ
シング法、などが用いられ、一方CVD法では、一般的
な熱CVD法のほかに、高周波プラズマCVD法などの
プラズマを使用した手法などが実用化または研究されて
いる。例えば改良された耐食性を有する窒化チタン被覆
組成物を目的として提案された少なくとも25のI(1
11)/I(200)X−線回折強度比よりなる高度に
配向された構造を有するもの(特開平8−170168
号公報)又はTiN被膜が(111)面に結晶配向性を
有し、さらにI(200)/I(111)の強度比が
0.2以下であるTiN被膜Ti製部材(特開平5−7
8820号公報)等が知られている。いずれも(11
1)面配向の強い膜が被膜の耐食性という見地から推奨
されている。なお、これら、窒化チタン、炭化チタン、
炭窒化チタンは、お互いに積層化されて使用されること
も多く、また、他の材料系、たとえば窒化クロムや窒化
アルミニウムなどとの積層処理も近年用いられるように
なっている。
2. Description of the Related Art Titanium nitride is a compound having an fcc structure.
It has a very high Vickers hardness of about 2000 and is widely applied to tools and dies due to its excellent wear resistance. On the other hand, titanium carbide and titanium carbonitride are also compounds having an fcc structure, similar to titanium nitride. Take. Like titanium nitride, it is used for tools and dies because of its excellent wear resistance. Titanium nitride, titanium carbide, and titanium carbonitride are synthesized using various gas phase synthesis methods such as PVD and CVD. Specifically, in the PVD method, various ion plating methods such as holo-cathode ion plating method, cathode arc ion plating method, thermionic excitation type arc ion plating method, high frequency ion plating method, magnetron sputtering method,
Various sputtering methods such as non-equilibrium magnetron sputtering method and DC sputtering method, and ion mixing method using an ion beam are used. On the other hand, in the CVD method, in addition to a general thermal CVD method, a high-frequency plasma CVD method, etc. A method using plasma has been put to practical use or studied. For example, at least 25 I (1) s proposed for titanium nitride coating compositions having improved corrosion resistance have been proposed.
11) / I (200) having a highly oriented structure consisting of an X-ray diffraction intensity ratio (JP-A-8-170168)
Or a TiN film having a crystal orientation on the (111) plane and a TiN-coated Ti member having an I (200) / I (111) strength ratio of 0.2 or less (Japanese Patent Laid-Open No.
No. 8820) is known. Both (11
1) A film having a strong plane orientation is recommended from the viewpoint of the corrosion resistance of the film. In addition, these, titanium nitride, titanium carbide,
Titanium carbonitride is often used by being laminated on each other, and lamination with another material system, for example, chromium nitride, aluminum nitride, or the like has recently been used.

【0003】[0003]

【発明が解決しようとする課題】窒化チタン、炭化チタ
ン、炭窒化チタンなどのコーティングにより、工具や金
型の耐久性は数倍から数十倍に向上する。しかし、近年
のより厳しい要求に応えるには、さらに耐久性の高いコ
ーティング膜が切望されている。耐久性を高めるため
に、ひとつには膜厚を厚くする方法がある。しかし、P
VD法による膜は一般に残留応力が高く厚膜化が困難
で、厚さ5μm程度が限界である。熱CVD法では厚膜
化が比較的容易であるが、窒化チタン、炭化チタン、炭
窒化チタンなどの膜は、厚くすると表面の粗さが大きく
なり、コーティング後に研磨加工を施す必要がある。こ
うしたことから、膜そのものの耐摩耗性を向上させるこ
とが強く望まれている。本発明は上記した従来技術の問
題点を解決し、優れた耐摩耗性、耐久性を有する被膜を
提供することを目的とする。
The durability of tools and dies can be improved several times to several tens times by coating with titanium nitride, titanium carbide, titanium carbonitride or the like. However, in order to meet more stringent demands in recent years, a coating film having higher durability has been desired. One way to increase durability is to increase the film thickness. But P
In general, the film formed by the VD method has a high residual stress, and it is difficult to increase the film thickness. Although it is relatively easy to increase the thickness of the film by the thermal CVD method, the surface roughness of a film of titanium nitride, titanium carbide, titanium carbonitride, or the like increases as the thickness increases, and it is necessary to perform polishing after coating. Therefore, it is strongly desired to improve the wear resistance of the film itself. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a coating having excellent abrasion resistance and durability.

