JPH11149054A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH11149054A
JPH11149054A JP31512897A JP31512897A JPH11149054A JP H11149054 A JPH11149054 A JP H11149054A JP 31512897 A JP31512897 A JP 31512897A JP 31512897 A JP31512897 A JP 31512897A JP H11149054 A JPH11149054 A JP H11149054A
Authority
JP
Japan
Prior art keywords
mirror
scanning
image forming
optical
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31512897A
Other languages
Japanese (ja)
Other versions
JP3639097B2 (en
Inventor
Hiromichi Atsumi
広道 厚海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP31512897A priority Critical patent/JP3639097B2/en
Publication of JPH11149054A publication Critical patent/JPH11149054A/en
Application granted granted Critical
Publication of JP3639097B2 publication Critical patent/JP3639097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively compensate a plane tilt and to excellently compensate the curvature of field and a constant velocity characteristic in the main/sub-scanning directions in a multiple reflection type optical scanning device. SOLUTION: In an optical scanning device forming the image of a light beam from a light source side as a line image being long in the direction corresponding to main scanning, deflecting it by a light deflector having deflection/reflection surface in the vicinity of the image forming position of the line image, converging the deflected light beam on a surface to be scanned as a light spot by a scanning/image forming optical system having the reflection/ image forming property and optically scanning the surface to be scanned; the scanning/image forming optical system having the reflection/image forming property comprises an image forming mirror 7 having image forming function in the directions corresponding to main/sub- scanning and one and more plane mirrors 5, 6 having a reflection surface confronting the reflection surface of the image forming mirror 7 and the bent of a scanning line is compensated by multiply reflecting the deflected light beam between the plane mirror and the image forming mirror. The image forming mirror has the shape of reflection surface so that the shape of reflection surface in the sub-scanning cross section is circular-arcuate, the shape of reflection surface in the plane including the optical axis of the image forming mirror and orthogonal to the sub-scanning cross section is non-circular-arc shape and the central connecting line connecting the centers of curvature of circular-arcuate shape is nonlinear.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は光走査装置に関す
る。
The present invention relates to an optical scanning device.

【0002】[0002]

【従来の技術】光走査装置において、偏向光束を被走査
面上に光スポットとして集光させる走査結像光学系に、
「結像作用を持つ結像ミラー」を用いることが提案され
ている(特開平1−200219号公報等)。このよう
な結像ミラーを用いる場合、結像ミラーにより反射され
た偏向光束が、光偏向器側に戻らないようにする必要が
あり、この目的のため、結像ミラーの光軸(反射面の対
称軸)を、光偏向器側からの偏向光束の入射方向に対し
て傾けることが行われている。
2. Description of the Related Art In an optical scanning apparatus, a scanning imaging optical system for condensing a deflected light beam as a light spot on a surface to be scanned is provided.
It has been proposed to use an "imaging mirror having an imaging effect" (Japanese Patent Application Laid-Open No. 1-220019). When such an image forming mirror is used, it is necessary to prevent the deflected light beam reflected by the image forming mirror from returning to the optical deflector. For this purpose, the optical axis of the image forming mirror (of the reflecting surface) is required. (The axis of symmetry) is inclined with respect to the incident direction of the deflected light beam from the optical deflector side.

【0003】このようにすると、被走査面上の光スポッ
トの軌跡の曲がりである「走査線曲がり」が生じること
が知られている。走査線曲がりを補正する方法として、
結像ミラーに反射面を対向させるようにして別の反射鏡
を配備し、この反射鏡と結像ミラーとの間で偏向光束の
反射をくり返させたのち、被走査面に入射させる「多重
反射」方式の光走査装置が提案されている(特開昭64
−78214号公報)。
[0003] In this way, it is known that "scanning line bending", which is the bending of the locus of the light spot on the surface to be scanned, occurs. As a method of correcting scan line bending,
Another reflecting mirror is provided so that the reflecting surface is opposed to the imaging mirror, and the reflection of the deflected light beam is repeated between this reflecting mirror and the imaging mirror, and then the light is incident on the surface to be scanned. An optical scanning device of the "reflection" type has been proposed (Japanese Patent Laid-Open No. Sho 64).
-78214).

【0004】上記のように、結像ミラーと反射鏡との間
で偏向光束を多重反射させて被走査面を光走査するよう
にすると、偏向光束は、結像ミラーにより複数回反射さ
れるが、結像ミラーによる「偏向光束の交互の反射」
で、各反射ごとの走査線曲がり傾向を互いに実質的に相
殺できるようにできるのである。
[0004] As described above, when the scanning is performed on the surface to be scanned by multiple reflection of the deflected light beam between the image forming mirror and the reflecting mirror, the deflected light beam is reflected a plurality of times by the image forming mirror. , "Alternate reflection of deflected light beam" by imaging mirror
Thus, it is possible to substantially cancel the scanning line bending tendency for each reflection.

【0005】しかし、上記公報記載の発明では、走査結
像光学系に「光偏向器の面倒れ補正機能」がないので、
偏向反射面と回転軸の平行度を高精度に補正した回転多
面鏡を用いる必要があり、回転多面鏡のコストが高くな
り、結果的に光走査装置のコストが高くつく。
However, in the invention described in the above-mentioned publication, the scanning image forming optical system does not have the "function of correcting the surface tilt of the optical deflector".
It is necessary to use a rotating polygon mirror in which the degree of parallelism between the deflecting reflection surface and the rotation axis is corrected with high accuracy, which increases the cost of the rotating polygon mirror and, as a result, the cost of the optical scanning device.

【0006】また、光走査装置で良好な光走査を実施す
るためには、走査線曲がりが良好に補正されていること
も重要であるが、上記面倒れの有効な補正も重要である
し、光スポットのスポット径が像高と共に変動しないよ
うに、像面湾曲が主・副走査方向とも良好に補正されて
いることや、fθ特性等の等速特性が良好であることな
ども重要である。
In order to perform good optical scanning with the optical scanning device, it is important that the scanning line bend is well corrected, but it is also important to effectively correct the above-mentioned tilting. It is also important that the curvature of field is well corrected in the main and sub-scanning directions and that the constant velocity characteristics such as fθ characteristics are good so that the spot diameter of the light spot does not change with the image height. .

【0007】[0007]

【発明が解決しようとする課題】この発明は、上記多重
反射方式の光走査装置において、面倒れを有効に補正す
るとともに、主・副走査方向の像面湾曲や等速特性の良
好な補正を可能ならしむることを課題とする。
SUMMARY OF THE INVENTION The present invention provides an optical scanning apparatus of the above-mentioned multiple reflection type, which effectively corrects surface tilt and excellently corrects field curvature and constant velocity characteristics in the main and sub scanning directions. The task is to make it possible.

