JPH11144735A - Battery - Google Patents

Battery

Info

Publication number
JPH11144735A
JPH11144735A JP9302566A JP30256697A JPH11144735A JP H11144735 A JPH11144735 A JP H11144735A JP 9302566 A JP9302566 A JP 9302566A JP 30256697 A JP30256697 A JP 30256697A JP H11144735 A JPH11144735 A JP H11144735A
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
polymer compound
electrode
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9302566A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
宏章 吉田
Fumio Takei
文雄 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9302566A priority Critical patent/JPH11144735A/en
Publication of JPH11144735A publication Critical patent/JPH11144735A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery, in which the deterioration of characteristic due to the swelling of the binder to be used for forming electrodes, which can store and discharge alkali metal ions, by the solvent for the electrolyte is restricted. SOLUTION: Electrode material of any one or both of a negative and a positive electrodes, which are arranged in both sides of the electrolyte and which can store and discharge alkali metal ions, are connected by the complex binder of fluorine high molecular compound and high molecular compound having polysaccharide skeleton.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池に関する。よ
り詳しく言えば、本発明は、長期サイクルによる劣化の
少ない電極バインダーを用いた二次電池に関する。
TECHNICAL FIELD The present invention relates to a battery. More specifically, the present invention relates to a secondary battery using an electrode binder that is less deteriorated by long-term cycling.

【0002】[0002]

【従来の技術】近年、マイクロエレクトロニクス、とり
わけ半導体素子製造技術の顕著な進歩により、大規模集
積回路(VLSI)に代表される高度に集積化された高
機能デバイスが実現されている。これらを種々の装置の
制御系に採用することにより、電子機器は飛躍的な小型
化を達成し、各種産業のみならず、一般家庭における家
電製品の小型化・多機能化にも大きく貢献している。
2. Description of the Related Art In recent years, with the remarkable progress of microelectronics, especially semiconductor device manufacturing technology, highly integrated and highly functional devices represented by large-scale integrated circuits (VLSI) have been realized. By adopting these in the control system of various devices, electronic devices have achieved dramatic miniaturization, and have greatly contributed to miniaturization and multifunctionalization of home appliances not only in various industries but also in ordinary households. I have.

【0003】上記の如き電子機器は概してコードレス
化、すなわち自立した電源装置を有し、商用電源等に頼
ることなく動作可能な方向に進んでいる。こうした電子
機器における電源装置としては、経済性および環境資源
の問題から二次電池が用いられており、そして装置全体
の小型軽量化や装置の長時間の操作を可能にするため、
高性能な電池の開発が求められている。近年は、特に、
小型軽量の電池を実現するため、ニッケル・カドミウム
電池やニッケル水素電池等に代わり、高いエネルギー密
度を有するリチウム二次電池の研究が行われている。
[0003] The electronic devices as described above are generally becoming cordless, that is, having an independent power supply device, and are operable without relying on a commercial power supply or the like. As a power supply device for such electronic devices, a secondary battery is used because of problems of economy and environmental resources, and in order to reduce the size and weight of the entire device and enable long-time operation of the device,
There is a demand for the development of high-performance batteries. In recent years,
In order to realize a small and lightweight battery, research is being conducted on a lithium secondary battery having a high energy density instead of a nickel-cadmium battery or a nickel-metal hydride battery.

【0004】現在のリチウム二次電池においては、例え
ば負極として、層状構造を有する炭素材料などが用いら
れている。炭素材料は、その炭素層間へのリチウムなど
の金属イオンの可逆的な吸蔵・放出反応、いわゆるイン
ターカレーション反応が可能であり、充電時においても
金属リチウム等のデンドライト結晶が成長することがな
く、金属リチウム負極と比較して良好なサイクル特性を
示すことが知られている。
In current lithium secondary batteries, for example, a carbon material having a layered structure is used as a negative electrode. The carbon material is capable of a reversible occlusion / release reaction of metal ions such as lithium between the carbon layers, a so-called intercalation reaction, and dendritic crystals such as metal lithium do not grow even during charging. It is known that it exhibits better cycle characteristics as compared with a metal lithium anode.

【0005】また、高レート放電可能な電池を得るた
め、負極材料を数十〜数百μm厚の薄膜に成形し、セパ
レータ及び正極とともに巻回または積層して電極面積の
増大が図られている。このような薄膜の負極は、粉末状
の負極活物質を、あらかじめ溶媒に溶解させたポリフッ
化ビニリデン(PVDF)などのフッ素系高分子化合物
バインダーと混練し、スラリー状の負極合剤とした後、
集電体上に塗布・乾燥して作製する方法が採られてい
る。
Further, in order to obtain a battery capable of discharging at a high rate, a negative electrode material is formed into a thin film having a thickness of several tens to several hundreds μm, and is wound or laminated together with a separator and a positive electrode to increase the electrode area. . A negative electrode of such a thin film is prepared by kneading a powdery negative electrode active material with a fluorine-based polymer compound binder such as polyvinylidene fluoride (PVDF) previously dissolved in a solvent to form a slurry-like negative electrode mixture,
The method of applying and drying on a current collector is adopted.

【0006】一方、正極の作製方法においても、正極活
物質、導電助剤及びフッ素系高分子化合物バインダーに
溶媒を加え、混練してスラリー状の正極合剤とした後、
塗布乾燥して薄膜を得ている。
On the other hand, in the method of manufacturing a positive electrode, a solvent is added to a positive electrode active material, a conductive additive and a binder of a fluorine-based polymer compound, and the mixture is kneaded to form a slurry-like positive electrode mixture.
A thin film is obtained by coating and drying.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来技
術において電極バインダーとして使用されているフッ素
系高分子化合物は、耐溶剤性が低く、そのため時間の経
過とともにバインダーが電池電解質の有機溶媒により膨
潤することから、電極活物質粒子同士あるいは電極活物
質と導電助剤との結着力や、電極と集電体との間の密着
性が低下し、電極導電率が減少してしまい、十分なサイ
クル特性が得られないという問題が生じている。
However, the fluorine-based polymer compound used as an electrode binder in the prior art has a low solvent resistance, so that the binder swells with the organic solvent of the battery electrolyte over time. As a result, the binding force between the electrode active material particles or between the electrode active material and the conductive additive, and the adhesion between the electrode and the current collector are reduced, and the electrode conductivity is reduced. There is a problem that it cannot be obtained.

【0008】本発明は、この問題を解消すること、すな
わちバインダーの膨潤に起因するサイクル特性の劣化を
抑制した電池の提供を目的とする。
An object of the present invention is to solve this problem, that is, to provide a battery in which deterioration in cycle characteristics due to swelling of a binder is suppressed.

【0009】[0009]

【課題を解決するための手段】本発明者らは、この目的
達成のために、バインダー組成に関し鋭意検討した結
果、従来粉末電極の成形にバインダーとして用いられて
きたフッ素系高分子化合物に多糖類系高分子化合物を添
加した複合バインダーを用いると、バインダーの耐溶剤
性が向上して電解質溶媒による膨潤が抑制され、機械的
強度が保持されるため、電極導電率の低下が抑えられ、
サイクル寿命の良好な電池が得られることを見いだし
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the binder composition to achieve this object. As a result, polysaccharides have been added to fluorine-based polymer compounds which have been conventionally used as a binder in the molding of powdered electrodes. When a composite binder to which a polymer compound is added is used, the solvent resistance of the binder is improved, swelling due to the electrolyte solvent is suppressed, and the mechanical strength is maintained.
It has been found that a battery having a good cycle life can be obtained.

【0010】従って、本発明の電池は、電解質を挟んで
配置された、アルカリ金属イオンを吸蔵放出可能な負極
と正極とを備えた電池において、当該負極の電極材料と
当該正極の電極材料をそれぞれ結着しているバインダー
のいずれか一方又は両方がフッ素系高分子化合物と多糖
類骨格を有する高分子化合物との複合バインダーである
ことを特徴とする。
Accordingly, a battery according to the present invention is a battery provided with a negative electrode and a positive electrode, which are interposed between electrolytes and capable of inserting and extracting alkali metal ions, wherein the electrode material of the negative electrode and the electrode material of the positive electrode are respectively used. One or both of the binders are a composite binder of a fluorine-based polymer compound and a polymer compound having a polysaccharide skeleton.

【0011】[0011]

【発明の実施の形態】図1に、本発明の電池を模式的に
示す。図中、1は正極、2は電解質、3は負極、4は正
極集電体、5は正極リード、6は負極集電体、7は負極
リード、そして8は封止材である。
FIG. 1 schematically shows a battery according to the present invention. In the figure, 1 is a positive electrode, 2 is an electrolyte, 3 is a negative electrode, 4 is a positive electrode current collector, 5 is a positive electrode lead, 6 is a negative electrode current collector, 7 is a negative electrode lead, and 8 is a sealing material.

【0012】本発明の電池における正極1は、一般に正
極活物質と導電助剤をバインダーで結着して作製されて
いる。正極活物質としては、LiCoO2 、V2 5
LiMn2 4 、LiNiO2 、Nb2 5 、Ti
2 、MoS2 、NbSe3 などの、一般にアルカリ金
属を吸蔵放出可能な金属化合物が用いられるが、正極活
物質はこれらに限定はされない。より好ましい正極活物
質は、アルカリ金属を吸蔵放出可能な金属酸化物であ
る。導電助剤には、アセチレンブラック、ケッチェンブ
ラック、黒鉛、金属などの種々の導電性粉末を用いるこ
とができるが、導電助剤もこれらに限定はされない。
The positive electrode 1 in the battery of the present invention is generally manufactured by binding a positive electrode active material and a conductive auxiliary with a binder. As the positive electrode active material, LiCoO 2 , V 2 O 5 ,
LiMn 2 O 4 , LiNiO 2 , Nb 2 O 5 , Ti
Generally, metal compounds such as S 2 , MoS 2 , and NbSe 3 that can store and release alkali metals are used, but the positive electrode active material is not limited to these. A more preferable positive electrode active material is a metal oxide capable of inserting and extracting an alkali metal. Various conductive powders such as acetylene black, Ketjen black, graphite, and metal can be used as the conductive aid, but the conductive aid is not limited to these.

【0013】本発明の電池における負極3は、一般に負
極活物質をバインダーで結着して作製されている。負極
活物質としては、例えば天然黒鉛、人造黒鉛、コーク
ス、メソフェーズ小球体、気相成長カーボンを始めとし
て、フェノール樹脂やフラン樹脂などの樹脂から得られ
た樹脂焼成体、あるいはピッチ系、ポリアクリロニトリ
ル(PAN)系などの炭素繊維等を用いることができ、
負極活物質はアルカリ金属イオンの吸蔵放出が可能な炭
素材料であれば、特に限定されない。
The negative electrode 3 in the battery of the present invention is generally manufactured by binding a negative electrode active material with a binder. Examples of the negative electrode active material include natural graphite, artificial graphite, coke, mesophase spherules, vapor-grown carbon, and resin fired bodies obtained from resins such as phenolic resins and furan resins, or pitch-based and polyacrylonitrile ( PAN) -based carbon fibers or the like can be used,
The negative electrode active material is not particularly limited as long as it is a carbon material capable of inserting and extracting alkali metal ions.

【0014】本発明においては、正極1の材料(正極活
物質と導電助剤)及び負極3の材料(負極活物質)を結
着するのに使用されるバインダーのうちのどちらか一方
あるいは両方として、フッ素系高分子化合物と多糖類骨
格を有する高分子化合物との複合バインダーを使用す
る。
In the present invention, one or both of the binder used to bind the material of the positive electrode 1 (the positive electrode active material and the conductive auxiliary) and the material of the negative electrode 3 (the negative electrode active material) are used. A composite binder of a fluorine-based polymer compound and a polymer compound having a polysaccharide skeleton is used.

【0015】フッ素系高分子化合物は、分子内にフッ素
原子を含むものであればよく、例としてポリフッ化ビニ
リデン、テトラフルオロエチレン−ヘキサフルオロプロ
ピレン共重合体、ポリビニルフルオライド(PVF)、
ポリテトラフルオロエチレン(PTFE)、テトラフル
オロエチレン−エチレン共重合体(ETFE)、テトラ
フルオロエチレン−パーフルオロアルキルビニルエーテ
ル共重合体、ポリクロロトリフルオロエチレンなどを挙
げることができる。
The fluorine-based polymer compound may be any compound containing a fluorine atom in the molecule. Examples thereof include polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinyl fluoride (PVF),
Examples thereof include polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer (ETFE), tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, and polychlorotrifluoroethylene.

【0016】多糖類系高分子化合物としては、シアノエ
チル化プルランあるいはシアノエチル化セルロースを始
めとするセルロース類に代表されるグルカンや、ガラク
タン、アルギン酸、フルクタン、コンドロイチン硫酸
塩、ヒアルロン酸、マンナン、キチンなどを使用するこ
とができる。これらの高分子化合物は、一般的に生体由
来の多糖類に属する一連の材料群であり、ここに具体的
に挙げたものは商業的に入手できる代表的なものであ
る。言うまでもなく、本発明ではこれら以外に、任意の
多糖類高分子化合物を使用することができる。多糖類高
分子化合物は、一般に剛直な主鎖構造を有するため、そ
れ自体が有機溶媒により膨潤しにくく、そしてバインダ
ーにおいて通常のフッ素系高分子化合物とともに用いた
場合に、フッ素系高分子材料が有機溶媒により膨潤する
のを抑制する働きがある。
Examples of the polysaccharide polymer compound include glucans represented by celluloses such as cyanoethylated pullulan or cyanoethylated cellulose, galactan, alginic acid, fructan, chondroitin sulfate, hyaluronic acid, mannan, chitin and the like. Can be used. These polymer compounds are a series of materials generally belonging to polysaccharides derived from living organisms, and those specifically mentioned here are typical commercially available ones. Needless to say, any polysaccharide polymer compound other than these can be used in the present invention. Since polysaccharide polymer compounds generally have a rigid main chain structure, they themselves are not easily swelled by an organic solvent, and when used together with a normal fluorine-based polymer compound in a binder, the fluorine-based polymer material becomes organic. It has the function of suppressing swelling due to the solvent.

【0017】本発明において好ましい多糖類高分子化合
物は、分子内にシアノ基、カルボキシメチル基等の極性
の大きな官能基を有し、電解質塩の解離能に優れた多糖
類系高分子化合物であるが、本発明において有用な多糖
類高分子化合物はなんらこれらに限定されることはな
い。また、多糖類系高分子化合物を架橋することがバイ
ンダーの有機溶媒による膨潤の抑制のためにより有利な
場合には、多糖類系高分子化合物に架橋用の修飾処理を
施してもよい。架橋は、加熱重合による架橋でもよく、
放射線重合による架橋でもよく、あるいは加熱重合と放
射線重合の両方による架橋でもよい。架橋剤としては、
2,4−ジイソシアン酸トリレンをはじめとするシアネ
ート化合物などの一般的なものを用いることができる。
高分子化合物の架橋は周知の技術であり、ここで詳しく
説明するには及ばない。
The polysaccharide polymer compound preferred in the present invention is a polysaccharide polymer compound having a highly polar functional group such as a cyano group and a carboxymethyl group in the molecule and having excellent dissociation ability of an electrolyte salt. However, the polysaccharide polymer compound useful in the present invention is not limited to these. When it is more advantageous to crosslink the polysaccharide-based polymer compound for suppressing the swelling of the binder with the organic solvent, the polysaccharide-based polymer compound may be subjected to a modification treatment for crosslinking. Crosslinking may be crosslinking by heat polymerization,
Crosslinking by radiation polymerization may be used, or crosslinking by both heat polymerization and radiation polymerization may be used. As a crosslinking agent,
General compounds such as cyanate compounds including tolylene 2,4-diisocyanate can be used.
Crosslinking of a polymer compound is a well-known technique and does not need to be described in detail here.

【0018】本発明の複合バインダー中の多糖類系高分
子化合物の含有量は、バインダーの耐溶剤性を向上させ
て電解質溶媒(有機溶媒)による膨潤を抑制し、機械的
強度を保持することにより、電池のサイクル寿命を向上
させることができる限りにおいて、どのようなものでも
よい。とは言え、多糖類系高分子化合物の含有量が極端
に少なければ所期の効果を得ることができず、また含有
量が多すぎると電極材料の結着性と導電性の両方が低下
しやすくなるので、一般には10〜50重量%の範囲内
の多糖類系高分子化合物含有量を採用するのが有利であ
ろう。
The content of the polysaccharide polymer compound in the composite binder of the present invention is improved by improving the solvent resistance of the binder, suppressing swelling due to the electrolyte solvent (organic solvent), and maintaining the mechanical strength. Any type may be used as long as the cycle life of the battery can be improved. However, if the content of the polysaccharide-based polymer compound is extremely small, the desired effect cannot be obtained.If the content is too large, both the binding property and the conductivity of the electrode material decrease. Generally, it may be advantageous to employ a polysaccharide-based polymer compound content in the range of 10 to 50% by weight.

【0019】本発明では、正極材料と負極材料のどちら
か一方だけを複合バインダーで結着することができる。
この場合には、電解質のための有機溶媒による膨潤作用
を受けやすい方の電極材料(一般には負極材料)の結着
のために複合バインダーを用いるのが有利である。
In the present invention, only one of the positive electrode material and the negative electrode material can be bound with the composite binder.
In this case, it is advantageous to use a composite binder for binding the electrode material (generally a negative electrode material) that is susceptible to swelling action by the organic solvent for the electrolyte.

【0020】本発明の電池においては、電解質2とし
て、リチウム塩等の電解質塩を有機溶媒に溶解した非水
系電解液を用いることができる。代表的な電解質塩は、
LiClO4 、LiBF4 、LiCF3 SO3 、LiN
(CF3 SO3 2 、LiPF 6 、LiAsF6 などで
あるが、これらに限定はされない。このような電解質塩
を溶解させるための有機溶媒としては、プロピレンカー
ボネート、エチレンカーボネート、1,2−ジメトキシ
エタン、ジエチルカーボネート、ジメチルカーボネー
ト、γ−ブチロラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1,3−ジオキソラン、アセ
トニトリル、及びこれらの混合物を挙げることができる
が、有機溶媒はこれらに限定されない。
In the battery of the present invention, the electrolyte 2
A non-aqueous solution of an electrolyte salt such as a lithium salt dissolved in an organic solvent.
A system electrolyte can be used. A typical electrolyte salt is
LiClOFour, LiBFFour, LiCFThreeSOThree, LiN
(CFThreeSOThree)Two, LiPF 6, LiAsF6Etc
But not limited to them. Such electrolyte salt
As an organic solvent for dissolving
Bonate, ethylene carbonate, 1,2-dimethoxy
Ethane, diethyl carbonate, dimethyl carbonate
G, butyrolactone, tetrahydrofuran, 2-meth
Tyltetrahydrofuran, 1,3-dioxolan, ace
Tonitrile, and mixtures thereof.
However, the organic solvent is not limited to these.

【0021】上記の如き電解質塩をマトリックス内に取
り入れた形態のゲル状固体電解質を用いることも可能で
ある。ゲル状固体電解質のマトリックス材料としては、
アクリル変性ポリエチレンオキサイド重合体、シアノエ
チル化プルラン−アクリル変性ポリエチレンオキサイド
共重合体、シアノエチル化セルロース−アクリル変性ポ
リエチレンオキサイド共重合体、ポリアクリロニトリル
及びその誘導体などを用いることができる。
It is also possible to use a gel-like solid electrolyte in which the above-mentioned electrolyte salt is incorporated in a matrix. As a matrix material of the gel-like solid electrolyte,
Acrylic-modified polyethylene oxide polymers, cyanoethylated pullulan-acryl-modified polyethylene oxide copolymers, cyanoethylated cellulose-acryl-modified polyethylene oxide copolymers, polyacrylonitrile and derivatives thereof can be used.

【0022】以上説明した正極1、電解質2、負極3以
外に本発明の電池を構成する他の構成要素(正極集電体
4、正極リード5、負極集電体6、負極リード7、封止
材(一般にはラミネート封止材)8は、ここで特に説明
するまでもなく、電池の技術分野において広く知られて
いる一般的なものである。
In addition to the above-described positive electrode 1, electrolyte 2, and negative electrode 3, other components (a positive electrode current collector 4, a positive electrode lead 5, a negative electrode current collector 6, a negative electrode lead 7, The material (generally, a laminate encapsulant) 8 is a general material widely known in the battery technical field, needless to be specifically described here.

【0023】本発明にかかる電池は、以下のように作製
することができる。すなわち、バインダー材料をN−メ
チルピロリドンなどの適当な溶媒に溶解させる。このと
き、負極材料と正極材料の少なくとも一方のためのバイ
ンダーとして、フッ素系高分子化合物と多糖類系高分子
化合物とからなる複合バインダーを使用する。複合バイ
ンダー中の多糖類系高分子化合物を架橋させようとする
場合には、そのための架橋剤を溶媒溶液に添加する。次
に、こうして調製したバインダー溶液に正極及び負極そ
れぞれの電極材料を混合後、スラリー状の合剤とし、そ
してこれらを正極及び負極それぞれの集電体上に塗布及
び加熱乾燥して、正極と負極を作製する。続いて、正極
と負極で電解質を挟み、正負それぞれのリード線を取り
付け(集電体がリード線を兼ねる場合リード線は不要と
なる)、外装材で封止して電池を構成する。
The battery according to the present invention can be manufactured as follows. That is, the binder material is dissolved in a suitable solvent such as N-methylpyrrolidone. At this time, as a binder for at least one of the anode material and the cathode material, a composite binder composed of a fluorine-based polymer compound and a polysaccharide-based polymer compound is used. When the polysaccharide polymer compound in the composite binder is to be crosslinked, a crosslinking agent for that purpose is added to the solvent solution. Next, after mixing the electrode materials of the positive electrode and the negative electrode with the binder solution thus prepared, a slurry mixture was formed, and these were coated on the respective current collectors of the positive electrode and the negative electrode and dried by heating to form the positive electrode and the negative electrode. Is prepared. Subsequently, the electrolyte is sandwiched between the positive electrode and the negative electrode, and the positive and negative lead wires are attached (when the current collector also serves as the lead wire, the lead wire becomes unnecessary), and the battery is formed by sealing with an exterior material.

【0024】[0024]

【実施例】次に、実施例により本発明を更に説明する。
本発明がこれらの実施例に限定されないことは言うまで
もない。
Next, the present invention will be further described with reference to examples.
It goes without saying that the invention is not limited to these examples.

【0025】〔実施例1〕ポリフッ化ビニリデン(PV
DF)(平均分子量534,000)8重量部と、シア
ノエチル化セルロース(Polysciences, INC.社製CAT
#4687)2重量部をN−メチル−2−ピロリドン9
0重量部に加熱溶解させたのち、多結晶性黒鉛粉末90
重量部と混合し、スラリー状負極合剤を得た。これを、
銅箔集電体上に塗布・ブレードコートした後、150℃
で1時間真空乾燥して、約100μmの負極薄膜を作製
した。
Example 1 Polyvinylidene fluoride (PV
DF) (average molecular weight 534,000) 8 parts by weight and cyanoethylated cellulose (Polysciences, INC. CAT)
# 4687) 2 parts by weight of N-methyl-2-pyrrolidone 9
After heating and dissolving in 0 parts by weight, polycrystalline graphite powder 90
By weight, to obtain a slurry-like negative electrode mixture. this,
After coating and blade coating on copper foil current collector, 150 ° C
For 1 hour to produce a negative electrode thin film of about 100 μm.

【0026】LiCoO2 粉末90重量部、アセチレン
ブラック5重量部、PVDF5重量部、そしてプロピレ
ンカーボネート70重量部を混合してスラリー状合剤と
したのち、ステンレス鋼集電体上に塗布・ブレードコー
トし、150℃で2時間真空乾燥を行い、約100μm
の正極薄膜を作製した。
After mixing 90 parts by weight of LiCoO 2 powder, 5 parts by weight of acetylene black, 5 parts by weight of PVDF, and 70 parts by weight of propylene carbonate to form a slurry mixture, the mixture was coated on a stainless steel current collector and blade-coated. Vacuum drying at 150 ° C. for 2 hours, about 100 μm
Was prepared.

【0027】電解質には、ゲル状電解質を用いた。ま
ず、エチレンカーボネート−ジエチルカーボネート混合
物(体積比1:1)に電解質塩としてLiBF4 を1M
溶解させた電解液90重量部に、シアノエチル化プルラ
ン10重量部を加熱溶解した。得られた溶液に、末端ア
クリレート変性ポリエチレンオキサイド(平均分子量4
00)7.5重量部、リボフラビン光増感剤0.1重量
部を加え、ゲル調製液を作製して一方の電極面上に塗布
した後、紫外線硬化によってゲル電解質を作製した。こ
のようにして得た両極と、有機電解液を含浸させたゲル
状固体電解質とを積層しアルミニウムラミネートフィル
ムで封止して電池を得た。
As the electrolyte, a gel electrolyte was used. First, 1 M of LiBF 4 was used as an electrolyte salt in an ethylene carbonate-diethyl carbonate mixture (1: 1 by volume).
10 parts by weight of cyanoethylated pullulan was heated and dissolved in 90 parts by weight of the dissolved electrolytic solution. The resulting solution was added to a terminal acrylate-modified polyethylene oxide (average molecular weight 4
00) 7.5 parts by weight and 0.1 part by weight of a riboflavin photosensitizer were added to prepare a gel preparation solution, which was applied to one electrode surface, and then a gel electrolyte was prepared by ultraviolet curing. The thus obtained electrodes and a gel-like solid electrolyte impregnated with an organic electrolyte were laminated and sealed with an aluminum laminate film to obtain a battery.

【0028】得られた電池について、200回の充放電
サイクルの測定を0.2C定電流下で行った。これとは
別に、電極の導電率維持率を、電池に組み立てる前の電
極(ここでは負極)を電解液に浸漬前後の導電率の値を
二端子法で測定して求めた。結果は表1に示される。
The obtained battery was subjected to 200 charge / discharge cycles at a constant current of 0.2 C. Separately from this, the conductivity retention rate of the electrode was determined by measuring the value of the conductivity before and after immersing the electrode (here, the negative electrode) before assembling into a battery in an electrolytic solution by a two-terminal method. The results are shown in Table 1.

【0029】〔実施例2〕PVDF(平均分子量53
4,000)7重量部と、実施例1で使用したのと同じ
シアノエチル化セルロース3重量部をN−メチル−2−
ピロリドン90重量部に加熱溶解させたのち、多結晶性
黒鉛粉末90重量部、2,4−ジイソシアン酸トルエン
架橋剤0.03重量部と混合し、スラリー状負極合剤を
得た。これを、銅箔集電体上に塗布・ブレードコートし
た後、150℃で15分、その後150℃で1時間真空
乾燥して、多糖類系高分子のシアノエチル化セルロース
を加熱によって架橋し、約100μmの負極薄膜を作製
した。
Example 2 PVDF (average molecular weight 53
4,000) and 3 parts by weight of the same cyanoethylated cellulose used in Example 1 as N-methyl-2-
After heating and dissolving in 90 parts by weight of pyrrolidone, 90 parts by weight of polycrystalline graphite powder and 0.03 parts by weight of a 2,4-diisocyanate toluene crosslinking agent were mixed to obtain a slurry-type negative electrode mixture. This is coated and blade-coated on a copper foil current collector, and then vacuum-dried at 150 ° C. for 15 minutes and then at 150 ° C. for 1 hour to crosslink the polysaccharide polymer cyanoethylated cellulose by heating. A 100 μm negative electrode thin film was produced.

【0030】正極と電解質の作製、電池の組み立て、及
び充放電サイクル測定、電極導電率の測定は、実施例1
と同様の方法で行った。結果は表1に示される。
The preparation of the positive electrode and the electrolyte, the assembly of the battery, the measurement of the charge / discharge cycle, and the measurement of the electrode conductivity are described in Example 1.
Was performed in the same manner as described above. The results are shown in Table 1.

【0031】〔実施例3〕PVDF(平均分子量53
4,000)7重量部と、実施例1で使用したのと同じ
シアノエチル化セルロース3重量部をN−メチル−2−
ピロリドン90重量部に加熱溶解させたのち、多結晶性
黒鉛粉末90重量部、2,4−ジイソシアン酸トルエン
架橋剤0.03重量部と混合し、スラリー状負極合剤を
得た。これを、銅箔集電体上に塗布・ブレードコートし
た後、放射線照射して多糖類系高分子バインダーを架橋
した後、150℃で1時間真空乾燥し、約100μmの
負極薄膜を作製した。
Example 3 PVDF (average molecular weight 53
4,000) and 3 parts by weight of the same cyanoethylated cellulose used in Example 1 as N-methyl-2-
After heating and dissolving in 90 parts by weight of pyrrolidone, 90 parts by weight of polycrystalline graphite powder and 0.03 parts by weight of a 2,4-diisocyanate toluene crosslinking agent were mixed to obtain a slurry-type negative electrode mixture. This was coated and blade-coated on a copper foil current collector, and then irradiated with radiation to crosslink the polysaccharide-based polymer binder, followed by vacuum drying at 150 ° C. for 1 hour to produce a negative electrode thin film of about 100 μm.

【0032】正極と電解質の作製、電池の組み立て、及
び充放電サイクル測定、電極導電率の測定は、実施例1
と同様の方法で行った。結果は表1に示される。
The preparation of the positive electrode and the electrolyte, the assembly of the battery, the measurement of the charge / discharge cycle, and the measurement of the electrode conductivity are described in Example 1.
Was performed in the same manner as described above. The results are shown in Table 1.

【0033】〔実施例4〕PVDF(平均分子量53
4,000)8重量部と、実施例1で使用したのと同じ
シアノエチル化セルロース2重量部をN−メチル−2−
ピロリドン90重量部に加熱溶解させたのち、多結晶性
黒鉛粉末90重量部と混合し、スラリー状負極合剤を得
た。これを、銅箔集電体上に塗布・ブレードコートした
後、150℃で1時間真空乾燥して、約100μmの負
極薄膜を作製した。
Example 4 PVDF (average molecular weight 53
4,000) and 2 parts by weight of the same cyanoethylated cellulose used in Example 1 were added to N-methyl-2-
After heating and dissolving in 90 parts by weight of pyrrolidone, the mixture was mixed with 90 parts by weight of polycrystalline graphite powder to obtain a slurry negative electrode mixture. This was coated and blade-coated on a copper foil current collector, and then vacuum dried at 150 ° C. for 1 hour to produce a negative electrode thin film of about 100 μm.

【0034】PVDF3重量部、シアノエチル化セルロ
ース2重量部をN−メチル−2−ピロリドン70重量部
に加熱溶解させたのち、LiCoO2 粉末90重量部、
アセチレンブラック5重量部を混合してスラリー状合剤
としてから、ステンレス鋼集電体上に塗布・ブレードコ
ートし、150℃で2時間真空乾燥を行い、約100μ
mの正極薄膜を作製した。
After 3 parts by weight of PVDF and 2 parts by weight of cyanoethylated cellulose were dissolved by heating in 70 parts by weight of N-methyl-2-pyrrolidone, 90 parts by weight of LiCoO 2 powder were added.
After mixing 5 parts by weight of acetylene black to form a slurry mixture, the mixture was coated on a stainless steel current collector, coated with a blade, and vacuum-dried at 150 ° C. for 2 hours.
m of the positive electrode thin film was prepared.

【0035】電解質の作製、電池の組み立て、及び充放
電サイクル測定、電極導電率の測定は、実施例1と同様
とした。結果は表1に示される。
The preparation of the electrolyte, the assembly of the battery, the charge / discharge cycle measurement, and the measurement of the electrode conductivity were the same as those in Example 1. The results are shown in Table 1.

【0036】〔比較例〕負極を以下のように作製した。
すなわち、PVDF(平均分子量534,000)10
重量部をN−メチル−2−ピロリドン90重量部に加熱
溶解させたのち、多結晶性黒鉛粉末90重量部と混合
し、スラリー状負極合剤を得た。これを、銅箔集電体上
に塗布・ブレードコートした後、150℃で1時間真空
乾燥し、約100μmの負極薄膜を作製した。
Comparative Example A negative electrode was produced as follows.
That is, PVDF (average molecular weight 534,000) 10
The resulting mixture was heated and dissolved in 90 parts by weight of N-methyl-2-pyrrolidone, and then mixed with 90 parts by weight of polycrystalline graphite powder to obtain a slurry negative electrode mixture. This was coated and blade-coated on a copper foil current collector, and then vacuum dried at 150 ° C. for 1 hour to produce a negative electrode thin film of about 100 μm.

【0037】また、正極を以下のようにして作製した。
すなわち、LiCoO2 粉末90重量部、アセチレンブ
ラック5重量部、PVDF5重量部、N−メチル−2−
ピロリドン70重量部を混合してスラリー状合剤とした
のち、これをステンレス鋼集電体上に塗布・ブレードコ
ートし、150℃で2時間真空乾燥を行い、約100μ
mの正極薄膜を作製した。
A positive electrode was produced as follows.
That is, 90 parts by weight of LiCoO 2 powder, 5 parts by weight of acetylene black, 5 parts by weight of PVDF, N-methyl-2-
After mixing 70 parts by weight of pyrrolidone to obtain a slurry mixture, the mixture was coated on a stainless steel current collector, coated with a blade, and vacuum-dried at 150 ° C. for 2 hours to obtain about 100 μm.
m of the positive electrode thin film was prepared.

【0038】電解質の作製、電池の組み立て、及び充放
電サイクルと電極導電率の測定は、実施例1と同様とし
た。結果は表1に示される。
Preparation of the electrolyte, assembly of the battery, and measurement of the charge / discharge cycle and electrode conductivity were the same as those in Example 1. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】表1から、本発明により負極バインダーと
してフッ素系化合物と多糖類高分子化合物との複合体、
あるいはその複合体の多糖類高分子化合物を架橋させた
ものを用いた実施例1、2、3の電池で、容量保持率と
して示されたサイクル特性が比較例と対比して改善され
ていることがわかる。この容量保持率は、200回目の
サイクルにおける電池の放電容量を表1に示された容量
最大値で割った値として示されている。また、実施例1
〜3の電池では比較例と対比して電極導電率の維持率も
向上していることがわかる。更に、負極ばかりでなく正
極でもフッ素系化合物と多糖類高分子化合物とからなる
複合バインダーを用いた実施例4では、容量保持率及び
電極導電率の保持率ともに比較例より一層向上している
ことがわかる。
From Table 1, it can be seen that according to the present invention, a composite of a fluorine compound and a polysaccharide polymer as a negative electrode binder,
Alternatively, in the batteries of Examples 1, 2, and 3 using a crosslinked polysaccharide polymer compound of the complex, the cycle characteristics indicated as the capacity retention are improved as compared with the comparative example. I understand. This capacity retention is shown as a value obtained by dividing the discharge capacity of the battery in the 200th cycle by the capacity maximum value shown in Table 1. Example 1
It can be seen that in the batteries of Nos. 1 to 3, the maintenance rate of the electrode conductivity was also improved as compared with the comparative example. Furthermore, in Example 4 in which a composite binder composed of a fluorine-based compound and a polysaccharide polymer compound was used not only in the negative electrode but also in the positive electrode, both the capacity retention and the retention of the electrode conductivity were further improved from the comparative example. I understand.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
フッ素系高分子化合物と剛直な主鎖構造を有する多糖類
系高分子化合物とから得られる複合化したバインダーを
用いることにより、従来のフッ素系高分子化合物バイン
ダーのみを用いた場合と比較して、電解液によるバイン
ダーの膨潤が抑えられ、電極活物質粒子同士あるいは電
極活物質と導電助剤との結着力や、電極と集電体との密
着性が保持されて、電極導電率の低下が小さく且つ充放
電サイクル寿命が大きく改善された電池が利用可能とな
る。
As described above, according to the present invention,
By using a composite binder obtained from a fluorine-based polymer compound and a polysaccharide-based polymer compound having a rigid main chain structure, compared to the case where only a conventional fluorine-based polymer compound binder is used, Swelling of the binder due to the electrolyte is suppressed, the binding force between the electrode active material particles or between the electrode active material and the conductive auxiliary agent, and the adhesion between the electrode and the current collector are maintained, and the decrease in electrode conductivity is small. Also, a battery with significantly improved charge / discharge cycle life can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池を説明する模式図である。FIG. 1 is a schematic diagram illustrating a battery of the present invention.

【符号の説明】[Explanation of symbols]

1…正極 2…電解質 3…負極 4…正極集電体 5…正極リード 6…負極集電体 7…負極リード 8…封止材 DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Electrolyte 3 ... Negative electrode 4 ... Positive electrode current collector 5 ... Positive electrode lead 6 ... Negative electrode current collector 7 ... Negative electrode lead 8 ... Sealant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解質を挟んで配置された、アルカリ金
属イオンを吸蔵放出可能な負極と正極とを備えた電池に
おいて、当該負極の電極材料と当該正極の電極材料をそ
れぞれ結着しているバインダーのいずれか一方又は両方
がフッ素系高分子化合物と多糖類骨格を有する高分子化
合物との複合バインダーであることを特徴とする電池。
1. A battery provided with a negative electrode and a positive electrode, which are capable of storing and releasing alkali metal ions, and which are disposed with an electrolyte interposed therebetween, wherein the binder binds the electrode material of the negative electrode and the electrode material of the positive electrode, respectively. Wherein one or both of them are a composite binder of a fluorine-based polymer compound and a polymer compound having a polysaccharide skeleton.
【請求項2】 前記複合バインダーの多糖類骨格を有す
る高分子化合物が架橋している、請求項1記載の電池。
2. The battery according to claim 1, wherein the polymer compound having a polysaccharide skeleton of the composite binder is crosslinked.
【請求項3】 前記多糖類骨格を有する高分子化合物が
加熱重合、放射線重合又はそれらの組み合わせにより架
橋している、請求項2記載の電池。
3. The battery according to claim 2, wherein the polymer compound having a polysaccharide skeleton is crosslinked by heat polymerization, radiation polymerization, or a combination thereof.
【請求項4】 前記負極を構成する活物質がアルカリ金
属イオンを吸蔵放出可能な炭素材料である、請求項1か
ら3までのいずれか一つに記載の電池。
4. The battery according to claim 1, wherein the active material forming the negative electrode is a carbon material capable of inserting and extracting alkali metal ions.
【請求項5】 前記正極を構成する活物質がアルカリ金
属イオンを吸蔵放出可能な金属酸化物である、請求項1
から4までのいずれか一つに記載の電池。
5. The active material forming the positive electrode is a metal oxide capable of inserting and extracting an alkali metal ion.
5. The battery according to any one of the above items 4 to 4.
【請求項6】 前記電解質が、電解質塩を有機溶媒に溶
解した非水系電解液から構成され、あるいは電解質塩を
マトリックス内に取り入れた形態のゲル状固体電解質か
ら構成されている、請求項1から5までのいずれか一つ
に記載の電池。
6. The electrolyte according to claim 1, wherein the electrolyte is composed of a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent, or is composed of a gel solid electrolyte in which the electrolyte salt is incorporated in a matrix. 5. The battery according to any one of 5 to 5.
JP9302566A 1997-11-05 1997-11-05 Battery Withdrawn JPH11144735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9302566A JPH11144735A (en) 1997-11-05 1997-11-05 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9302566A JPH11144735A (en) 1997-11-05 1997-11-05 Battery

Publications (1)

Publication Number Publication Date
JPH11144735A true JPH11144735A (en) 1999-05-28

Family

ID=17910529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9302566A Withdrawn JPH11144735A (en) 1997-11-05 1997-11-05 Battery

Country Status (1)

Country Link
JP (1) JPH11144735A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238503A (en) * 1998-02-20 1999-08-31 Yuasa Corp Nonaqueous electrolyte secondary battery
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
JPWO2007125896A1 (en) * 2006-04-25 2009-09-10 昭和電工株式会社 Electric double layer capacitor
WO2012029858A1 (en) * 2010-08-31 2012-03-08 協立化学産業株式会社 Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
CN104969390A (en) * 2013-02-27 2015-10-07 日本瑞翁株式会社 Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
CN105164837A (en) * 2013-05-13 2015-12-16 日本瑞翁株式会社 Composite particles for electrochemical element electrode, method for manufacturing composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
US9905838B2 (en) 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
US10033045B2 (en) * 2005-02-10 2018-07-24 Showda Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2019029330A (en) * 2017-07-25 2019-02-21 行政院原子能委員會核能研究所 All-solid battery, hybrid structure solid electrolyte film and manufacturing methods thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238503A (en) * 1998-02-20 1999-08-31 Yuasa Corp Nonaqueous electrolyte secondary battery
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
US10033045B2 (en) * 2005-02-10 2018-07-24 Showda Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JPWO2007125896A1 (en) * 2006-04-25 2009-09-10 昭和電工株式会社 Electric double layer capacitor
WO2012029858A1 (en) * 2010-08-31 2012-03-08 協立化学産業株式会社 Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
US9181439B2 (en) 2010-08-31 2015-11-10 Kyoritsu Chemical & Co., Ltd. Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
US9905838B2 (en) 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
CN104969390A (en) * 2013-02-27 2015-10-07 日本瑞翁株式会社 Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
CN105164837A (en) * 2013-05-13 2015-12-16 日本瑞翁株式会社 Composite particles for electrochemical element electrode, method for manufacturing composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
JPWO2014185365A1 (en) * 2013-05-13 2017-02-23 日本ゼオン株式会社 Electrochemical element electrode composite particle, method for producing electrochemical element electrode composite particle, electrochemical element electrode and electrochemical element
JP2019029330A (en) * 2017-07-25 2019-02-21 行政院原子能委員會核能研究所 All-solid battery, hybrid structure solid electrolyte film and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
US10923704B2 (en) Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
EP2731177A1 (en) Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US20220077493A1 (en) Ion conductor material and battery
WO2002087004A1 (en) Lithium polymer secondary cell
JP4193481B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JPH11144735A (en) Battery
WO2020184713A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015132845A1 (en) All-solid-state battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
KR20200023623A (en) Anode for lithium secondary battery and lithium secondary battery using the same
JP6848363B2 (en) Negative electrode and non-aqueous electrolyte power storage element
US20190229336A1 (en) Battery electrode binder
JP3664560B2 (en) Lithium secondary battery
WO2021215086A1 (en) Battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2002216768A (en) Nonaqueous secondary battery
JP2000077059A (en) Battery and its manufacture
JP2002134111A (en) Carbon material for lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4817483B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP3618022B2 (en) Electric double layer capacitor and EL element
JP2002324581A (en) Solid electrolyte battery
EP4024497A1 (en) Elastic anode binder for secondary lithium ion battery
JP2001345093A (en) Positive electrode for nonaqueous secondary cell, negative electrode for nonaqueous secondary cell and nonaqueous secondary cell
JP2002075331A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201