【0004】[0004]

【課題を解決するための手段】かかる問題を解決するた
め、結晶状態と耐摩耗性との関係についての検討を行
い、膜の配向性または格子定数を制御することで、耐摩
耗性を大幅に向上させることができることを見出した。
配向性に関しては、気相合成法により形成され、基板表
面と平行な(200)面と(111)面からのX線回折
線強度比I(200)/I(111)が5以上の窒化チ
タン、4以上の炭化チタン、4以上の炭窒化チタンであ
ることが好ましい。
Means for Solving the Problems In order to solve such a problem, the relationship between the crystal state and the wear resistance is examined, and the wear resistance is greatly improved by controlling the orientation or lattice constant of the film. It has been found that it can be improved.
Regarding the orientation, titanium nitride formed by a vapor phase synthesis method and having an X-ray diffraction line intensity ratio I (200) / I (111) of 5 or more from the (200) plane and the (111) plane parallel to the substrate surface. , 4 or more titanium carbide, and 4 or more titanium carbonitride.

【0005】すなわち、本発明の上記目的は以下に記載
するような各発明によって達成することができる。 (1)気相合成法により形成された窒化チタン膜におい
て、基板表面と平行な(200)面と(111)面から
のX線回折線強度比I(200)/I(111)が5以
上であることを特徴とする耐摩耗性被膜。 (2)上記(1)において、窒化チタンの格子定数が
0.4231nmから0.4252nmまでの範囲にあ
ることを特徴とする耐摩耗性被膜。 (3)気相合成法により形成された炭化チタン膜におい
て、基板表面と平行な(200)面と(111)面から
のX線回折線強度比I(200)/I(111)が4以
上であることを特徴とする耐摩耗性被膜。
That is, the above objects of the present invention can be achieved by the following inventions. (1) In the titanium nitride film formed by the vapor phase synthesis method, the X-ray diffraction line intensity ratio I (200) / I (111) from the (200) plane and the (111) plane parallel to the substrate surface is 5 or more. A wear-resistant coating characterized by the following. (2) The wear-resistant coating according to (1), wherein the lattice constant of titanium nitride is in the range of 0.4231 nm to 0.4252 nm. (3) In the titanium carbide film formed by the vapor phase synthesis method, the X-ray diffraction line intensity ratio I (200) / I (111) from the (200) plane and the (111) plane parallel to the substrate surface is 4 or more. A wear-resistant coating characterized by the following.

【0006】(4)上記(3)において、炭化チタンの
格子定数が0.4316nmから0.4338nmまで
の範囲にあることを特徴とする耐摩耗性被膜。 (5)気相合成法により形成された炭窒化チタン膜にお
いて、基板表面と平行な(200)面と(111)面か
らのX線回折線強度比I(200)/I(111)が4
以上であることを特徴とする耐摩耗性被膜。
(4) The wear-resistant coating according to (3), wherein the lattice constant of titanium carbide is in the range of 0.4316 nm to 0.4338 nm. (5) In the titanium carbonitride film formed by the vapor phase synthesis method, the X-ray diffraction line intensity ratio I (200) / I (111) from the (200) plane and the (111) plane parallel to the substrate surface is 4
A wear-resistant coating characterized by the above.

【0007】(6)上記(5)において、炭窒化チタン
の炭素と窒素の比を(1−x):xとしたとき、格子定
数が、0.997{0.424173x+0.4327
40(1−x)}nmから1.003{0.44173
x+0.42740(1−x)}nmまでの範囲にある
ことを特徴とする耐摩耗性被膜。 (7)2層以上の積層コーティング膜において、膜厚が
0.1ミクロン以上20ミクロン以下である上記(1)
〜(6)のいずれかに記載の窒化チタン、炭化チタン、
炭窒化チタンを含むことを特徴とする耐摩耗性被膜。
(6) In the above (5), when the ratio of carbon and nitrogen in titanium carbonitride is (1-x): x, the lattice constant is 0.997 {0.424173x + 0.4327.
40 (1-x)} nm to 1.003 {0.44173
x + 0.42740 (1-x) A wear-resistant coating characterized by the range up to nm. (7) The above-mentioned (1), wherein the thickness of the laminated coating film of two or more layers is 0.1 μm or more and 20 μm or less.
The titanium nitride or titanium carbide according to any one of (1) to (6),
An abrasion-resistant coating comprising titanium carbonitride.

【0008】[0008]