【0008】[0008]

【課題を解決するための手段】この発明の光走査装置は
「光源側からの光束を主走査対応方向(光源から被走査
面に至る光路上で主走査方向と対応する方向)に長い線
像として結像させ、線像の結像位置近傍に偏向反射面を
持つ光偏向器により偏向させ、偏向光束を反射結像性の
走査結像光学系により被走査面上に光スポットとして集
光させて被走査面の光走査を行う光走査装置であって、
反射結像性の走査結像光学系が、主・副走査対応方向
(光源から被走査面に至る光路上で副走査方向に対応す
る方向)に結像機能を持つ結像ミラーと、この結像ミラ
ーの反射面に対向する反射面を有する1以上の平面鏡と
を有し、偏向光束を、1以上の平面鏡と結像ミラーとの
間で多重反射させることにより走査線曲がりを補正する
ようにしたもの」であって、以下の点を特徴とする(請
求項1)。即ち、反射結像性の走査結像光学系における
「結像ミラー」は、副走査断面内における反射面形状が
円弧形状で、結像ミラーの光軸を含み副走査断面に直交
する面内における反射面形状が非円弧形状であり、上記
円弧形状の曲率中心を連ねた中心連結線が非直線である
ような反射面形状を有する。「副走査断面」は、結像ミ
ラーの反射面近傍において「主走査対応方向に直交する
平断面」である。
An optical scanning device according to the present invention is directed to an image forming apparatus which uses a light beam from a light source side in a long line image in a main scanning direction (a direction corresponding to the main scanning direction on an optical path from a light source to a surface to be scanned). The light is deflected by an optical deflector having a deflecting / reflecting surface in the vicinity of the image forming position of the line image, and the deflected light beam is condensed as a light spot on the surface to be scanned by a reflective / imaging scanning / imaging optical system. An optical scanning device that performs optical scanning of the surface to be scanned,
A scanning imaging optical system having a reflective imaging property includes an imaging mirror having an imaging function in a main / sub-scanning corresponding direction (a direction corresponding to a sub-scanning direction on an optical path from a light source to a surface to be scanned); A mirror having one or more plane mirrors having a reflecting surface opposed to a reflecting surface of the image mirror, and correcting deflection of the scanning line by multiple-reflecting the deflected light beam between the one or more plane mirrors and the imaging mirror. Which is characterized by the following points (claim 1). That is, the "imaging mirror" in the scanning imaging optical system of the reflection imaging has a circular arc shape in the sub-scanning cross section, and includes a plane including the optical axis of the imaging mirror and orthogonal to the sub-scanning cross section. The reflecting surface has a non-arc shape, and has a reflecting surface shape in which a center connecting line connecting the centers of curvature of the arc shape is non-linear. The “sub-scan section” is a “plane section perpendicular to the main scanning direction” near the reflection surface of the imaging mirror.

【0009】このように、この光走査装置では、光源側
からの光束は、光偏向器の偏向反射面近傍に主走査対応
方向に長い線像に結像され、走査結像光学系は、副走査
対応方向に関しては、この線像を物点として光スポット
を被走査面に結像させる機能を持ち、従って、この光走
査装置は、光偏向器の面倒れを補正する機能を持つ。ま
た「走査結像光学系」は、結像ミラーと1以上の平面鏡
により構成され、平面鏡には結像作用がないので、結像
ミラーは、主・副走査対応方向に結像機能を有する必要
があり、光スポットは結像ミラーの結像作用により結像
する。したがって、結像ミラーは、主走査対応方向のパ
ワーと副走査対応方向のパワーの異なるアナモフィック
な結像系である。
As described above, in this optical scanning device, the light beam from the light source side is imaged near the deflection reflecting surface of the optical deflector into a long line image in the main scanning direction, and the scanning image forming optical system is With respect to the scanning corresponding direction, this line image has a function of forming an optical spot on the surface to be scanned by using this line image as an object point. Therefore, this optical scanning device has a function of correcting the tilt of the optical deflector. The “scanning optical system” is composed of an imaging mirror and one or more plane mirrors, and since the plane mirror has no imaging action, the imaging mirror needs to have an imaging function in the main / sub-scanning corresponding direction. The light spot forms an image by the image forming operation of the image forming mirror. Therefore, the imaging mirror is an anamorphic imaging system having different powers in the main scanning corresponding direction and the sub-scanning corresponding direction.

【0010】結像ミラーと共に走査結像光学系をなす平
面鏡が2以上用いられる場合(便宜上、平面鏡A,B等
とする)、偏向光束の多重反射は、特定の一つの平面鏡
Aと結像ミラーとの間で反射がくり返されるようにして
もよいし、平面鏡A,Bと結像ミラーとの間で反射がく
り返されるようにしてもよい。多重反射の際に、偏向光
束は結像ミラーにより複数回反射されることになるが、
「結像ミラーによる偏向光束の反射回数」は2回でもよ
いし、3回以上でもよい。
When two or more plane mirrors constituting a scanning image forming optical system are used together with the image forming mirror (for convenience, plane mirrors A, B, etc.), the multiple reflection of the deflected light beam is performed by using a specific plane mirror A and an image forming mirror. And the reflection may be repeated between the plane mirrors A and B and the imaging mirror. In the case of multiple reflection, the deflected light beam is reflected multiple times by the imaging mirror,
The “number of times of reflection of the deflected light beam by the imaging mirror” may be two times, or three or more times.

【0011】結像ミラーの反射面は「副走査断面内にお
ける形状が円弧形状で、結像ミラーの光軸を含み副走査
断面に直交する面内における形状が非円弧形状であり、
上記円弧形状の曲率中心を(主走査対応方向に)連ねた
中心連結線が非直線である」ので、上記非円弧形状を最
適化することにより、主走査方向の像面湾曲や等速特性
を良好に補正することができ、中心連結線の形状の最適
化により、副走査方向の像面湾曲や走査線曲がりの補正
を良好に行うことが可能になる。
The reflecting surface of the imaging mirror has an arc shape in the sub-scan section, and a non-arc shape in a plane including the optical axis of the imaging mirror and orthogonal to the sub-scan section.
The center connection line connecting the centers of curvature of the arc shapes (in the direction corresponding to the main scanning) is non-linear. ”By optimizing the non-arc shape, the field curvature and constant velocity characteristics in the main scanning direction can be reduced. Correction can be performed satisfactorily. By optimizing the shape of the center connection line, it is possible to satisfactorily correct field curvature in the sub-scanning direction and scanning line bending.

