JP6789503B2 - Hard film film formation method - Google Patents

Hard film film formation method Download PDF

Info

Publication number
JP6789503B2
JP6789503B2 JP2016127290A JP2016127290A JP6789503B2 JP 6789503 B2 JP6789503 B2 JP 6789503B2 JP 2016127290 A JP2016127290 A JP 2016127290A JP 2016127290 A JP2016127290 A JP 2016127290A JP 6789503 B2 JP6789503 B2 JP 6789503B2
Authority
JP
Japan
Prior art keywords
film
substrate
hard
range
hard film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016127290A
Other languages
Japanese (ja)
Other versions
JP2018003046A (en
Inventor
嗣紀 佐藤
嗣紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2016127290A priority Critical patent/JP6789503B2/en
Publication of JP2018003046A publication Critical patent/JP2018003046A/en
Priority to JP2020052037A priority patent/JP6895631B2/en
Application granted granted Critical
Publication of JP6789503B2 publication Critical patent/JP6789503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ドリル等の切削工具やブローチ等の歯切工具の表面に被覆される硬質皮膜、当該硬質皮膜が被覆された硬質皮膜被覆工具および当該皮膜を工具の表面に成膜する硬質皮膜の成膜方法に関する。 The present invention relates to a hard film coated on the surface of a cutting tool such as a drill or a gear cutting tool such as a broach, a hard film-coated tool coated with the hard film, and a hard film forming the film on the surface of the tool. Regarding the film forming method.

これまでドリル等の切削工具やブローチをはじめとする歯切工具の表面には、切刃の耐摩耗性を向上させるために、種々の硬質皮膜が被覆された状態で供されてきた。中でも、AlとCrとを含有する、いわゆるAlCr系の硬質皮膜は工具表面への優れた密着性と長寿命を確保できる観点から様々な工具表面を被覆する硬質皮膜として多用されてきた。 Until now, the surface of cutting tools such as drills and gear cutting tools such as brooches has been provided with various hard films coated in order to improve the wear resistance of the cutting edge. Among them, a so-called AlCr-based hard film containing Al and Cr has been widely used as a hard film for covering various tool surfaces from the viewpoint of ensuring excellent adhesion to the tool surface and long life.

例えば、特許文献1では、従来のTiAlN硬質皮膜よりも耐磨耗性に優れた硬質皮膜としてTiAlCr(C1−d)からなる硬質皮膜(0.55≦b≦0.765、0.06≦c)は、近年の工具の高速化および高能率化に適合させるための成膜方法が開示されている。具体的には、成膜装置を用いた成膜時において基板に対して印加するバイアス電圧を−50V〜−300Vの範囲としたり、または基板の温度を300℃〜800℃の範囲として硬質皮膜を成膜する方法が説明されている。 For example, in Patent Document 1, a hard film (0.55 ≦ b ≦ 0) made of Ti a Al b Cr c (C 1-d N d ) as a hard film having superior wear resistance to the conventional TiAlN hard film. .765, 0.06 ≦ c) discloses a film forming method for adapting to the recent high speed and high efficiency of tools. Specifically, the bias voltage applied to the substrate during film formation using a film forming apparatus is set in the range of -50V to -300V, or the temperature of the substrate is set in the range of 300 ° C to 800 ° C to form a hard film. The method of forming a film is described.

特開2003−71610号公報Japanese Unexamined Patent Publication No. 2003-71610

しかし、特許文献1に開示されているTiAlCrN硬質皮膜はAlの比率が高い場合、具体的にはAlの比率が75%以上では硬質皮膜の結晶構造が立方晶から六方晶に構造変化する。結晶構造が六方晶に構造変化すると、硬質皮膜の硬さが極端に失われて、硬質皮膜の耐磨耗性が著しく低下するという問題があった。 However, when the TiAlCrN hard film disclosed in Patent Document 1 has a high ratio of Al, specifically, when the ratio of Al is 75% or more, the crystal structure of the hard film changes from cubic to hexagonal. When the crystal structure is changed to hexagonal, there is a problem that the hardness of the hard film is extremely lost and the abrasion resistance of the hard film is remarkably lowered.

そこで、本発明においてはAlの比率が75%以上のAlとCrとの窒化物皮膜であっても、結晶構造を立方晶とすることで硬質皮膜の硬度を維持しつつ、硬質皮膜の耐磨耗性が向上する硬質皮膜、当該硬質皮膜を被覆した工具および当該硬質皮膜の成膜方法を提供することを課題とする。 Therefore, in the present invention, even in the case of a nitride film of Al and Cr having an Al ratio of 75% or more, the hardness of the hard film is maintained by making the crystal structure cubic, and the polishing resistance of the hard film is maintained. It is an object of the present invention to provide a hard film having improved wear resistance, a tool coated with the hard film, and a method for forming the hard film.

前述した課題を解決するために、本発明の硬質皮膜の成膜方法は、Al1−yCr(0.05≦y≦0.20)から成るターゲットを内部に備えるカソードアーク方式イオンプレーティング装置を用いた硬質皮膜の成膜方法において、カソードアーク方式イオンプレーティング装置内に設置する基板に対して印加するバイアス電圧を−100V〜−170Vの範囲とし、基板の温度を330℃〜370℃の範囲として硬質皮膜を成膜する硬質皮膜の成膜方法とした。 To solve the problems described above, the film formation method of the hard film of the present invention, Al 1-y Cr y cathodic arc method ion plating comprising a target composed of (0.05 ≦ y ≦ 0.20) in the interior In the method of forming a hard film using an apparatus, the bias voltage applied to the substrate installed in the cathode arc ion plating apparatus is in the range of -100V to -170V, and the temperature of the substrate is set to 330 ° C. to 370 ° C. As the range of, the method of forming a hard film was used.

また、本発明の硬質皮膜は、Al1−xCrN(0.05≦x≦0.25:xはCrの原子比率を示す。)から成る組成の硬質皮膜であって、硬質皮膜の表面をX線回折(2θ)した際における30°≦2θ≦90°の測定範囲において、Cu―Kα線の最も高いピークが2θ=37.8°±1°の範囲に存在し、かつピークの半値幅が1°未満である硬質皮膜とした。前述の硬質皮膜は、Crの一部を、0.05以下のTi、V、Zr、もしくはNbで置き換えた組成とすることもできる。また、硬質皮膜の厚さを0.1μm〜20μmの範囲とすることもできる。 Further, the hard film of the present invention is a hard film having a composition composed of Al 1-x Cr x N (0.05 ≦ x ≦ 0.25: x indicates the atomic ratio of Cr), and is a hard film. In the measurement range of 30 ° ≤ 2θ ≤ 90 ° when the surface is X-ray diffracted (2θ), the highest peak of Cu—Kα ray exists in the range of 2θ = 37.8 ° ± 1 °, and the peak A hard film having a half-value width of less than 1 ° was used. The above-mentioned hard film may have a composition in which a part of Cr is replaced with Ti, V, Zr, or Nb of 0.05 or less. Further, the thickness of the hard film can be in the range of 0.1 μm to 20 μm.

本発明の硬質皮膜被覆工具は、前述の硬質皮膜が超硬合金製または高速度工具鋼製の工具の表面に被覆されている硬質皮膜被覆工具とする。 The hard film coating tool of the present invention is a hard film coating tool in which the above-mentioned hard film is coated on the surface of a tool made of cemented carbide or high-speed steel.

本発明の硬質皮膜の成膜方法により、成膜された硬質皮膜の結晶構造を立方晶とすることができる。そのため、硬質皮膜の硬度を維持しつつ、硬質皮膜の耐磨耗性を向上することができるという効果を奏する。 By the method for forming a hard film of the present invention, the crystal structure of the formed hard film can be made into a cubic crystal. Therefore, it is possible to improve the abrasion resistance of the hard film while maintaining the hardness of the hard film.

次に、本発明の硬質皮膜の成膜方法に関する実施形態の一例について説明する。まず、本発明の成膜方法に用いる成膜装置は、内部にターゲットが設置されており、当該ターゲット表面にアークを発生することで、当該ターゲットを構成する金属原子のイオンを発生させることでバイアス電圧が印加された基板表面に成膜を行うアークイオンプレーティング装置とする。 Next, an example of an embodiment relating to the method for forming a hard film of the present invention will be described. First, the film forming apparatus used in the film forming method of the present invention has a target installed inside, and by generating an arc on the surface of the target, it is biased by generating ions of metal atoms constituting the target. An arc ion plating apparatus that forms a film on the surface of a substrate to which a voltage is applied.

また、当該ターゲットはAl1−yCr(yはCrの原子比率を示す、0.05≦y≦0.20)から成るターゲットとする。そのような成膜装置内に基板を設置して後、当該基板に対してアルゴンガス等の不活性ガスによるイオンボンバード(表面清浄)を行う。その後、当該基板に対してバイアス電圧を−100V〜−170Vの範囲で印加する。また、基板の温度は330℃〜370℃の範囲とする。本発明の成膜方法において、基板に基板に対するバイアス電圧および基板の温度を限定した理由は、以下の通りである。 Further, the target is a target composed of Al 1-y Cr y (y indicates the atomic ratio of Cr, 0.05 ≦ y ≦ 0.20). After the substrate is installed in such a film forming apparatus, ion bombarding (surface cleaning) is performed on the substrate with an inert gas such as argon gas. Then, a bias voltage is applied to the substrate in the range of −100V to −170V. The temperature of the substrate is in the range of 330 ° C. to 370 ° C. The reason for limiting the bias voltage with respect to the substrate and the temperature of the substrate to the substrate in the film forming method of the present invention is as follows.

まず、硬質皮膜の結晶構造に関して、立方晶の構造を得るためには局所的な高圧状態を作り出す必要があると本発明者は考えた。すなわち、成膜対象である基板への成膜物質のエネルギーを比較的に高くする必要があると考えた。そのエネルギーを高める方法として、基板のバイアス電圧を絶対値が大きい負の電圧にする方法が最も簡便であると考えた。基板の電圧が所定値以上(絶対値が小さい)になると、成膜時のエネルギーが不足するので結晶構造は六方晶となりやすい。また、所定値以下(絶対値が大きい)であると、スパッタリング効果が大きくなり、成膜速度が低下する。以上の理由から、当該基板に対するバイアス電圧は、−100V〜−170Vの範囲に限定した。 First, regarding the crystal structure of the hard film, the present inventor considered that it is necessary to create a local high pressure state in order to obtain a cubic structure. That is, it was considered necessary to relatively increase the energy of the film-forming substance on the substrate to be film-formed. As a method of increasing the energy, it is considered that the method of changing the bias voltage of the substrate to a negative voltage having a large absolute value is the simplest. When the voltage of the substrate exceeds a predetermined value (the absolute value is small), the energy at the time of film formation is insufficient, so that the crystal structure tends to be hexagonal. Further, when it is not more than a predetermined value (absolute value is large), the sputtering effect becomes large and the film forming speed decreases. For the above reasons, the bias voltage for the substrate was limited to the range of -100V to -170V.

次に、結晶構造が立方晶のAlCrN硬質皮膜は、成膜後の熱処理によって結晶構造が六方晶に変化することが試験結果から把握されている。また、基板温度が330℃未満であると、成膜前の脱ガス工程が不十分になり、硬質皮膜の基板に対する密着性が低下する。このことから、成膜時の基板温度は330℃〜370℃の範囲とした。 Next, it is known from the test results that the crystal structure of the AlCrN hard film having a cubic crystal structure changes to hexagonal due to the heat treatment after the film formation. Further, if the substrate temperature is less than 330 ° C., the degassing step before film formation becomes insufficient, and the adhesion of the hard film to the substrate is lowered. For this reason, the substrate temperature at the time of film formation was set in the range of 330 ° C. to 370 ° C.

なお、成膜対象がドリルやエンドミル等の切削工具である場合には、当該基板である切削工具の母材を成膜装置内に設置することができる。また、前述のターゲットのCrの比率が0.05〜0.20の範囲内である場合には、当該ターゲットを用いて成膜される硬質皮膜のCr量は、0.07〜0.24の範囲内となる。 When the film forming target is a cutting tool such as a drill or an end mill, the base material of the cutting tool, which is the substrate, can be installed in the film forming apparatus. Further, when the ratio of Cr of the target is in the range of 0.05 to 0.20, the amount of Cr of the hard film formed by using the target is 0.07 to 0.24. It will be within the range.

本発明の実施形態について、実施例を用いて詳細に説明する。カソードアーク方式イオンプレーティング装置内に設置したステンレス製の治具上に、高速度工具鋼からなる縦6mm、横6mm、高さ40mmの直方体のブロックを基板として、6mm×40mmの面が外側に向くように固定した。この治具を毎分5回転で自転させながら、同装置に設置した電熱ヒーターにより基板温度を370℃として1時間加熱した。 Embodiments of the present invention will be described in detail with reference to examples. On a stainless steel jig installed in a cathode arc type ion plating device, a rectangular parallelepiped block made of high-speed tool steel with a length of 6 mm, a width of 6 mm, and a height of 40 mm is used as a substrate, and a 6 mm × 40 mm surface is on the outside. I fixed it so that it would face. While rotating this jig at 5 rpm, the substrate was heated at 370 ° C. for 1 hour by an electric heater installed in the device.

その後、基板温度を維持したまま約0.2PaのArプラズマ中で基板をクリーニングした。このときの基板に印加したバイアス電圧は−200Vとした。次に、約7Paの窒素雰囲気中で各原子比率がAl0.8Cr0.2の成分を持つターゲットに負の電荷を印加した状態で、電圧24V、電流100Aのアーク放電を発生させた。 Then, the substrate was cleaned in Ar plasma of about 0.2 Pa while maintaining the substrate temperature. The bias voltage applied to the substrate at this time was −200 V. Next, an arc discharge with a voltage of 24 V and a current of 100 A was generated in a state where a negative charge was applied to a target having a component having an atomic ratio of Al 0.8 Cr 0.2 in a nitrogen atmosphere of about 7 Pa.

このアーク放電によりターゲットを構成する金属を蒸発させると同時にアーク放電によるイオン化を行い、反応ガス(窒素ガス)と反応させて基板上に堆積するアークイオンプレーティングを実施した。このときの基板に印加したバイアス電圧は−150V、基板温度を370℃とした。このような成膜方法による1時間の成膜で約1μmの厚さのAlCrN硬質皮膜を得た。 At the same time as the metal constituting the target was evaporated by this arc discharge, ionization was performed by the arc discharge, and the arc ion plating was carried out by reacting with the reaction gas (nitrogen gas) and depositing on the substrate. The bias voltage applied to the substrate at this time was −150 V, and the substrate temperature was 370 ° C. An AlCrN hard film having a thickness of about 1 μm was obtained by forming a film for 1 hour by such a film forming method.

得られたAlCrN硬質皮膜は、X線回折により分析した結果、膜金属成分がAl0.76Cr0.24であった。また、X線回折において30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークが2θ=37.8°±1°であり、その半値幅は1°未満であり、硬質皮膜の結晶構造は立方晶薄膜であった。 As a result of analysis of the obtained AlCrN hard film by X-ray diffraction, the film metal component was Al 0.76 Cr 0.24 . Further, in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° is 2θ = 37.8 ° ± 1 °, and the half width is less than 1 °, which is a hard film. The crystal structure of was a cubic thin film.

実施例1と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.85Cr0.15、基板に印加したバイアス電圧は−170V、基板の温度は330℃とした。得られたAlCrN膜は膜金属成分がAl0.83Cr0.17であり、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークが2θ=37.8°±1°であり、その半値幅が1°未満の立方晶薄膜であった。 An AlCrN thin film was obtained by ion plating in the same manner as in Example 1. However, the target component was Al 0.85 Cr 0.15 , the bias voltage applied to the substrate was −170 V, and the substrate temperature was 330 ° C. The obtained AlCrN film has a film metal component of Al 0.83 Cr 0.17 , and in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° is 2θ = 37. It was a cubic thin film having a half width of 8 ° ± 1 ° and a half width of less than 1 °.

実施例1と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.9Cr0.1、基板に印加したバイアス電圧は−120V、基板の温度は350℃とした。得られたAlCrN膜は膜金属成分がAl0.88Cr0.12であり、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークが2θ=37.8°±1°であり、その半値幅が1°未満の立方晶薄膜であった。 An AlCrN thin film was obtained by ion plating in the same manner as in Example 1. However, the target component was Al 0.9 Cr 0.1 , the bias voltage applied to the substrate was −120 V, and the temperature of the substrate was 350 ° C. The obtained AlCrN film has a film metal component of Al 0.88 Cr 0.12 , and in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° is 2θ = 37. It was a cubic thin film having a half width of 8 ° ± 1 ° and a half width of less than 1 °.

実施例1と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.95Cr0.05、基板に印加したバイアス電圧は−150V、基板の温度は350℃とした。得られたAlCrN膜は膜金属成分がAl0.93Cr0.07であり、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークが2θ=37.8°±1°であり、その半値幅が1°未満の立方晶薄膜であった。 An AlCrN thin film was obtained by ion plating in the same manner as in Example 1. However, the target component was Al 0.95 Cr 0.05 , the bias voltage applied to the substrate was −150 V, and the temperature of the substrate was 350 ° C. The obtained AlCrN film has a film metal component of Al 0.93 Cr 0.07 , and in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° is 2θ = 37. It was a cubic thin film having a half width of 8 ° ± 1 ° and a half width of less than 1 °.

実施例1と同様にイオンプレーティングによりAlCrTiN薄膜を得た。ただし、ターゲット成分はAl0.8Cr0.15Ti0.05、基板に印加したバイアス電圧は−100V、基板温度は370℃とした。得られたAlCrTiN膜は膜金属成分がAl0.78Cr0.17Ti0.05であり、X線回折において30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは、2θ=37.8°±1°であり、その半値幅は1°未満の立方晶薄膜であった(本実施例5は参考例1とする)。 An AlCrTiN thin film was obtained by ion plating in the same manner as in Example 1. However, the target component was Al 0.8 Cr 0.15 Ti 0.05 , the bias voltage applied to the substrate was -100 V, and the substrate temperature was 370 ° C. The obtained AlCrTiN film has a film metal component of Al 0.78 Cr 0.17 Ti 0.05 , and the highest diffraction peak of Cu-Kα rays in the range of 30 ° ≤ 2θ ≤ 90 ° in X-ray diffraction is 2θ = 37.8 ° ± 1 °, and the half width was a cubic thin film of less than 1 ° (this Example 5 is referred to as Reference Example 1).

実施例5と同様にイオンプレーティングによりAlCrTiN薄膜を得た。ただ し、ターゲット成分はAl0.8Cr0.15Ti0.05、基板に印加したバイアス電圧は−120V、基板温度は330℃とした。得られたAlCrTiN膜は膜金属成分がAl0.77Cr0.18Ti0.05であり、X線回折において30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは、2θ=37.8°±1°であり、その半値幅は1°未満の立方晶薄膜であった(本実施例6は参考例2とする)。 An AlCrTiN thin film was obtained by ion plating in the same manner as in Example 5. However, the target component was Al 0.8 Cr 0.15 Ti 0.05 , the bias voltage applied to the substrate was −120 V, and the substrate temperature was 330 ° C. The obtained AlCrTiN film has a film metal component of Al 0.77 Cr 0.18 Ti 0.05 , and the highest diffraction peak of Cu-Kα rays in the range of 30 ° ≤ 2θ ≤ 90 ° in X-ray diffraction is 2θ = 37.8 ° ± 1 °, and its half width was a cubic thin film of less than 1 ° (this Example 6 is referred to as Reference Example 2).

実施例5と同様にイオンプレーティングによりAlCrTiN薄膜を得た。ただし、ターゲット成分はAl0.8Cr0.15Ti0.05、基板に印加したバイアス電圧は−150V、基板温度は350℃とした。得られたAlCrTiN膜は膜金属成分がAl0.76Cr0.18Ti0.06であり、X線回折において30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは、2θ=37.8°±1°であり、その半値幅は1°未満の立方晶薄膜であった(本実施例7は参考例3とする)。 An AlCrTiN thin film was obtained by ion plating in the same manner as in Example 5. However, the target component was Al 0.8 Cr 0.15 Ti 0.05 , the bias voltage applied to the substrate was −150 V, and the substrate temperature was 350 ° C. The obtained AlCrTiN film has a film metal component of Al 0.76 Cr 0.18 Ti 0.06 , and the highest diffraction peak of Cu-Kα rays in the range of 30 ° ≤ 2θ ≤ 90 ° in X-ray diffraction is 2θ = 37.8 ° ± 1 °, and the half width was a cubic thin film of less than 1 ° (this Example 7 is referred to as Reference Example 3).

実施例5と同様にイオンプレーティングによりAlCrVN薄膜を得た。ただし、ターゲット成分はAl0.8Cr0.150.05、基板に印加したバイアス電圧は−150V、基板温度は350℃とした。得られたAlCrTiN膜は膜金属成分がAl0.76Cr0.180.06であり、X線回折において30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは、2θ=37.8°±1°であり、その半値幅は1°未満の立方晶薄膜であった(本実施例8は参考例4とする)。 An AlCrVN thin film was obtained by ion plating in the same manner as in Example 5. However, the target component was Al 0.8 Cr 0.15 V 0.05 , the bias voltage applied to the substrate was −150 V, and the substrate temperature was 350 ° C. The obtained AlCrTiN film has a film metal component of Al 0.76 Cr 0.18 V 0.06 , and the highest diffraction peak of Cu-Kα rays in the range of 30 ° ≤ 2θ ≤ 90 ° in X-ray diffraction is 2θ = 37.8 ° ± 1 °, and its half width was a cubic thin film of less than 1 ° (this Example 8 is referred to as Reference Example 4).

実施例5と同様にイオンプレーティングによりAlCrZrN薄膜を得た。ただし、ターゲット成分はAl0.8Cr0.15Zr0.05、基板に印加したバイアス電圧は−150V、基板温度は350℃とした。得られたAlCrTiN膜は膜金属成分がAl0.76Cr0.19Zr0.05であり、X線回折において30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは、2θ=37.8°±1°であり、その半値幅は1°未満の立方晶薄膜であった(本実施例9は参考例5とする)。 An AlCrZrN thin film was obtained by ion plating in the same manner as in Example 5. However, the target component was Al 0.8 Cr 0.15 Zr 0.05 , the bias voltage applied to the substrate was −150 V, and the substrate temperature was 350 ° C. The obtained AlCrTiN film has a film metal component of Al 0.76 Cr 0.19 Zr 0.05 , and the highest diffraction peak of Cu-Kα rays in the range of 30 ° ≤ 2θ ≤ 90 ° in X-ray diffraction is 2θ = 37.8 ° ± 1 °, and its half width was a cubic thin film of less than 1 ° (this Example 9 is referred to as Reference Example 5).

実施例5と同様にイオンプレーティングによりAlCrNbN薄膜を得た。ただし、ターゲット成分はAl0.8Cr0.15Nb0.05、基板に印加したバイアス電圧は−150V、基板温度は350℃とした。得られたAlCrNbN膜は膜金属成分がAl0.77Cr0.19Nb0.04であり、X線回折において30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは、2θ=37.8°±1°であり、その半値幅は1°未満の立方晶薄膜であった(本実施例10は参考例6とする)。 An AlCrNbN thin film was obtained by ion plating in the same manner as in Example 5. However, the target component was Al 0.8 Cr 0.15 Nb 0.05 , the bias voltage applied to the substrate was −150 V, and the substrate temperature was 350 ° C. The obtained AlCrNbN film has a film metal component of Al 0.77 Cr 0.19 Nb 0.04 , and the highest diffraction peak of Cu—Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° in X-ray diffraction is 2θ = 37.8 ° ± 1 °, and its half width was a cubic thin film of less than 1 ° (this Example 10 is referred to as Reference Example 6).

本発明の実施の形態に関する実施例は以上の通りであるが、本実施の形態とは異なる例(比較例)としての試験も行ったので、その試験条件および試験結果を以下に説明する。まず、比較例1として実施例1と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.7Cr0.3、基板に印加したバイアス電圧は−50V、基板温度は450℃とした。得られたAlCrN膜は膜金属成分がAl0.68Cr0.32であり、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークが2θ=37.8°±1°であり、その半値幅が1°未満の立方晶薄膜であった。以上の結果より、比較例1は従来例であり、Al0.7以下であれば基板バイアスが低く、温度が高くても立方晶薄膜となることを確認した。 The examples relating to the embodiment of the present invention are as described above, but since a test as an example (comparative example) different from the embodiment of the present invention was also performed, the test conditions and test results will be described below. First, as Comparative Example 1, an AlCrN thin film was obtained by ion plating in the same manner as in Example 1. However, the target component was Al 0.7 Cr 0.3 , the bias voltage applied to the substrate was −50 V, and the substrate temperature was 450 ° C. The obtained AlCrN film has a film metal component of Al 0.68 Cr 0.32 , and in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° is 2θ = 37. It was a cubic thin film having a half width of 8 ° ± 1 ° and a half width of less than 1 °. From the above results, it was confirmed that Comparative Example 1 is a conventional example, and that if Al is 0.7 or less, the substrate bias is low, and even if the temperature is high, the cubic thin film is formed.

次に、比較例2として比較例1と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.8Cr0.2、基板に印加したバイアス電圧は−50V、基板温度は350℃とした。得られたAlCrN膜は膜金属成分がAl0.79Cr0.21であったが、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは2θ=33°の六方晶薄膜であった。比較例1よりもAl比率が高い場合、基板バイアスが低いと六方晶薄膜となることを示す例である。 Next, as Comparative Example 2, an AlCrN thin film was obtained by ion plating in the same manner as in Comparative Example 1. However, the target component was Al 0.8 Cr 0.2 , the bias voltage applied to the substrate was −50 V, and the substrate temperature was 350 ° C. The obtained AlCrN film had a film metal component of Al 0.79 Cr 0.21 , but in X-ray diffraction, the highest diffraction peak of Cu−Kα rays was 2θ = in the range of 30 ° ≦ 2θ ≦ 90 °. It was a 33 ° hexagonal thin film. This is an example showing that when the Al ratio is higher than that of Comparative Example 1, a hexagonal thin film is formed when the substrate bias is low.

次に、比較例3として比較例1と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.85Cr0.15、基板に印加したバイアス電圧は−150V、基板温度は450℃とした。得られたAlCrN膜は膜金属成分がAl0.82Cr0.12であったが、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは2θ≒33°の六方晶薄膜であった。比較例1よりもAl比率が高い場合、基板温度が高いと六方晶薄膜となることを示す例である。 Next, as Comparative Example 3, an AlCrN thin film was obtained by ion plating in the same manner as in Comparative Example 1. However, the target component was Al 0.85 Cr 0.15 , the bias voltage applied to the substrate was −150 V, and the substrate temperature was 450 ° C. The obtained AlCrN film had a film metal component of Al 0.82 Cr 0.12 , but in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° was 2θ≈ It was a 33 ° hexagonal thin film. This is an example showing that when the Al ratio is higher than that of Comparative Example 1, a hexagonal thin film is formed when the substrate temperature is high.

次に、比較例4として比較例1と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.9Cr0.1、基板に印加したバイアス電圧は−30V、基板温度は400℃とした。得られたAlCrN膜は膜金属成分がAl0.89Cr0.11であったが、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは2θ≒33°の六方晶薄膜であった。比較例1よりもAl比率が高い場合、基板バイアスが低く、基板温度が高いと六方晶薄膜となることを示す例である。 Next, as Comparative Example 4, an AlCrN thin film was obtained by ion plating in the same manner as in Comparative Example 1. However, the target component was Al 0.9 Cr 0.1 , the bias voltage applied to the substrate was -30 V, and the substrate temperature was 400 ° C. The obtained AlCrN film had a film metal component of Al 0.89 Cr 0.11 , but in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° was 2θ≈ It was a 33 ° hexagonal thin film. This is an example showing that when the Al ratio is higher than that of Comparative Example 1, the substrate bias is low, and when the substrate temperature is high, a hexagonal thin film is formed.

次に、比較例5として実施例4と同様にイオンプレーティングによりAlCrN薄膜を得た。ただし、ターゲット成分はAl0.99Cr0.01とした。得られたAlCrN膜は膜金属成分がAl0.99Cr0.01であったが、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは2θ≒33°の六方晶薄膜であった。実施例4よりもAl比率が高いと六方晶薄膜となることを示す例である。 Next, as Comparative Example 5, an AlCrN thin film was obtained by ion plating in the same manner as in Example 4. However, the target component was Al 0.99 Cr 0.01 . The obtained AlCrN film had a film metal component of Al 0.99 Cr 0.01 , but in X-ray diffraction, the highest diffraction peak of Cu−Kα rays in the range of 30 ° ≦ 2θ ≦ 90 ° was 2θ≈ It was a 33 ° hexagonal thin film. This is an example showing that a hexagonal thin film is formed when the Al ratio is higher than that of Example 4.

次に、比較例6として実施例7と同様にイオンプレーティングによりAlCrTiN薄膜を得た。ただし、基板温度は450℃とした。得られたAlCrNTi膜は膜金属成分がAl0.76Cr0.18Ti0.06であったが、X線回折において、30°≦2θ≦90°の範囲でCu−Kα線の最も高い回折ピークは2θ≒33°の六方晶薄膜であった。実施例7で基板温度が高いと六方晶薄膜となることを示す例である。以上の本実施例1〜10および比較例1〜6において使用したターゲットの組成、基板に印加したバイアス電圧(基板バイアス)、基板の温度(基板温度)、成膜された硬質皮膜の成分(皮膜成分)および当該硬質皮膜の結晶構造をまとめて表1に示す。 Next, as Comparative Example 6, an AlCrTiN thin film was obtained by ion plating in the same manner as in Example 7. However, the substrate temperature was 450 ° C. The obtained AlCrNTi film had a film metal component of Al 0.76 Cr 0.18 Ti 0.06 , but in X-ray diffraction, the highest diffraction of Cu-Kα rays in the range of 30 ° ≤ 2θ ≤ 90 °. The peak was a hexagonal thin film with 2θ≈33 °. In Example 7, it is an example showing that a hexagonal thin film is formed when the substrate temperature is high. The composition of the target used in Examples 1 to 10 and Comparative Examples 1 to 6 described above, the bias voltage applied to the substrate (board bias), the temperature of the substrate (board temperature), and the components of the formed hard film (film). The components) and the crystal structure of the hard film are summarized in Table 1.

Figure 0006789503
Figure 0006789503

Claims (1)

Al1−yCr(0.05≦y≦0.20:yはCrの原子比率を示す。)から成るターゲットを内部に備えるカソードアーク方式イオンプレーティング装置を用いて窒化物の硬質皮膜を成膜する方法であって、前記カソードアーク方式イオンプレーティング装置内に設置する基板に対して印加するバイアス電圧を−120V〜−170Vの範囲とし、前記基板の温度を330℃〜370℃の範囲として前記硬質皮膜を成膜することを特徴とする硬質皮膜の成膜方法。 A hard film of nitride was formed using a cathode arc ion plating apparatus having a target composed of Al 1-y Cr y (0.05 ≦ y ≦ 0.20: y indicates the atomic ratio of Cr) inside. In this method of forming a film, the bias voltage applied to the substrate installed in the cathode arc ion plating apparatus is in the range of −120V to −170V, and the temperature of the substrate is in the range of 330 ° C. to 370 ° C. A method for forming a hard film, which comprises forming the hard film as described above.
JP2016127290A 2016-06-28 2016-06-28 Hard film film formation method Active JP6789503B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016127290A JP6789503B2 (en) 2016-06-28 2016-06-28 Hard film film formation method
JP2020052037A JP6895631B2 (en) 2016-06-28 2020-03-24 Hard film film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127290A JP6789503B2 (en) 2016-06-28 2016-06-28 Hard film film formation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020052037A Division JP6895631B2 (en) 2016-06-28 2020-03-24 Hard film film formation method

Publications (2)

Publication Number Publication Date
JP2018003046A JP2018003046A (en) 2018-01-11
JP6789503B2 true JP6789503B2 (en) 2020-11-25

Family

ID=60948631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127290A Active JP6789503B2 (en) 2016-06-28 2016-06-28 Hard film film formation method

Country Status (1)

Country Link
JP (1) JP6789503B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895631B2 (en) * 2016-06-28 2021-06-30 株式会社不二越 Hard film film formation method
JP6830410B2 (en) 2017-06-12 2021-02-17 日本特殊陶業株式会社 Surface coating cutting tool
JP6798534B2 (en) 2018-09-11 2020-12-09 株式会社タンガロイ Cover cutting tool
JP7389948B2 (en) * 2019-03-01 2023-12-01 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758288B2 (en) * 2000-12-28 2011-08-24 株式会社神戸製鋼所 Manufacturing method of hard coating
JP2008013852A (en) * 2003-01-17 2008-01-24 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP6064549B2 (en) * 2012-11-28 2017-01-25 住友電気工業株式会社 Sintered body and method of manufacturing the sintered body
JP6525310B2 (en) * 2014-07-29 2019-06-05 日立金属株式会社 Coated tools

Also Published As

Publication number Publication date
JP2018003046A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
KR102268364B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP6858347B2 (en) Cover cutting tool
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6830992B2 (en) Method for Producing Metal Hobide Carbide Layer on Substrate
US8460803B2 (en) Hard coating layer and method for forming the same
JP5190971B2 (en) Coating, cutting tool, and manufacturing method of coating
JP6428899B2 (en) Method for modifying WC-based cemented carbide substrate
JP6789503B2 (en) Hard film film formation method
JP2009534524A (en) Coating
JP6842233B2 (en) Coated cutting tools and methods for manufacturing coated cutting tools
WO2017163972A1 (en) Hard coating, hard coating-covered member, and method for producing hard coating
JP2012166321A (en) Surface coated cutting tool
JP2008290163A (en) Coating film, cutting tool and coating film making method
JP6895631B2 (en) Hard film film formation method
EP3394312B1 (en) A coated cutting tool and method
JP2009148856A (en) Surface-coated cutting tool
KR101727420B1 (en) Laminated coating film having excellent abrasion resistance
JP5580906B2 (en) Coating, cutting tool, and manufacturing method of coating
JP2004230515A (en) Tool for highly functional processing
JP5186631B2 (en) Coating, cutting tool, and manufacturing method of coating
JP5229826B2 (en) Coating, cutting tool, and manufacturing method of coating
JP2019131861A (en) Hard film, hard film-coated tool, and manufacturing method thereof
JP5266710B2 (en) Hard coating tool
JP2012166320A (en) Surface coated cutting tool
JP2009035784A (en) Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R150 Certificate of patent or registration of utility model

Ref document number: 6789503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150