【発明の実施の形態】一般に、PVDやCVDによる膜
は、膜厚方向に対してある配向性を有している。例え
ば、イオンプレーティング法などでは、(111)配向
しやすい。これは、成膜時に基板に印加する電圧の影響
で、基板表面に垂直にイオンなどの荷電粒子が照射さ
れ、この方向性が配向の要因になっていると考えられて
いる。そして、特開平5−78820号公報や特開平8
−170168号公報に記載されているように、(11
1)配向の強い膜が推奨されてきた。しかしながら、検
討の結果、(200)配向が極度に強い膜の耐摩耗性
は、(111)配向膜や、(200)に弱く配向した膜
よりはるかに優れることが見出された。ここで、配向性
は、たとえば、X線回折法などにより求められ、θ−2
θ法で測定した基板と平行な格子面からの回折スペクト
ルから求めることができる。〔θ−2θ法:基板表面の
法線が、常に、X線の入射方向と回折線の検出器の方向
とを2等分する方向となるように配置して測定を行う
と、基板表面に平行な結晶面からの回折線のみを検出す
ることになる。薄膜の結晶配向性を調べるのに適する手
法である。〕
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, a film formed by PVD or CVD has a certain orientation in the film thickness direction. For example, in the ion plating method or the like, (111) orientation is easy. This is thought to be due to the fact that charged particles such as ions are irradiated perpendicularly to the substrate surface due to the effect of the voltage applied to the substrate during film formation, and the directionality is a factor of the orientation. Japanese Unexamined Patent Publication No. Hei 5-78820 and Hei 8
As described in JP-A-170168, (11
1) Strongly oriented films have been recommended. However, as a result of examination, it was found that the wear resistance of a film having an extremely strong (200) orientation was far superior to that of a (111) oriented film and a film weakly oriented to (200). Here, the orientation is determined by, for example, an X-ray diffraction method, and θ-2
It can be obtained from a diffraction spectrum from a lattice plane parallel to the substrate measured by the θ method. [Θ-2θ method: When the measurement is performed by arranging the normal line of the substrate surface so as to always divide the incident direction of the X-ray and the direction of the detector of the diffraction line into two equal parts, Only diffraction lines from parallel crystal planes will be detected. This method is suitable for examining the crystal orientation of a thin film. ]

【0009】窒化チタンに関しては、回折線強度比I
(200)/I(111)は5以上で耐摩耗性の向上が
見られ、特に8以上でその効果は顕著であった。炭化チ
タンに関しては、回折線強度比I(200)/I(11
1)は4以上で耐摩耗性の向上が見られ、特に6以上で
その効果は顕著であった。炭窒化チタンに関しては、窒
素と炭素との比により窒化チタンと炭化チタンとの中間
の傾向を示す。配向性の制御には、成膜時の基板電圧で
制御する方法、イオン照射を併用して成膜する方法など
があげられるが、これら以外の方法で制御してもよい。
基板電圧を制御する場合は、一般にマイナス200V〜
0Vの範囲で行う。イオン注入による場合は、イオンと
しては、好ましくはアルゴンなどの希ガスイオン、窒素
イオン、炭素イオン、チタンイオン、炭化水素イオンな
どを用い、注入量は1×1015〜1×1018ions/
cm2 の範囲で膜形成と交互に反復して行う等の方法が
好ましい。
For titanium nitride, the diffraction line intensity ratio I
When (200) / I (111) was 5 or more, improvement in wear resistance was observed, and particularly when it was 8 or more, the effect was remarkable. For titanium carbide, the diffraction line intensity ratio I (200) / I (11
In 1), an improvement in wear resistance was observed at 4 or more, and particularly at 6 or more, the effect was remarkable. Titanium carbonitride exhibits an intermediate tendency between titanium nitride and titanium carbide depending on the ratio of nitrogen to carbon. Examples of the control of the orientation include a method of controlling the substrate voltage at the time of film formation, a method of forming a film using ion irradiation, and the like, but the control may be performed by a method other than these.
When controlling the substrate voltage, generally, minus 200V ~
It is performed in the range of 0V. In the case of ion implantation, as the ions, rare gas ions such as argon, nitrogen ions, carbon ions, titanium ions, hydrocarbon ions, and the like are preferably used, and the implantation amount is 1 × 10 15 to 1 × 10 18 ions / s.
A method of alternately repeating film formation in the range of cm 2 is preferred.

【0010】次に格子定数であるが、窒化チタン、炭化
チタン、いずれの場合も、JCPDS38−1420、
32−1383記載の窒化チタン、炭化チタンの格子定
数0.424173nm、0.432740nmの0.
997倍から1.003倍の範囲にあることが望まし
い。言い替えれば、窒化チタンの場合、格子定数が約
0.4231nmから約0.4252nmまでの範囲、
炭化チタンの場合、約0.4316nmから約0.43
38nmまでの範囲、炭窒化チタンの場合、炭素と窒素
の比を(1−x):xとしたとき、格子定数が0.99
7{0.424173x+0.432740(1−
x)}nmから1.003{0.424173x+0.
432740(1−x)}nmまでの範囲にある膜が耐
摩耗性に優れている。〔JCPD(Joint Committee on
Powder Diffraction Standards )により各種物質のX
線回折図形のデータが収録されており標準データとして
用いられている。〕
[0010] Next, regarding the lattice constant, titanium nitride and titanium carbide are used in each case, JCPDS38-1420,
The lattice constants of titanium nitride and titanium carbide described in 32-1-2383 are 0.424173 nm and 0.432740 nm.
It is desirable to be in the range of 997 times to 1.003 times. In other words, for titanium nitride, the lattice constant ranges from about 0.4231 nm to about 0.4252 nm,
For titanium carbide, from about 0.4316 nm to about 0.43
In the case of titanium carbonitride in the range up to 38 nm, the lattice constant is 0.99 when the ratio of carbon to nitrogen is (1-x): x.
7 {0.424173x + 0.432740 (1-
x) From 1.0 nm to 1.003 {0.424173x + 0.
Films in the range up to 432740 (1-x)} nm have excellent wear resistance. [JCPD (Joint Committee on
Powder Diffraction Standards)
Line diffraction pattern data is recorded and used as standard data. ]

【0011】一般に、PVD法やプラズマCVD法によ
る膜は、JCPDSに記載の粉末法による格子定数より
1.003倍以上大きな値をとる。これは、数eV以上
のエネルギーを持ったイオンなどの荷電粒子が格子間に
入り、格子定数を大きくしているといわれている。ま
た、配向性が強い膜は、格子定数もJCPDSに記載の
粉末法による格子定数から大きくはずれる傾向にもあ
る。本発明では、むしろ、前述のように極度に(20
0)面に配向し、かつ、JCPDSに記載の粉末法によ
る格子定数の0.997倍から1.003倍の範囲にあ
る膜であることを推奨する。
In general, a film formed by the PVD method or the plasma CVD method has a value larger than the lattice constant by the powder method described in JCPDS by 1.003 times or more. It is said that charged particles such as ions having energies of several eV or more enter between the lattices and increase the lattice constant. Also, a film having a strong orientation tends to have a large lattice constant that is largely different from the lattice constant obtained by the powder method described in JCPDS. In the present invention, rather, as described above, extremely (20
It is recommended that the film be oriented in the 0) plane and be in the range of 0.997 times to 1.003 times the lattice constant determined by the powder method described in JCPDS.

【0012】格子定数の制御には、成膜時の基板電圧、
温度を制御する方法、イオン照射やレーザー照射を併用
する方法などがあげられるが、これら以外の方法で制御
してもよい。例えば、成膜時のガス圧、金属チタンの蒸
着速度若しくは基板電流等を制御する方法がある。な
お、本発明の窒化チタン、炭化チタン、炭窒化チタン膜
は、単層膜で用いられてもよいし2層以上の積層コーテ
ィング膜として用いられてもよい。積層コーティングの
場合、窒化チタン、炭化チタン、炭窒化チタンを積層し
てもよいし、これら以外の膜、例えば、窒化クロム、窒
化ジルコニウム、TiAlN、TiCrN等の膜との積
層でもよい。また組成や格子定数を、配向性を傾斜的に
変化させてもよい。単層膜で用いる場合でも、最表面な
ど全体の一部分に本発明を満たす膜を使用する方法もあ
る。いずれの場合も、本発明の膜の膜厚が0.1μm以
上20μm以下であることが望ましい。下限の0.1μ
mは、耐摩耗性を発揮するのに最低の膜厚として設定す
る。また、上限の20μmは、厚膜化による処理時間の
延長などの経済的不利益な要因と、厚膜化にともなう表
面粗さの増大を回避するためのものである。積層コーテ
ィングの場合は、例えば、窒化チタン/窒化クロム//
基材、炭化チタン/炭窒化チタン/窒化チタン//基材
の組合せが好ましい。また被膜を形成するための基材と
しては一般に超硬合金、ハイス鋼、ダイス鋼、ステンレ
ス鋼、軸受け鋼、その他一般の鋼材等の平板が用いられ
る。
To control the lattice constant, the substrate voltage during film formation,
A method of controlling the temperature, a method of using ion irradiation or laser irradiation in combination, and the like may be mentioned. For example, there is a method of controlling a gas pressure at the time of film formation, a deposition rate of titanium metal, a substrate current, and the like. Note that the titanium nitride, titanium carbide, and titanium carbonitride films of the present invention may be used as a single-layer film or as a multilayer coating film of two or more layers. In the case of multilayer coating, titanium nitride, titanium carbide, and titanium carbonitride may be stacked, or a layer other than these, for example, a layer of chromium nitride, zirconium nitride, TiAlN, TiCrN, or the like may be stacked. Further, the composition and the lattice constant may be changed in the orientation in a gradient manner. Even when a single layer film is used, there is a method in which a film satisfying the present invention is used for a part of the entire surface such as the outermost surface. In any case, it is desirable that the thickness of the film of the present invention is 0.1 μm or more and 20 μm or less. 0.1μ of lower limit
m is set as the minimum film thickness for exhibiting wear resistance. Further, the upper limit of 20 μm is for avoiding economically disadvantageous factors such as prolongation of the processing time due to the increase in the film thickness and the increase in surface roughness accompanying the increase in the film thickness. In the case of a multilayer coating, for example, titanium nitride / chromium nitride //
Substrates, combinations of titanium carbide / titanium carbonitride / titanium nitride // substrates are preferred. Further, as a base material for forming a film, a flat plate such as a cemented carbide, a high-speed steel, a die steel, a stainless steel, a bearing steel, and other general steel materials is generally used.

【0013】[0013]

【実施例】(実施例1)超硬合金製の平板基材に、アー
クイオンプレーティング法による窒化チタン膜合成と1
00keVArイオン注入とを交互に繰り返す処理を行
った。窒化チタンの合成はN2 ガスの雰囲気中でTiを
カソードアーク法で蒸発させ、基板上に1回あたり0.
1μmの膜厚の窒化チタン膜を形成する。次に、この窒
化チタン表面に100keVのArイオンを1×1014
から1×1017ions/cm2 の範囲で照射する。こ
れを20回繰り返して厚さ2μmの窒化チタン膜を形成
した。また、比較のため、イオン照射を行わないアーク
イオンプレーティング法によるTiN膜、熱CVD法に
よるTiN膜も作成した。これらに対し、X線回折θ−
2θ法で、配向性、格子定数を求め、また、ピン・オン
・ディスク法で、相手材に窒化ケイ素製ピンを使用して
摩擦摩耗試験を行い摩耗特性を調査した。結果を表1に
示す。ここで、ピン・オン・ディスク法とは面内で回転
するディスク表面にピンを押し当て、ピンとディスク間
に発生する摩擦力、摩擦部位の摩耗量を調べる手法であ
る。
(Example 1) Synthesis of a titanium nitride film by arc ion plating on a flat substrate made of cemented carbide
A process of alternately repeating 00keVAr ion implantation was performed. In the synthesis of titanium nitride, Ti is evaporated by a cathodic arc method in an atmosphere of N 2 gas, and is deposited on a substrate at a rate of 0.1%.
A titanium nitride film having a thickness of 1 μm is formed. Next, 1 × 10 14 Ar ions of 100 keV were applied to the surface of the titanium nitride.
Irradiation in the range of from 1 × 10 17 ions / cm 2 . This was repeated 20 times to form a titanium nitride film having a thickness of 2 μm. For comparison, a TiN film formed by an arc ion plating method without performing ion irradiation and a TiN film formed by a thermal CVD method were also prepared. X-ray diffraction θ-
Orientation and lattice constant were determined by the 2θ method, and abrasion characteristics were examined by a friction and wear test by a pin-on-disk method using a silicon nitride pin as a mating material. Table 1 shows the results. Here, the pin-on-disk method is a method in which a pin is pressed against the surface of a disk rotating in a plane, and the frictional force generated between the pin and the disk and the amount of wear at the frictional portion are examined.

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例2)超硬合金製の平板基材に、熱
電子放出型アークイオンプレーティング法により炭化チ
タン膜を形成した。蒸発源にはTiを、反応ガスにはC
2 2 を用いた。基板電圧を変化させ、配向性の異なる
炭化チタン膜を形成した。これらに対し、X線回折θ−
2θ法で、配向性、格子定数を求め、また、ピン・オン
・ディスク法で摩擦摩耗試験を行い、摩耗特性を調査し
た。結果を表2に示す。
Example 2 A titanium carbide film was formed on a flat plate made of cemented carbide by a thermionic emission type arc ion plating method. Ti as the evaporation source and C as the reaction gas
2 H 2 was used. By changing the substrate voltage, titanium carbide films having different orientations were formed. X-ray diffraction θ-
The orientation and lattice constant were determined by the 2θ method, and a friction and wear test was performed by the pin-on-disk method to investigate wear characteristics. Table 2 shows the results.

【0016】[0016]

【表2】 [Table 2]

【0017】(実施例3)SKH51(ハイス鋼)平板
を基材として、ホロカソードイオンプレーティング法に
よる炭窒化チタン膜の合成と200keVのNイオンを
交互に繰り返す処理を行った。 炭窒化チタンの合成
は、N2 ガスとCH4 ガスとの混合ガス雰囲気中でTi
を蒸発させ、ホロカソードプラズマにより基板上で反
応、堆積させた。成膜時のガスの分圧を制御して、窒素
と炭素の組成が3:7、5:5の炭窒化チタンを1サイ
クルあたり0.15μmの膜厚で合成した。次に、この
炭窒化チタン表面に、200keVのNイオンを1×1
14から1×1017ions/cm2 の範囲で照射し
た。これを20回繰り返して厚さ3μmの炭窒化チタン
を合成した。
(Example 3) Using a SKH51 (high-speed steel) flat plate as a base material, a synthesis process of a titanium carbonitride film by a holocathode ion plating method and a process of alternately repeating N ions at 200 keV were performed. Titanium carbonitride is synthesized in a mixed gas atmosphere of N 2 gas and CH 4 gas.
Was evaporated and reacted and deposited on the substrate by the hollow cathode plasma. By controlling the partial pressure of the gas at the time of film formation, titanium carbonitride having a composition of nitrogen and carbon of 3: 7 and 5: 5 was synthesized at a film thickness of 0.15 μm per cycle. Next, 200 keV N ions were applied to the surface of the titanium carbonitride by 1 × 1.
0 14 was irradiated with 1 × 10 17 range of ions / cm 2. This was repeated 20 times to synthesize a titanium carbonitride having a thickness of 3 μm.

【0018】これらに対し、X線回折θ−2θ法で、配
向性、格子定数を求め、また、ピン・オン・ディスク法
で摩擦摩耗試験を行い摩耗特性を調査した。結果を表3
に示す。ただし、表中で、d1 、d2 は、本発明におけ
る炭窒化チタンの格子定数の上限と下限を示し、xを炭
窒化チタンTiC(1-x) x の窒素比率xとした場合、
1 、d2 は、それぞれ、0.997{0.42417
3x+0.432740(1−x)}nm、1.003
{0.44173x+0.42740(1−x)}nm
である。
For these, the orientation and lattice constant were determined by the X-ray diffraction θ-2θ method, and the wear characteristics were investigated by performing a friction and wear test by the pin-on-disk method. Table 3 shows the results
Shown in However, in the table, d 1 and d 2 indicate the upper and lower limits of the lattice constant of titanium carbonitride in the present invention, where x is the nitrogen ratio x of titanium carbonitride TiC (1-x) N x ,
d 1 and d 2 are respectively 0.997 {0.42417
3x+0.432740(1-x)@nm, 1.003
{0.44173x + 0.42740 (1-x)} nm
It is.

【0019】[0019]

【表3】 [Table 3]

【0020】(実施例4)超硬合金製のドリルにアーク
イオンプレーティング法による窒化チタン膜形成と窒素
イオン注入とを交互に繰り返す処理を行った。窒化チタ
ンは、N2 ガス雰囲気中で固体チタンターゲット上にア
ーク放電を発生させチタンを蒸発、窒素と反応させ基板
上に窒化チタンを形成する。窒化チタンを約0.2μm
製膜した後、窒素イオンを加速エネルギー60keVで
1×1016ions/cm2 注入する。その後、再度窒
化チタンの形成を行う。この工程を繰り返すことで、最
終的に約3μmの窒化チタン膜を被覆した。
Example 4 A drill made of cemented carbide was subjected to a process of alternately repeating formation of a titanium nitride film by arc ion plating and implantation of nitrogen ions. Titanium nitride generates an arc discharge on a solid titanium target in an N 2 gas atmosphere to evaporate titanium and react with nitrogen to form titanium nitride on a substrate. About 0.2μm of titanium nitride
After film formation, nitrogen ions are implanted at an acceleration energy of 60 keV at 1 × 10 16 ions / cm 2 . After that, titanium nitride is formed again. By repeating this process, a titanium nitride film of about 3 μm was finally covered.

【0021】(比較例)比較として、アークイオンプレ
ーティング法のみで窒化チタン膜を3μm形成した。同
一ロットで処理したテストピースにてX線回折θ−2θ
法で、配向性、格子定数を求めたところ、本実施例と比
較例のI(200)/I(111)は25.1、0.
4、格子定数は0.42411nm、0.42637n
mであった。次に、被覆処理したドリルにつき、被削材
をSUS304として切削を行ったところ、本実施例
は、比較例のドリルに対して2.5から3倍の寿命であ
った。
(Comparative Example) As a comparison, a titanium nitride film having a thickness of 3 μm was formed only by the arc ion plating method. X-ray diffraction θ-2θ using test pieces processed in the same lot
When the orientation and the lattice constant were determined by the method, I (200) / I (111) of the present example and the comparative example were 25.1 and 0.1.
4. The lattice constant is 0.42411 nm, 0.42637n
m. Next, the coated drill was cut with SUS304 as the work material. The life of the drill in this embodiment was 2.5 to 3 times that of the drill of the comparative example.

【0022】(実施例5)SUS304製平板状搬送用
治具上に、アークイオンプレーティング法で、従来法で
ある実施例1記載のNo.8の方法で窒化チタンを2.
5μm成膜し、その上に実施例1のNo.7の方法で窒
化チタンを0.2μm成膜した。比較のため、実施例1
記載のNo.8の方法のみで3μmの窒化チタンを形成
したものを準備した。本治具を実用に供したところ、未
コートのものの30倍、比較例と比べても2.2倍の長
さの寿命を得た。
(Embodiment 5) An arc ion plating method was applied to a SUS304 plate-like transfer jig by the arc ion plating method as described in Example 1, which is a conventional method. Titanium nitride was obtained by the method described in 8 above.
A film having a thickness of 5 μm was formed thereon. By the method of 7, a titanium nitride film was formed to a thickness of 0.2 μm. Example 1 for comparison
No. of description. A titanium nitride having a thickness of 3 μm was prepared only by the method of Example 8. When this jig was put into practical use, the life was 30 times longer than that of the uncoated jig and 2.2 times longer than that of the comparative example.

【0023】(実施例6)軸受け鋼SUJ2製のシャフ
ト外周に、熱電子放出型アークイオンプレーティング法
により窒化クロムを5μm形成し、その上層に実施例2
のNo.2の方法で炭化チタン膜を2μm形成した。比
較のため、蒸気と同様の方法で窒化クロムを5μm形成
し、その上層に実施例2のNo.7の方法で炭化チタン
膜を2μm形成した。両者をSUJ2製の軸受けに組み
込み、回転させて寿命比較を行った。前者の本発明によ
る処理を施したものは、後者の比較例に対し、3.2倍
の寿命を示した。
Example 6 Chromium nitride of 5 μm was formed on the outer periphery of a shaft made of bearing steel SUJ2 by thermionic emission arc ion plating method, and Example 2 was formed thereon.
No. The titanium carbide film was formed to a thickness of 2 μm by the method of 2. For comparison, chromium nitride was formed in a thickness of 5 μm in the same manner as in the case of steam, and No. 2 of Example 2 was formed thereon. The titanium carbide film was formed to a thickness of 2 μm by the method of No. 7. Both were assembled into a SUJ2 bearing and rotated to compare the life. The former treated according to the present invention exhibited a 3.2 times longer life than the latter comparative example.

【0024】[0024]

【発明の効果】本発明により気相合成法による窒化チタ
ン膜、炭化チタン膜及び/又は炭窒化チタン膜のX線回
折強度比I(200)/I(111)を特定範囲内に制
御することによりそれぞれの、耐摩耗性に優れた被膜を
提供することができた。
According to the present invention, the X-ray diffraction intensity ratio I (200) / I (111) of a titanium nitride film, a titanium carbide film and / or a titanium carbonitride film formed by a vapor phase synthesis method is controlled within a specific range. As a result, it was possible to provide respective coatings having excellent wear resistance.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 気相合成法により形成された窒化チタン
膜において、基板表面と平行な(200)面と(11
1)面からのX線回折線強度比I(200)/I(11
1)が5以上であることを特徴とする耐摩耗性被膜。
In a titanium nitride film formed by a vapor phase synthesis method, a (200) plane parallel to a substrate surface and a (11) plane are formed.
1) X-ray diffraction line intensity ratio from plane I (200) / I (11
(1) a wear-resistant coating characterized in that 5 or more.
【請求項2】 請求項1において、窒化チタンの格子定
数が0.4231nmから0.4252nmまでの範囲
にあることを特徴とする耐摩耗性被膜。
2. A wear-resistant coating according to claim 1, wherein the lattice constant of titanium nitride is in the range of 0.4231 nm to 0.4252 nm.
【請求項3】 気相合成法により形成された炭化チタン
膜において、基板表面と平行な(200)面と(11
1)面からのX線回折線強度比I(200)/I(11
1)が4以上であることを特徴とする耐摩耗性被膜。
3. A (200) plane parallel to a substrate surface and a (11) plane in a titanium carbide film formed by a vapor phase synthesis method.
1) X-ray diffraction line intensity ratio from plane I (200) / I (11
Abrasion resistant coating wherein 1) is 4 or more.
【請求項4】 請求項3において、炭化チタンの格子定
数が0.4316nmから0.4338nmまでの範囲
にあることを特徴とする耐摩耗性被膜。
4. The wear-resistant coating according to claim 3, wherein the titanium carbide has a lattice constant in a range from 0.4316 nm to 0.4338 nm.
【請求項5】 気相合成法により形成された炭窒化チタ
ン膜において、基板表面と平行な(200)面と(11
1)面からのX線回折線強度比I(200)/I(11
1)が4以上であることを特徴とする耐摩耗性被膜。
5. In a titanium carbonitride film formed by a vapor phase synthesis method, a (200) plane parallel to a substrate surface and a (11) plane
1) X-ray diffraction line intensity ratio from plane I (200) / I (11
Abrasion resistant coating wherein 1) is 4 or more.
【請求項6】 請求項5において、炭窒化チタンの炭素
と窒素の比を(1−x):xとしたとき、格子定数が、
0.997{0.424173x+0.432740
(1−x)}nmから1.003{0.44173x+
0.42740(1−x)}nmまでの範囲にあること
を特徴とする耐摩耗性被膜。
6. In claim 5, when the ratio of carbon and nitrogen of titanium carbonitride is (1-x): x, the lattice constant is:
0.997 {0.424173x + 0.432740
(1-x)} nm to 1.003 {0.44173x +
An abrasion resistant coating characterized by a range up to 0.42740 (1-x)} nm.
【請求項7】 2層以上の積層コーティング膜におい
て、膜厚が0.1ミクロン以上20ミクロン以下である
請求項1から6のいずれかに記載の窒化チタン、炭化チ
タン、炭窒化チタンを含むことを特徴とする耐摩耗性被
膜。
7. The multilayer coating film of two or more layers, wherein the film thickness is 0.1 μm or more and 20 μm or less, comprising titanium nitride, titanium carbide, and titanium carbonitride according to claim 1. A wear-resistant coating characterized by the following.
JP32459697A 1997-11-26 1997-11-26 Abrasion resistant coating Expired - Fee Related JP4174841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32459697A JP4174841B2 (en) 1997-11-26 1997-11-26 Abrasion resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32459697A JP4174841B2 (en) 1997-11-26 1997-11-26 Abrasion resistant coating

Publications (2)

Publication Number Publication Date
JPH11158606A true JPH11158606A (en) 1999-06-15
JP4174841B2 JP4174841B2 (en) 2008-11-05

Family

ID=18167592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32459697A Expired - Fee Related JP4174841B2 (en) 1997-11-26 1997-11-26 Abrasion resistant coating

Country Status (1)

Country Link
JP (1) JP4174841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012385A (en) * 2014-06-30 2016-01-21 日本タングステン株式会社 Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP2018034371A (en) * 2016-08-30 2018-03-08 京セラ株式会社 Thermal head and thermal printer
JP2019025713A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Thermal head and thermal printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333561A (en) * 1991-05-09 1992-11-20 Nissin Electric Co Ltd Formation of nitride film
JPH0598422A (en) * 1991-04-04 1993-04-20 Sumitomo Electric Ind Ltd Continuous treatment for ion nitriding-ceramic coating
JPH08269710A (en) * 1995-03-31 1996-10-15 Tdk Corp Reactive sputtering device and reactive sputtering method as well as reactive vapor deposition device and reactive vapor deposition method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598422A (en) * 1991-04-04 1993-04-20 Sumitomo Electric Ind Ltd Continuous treatment for ion nitriding-ceramic coating
JPH04333561A (en) * 1991-05-09 1992-11-20 Nissin Electric Co Ltd Formation of nitride film
JPH08269710A (en) * 1995-03-31 1996-10-15 Tdk Corp Reactive sputtering device and reactive sputtering method as well as reactive vapor deposition device and reactive vapor deposition method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
松田福久 他: "プラズマCVD法によるTiCN膜コーティング", 溶接学会全国大会講演概要, JPN6008001857, March 1993 (1993-03-01), JP, pages 212 - 213, ISSN: 0001096472 *
松田福久 他: "プラズマCVD法によるTiCN膜コーティング", 溶接学会全国大会講演概要, JPNX007014208, March 1993 (1993-03-01), JP, pages 212 - 213, ISSN: 0000831890 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012385A (en) * 2014-06-30 2016-01-21 日本タングステン株式会社 Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP2018034371A (en) * 2016-08-30 2018-03-08 京セラ株式会社 Thermal head and thermal printer
JP2019025713A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Thermal head and thermal printer

Also Published As

Publication number Publication date
JP4174841B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP5138892B2 (en) Hard coating
JP4939032B2 (en) Hard film and method for producing hard film
JP5909273B2 (en) Hard coating and method for manufacturing hard coating
US20090252973A1 (en) Coated body
JP4448342B2 (en) Fine crystal hard coating
JPH11335813A (en) Hard coating film and laminated hard coating film
JP2020531300A (en) Abrasion resistant PVD tool coating with TiAlN nanolayer film
US20110086233A1 (en) Hard coating layer and method for forming the same
JP2004332004A (en) Alumina protective film, and its production method
WO2017163972A1 (en) Hard coating, hard coating-covered member, and method for producing hard coating
WO1991005076A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
JP6789503B2 (en) Hard film film formation method
CN114945708B (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JP5261981B2 (en) Coated cutting tool
JP2018059146A (en) Hard film, hard film coated member, and production method of hard film
EP3394312B1 (en) A coated cutting tool and method
JP5035980B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
WO2020094718A1 (en) A method for producing a coated cutting tool
JP4968674B2 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
JP4174841B2 (en) Abrasion resistant coating
JP5035979B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4808972B2 (en) Surface coated cutting tool
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
Li et al. Optimization of interlayer/CrWN bilayer films fabricated and monitored under Shewhart control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees