JPH11148916A - ガスセンサ - Google Patents

ガスセンサ

Info

Publication number
JPH11148916A
JPH11148916A JP9329638A JP32963897A JPH11148916A JP H11148916 A JPH11148916 A JP H11148916A JP 9329638 A JP9329638 A JP 9329638A JP 32963897 A JP32963897 A JP 32963897A JP H11148916 A JPH11148916 A JP H11148916A
Authority
JP
Japan
Prior art keywords
gas
electrode
detection
solid electrolyte
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9329638A
Other languages
English (en)
Inventor
Unchi Kou
云智 高
Akira Kunimoto
晃 国元
Norio Miura
則雄 三浦
Noboru Yamazoe
▲昇▼ 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP9329638A priority Critical patent/JPH11148916A/ja
Publication of JPH11148916A publication Critical patent/JPH11148916A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

(57)【要約】 【課題】NO或いはNO2に対する感度を大きくし、他
ガスに対する選択性の高いセンサを提供する。 【解決手段】検知極(3)と対極(5)とに正又は負の
バイアス電圧となる定電圧を印加し分極させ、当該電極
(3、5)間に流れる電流を測定し、ガス濃度を検知す
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ガスセンサ、特に
燃焼ガス中の窒素酸化物濃度を検出するガスセンサに関
するものである。また、本発明の原理は窒素酸化物以外
のガス検知にも広く適用することができる。
【0002】
【従来の技術】自動車を初めとした内燃機関と火力発電
所、プラント等の燃焼機器から排出されるNOxが光化
学スモックや酸性雨の原因になるほか、人間の呼吸器に
有害であり、地球環境にも大きな汚染源とされている。
このため、NOx等の有害ガスの検知は重要な課題とな
り、測定機器の小型化、低コスト化、さらに、各種使用
環境に対応できるガスセンサが求められている。
【0003】近年、自動車排ガス中に直接挿入して連続
検知が行える全固体型NOxセンサが注目を集め、幾つ
かの研究結果を報告されている。例えば、自動車の高温
排ガス中のNOx濃度を検出できるセンサとして電流型
のセンサが報告されている(SAE TECHNICAL PARER 9603
34)。このセンサはイオン伝導体に2室を設け、第一室
で酸素ポンプにより測定雰囲気内の酸素濃度をほぼゼロ
にしてNOx中のNO2をガス平衡に従いNOに還元
し、そのNOを第二室に設けた電極に電圧を印加して更
に分解する。その時に生じる酸素をイオン化して電流を
検出しNOx濃度を検出するセンサである。このセンサ
においてもNOx濃度を検出するためにNO2をNOに
還元する酸素ポンプが適用されているため、検出される
NOx濃度は、酸素ポンプの性能と残存する酸素濃度に
大きく左右され、測定対象ガス濃度に比べて充分に小さ
い濃度に制御しなければならない難点がある。さらに、
根本的には、NOとNO2の個々の濃度を測定できない
欠点がある。
【0004】これとは別に、特開平4−142455号
公報では、イオン伝導体に感知電極と参照電極を設置
し、被検ガス中で電極間の起電力を測定するセンサが提
案されている。このセンサでは、NOやNO2に対して
感度を示すものの、NOとNO2に対する感度極性が相
反するために、NOとNO2が共存する被検ガスにおい
てはお互いの出力がキャンセルしあい、NOとNO2
共存する場合はそれらを個々に正確に検出することはで
きない。また、NO感度がNO2感度に比して小さく、
NO検知時には出力が小さい欠点がある。また、このた
めに、このままのセンサ構成では総NOx検知もできな
いことは明白である。
【0005】
【発明が解決しようとする課題】このようにこれまでに
提案されているガスセンサは、測定雰囲気中のNOやN
2を個別に検知することができず、また総NOx濃度
を検出する場合には、NOの感度が小さい欠点があっ
た。さらに、触媒や酸素ポンプなどを用いてNOの酸化
あるいはNO2の還元を前処理として必須であり、変換
能力もかなり高いものが必要であった。本発明はNOあ
るいはNO2に対する感度を要求に応じて大きく、且つ
他ガスに対する選択性の高いセンサを提供することを解
決すべき課題とする。
【0006】
【課題を解決するための手段】本発明者らは、前述の課
題に鑑み鋭意な研究を行った結果、以下のような解決方
策を提案する。すなわち、検知対象ガスに活性な検知極
と、対極と検知対象ガスに不活性な参照極とを同一の固
体電解質上に固定し、少なくとも検知極を被検ガス中に
配し、該検知極と対極に検知極が正あるいは負のバイア
ス電圧となるように定電圧を印加し分極させ、該基準極
と対極間に流れる電流を測定する方式であって、検知対
象ガスの検知極での酸化電流の大きさから検知対象ガス
の濃度を検知するガスセンサを提案するものである。こ
の方式は、後述するごとく測定ガス濃度を正確に測定す
ることができる方式である。
【0007】また前述の方法の簡易型としては以下のも
のを提案する。すなわち、測定検知対象ガスに活性な検
知極と、検知対象ガスに不活性な対極とを同一の固体電
解質上に固定し、少なくとも検知極を被検ガス中に配
し、該検知極と対極間に検知極が正あるいは負のバイア
ス電圧となるように定電圧を印加し分極させ、当該電極
間に流れる電流を測定する方式であって、検知対象ガス
の検知極での酸化電流の大きさから検知対象ガスの濃度
を検知するものである。
【0008】本発明のより具体的な手段としては、被検
ガス中の酸素濃度が0.1vol%以上であり、且つ該
固体電解質がジルコニアを主体とする酸素イオン伝導体
からなるガスセンサを提示する。すなわち、酸素イオン
伝導性のジルコニア固体電解質を用いることにより、被
検ガス中の酸素濃度が0.1vol%以上、より好もし
くは1vol%以上の高濃度で且つ広範囲の雰囲気中に
て用いることができる。
【0009】より具体的な手段として、検知対象ガスが
窒素酸化物であり、且つ固体電解質上に固定された検知
極と対極間に印加するバイアス電圧が0Vより高く40
0mVより低い正の定電圧にてNOを選択的に検知する
方式、あるいは0Vより低く−1Vより高い負の定電圧
バイアスを用いてNO2を選択的に検知するガスセンサ
を提供する。
【0010】本発明のより好ましい検知極材料はNiま
たはCrを構成元素として含む酸化物、あるいはNiま
たはCrを構成元素として含む酸化物とジルコニア固体
電解質との混合体からなる検知極を用いた窒素酸化物ガ
スセンサ、あるいはIr電極、Rh電極、PtとIrと
の合金電極、PtとRhとの合金電極である貴金属電
極、あるいは前記貴金属とジルコニア固体電解質との混
合体とからなる検知極を用いた窒素酸化物ガスセンサを
提示する。
【0011】本発明の総NOx検知センサへの適用につ
いては、酸素イオン伝導性を有するジルコニア固体電解
質体に一室あるいは二室の測定ガス雰囲気に連通する内
部空所を設け、少なくとも前記検知極を該内部空所に設
置し、さらに該内部空所にNOxを変換するための電気
化学的酸素ポンプあるいは触媒体を形成した構成であっ
て、前記検知極が設置される内部空所にて検知対象ガス
のNOxがNOの単体ガス、あるいはNO2及びNO2
上の過酸化窒素に変換されるように酸素ポンプあるいは
触媒体を機能させ、検知極とその対極間に検知極が正あ
るいは負のバイアス電圧となるように定電圧を印加し、
前記電極間に流れる電流を測定するガスセンサにて総N
Oxセンサの検知精度を向上するものである。
【0012】
【発明の実施の形態】図1に本発明の最も基本的な実施
形態のセンサ構成および原理を窒素酸化物センサ1を用
いて示す。ジルコニア基板2の片面にNOxに対して活
性な検知極3とO2のみに対して活性な参照極4を形成
し、これの反対面に電流を流すための対極5を形成す
る。検知極3はO2に対して活性であっても構わない
が、この活性は低いことが望ましい。但し、全く不活性
であると、NOx濃度がゼロのとき、電位が不安定にな
るので好ましくない。また、参照極4はNOxに対して
不活性で、O2のみに対しての活性な金属材料を使用す
ることが望ましいが、これを被検ガスの空間と別の大気
中に設ける場合には、活性であっても構わない。対極5
についてはNOxに対して活性であっても不活性であっ
ても構わないが、対極側の過電圧を高くなり過ぎないよ
うにするため、O2にのみ活性な電極が望ましい。この
ように作製したセンサ素子1を図1に示すように、ポテ
ンシオスタット6に接続し、参照極4に対して所定電圧
を検知極3に印加して、この際の検知極3に流れる電流
を測定する。この場合、ポテンシオスタットによって電
位が安定な参照極4に対して検知極3の電位が厳密に所
定値に制御され、電極電流は検知極3の表面近傍のO2
濃度に依存する。さらに、被検ガス中にNOxが共存す
れば、検知極3の電流がNOxの濃度に依存して増加す
る。このことは図2に示す検知極3の分極曲線から説明
できる。
【0013】以上、説明したのは基本的な三電極方式N
Oxセンサであるが、センサの製造と使用の面を考慮す
れば、図3に示すような構成に簡略する事ができる。ジ
ルコニア基板2の片面にNOxとO2に対して活性な検
知極3を形成し、反対面に参照極4の作用を兼ねる対極
5を形成する。検知極3のO2に対する活性が低いこと
が望ましく、対極5のO2に対する活性が高く、NOx
に対して不活性であることが望ましい。この素子を定電
圧電源に検知極3が正あるいは負になるように接続し、
所定電圧を印加する。また、回路中に電流測定手段を設
け、NOx濃度に依存する電流変化を検出するようにす
る。バイアス電圧及びO2濃度に依存して検知極3の電
流が有る一定値に安定するが、NOxが共存すると、バ
イアス電圧によってNOxが酸化或いは還元され、検知
極の電流が変化し、NOx濃度が検出される。また、印
加電圧によって、NO2或いはNOのどちらか一方のみ
を選択的に検出することができ、両方に同方向の電流変
化を得ることもできる。従って、総NOxセンサとして
用いることも可能である。
【0014】本発明センサは、基本的に酸素共存下にお
ける混成電位型検知極及び対極の酸化電流あるいは還元
電流を測定する方式であって、単に起電力を測定する方
式や酸素が除去された雰囲気中でのガス分解で生じる酸
素の電解電流ではない。その結果として、1%以上の高
酸素濃度雰囲気にても感度の酸素濃度依存性が小さいこ
とや、NOとNO2での感度比はそのバイアス電圧の値
で広範囲に制御することができる。以上NOx検知を例
に原理的な説明を行ったが、以下に具体的な実施例を上
げて、より詳細に説明する。
【0015】
【実施例】(実施例1)図1に示すような構造を有する
NOxセンサを下記の方法により作製して、本測定原理
を実証した。酸素イオン伝導性を有するジルコニア固体
電解質基板2の表面にPtの集電体付きのCdCr24
検知極3と、大気側にPt参照極4とPt対極5をそれ
ぞれのペーストを作製し塗布し、1200℃で焼成して
形成した。センサを500℃に加熱し、空気組成のガス
とこれに200ppmのNOを添加した場合にて、ポテ
ンシオスタットを用いて分極曲線を測定した。その結果
を図2に示す。0〜0.2Vの電位領域にNOの濃度に
依存する酸化電流が明確に観測された。通常電流を流さ
ない場合では、CdCr24電極はNOに対して電極電
位の応答は全く示さないが、一定の電圧を検知極3に印
加すると、電極電流が大きく変化することが図2から分
かる。すなわち、空気のみの時の電極電流とNOを添加し
た場合の電極電流値の差(ΔI)が生じる領域が本発明に
よる検知の範囲となる。また電流差(ΔI)が無くなる上
限電圧は酸素濃度に依存し酸素濃度0.1%では0.4V
となった。
【0016】(実施例2)実施例1と同様にして検知極
3にPtペーストを塗布し、1200℃にて焼成して電
極を形成した。実施例1と同様にしてポテンシオスタッ
トを用いて分極曲線を測定した。結果を図6に示す。こ
のように検知極3にPtを用いた場合には、NOに対し
て殆ど電流変化がないことが分かる。すなわち、検知極
3には検知対象ガスに活性な検知材料を用いることが、
本発明には有効であることが分かる。
【0017】(実施例3)ジルコニア固体電解質基板2
の片面にCdCr24検知極3とPt参照極4を形成
し、基板2の反対面に白金対極5を形成し、図1のよう
な構造を有するセンサを作製した。検知極3と対極5の
間に検知極3の方が正となるように安定な参照極4の電
位を基準に電圧をかけた。また測定回路中に電流測定用
の負荷抵抗を挿入し、検知電流を検出した。バイアス電
圧は+100mVと−150mVとした。このときに、
空気にNOとNO2を各種濃度となるように添加し、セ
ンサ温度500℃にて電流変化を測定した。図4にバイ
アス電圧+100mVの時のNO出力を、図5にバイア
ス電圧−150mVの時のNO2出力をそれぞれ示す。
ここに示されるようにNOあるいはNO2濃度に対して
ほぼリニアな検知出力が得られた。
【0018】(実施例4)実施例3と同様にして他ガス
の干渉特性を測定した。バイアス電圧が+100mVの
時は、200ppmNO,200ppmNO2,200
ppmCO,200ppmH2,200ppmCH4,2
000ppmCO2および700PaのH2Oを個別に測
定した。結果を表1に示す。ここに示されるように他ガ
スからの干渉は非常に小さく、NOガスを選択的に検知
できることが分かる。
【0019】
【表1】
【0020】(実施例5)図3に示すようにジルコニア
基板2の片面にCdCr24ペーストを塗布し検知極3
を形成し、その反対面にPtペーストを塗布し対極5と
して形成した。この電極間にポテンシオスタットにて定
電圧を印加し、その間に流れる電流を測定した。空気組
成ガスにNO濃度を変えて測定ガスとした。その他の条
件は実施例1と同様とした。結果を図4に比較例1とし
て記入してある。実用上2電極構造でも殆ど差がないこ
とが分かる。
【0021】(実施例6)実施例5と同様にして検知極
材料のみを変えて、NO感度を測定した。各種検知極酸
化物および貴金属粉に固体電解質のジルコニア粉を添加
し、多孔化を図ることは通常行われる。結果を表2に示
す。ここに見られるようにNiあるいはCrを含む単体
あるいは複合酸化物、もしくはIr電極、Rh電極、P
tとIrとの合金電極、PtとRhとの合金電極が大き
な感度を有することが分かる。
【0022】
【表2】
【0023】
【発明の効果】本発明によりNOあるいはNO2の相互
干渉や還元性ガスなどの他ガス干渉をきわめて少なくす
ることができる。バイアス電圧を調整することで、NO
とNO2の感度比を任意に調整することができ、等感度
にすることで総NOx検知が、簡単なセンサ構成にて可
能となる。
【図面の簡単な説明】
【図1】第1図は本発明の一例の断面図である。
【図2】第2図は検知極の分極曲線を示す図である。
【図3】第3図は本発明の他の例の断面図である。
【図4】第4図はバイアス電圧を100mvとするとき
のNOの出力を示す図である。
【図5】第5図はバイアス電圧を150mvとするとき
のNO2の出力を示す図である。
【図6】第6図はPtを用いた検知極の分極曲線を示す
図である。
【符号の説明】
1 ガスセンサ 2 固体電解質基板 3 検知極 4 参照極 5 対極

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 検知対象ガス中のガス成分濃度を測定す
    るガスセンサにおいて、検知対象ガスに活性な検知極及
    び対極と、検知対象ガスに不活性な参照極とを同一の固
    体電解質上に固定し、少なくとも検知極を被検ガス中に
    配し、該検知極と対極に検知極が正あるいは負のバイア
    ス電圧となるように定電圧を印加し分極させ、該参照極
    と対極間に流れる電流を測定し、検知対象ガスの検知極
    での酸化電流の大きさから検知対象ガスの濃度を検知す
    ることを特徴とするガスセンサ。
  2. 【請求項2】 検知対象ガス中のガス成分濃度を測定す
    るガスセンサにおいて、検知対象ガスに活性な検知極
    と、検知対象ガスに不活性な対極とを同一の固体電解質
    上に固定し、少なくとも検知極を被検ガス中に配し、該
    検知極と対極間に検知極が正あるいは負のバイアス電圧
    となるように定電圧を印加し分極させ、当該電極間に流
    れる電流を測定し、検知対象ガスの検知極での酸化電流
    の大きさから検知対象ガスの濃度を検知することを特徴
    とするガスセンサ。
  3. 【請求項3】 検知極と対極あるいは参照極を固体電解
    質上に固定し、少なくとも検知極を被検ガス中に配し、
    当該電極間に検知極が正あるいは負のバイアス電圧とな
    るように定電圧を印加し分極させ、当該電極間に流れる
    電流を測定し、被検ガス中の酸素濃度が0.1vol%
    以上であり、且つ該固体電解質がジルコニアを主体とす
    る酸素イオン伝導体からなることを特徴とする請求項1
    項および2項記載のガスセンサ。
  4. 【請求項4】 検知対象ガスが窒素酸化物であり、且つ
    固体電解質上に固定された検知極と対極間に印加するバ
    イアス電圧が0Vより高く400mVより低い正の定電
    圧、あるいは0Vより低く−1Vより高い負の定電圧で
    あることを特徴とする請求項1項乃至3項記載の何れか
    のガスセンサ。
  5. 【請求項5】 固体電解質上に固定された検知極がNi
    またはCrを構成元素として含む酸化物、あるいはNi
    またはCrを構成元素として含む酸化物とジルコニア固
    体電解質との混合体からなることを特徴とする請求項1
    項乃至4項記載の何れかの窒素酸化物のガスセンサ。
  6. 【請求項6】 固体電解質上に固定された検知極がIr
    電極、Rh電極、PtとIrとの合金電極、PtとRh
    との合金電極である貴金属電極、あるいは前記貴金属と
    ジルコニア固体電解質との混合体とからなることを特徴
    とする請求項1項乃至4項記載の何れかの窒素酸化物の
    ガスセンサ。
  7. 【請求項7】 酸素イオン伝導性を有するジルコニア固
    体電解質体に一室あるいは二室の測定ガス雰囲気に連通
    する内部空所を設け、少なくとも検知極を該内部空所に
    設置し、さらに該内部空所にNOxを変換するための電
    気化学的酸素ポンプあるいは触媒体を形成した構成であ
    って、前記検知極が設置される内部空所にて検知対象ガ
    スのNOxがNOの単体ガス、あるいはNO2及びNO2
    以上の過酸化窒素に変換されるように該酸素ポンプある
    いは触媒体を機能させ、該検知極とその対極間に検知極
    が正あるいは負のバイアス電圧となるように定電圧を印
    加し、当該電極間に流れる電流を測定することを特徴と
    する窒素酸化物のガスセンサ。
JP9329638A 1997-11-14 1997-11-14 ガスセンサ Pending JPH11148916A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9329638A JPH11148916A (ja) 1997-11-14 1997-11-14 ガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9329638A JPH11148916A (ja) 1997-11-14 1997-11-14 ガスセンサ

Publications (1)

Publication Number Publication Date
JPH11148916A true JPH11148916A (ja) 1999-06-02

Family

ID=18223586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9329638A Pending JPH11148916A (ja) 1997-11-14 1997-11-14 ガスセンサ

Country Status (1)

Country Link
JP (1) JPH11148916A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092501A (ja) * 2007-10-09 2009-04-30 Yazaki Corp ガスセンサ及びガス検出装置
JP2012098068A (ja) * 2010-10-29 2012-05-24 Kyocera Corp 窒素酸化物センサ素子および窒素酸化物検出方法
JP2020003264A (ja) * 2018-06-26 2020-01-09 株式会社Soken 亜酸化窒素濃度検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092501A (ja) * 2007-10-09 2009-04-30 Yazaki Corp ガスセンサ及びガス検出装置
JP2012098068A (ja) * 2010-10-29 2012-05-24 Kyocera Corp 窒素酸化物センサ素子および窒素酸化物検出方法
JP2020003264A (ja) * 2018-06-26 2020-01-09 株式会社Soken 亜酸化窒素濃度検出装置

Similar Documents

Publication Publication Date Title
US6551497B1 (en) Measuring NOx concentration
US5643429A (en) Electrochemical cells and methods using perovskites
EP0831322A2 (en) Gas sensor
JP3128114B2 (ja) 窒素酸化物検出装置
KR101052618B1 (ko) 장기 신호 안정성을 갖는 질소산화물 가스센서
US6598596B2 (en) Solid state potentiometric gaseous oxide sensor
JP2012504237A (ja) 窒素酸化物ガスセンサー
KR101484551B1 (ko) 질소산화물 가스센서
JPH07501152A (ja) ポーラログラフ型センサ
JPH0827247B2 (ja) 広帯域空燃比センサおよび検出装置
JP3775704B2 (ja) 固体電解質水素センサ
JP2012504236A (ja) 窒素酸化物ガスセンサー
JPH11148916A (ja) ガスセンサ
JP2012042222A (ja) 固体電解質形coセンサ
JPH09297119A (ja) 窒素酸化物検知装置
JPH0473549B2 (ja)
JP3526000B2 (ja) 窒素酸化物センサ
KR101287003B1 (ko) 산화촉매를 이용한 질소산화물 센서
KR101133267B1 (ko) 질소산화물 가스센서
KR101455059B1 (ko) 질소산화물 가스센서 및 이를 이용한 질소산화물 가스의 측정방법
JP3850518B2 (ja) 窒素酸化物センサ
US6277256B1 (en) Enhanced electrodes for solid state gas sensors
JP3801789B2 (ja) ガスセンサ
JPH11132995A (ja) 窒素酸化物検出装置
JP2001221773A (ja) 窒素酸化物ガスセンサ