【0012】結像ミラーとの間で偏向光束を多重反射さ
せる1以上の平面鏡は「同一の透明体に1以上の反射面
を形成し、反射面でない部分が光透過部をなす」ように
構成できる(請求項2)。この場合、1以上の反射面を
形成した透明体を「光走査装置のハウジングの防塵ガラ
ス」とすることができる(請求項3)。走査結像光学系
の平面鏡を防塵ガラスと兼用することにより、光走査装
置の部品点数を減らすことができ、光走査装置のコスト
を低減化できる。光偏向器により偏向された偏向光束
は、最初に平面鏡に入射してから、この平面鏡に反射さ
れて結像ミラーに入射するようにしてもよいが、光偏向
器により偏向された偏向光束が「最初に結像ミラーに入
射する」ようにしてもよい(請求項4)。このように偏
向光束が最初に結像ミラーの入射するようにすると、入
射光束と反射光束との分離角を大きくとれるので、光学
系のレイアウトの自由度が大きくなる。
The one or more plane mirrors for multiple reflection of the deflected light beam between the image forming mirror and the mirror are configured such that "one or more reflecting surfaces are formed on the same transparent body, and a portion other than the reflecting surface forms a light transmitting portion". (Claim 2). In this case, the transparent body having one or more reflecting surfaces can be used as "dust-proof glass for the housing of the optical scanning device". By using the plane mirror of the scanning image forming optical system as dustproof glass, the number of components of the optical scanning device can be reduced, and the cost of the optical scanning device can be reduced. The deflected light beam deflected by the optical deflector may first be incident on a plane mirror, and then reflected by the plane mirror to be incident on the imaging mirror. First, the light is incident on the imaging mirror (claim 4). If the deflected light beam is first made incident on the imaging mirror in this way, the separation angle between the incident light beam and the reflected light beam can be increased, and the degree of freedom in the layout of the optical system increases.

【0013】請求項4記載の発明の場合、結像ミラーと
の間で偏向光束を多重反射させる平面鏡を、光走査装置
のハウジングの防塵ガラスの一部に形成された1の反射
面とし、該反射面で反射され、結像ミラーで反射された
偏向光束が、防塵ガラスの透明部を通ってハウジングか
ら射出するように構成できる(請求項5)。上記請求項
1〜5の任意の1に記載の光走査装置において、光スポ
ットの結像における主・副走査方向の像面湾曲:3mm
以下、走査線曲がり:0.03mm以下、等速性:1%
以下を達成するように、光学配置および結像ミラーの反
射面形状を定めることができる(請求項6)。
According to the fourth aspect of the present invention, the plane mirror that multiple-reflects the deflected light beam between the imaging mirror and the imaging mirror is one reflecting surface formed on a part of the dust-proof glass of the housing of the optical scanning device. The deflection light beam reflected by the reflection surface and reflected by the imaging mirror can be configured to exit from the housing through the transparent portion of the dust-proof glass. The optical scanning device according to any one of claims 1 to 5, wherein the field curvature in the main and sub-scanning directions in the imaging of the light spot is 3 mm.
Below, scanning line bending: 0.03 mm or less, uniform velocity: 1%
The optical arrangement and the reflecting surface shape of the imaging mirror can be determined so as to achieve the following (claim 6).

【0014】[0014]

【発明の実施の形態】図1は請求項1記載の光走査装置
の実施の1形態を説明図的に示している。半導体レーザ
である光源1から放射された発散性の光束は、カップリ
ングレンズ2により以後の光学系にカップリングされ
る。カップリングレンズ2は、光源1からの光束の発散
性を弱めて「弱い発散性もしくは弱い集束性の光束」あ
るいは「平行光束」とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram showing one embodiment of the optical scanning device according to the first aspect. A divergent light beam emitted from a light source 1 which is a semiconductor laser is coupled to an optical system thereafter by a coupling lens 2. The coupling lens 2 weakens the divergence of the luminous flux from the light source 1 to be a "weakly divergent or weakly converging luminous flux" or "parallel luminous flux".

【0015】カップリングレンズ2を透過した光束は
「図示されないアパーチュア」を通過することにより光
束の周辺部を遮断されて適当な光束断面形状に「ビーム
整形」され、次いでシリンダレンズ3により副走査対応
方向(図面に直交する方向)に集束され、「光偏向器」
としての回転多面鏡4の偏向反射面4aの近傍に、「主
走査対応方向に長い線像」として結像する。シリンダレ
ンズ3は「凹シリンダ面鏡」により代替することもで
き、光偏向器は回転多面鏡4に代えて「回転2面鏡」を
用いることもできる。
The light beam transmitted through the coupling lens 2 passes through an aperture (not shown) so that the peripheral portion of the light beam is cut off and "beam-shaped" into an appropriate light beam cross-sectional shape. Focused in the direction (perpendicular to the drawing), the "optical deflector"
In the vicinity of the deflecting / reflecting surface 4a of the rotary polygon mirror 4 as the above, an image is formed as a "long line image in the main scanning corresponding direction". The cylinder lens 3 can be replaced by a “concave cylinder mirror”, and the optical deflector can be a “rotating two-sided mirror” instead of the rotating polygon mirror 4.

【0016】回転多面鏡4の偏向反射面4aにより反射
された光束は、回転多面鏡4の等速回転により、等角速
度的に偏向する偏向光束となり「反射結像性の走査結像
光学系」に入射する。この実施の形態において、反射結
像性の走査結像光学系は、2枚の平面鏡5,6と結像ミ
ラー7とで構成されている。偏向光束は先ず平面鏡5に
入射し、平面鏡5により反射されると結像ミラー7に入
射する。そして結像ミラー7により反射されると平面鏡
6に入射して反射され、再度結像ミラー7に戻り、結像
ミラー7により再度反射されると、被走査面8に光スポ
ットとして集光し、被走査面8を光走査する。なお、被
走査面8の位置には、通常「光導電性の感光体」の感光
面が配備され、光スポットは実体的には感光体を光走査
する。
The light beam reflected by the deflecting / reflecting surface 4a of the rotating polygon mirror 4 becomes a deflecting light beam deflected at a constant angular velocity by the rotation of the rotating polygon mirror 4 at a constant speed. Incident on. In this embodiment, the scanning image forming optical system of reflection image formation includes two plane mirrors 5 and 6 and an image forming mirror 7. The deflected light beam first enters the plane mirror 5 and, after being reflected by the plane mirror 5, enters the imaging mirror 7. When the light is reflected by the imaging mirror 7, the light enters the plane mirror 6 and is reflected, returns to the imaging mirror 7 again, and when reflected by the imaging mirror 7 again, condenses as a light spot on the surface 8 to be scanned. The scanned surface 8 is optically scanned. Note that a photosensitive surface of a “photoconductive photoconductor” is usually provided at the position of the surface 8 to be scanned, and the light spot actually scans the photoconductor.

【0017】即ち、図1に示す実施の形態は、光源側か
らの光束を主走査対応方向に長い線像として結像させ、
線像の結像位置近傍に偏向反射面4aを持つ光偏向器4
により偏向させ、偏向光束を、反射結像性の走査結像光
学系5,6,7により、被走査面8上に光スポットとし
て集光させて、被走査面8の光走査を行う光走査装置で
あって、「反射結像性の走査結像光学系」は、主・副走
査対応方向に結像機能を持つ結像ミラー7と、結像ミラ
ー7の反射面に対向する反射面を有する1以上の平面鏡
5,6を有し、偏向光束を平面鏡5,6と結像ミラー7
との間で「多重反射(平面鏡5,6と結像ミラー7との
間で反射がくり返される)」させるようになっている。
That is, in the embodiment shown in FIG. 1, the light beam from the light source side is formed as a long line image in the main scanning corresponding direction.
An optical deflector 4 having a deflecting / reflecting surface 4a near the image forming position of a line image
Optical scanning for optically scanning the scanned surface 8 by condensing the deflected light beam as a light spot on the scanned surface 8 by the scanning and imaging optical systems 5, 6, and 7 having reflective imaging properties. A “reflective imaging scan imaging optical system” includes an imaging mirror 7 having an imaging function in a main / sub-scanning corresponding direction and a reflection surface facing the reflection surface of the imaging mirror 7. Having one or more plane mirrors 5 and 6 for deflecting the deflected light beam to the plane mirrors 5 and 6 and the imaging mirror 7.
"Multiple reflections (reflection is repeated between the plane mirrors 5 and 6 and the imaging mirror 7)".

【0018】図2は、図1の実施の形態における「回転
多面鏡4以降の部分」を、主走査対応方向から見た状態
を説明図的に示している。符号8aは、被走査面8に感
光面を合致させて配備された「感光体」を示す。回転多
面鏡4による光束の偏向は、理想的には「回転多面鏡4
の回転軸4bに直交する平面内」で行われる。平面鏡
5,6は「主走査対応方向(図面に直行する方向)に長
い矩形形状の反射面」を持つ平面鏡であり、結像ミラー
7と平面鏡5,6の位置関係は「多重反射により走査線
曲がりを有効に補正できる」ように設定される。即ち、
結像ミラー7は偏向光束を2度反射するが、最初の反射
により生じる「走査線の曲がり傾向」を、第2回目の反
射による「走査線の曲がり傾向」により相殺させるよう
に、平面鏡5,6と結像ミラー7の位置関係が設定され
るのである。
FIG. 2 is an explanatory diagram showing a state in which the "portion after the rotary polygon mirror 4" in the embodiment of FIG. 1 is viewed from the direction corresponding to the main scanning. Reference numeral 8a denotes a “photoconductor” provided with the photosensitive surface coincident with the surface 8 to be scanned. The deflection of the light beam by the rotating polygon mirror 4 is ideally performed by the “rotating polygon mirror 4”.
In a plane orthogonal to the rotation axis 4b. The plane mirrors 5 and 6 are plane mirrors having a “rectangular reflecting surface long in the main scanning corresponding direction (the direction perpendicular to the drawing)”, and the positional relationship between the imaging mirror 7 and the plane mirrors 5 and 6 is “scanning line due to multiple reflection”. The bend can be effectively corrected. " That is,
The imaging mirror 7 reflects the deflected light beam twice, but cancels the “scanning line bending tendency” caused by the first reflection by the “scanning line bending tendency” caused by the second reflection. The positional relationship between 6 and the imaging mirror 7 is set.

【0019】平面鏡5,6は結像パワーを持たないの
で、偏向光束は主・副走査対応方向とも結像ミラー7の
結像作用(2度の反射により実現される)により、被走
査面8上に光スポットとして集光する。即ち、反射結像
性の走査結像光学系は「偏向反射面4a近傍の線像と被
走査面8とを副走査対応方向に関して略共役な関係」と
しており、従って「光偏向器4の面倒れ」を補正する機
能を有する。
Since the plane mirrors 5 and 6 have no imaging power, the deflected light beam is scanned by the imaging mirror 7 (implemented by two reflections) in both the main and sub-scanning directions. The light is focused as a light spot on the top. In other words, the scanning imaging optical system of the reflection imaging property has "the line image near the deflection reflecting surface 4a and the surface 8 to be scanned are substantially conjugate with respect to the sub-scanning corresponding direction". It has a function to correct "

【0020】結像ミラー7は、副走査断面内(図2の図
面に平行な面)における反射面形状が円弧形状で、結像
ミラーの光軸を含み上記副走査断面に直交する面内にお
ける反射面形状が非円弧形状であり、上記円弧形状の曲
率中心を連ねた中心連結線が非直線であるような反射面
形状を有する。この反射面形状を図11を参照して説明
する。図の如く「X,Y,Z軸」を設定すると、X軸
は、結像ミラーの反射面の光軸に合致した軸であり、Y
軸は主走査対応方向に平行な軸である。前記「副走査断
面」はXZ面に平行な平面である。従って、XY面は
「結像ミラーの光軸を含み上記副走査断面に直交する
面」である。このXY面内における、曲線:X(Y)は
「非円弧形状」である。「R」は上記非円弧形状におけ
る近軸曲率中心である。「Y=ηの位置に考えた副走査
断面」内における反射面の曲率半径をr(η)とすると、
この曲率中心をηをパラメータとしてY方向に変化させ
たときの曲率中心は曲線:L(Y)を描く。即ち、曲線:
L(Y)は「中心連結線」であって、図に示すように非直線
である。
The imaging mirror 7 has an arc-shaped reflecting surface in a sub-scanning section (a plane parallel to the drawing of FIG. 2), and includes an optical axis of the imaging mirror and a plane orthogonal to the sub-scanning section. The reflecting surface has a non-arc shape, and has a reflecting surface shape in which a center connecting line connecting the centers of curvature of the arc shape is non-linear. This reflection surface shape will be described with reference to FIG. When “X, Y, Z axes” are set as shown in the figure, the X axis is an axis that matches the optical axis of the reflecting surface of the imaging mirror, and
The axis is an axis parallel to the main scanning corresponding direction. The “sub-scan section” is a plane parallel to the XZ plane. Therefore, the XY plane is a “plane that includes the optical axis of the imaging mirror and is orthogonal to the sub-scan section”. The curve: X (Y) in the XY plane is a “non-circular shape”. “R” is the paraxial curvature center in the non-arc shape. Assuming that the radius of curvature of the reflecting surface in “the sub-scanning section considered at the position of Y = η” is r (η),
When the center of curvature is changed in the Y direction using η as a parameter, the center of curvature draws a curve: L (Y). That is, the curve:
L (Y) is a “center connecting line” and is non-linear as shown in the figure.

【0021】図4は、請求項1記載の発明の実施の別形
態を説明図的に示している。繁雑を避けるため、混同の
虞れが無いと思われるものに就いては図1におけると同
一の符号を用いた。図1の実施の形態との差異は、光源
側から回転多面鏡4の偏向反射面に入射する光束が、回
転多面鏡4の回転軸に直交する平面に対して斜めに入射
し、上記平面に対して斜めに反射されて平面鏡5に入射
し、平面鏡5,6と結像ミラー7’との間で多重反射し
たのちに、被走査面に合致された感光体8a周面を光走
査するようになっていることである。
FIG. 4 is an explanatory diagram showing another embodiment of the first aspect of the present invention. In order to avoid complication, the same reference numerals as those in FIG. 1 are used for those which do not seem to be confused. The difference from the embodiment of FIG. 1 is that the light beam incident on the deflection reflecting surface of the rotary polygon mirror 4 from the light source side is obliquely incident on a plane orthogonal to the rotation axis of the rotary polygon mirror 4 and is incident on the plane. After being reflected obliquely and entering the plane mirror 5 and being multiply reflected between the plane mirrors 5 and 6 and the imaging mirror 7 ', the peripheral surface of the photoconductor 8a matched with the surface to be scanned is optically scanned. It is becoming.

【0022】図4に示す実施の形態では、平面鏡5,6
は別体であるが、図6に示す実施の形態のように、平面
鏡4,6に代えて、同一の透明体である透明平行平板1
0に2つの反射面5’,6’を形成し、反射面5’,
6’でない部分が光透過部をなすようにすることができ
る(請求項2)。図6の光学配置を利用し、図7に示す
実施の形態のように、透明平行平板10を、光走査装置
のハウジング11における「防塵ガラス」として使用す
ることができる(請求項3)。
In the embodiment shown in FIG. 4, the plane mirrors 5, 6
Is a separate body, but as in the embodiment shown in FIG. 6, instead of the plane mirrors 4 and 6, a transparent parallel flat plate 1 which is the same transparent body is used.
0, two reflecting surfaces 5 ', 6' are formed.
A portion other than 6 'can form a light transmitting portion (claim 2). Using the optical arrangement shown in FIG. 6, the transparent parallel flat plate 10 can be used as a "dust-proof glass" in the housing 11 of the optical scanning device as in the embodiment shown in FIG.

【0023】図8に示す実施の形態は、請求項4記載の
光走査装置の実施の1形態を示している。「反射結像性
の走査結像光学系」は、結像ミラー12と平面鏡13と
で構成される。光束の偏向は、理想的には回転多面鏡4
の回転軸に直交する平面内で行われ、先ず最初に結像ミ
ラー12に入射し(請求項4)、平面鏡13と結像ミラ
ー12との間で多重反射され、結像ミラー12による2
度目の反射後、平面鏡13に反射され被走査面(実態的
には感光体8aの感光面)上に光スポットとして集光
し、被走査面を光走査する。この実施の形態の変形とし
て、光源側からの光束が、(図4の実施の形態と同様
に)回転多面鏡の回転軸に直交する平面に対して斜めに
交わるように入射させるレイアウトも可能であるし、平
面鏡13は平面鏡2枚で構成しても良い。
FIG. 8 shows an embodiment of the optical scanning device according to the fourth aspect. The “reflective imaging scan imaging optical system” includes the imaging mirror 12 and the plane mirror 13. The deflection of the light beam is ideally performed by a rotating polygon mirror 4.
This is performed in a plane orthogonal to the rotation axis of the first mirror, and firstly enters the imaging mirror 12 (Claim 4), is multiply reflected between the plane mirror 13 and the imaging mirror 12, and
After the second reflection, the light is reflected by the plane mirror 13 and condensed as a light spot on the surface to be scanned (actually, the photosensitive surface of the photoconductor 8a), and the surface to be scanned is optically scanned. As a modification of this embodiment, a layout is also possible in which a light beam from the light source side is incident obliquely on a plane perpendicular to the rotation axis of the rotary polygon mirror (similar to the embodiment of FIG. 4). Alternatively, the plane mirror 13 may be composed of two plane mirrors.

【0024】図10は請求項5記載の光走査装置の実施
の1形態を示している。光偏向器である回転多面鏡4に
より偏向された偏向光束は、最初に結像ミラー12に入
射して反射される。反射光束は、光走査装置のハウジン
グ11’の防塵ガラス15の一部に形成された1の反射
面16で反射され、結像ミラー12で反射された偏向光
束が、防塵ガラス15の透明部を通ってハウジング1
1’から射出して被走査面である感光体8Aの周面を光
走査する。
FIG. 10 shows an embodiment of the optical scanning device according to the fifth aspect. The deflected light beam deflected by the rotary polygon mirror 4 as an optical deflector is first incident on the image forming mirror 12 and reflected. The reflected light beam is reflected by one reflection surface 16 formed on a part of the dust-proof glass 15 of the housing 11 ′ of the optical scanning device, and the deflected light beam reflected by the imaging mirror 12 passes through the transparent portion of the dust-proof glass 15. Through housing 1
The light emitted from 1 'is scanned on the peripheral surface of the photoconductor 8A, which is the surface to be scanned.

【0025】この実施の形態のように、光偏向器による
偏向光束が、最初に結像ミラー12に入射するようにす
ると、反射結像性の走査結像光学系を構成する平面鏡の
数を減らして走査結像光学系をコンパクト化できる。
When the light beam deflected by the optical deflector is first made incident on the image forming mirror 12 as in this embodiment, the number of plane mirrors constituting the reflection image forming scanning image forming optical system can be reduced. The scanning imaging optical system can be made compact.

【0026】[0026]

【実施例】以下、具体的な実施例を挙げる。各実施例と
も、光源1からの光束はカップリングレンズ2により
「平行光束」とされる。各実施例とも「結像ミラーの反
射面形状の特定」は以下のように行う。即ち、図11に
即して説明した非円弧形状:X(Y)については、一般
式: X(Y)=Y2/[R+√{R2−(1+K)Y2}+ΣAi
Y**i (右辺の和はi=1,2,3,..に就きとる。「Y*
*i」はYのi乗を意味する)におけるR(近軸曲率半
径),K(円錐定数)およびAi(高次の係数)を与えて特定
する。副走査断面内における曲率半径の主走査対応方向
の変化:r(Y)は、一般式: r(Y)=a+b・Y2+c・Y4+d・Y6+e・Y8+f
・Y10 において、係数:a(=r(0):光軸を含む副走査断面
内の曲率半径),b〜fを与えて特定する。また、デー
タの表記において「10の−i乗」を「E−i」で表
す。
EXAMPLES Specific examples will be described below. In each embodiment, the light beam from the light source 1 is converted into a “parallel light beam” by the coupling lens 2. In each embodiment, "identification of the reflection surface shape of the imaging mirror" is performed as follows. That is, non-arcuate shape has been described with reference to Figure 11: The X (Y), the general formula: X (Y) = Y 2 / [R + √ {R 2 - (1 + K) Y 2} + ΣA i ·
Y ** i (The sum on the right side is i = 1, 2, 3,.
"* I" means Y to the i-th power) and is specified by giving R (paraxial radius of curvature), K (cone constant) and A i (higher order coefficient). The change in the radius of curvature in the main scanning direction in the sub-scanning section: r (Y) is represented by the general formula: r (Y) = a + b · Y 2 + c · Y 4 + d · Y 6 + e · Y 8 + f
In · Y 10, the coefficient: a (= r (0) : the radius of curvature in the sub-scanning cross-section including the optical axis), identifies giving b to f. In the notation of data, "10 to the power of -i" is represented by "Ei".

【0027】実施例1 実施例1は、図1,2に即して説明した実施の形態に対
する実施例である。図2に示すように、回転多面鏡4以
降の光学配置における距離:d1〜d3および角度:θ1
〜θ3を定める。これらの値は以下の如くである。な
お、長さの次元を持つ量の単位は「mm」である。 d1=40,d2=23,d3=26.3,θ1=18.1
度,θ2=18.1度,θ3=19.57度(角は、図2
で時計回りを正とする) 結像ミラー7の形状: R=515,K=−5.9,A6=5E−14,A8=1
E−18,A10=−4E−23 a=177.5,b=−1E−3,c=4E−8,d=
−2.3E−11,e=5E−15,f=−3.06E
−19 実施例1に関する「像面湾曲」と「走査線曲がり」およ
び「等速特性としてのfθ特性」を図3に示す。
Example 1 Example 1 is an example of the embodiment described with reference to FIGS. As shown in FIG. 2, distances d 1 to d 3 and angles θ 1 in the optical arrangement after the rotary polygon mirror 4.
Defining the ~θ 3. These values are as follows: The unit of the quantity having the dimension of length is “mm”. d 1 = 40, d 2 = 23, d 3 = 26.3, θ 1 = 18.1
Degrees, θ 2 = 18.1 degrees, θ 3 = 19.57 degrees (the angles are shown in FIG.
The shape of the imaging mirror 7 is: R = 515, K = −5.9, A 6 = 5E−14, A 8 = 1
E-18, A 10 = -4E -23 a = 177.5, b = -1E-3, c = 4E-8, d =
-2.3E-11, e = 5E-15, f = -3.06E
-19 FIG. 3 shows “curvature of field”, “curve of scanning line”, and “fθ characteristic as constant velocity characteristic” according to the first embodiment.

【0028】実施例2 実施例2は図4に示した実施の形態に対する実施例であ
る。図4の如くに定められる距離:d1〜d3および角:
θ1〜θ4の値は以下の通りである。
Example 2 Example 2 is an example corresponding to the embodiment shown in FIG. Distances determined as shown in FIG. 4: d 1 to d 3 and angles:
The values of θ 1 to θ 4 are as follows.

【0029】d1=43.1,d2=24.7,d3=2
7.2,θ1=12.15度,θ2=12.15度,θ3
=10.75度,θ4=8度(角は、図4で時計回りを正
とする) 結像ミラー7’の形状: R=515,K=−4.8,A10=−4E−22 a=185.5,b=−1E−3,c=4E−8,d=
−2.3E−11,e=5E−15,f=−3.06E
−19 実施例2に関する「像面湾曲」と「走査線曲がり」およ
び「等速特性としてのfθ特性」を、図3に倣って図5
に示す。
D 1 = 43.1, d 2 = 24.7, d 3 = 2
7.2, θ 1 = 12.15 degrees, θ 2 = 12.15 degrees, θ 3
= 10.75 °, θ 4 = 8 ° (angle is positive in the clockwise direction in FIG. 4) Shape of imaging mirror 7 ′: R = 515, K = −4.8, A 10 = −4E− 22 a = 185.5, b = -1E-3, c = 4E-8, d =
-2.3E-11, e = 5E-15, f = -3.06E
-19 The “field curvature”, the “scanning line bending”, and the “fθ characteristic as constant velocity characteristic” according to the second embodiment are shown in FIG.
Shown in

【0030】実施例1,2とも、角:θ1=θ2であるの
で、平面鏡5,6の反射面を同一面として構成すること
ができ、このため、例えば図6や図7に示す構成が可能
である。
In both the first and second embodiments, since the angle: θ 1 = θ 2 , the reflecting surfaces of the plane mirrors 5 and 6 can be formed as the same surface. For this reason, for example, the structures shown in FIGS. Is possible.

【0031】実施例3 実施例3は図8に示した実施の形態に対する実施例であ
る。図8に示すように、回転多面鏡4以降の光学配置に
おける距離:L1,L2および角度:β1,β2を定める
と、これらの値は以下の通りである。 L1=50,L2=19.8,β1=14.78度,β2
24.76度(角は、図8で時計回りを正とする) 結像ミラー12の形状: R=−380,K=−3.7,A4=3E−10,A6
3E−14,A8=1E−17 a=−131.8,b=2.6E−3,c=−1E−
7,d=−6.1E−11,e=5E−15,f=−1
E−19 実施例3に関する「像面湾曲」と「走査線曲がり」およ
び「等速特性としてのfθ特性」を、図3に倣って図9
に示す。この実施例3のレイアウトを変えて、図10の
ように構成しても良いし、あるいは平面鏡を2枚で構成
しても良い。
Example 3 Example 3 is an example corresponding to the embodiment shown in FIG. As shown in FIG. 8, when the distances L 1 and L 2 and the angles β 1 and β 2 in the optical arrangement after the rotary polygon mirror 4 are determined, these values are as follows. L 1 = 50, L 2 = 19.8, β 1 = 14.78 degrees, β 2 =
24.76 degrees (angle is positive clockwise in FIG. 8) Shape of imaging mirror 12: R = −380, K = −3.7, A 4 = 3E−10, A 6 =
3E-14, A 8 = 1E -17 a = -131.8, b = 2.6E-3, c = -1E-
7, d = -6.1E-11, e = 5E-15, f = -1
E-19 “Field curvature”, “scanning line bending”, and “fθ characteristic as constant velocity characteristic” of Example 3 are shown in FIG.
Shown in The layout of the third embodiment may be changed to be configured as shown in FIG. 10, or may be configured by two plane mirrors.

【0032】なお、図3,5,9において「ω」は、半
画角を表す。図3,5,9に示されたように、実施例1
〜3は、主・副走査方向の像面湾曲:3mm以下、走査
線曲がり:0.03mm以下、等速性:1%以下を達成
しており、請求項6記載の光走査装置の実施例となって
おり、極めて良好な光走査を実現できる。
In FIGS. 3, 5, and 9, "ω" represents a half angle of view. Embodiment 1 As shown in FIGS.
7. The optical scanning device according to claim 6, wherein each of the optical scanners (1) to (3) achieves a field curvature in the main and sub-scanning directions of 3 mm or less, a scanning line curvature of 0.03 mm or less, and a uniform velocity of 1% or less. Thus, extremely good optical scanning can be realized.

【0033】[0033]

【発明の効果】以上に説明したように、この発明によれ
ば新規な光走査装置を実現できる。この光走査装置は、
上記の如く、偏向光束を被走査面上に光スポットとして
集光させる走査結像光学系が「反射結像性」であり、多
重反射により走査線曲がりを補正する機能を持ち、且
つ、光偏向器の面倒れを補正する機能を持つ。そして、
反射結像性の走査結像光学系を構成する結像ミラーの反
射面が、副走査断面内における反射面形状が円弧形状
で、結像ミラーの光軸を含み上記副走査断面に直交する
面内における反射面形状が非円弧形状であり、上記円弧
形状の曲率中心を連ねた中心連結線が非直線であるよう
な形状を有するので、上記非円弧形状や中心連結線の最
適化により、主・副走査方向の像面湾曲・走査線曲がり
・等速特性を良好に補正することが可能である。
As described above, according to the present invention, a novel optical scanning device can be realized. This optical scanning device,
As described above, the scanning image forming optical system for condensing the deflected light beam as a light spot on the surface to be scanned is "reflective image forming property", has a function of correcting a scan line bending by multiple reflection, and has an optical deflection function. It has a function to correct the trouble of the container. And
The reflecting surface of the imaging mirror constituting the scanning imaging optical system of reflection imaging is a surface having a circular arc shape in the sub-scanning section and including the optical axis of the imaging mirror and orthogonal to the sub-scanning section. The reflection surface shape in the inside is a non-arc shape, and the center connection line connecting the centers of curvature of the arc shape has a shape that is non-linear. It is possible to satisfactorily correct field curvature in the sub-scanning direction, scanning line bending, and constant velocity characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の1形態を説明するための図で
ある。
FIG. 1 is a diagram for describing one embodiment of the present invention.

【図2】図1の実施の形態における、光偏向器以降の光
学配置を説明するための図である。
FIG. 2 is a diagram for explaining an optical arrangement after an optical deflector in the embodiment of FIG. 1;

【図3】実施例1に関する像面湾曲・走査線曲がり・等
速特性(fθ特性)を示す図である。
FIG. 3 is a diagram illustrating field curvature, scanning line curve, and constant velocity characteristics (fθ characteristics) according to the first embodiment.

【図4】この発明の実施の別形態における、光偏向器以
降の光学配置を説明するための図である。
FIG. 4 is a diagram illustrating an optical arrangement after an optical deflector according to another embodiment of the present invention.

【図5】実施例2に関する像面湾曲・走査線曲がり・等
速特性(fθ特性)を示す図である。
FIG. 5 is a diagram illustrating field curvature, scanning line curve, and constant velocity characteristics (fθ characteristics) according to the second embodiment.

【図6】請求項2記載の光走査装置の実施の1形態を特
徴部分のみ示す図である。
FIG. 6 is a view showing only a characteristic portion of an embodiment of the optical scanning device according to claim 2;

【図7】請求項3記載の光走査装置の実施の1形態を特
徴部分のみ示す図である。
FIG. 7 is a diagram showing only one characteristic portion of an embodiment of the optical scanning device according to claim 3;

【図8】請求項4記載の発明の実施の1形態を特徴部分
のみ示す図である。
FIG. 8 is a diagram showing only a characteristic portion of the first embodiment of the present invention.

【図9】実施例3に関する像面湾曲・走査線曲がり・等
速特性(fθ特性)を示す図である。
FIG. 9 is a diagram showing field curvature, scanning line curve, and constant velocity characteristics (fθ characteristics) according to the third embodiment.

【図10】請求項5記載の光走査装置の実施の1形態を
特徴部分のみ示す図である。
FIG. 10 is a view showing only a characteristic portion of an embodiment of the optical scanning device according to claim 5;

【図11】結像ミラーの反射面形状を説明するための図
である。
FIG. 11 is a diagram for explaining a reflection surface shape of an imaging mirror.

【符号の説明】[Explanation of symbols]

1 光源 2 カップリングレンズ 3 シリンダレンズ 4 光偏向器 4a 偏向反射面 5,6 平面鏡 7 結像ミラー 8 被走査面 DESCRIPTION OF SYMBOLS 1 Light source 2 Coupling lens 3 Cylinder lens 4 Optical deflector 4a Deflection / reflection surface 5, 6 Plane mirror 7 Imaging mirror 8 Scanning surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源側からの光束を主走査対応方向に長い
線像として結像させ、上記線像の結像位置近傍に偏向反
射面を持つ光偏向器により偏向させ、偏向光束を反射結
像性の走査結像光学系により被走査面上に光スポットと
して集光させて上記被走査面の光走査を行う光走査装置
であって、上記反射結像性の走査結像光学系が、主・副
走査対応方向に結像機能を持つ結像ミラーと、この結像
ミラーの反射面に対向する反射面を有する1以上の平面
鏡とを有し、偏向光束を、上記1以上の平面鏡と結像ミ
ラーとの間で多重反射させることにより走査線曲がりを
補正するようにしたものにおいて、 上記結像ミラーは、副走査断面内における反射面形状が
円弧形状で、結像ミラーの光軸を含み上記副走査断面に
直交する面内における反射面形状が非円弧形状であり、
上記円弧形状の曲率中心を連ねた中心連結線が非直線で
あるような反射面形状を有することを特徴とする光走査
装置。
A light beam from a light source is formed as a long line image in a direction corresponding to the main scanning, and the light beam is deflected by an optical deflector having a deflecting / reflecting surface near an image forming position of the line image. An optical scanning device that performs light scanning of the scanned surface by condensing the light as a light spot on the surface to be scanned by the scanning image forming optical system, wherein the reflective imaging scan imaging optical system includes: An imaging mirror having an imaging function in the main / sub-scanning corresponding direction, and one or more plane mirrors having a reflecting surface opposed to the reflecting surface of the imaging mirror, and deflecting a light beam with the one or more plane mirrors In a configuration in which a scanning line curve is corrected by multiple reflection between the imaging mirror and the imaging mirror, the imaging mirror has an arc-shaped reflecting surface in a sub-scanning cross section, and an optical axis of the imaging mirror. Reflection surface shape in a plane orthogonal to the sub-scan section Arc-shaped,
An optical scanning device having a reflecting surface shape such that a center connecting line connecting the centers of curvature of the arc shapes is non-linear.
【請求項2】請求項1記載の光走査装置において、 結像ミラーとの間で偏向光束を多重反射させる1以上の
平面鏡は、同一の透明体に1以上の反射面を形成したも
のであり、反射面でない部分が光透過部をなすことを特
徴とする光走査装置。
2. The optical scanning device according to claim 1, wherein the at least one plane mirror for multiple-reflecting the deflected light beam with respect to the imaging mirror has at least one reflecting surface formed on the same transparent body. An optical scanning device, wherein a portion other than the reflection surface forms a light transmitting portion.
【請求項3】請求項2記載の光走査装置において、 1以上の反射面を形成した透明体が、光走査装置のハウ
ジングの防塵ガラスであることを特徴とする光走査装
置。
3. The optical scanning device according to claim 2, wherein the transparent body having at least one reflecting surface is dust-proof glass of a housing of the optical scanning device.
【請求項4】請求項1または2または3記載の光走査装
置において、 光偏向器により偏向された偏向光束が、最初に結像ミラ
ーに入射することを特徴とする光走査装置。
4. The optical scanning device according to claim 1, wherein the deflected light beam deflected by the optical deflector first enters the image forming mirror.
【請求項5】請求項4記載の光走査装置において、 結像ミラーとの間で偏向光束を多重反射させる平面鏡
が、光走査装置のハウジングの防塵ガラスの一部に形成
された1の反射面であり、該反射面で反射され、結像ミ
ラーで反射された偏向光束が、上記防塵ガラスの透明部
を通って上記ハウジングから射出することを特徴とする
光走査装置。
5. The optical scanning device according to claim 4, wherein the plane mirror for multiple-reflecting the deflected light beam between the image forming mirror and the imaging mirror has one reflecting surface formed on a part of dustproof glass of a housing of the optical scanning device. Wherein the deflected light beam reflected by the reflection surface and reflected by the imaging mirror is emitted from the housing through the transparent portion of the dustproof glass.
【請求項6】請求項1〜5の任意の1に記載の光走査装
置において、 光学配置および結像ミラーの反射面形状が、光スポット
の結像における主・副走査方向の像面湾曲:3mm以
下、走査線曲がり:0.03mm以下、等速性:1%以
下を達成するように定められていることを特徴とする光
走査装置。
6. The optical scanning device according to claim 1, wherein the optical arrangement and the reflecting surface shape of the imaging mirror are such that the field curvature in the main and sub-scanning directions in the imaging of the light spot: An optical scanning device, which is defined to achieve 3 mm or less, scanning line bending: 0.03 mm or less, and uniform velocity: 1% or less.
JP31512897A 1997-11-17 1997-11-17 Optical scanning device Expired - Fee Related JP3639097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31512897A JP3639097B2 (en) 1997-11-17 1997-11-17 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31512897A JP3639097B2 (en) 1997-11-17 1997-11-17 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH11149054A true JPH11149054A (en) 1999-06-02
JP3639097B2 JP3639097B2 (en) 2005-04-13

Family

ID=18061750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31512897A Expired - Fee Related JP3639097B2 (en) 1997-11-17 1997-11-17 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3639097B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098318A1 (en) * 2002-05-15 2003-11-27 Matsushita Electric Industrial Co., Ltd. Photo scanner and image forming device
US7088382B2 (en) * 2002-01-09 2006-08-08 Samsung Electronics Co., Ltd. Imaging optical system, image forming apparatus having the same, and a method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088382B2 (en) * 2002-01-09 2006-08-08 Samsung Electronics Co., Ltd. Imaging optical system, image forming apparatus having the same, and a method therefor
WO2003098318A1 (en) * 2002-05-15 2003-11-27 Matsushita Electric Industrial Co., Ltd. Photo scanner and image forming device
CN1308724C (en) * 2002-05-15 2007-04-04 松下电器产业株式会社 Photo scanner and image forming device
US7268928B2 (en) 2002-05-15 2007-09-11 Matsushita Electric Industrial Co., Ltd. Photo scanner and image forming device

Also Published As

Publication number Publication date
JP3639097B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JP3072061B2 (en) Optical scanning device
JP3856881B2 (en) Optical scanning device
JPH06118325A (en) Optical scanner
JPH05241094A (en) Postobjective type scanning optical system and image formation device
US6259546B1 (en) Scanning and imaging lens and optical scanning device
JP3620767B2 (en) Reflective scanning optical system
JPH1138348A (en) Scanning image forming optical system, and optical scanning device
EP0476698B1 (en) Optical beam scanning system
JP3104618B2 (en) Optical scanning device and optical lens
JP3567408B2 (en) Scanning optical device and scanning optical lens for scanning optical device
JPH11149054A (en) Optical scanning device
JP3283678B2 (en) Optical scanning device
JP4219429B2 (en) Manufacturing method of imaging mirror in multi-beam scanning imaging optical system
JP3210790B2 (en) Optical scanning device
JPH10253915A (en) Optical scanner
JP3558837B2 (en) Scanning optical system and optical scanning device
JPH112769A (en) Optical scanner
JPH1020235A (en) Optical scanner
JP3802248B2 (en) Multi-beam scanning device
JP3069281B2 (en) Optical scanning optical system
JP2615850B2 (en) Light beam scanning optical system
JPH1138341A (en) Multibeam scanning device and scanning image forming optical system therefor
JP3464847B2 (en) Optical scanning device
JPH01200220A (en) Light beam scanning optical system
JPH055853A (en) Light scanning optical system and optical scanner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees