JPH11135380A - Activated carbon for electric double layer capacitor and its manufacture - Google Patents

Activated carbon for electric double layer capacitor and its manufacture

Info

Publication number
JPH11135380A
JPH11135380A JP10157027A JP15702798A JPH11135380A JP H11135380 A JPH11135380 A JP H11135380A JP 10157027 A JP10157027 A JP 10157027A JP 15702798 A JP15702798 A JP 15702798A JP H11135380 A JPH11135380 A JP H11135380A
Authority
JP
Japan
Prior art keywords
activated carbon
electric double
double layer
layer capacitor
mesophase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10157027A
Other languages
Japanese (ja)
Inventor
Naohiko Oki
尚彦 沖
Shigeki Koyama
茂樹 小山
Kenji Sato
健児 佐藤
Minoru Noguchi
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10157027A priority Critical patent/JPH11135380A/en
Publication of JPH11135380A publication Critical patent/JPH11135380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide activated carbon which can reduce the internal resistance of a polarized electrode of an electric double layer capacitor, a polarized elec trode using the activated carbon and an electric double layer capacitor, and a method for manufacturing such an activated carbon. SOLUTION: The surface of at least a part of particles of activated carbon 12 is covered with a laminated layer 11 of a graphite formed along the surface. A polarized electrode 1 is made of activated carbon 12, conductive filler and binder. An electric double layer capacitor consists of an faced opposite pair of polarized electrodes disposed through a separator 2, collecting elements 3 and 5 and an electrolytic solution. The activated carbon 12 is manufactured by extracting mesophase from oil pitch, cooling and solidifying the mesophase to form mesophase resin, partially oxidizing and making the surface of the mesophase resin non melting to obtain mesophase pitch, heating the mesophase pitch at 500-900 deg.C under airflow of inert gas to obtain a carbide, mixing 1 weight part of the carbide with 1.2-2.4 weight part of alkali metal hydroxide and heating it for alkali activation at 550-850 deg.C under airflow of inert gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタ用活性炭及びその製造方法に関するものである。
The present invention relates to activated carbon for electric double layer capacitors and a method for producing the same.

【0002】[0002]

【従来の技術】固体面が電解質溶液に接触すると、該固
体面に対して正または負イオンの選択的吸着が起こり、
固体面が正または負に荷電する。一方、溶液側では反対
電荷の対イオンが多くなる。この結果、固体面と電解質
溶液との界面に正負の電荷が対向して配列され、前記正
負の電荷による電気二重層が形成される。前記電気二重
層は、前記固体面を電極とすることによりキャパシタと
して利用できることが知られており、このようなキャパ
シタは電気二重層キャパシタと呼ばれている。
2. Description of the Related Art When a solid surface contacts an electrolyte solution, selective adsorption of positive or negative ions occurs on the solid surface,
The solid surface is positively or negatively charged. On the other hand, on the solution side, counter ions of the opposite charge increase. As a result, positive and negative charges are arranged facing each other at the interface between the solid surface and the electrolyte solution, and an electric double layer is formed by the positive and negative charges. It is known that the electric double layer can be used as a capacitor by using the solid surface as an electrode, and such a capacitor is called an electric double layer capacitor.

【0003】前記電気二重層キャパシタでは、前記固体
電極に電界を印加したときの静電容量は前記電極の表面
積に比例する。そこで、前記電気二重層キャパシタで
は、一般に、活性炭のような比表面積の大きな物質を電
極とし、該電極に電解液を含浸させている。そして、前
記電気二重層キャパシタは、前記電解液が含浸された電
極をセパレータで分離し、セパレータの両側の電極にそ
れぞれ集電部材を取着した構成となっている。
In the electric double layer capacitor, the capacitance when an electric field is applied to the solid electrode is proportional to the surface area of the electrode. Therefore, in the electric double layer capacitor, generally, a substance having a large specific surface area such as activated carbon is used as an electrode, and the electrode is impregnated with an electrolytic solution. The electric double layer capacitor has a configuration in which the electrodes impregnated with the electrolytic solution are separated by a separator, and current collecting members are attached to the electrodes on both sides of the separator.

【0004】前記電気二重層キャパシタは、ファラッド
級の大容量を有し、充放電サイクル特性に優れることか
ら、電気機器のバックアップ電源等の用途に使用されて
いる。前記電気二重層キャパシタは、さらに車載バッテ
リーの代替として使用することが検討されている。
[0004] The electric double layer capacitor has a farad-class large capacity and is excellent in charge / discharge cycle characteristics, and is therefore used for applications such as a backup power supply for electric equipment. The use of the electric double layer capacitor as a substitute for a vehicle-mounted battery is being studied.

【0005】前記電気二重層キャパシタは、例えば、図
1に示す様に、活性炭からなる一対の分極性電極1,1
をセパレータ2を介して対向させて設け、該分極性電極
1にテトラアルキルアンモニウム塩等の有機溶媒溶液を
電解液として含浸させた構成となっている。図1示の電
気二重層キャパシタは、セパレータ2を介して対向する
分極性電極1,1がアルミニウム製容器3に収容されて
いる。アルミニウム製容器3は、アルミニウム製蓋体5
で閉蓋されていて、容器3及び蓋体5はそれぞれ分極性
電極1,1に接触して各分極性電極1に対する集電部材
となっている。前記構成の電気二重層キャパシタでは、
例えば活性炭粒子をテトラフルオロエチレン等の結着剤
と混合して成形した分極性電極1が用いられる。また、
前記構成の電気二重層キャパシタでは、活性炭繊維等が
分極性電極1に用いられることもある。
As shown in FIG. 1, for example, the electric double layer capacitor includes a pair of polarizable electrodes 1 and 1 made of activated carbon.
Are provided facing each other with a separator 2 interposed therebetween, and the polarizable electrode 1 is impregnated with an organic solvent solution such as a tetraalkylammonium salt as an electrolytic solution. In the electric double layer capacitor shown in FIG. 1, the polarizable electrodes 1 and 1 facing each other via a separator 2 are accommodated in an aluminum container 3. The aluminum container 3 includes an aluminum lid 5.
The container 3 and the lid 5 are in contact with the polarizable electrodes 1 and 1 respectively, and serve as current collecting members for the respective polarizable electrodes 1. In the electric double layer capacitor having the above configuration,
For example, a polarizable electrode 1 formed by mixing activated carbon particles with a binder such as tetrafluoroethylene is used. Also,
In the electric double layer capacitor having the above configuration, activated carbon fiber or the like may be used for the polarizable electrode 1.

【0006】前記電気二重層キャパシタでは、分極性電
極1の前記集電部材に近い部分の電荷は該集電部材によ
り容易に取り出せる。しかし、該集電部材から離れた部
分の荷電は取り出されるまでに分極性電極1の内部抵抗
により低減する。このため、電気二重層キャパシタ全体
としての有効な静電容量が少なくなるという問題があ
る。
In the electric double layer capacitor, the electric charge in the portion of the polarizable electrode 1 close to the current collecting member can be easily taken out by the current collecting member. However, the charge at the portion remote from the current collecting member is reduced by the internal resistance of the polarizable electrode 1 before being taken out. Therefore, there is a problem that the effective capacitance of the entire electric double layer capacitor is reduced.

【0007】前記問題を解決するために、活性炭粒子の
内部構造を改良して分極性電極1の内部抵抗を低減しよ
うとする試みがなされている。例えば、活性炭粒子を用
いる分極性電極では該活性炭粒子にファーネスブラック
等の導電フィラーを混合することが行われている。ま
た、活性炭繊維を用いる分極性電極では、特開昭61−
187322号公報記載のように、活性炭繊維の内部を
黒鉛とし、繊維外層を活性炭とするもの等が提案されて
いる。また、本発明者らは、活性炭粒子を導電フィラー
と混合して前記分極性電極を構成するときに、易黒鉛化
性樹脂を炭化し、得られた炭化物をアルカリ賦活するこ
とにより、粒子の表面から内部に向けて黒鉛の積層構造
が形成された活性炭粒子を用いることを先に提案してい
る(特願平8−132050号明細書参照)。
[0007] In order to solve the above problems, attempts have been made to improve the internal structure of the activated carbon particles to reduce the internal resistance of the polarizable electrode 1. For example, in a polarizable electrode using activated carbon particles, a conductive filler such as furnace black is mixed into the activated carbon particles. In addition, a polarizable electrode using activated carbon fiber is disclosed in
As described in Japanese Patent No. 187322, there has been proposed a material in which the inside of activated carbon fiber is made of graphite and the outer layer of the fiber is made of activated carbon. Further, the present inventors, when forming the polarizable electrode by mixing the activated carbon particles with a conductive filler, by carbonizing the graphitizable resin and alkali-activating the obtained carbide, the surface of the particles. It has been previously proposed to use activated carbon particles having a graphite laminated structure from inside to inside (see Japanese Patent Application No. 8-132050).

【0008】しかしながら、前記の様に活性炭粒子の内
部構造を改良しても、前記分極性電極の内部抵抗を低減
する効果は、十分に満足できるものではなかった。
However, even if the internal structure of the activated carbon particles is improved as described above, the effect of reducing the internal resistance of the polarizable electrode has not been sufficiently satisfactory.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明は、か
かる不都合を解消して、電気二重層キャパシタの分極性
電極を形成したときに該分極性電極の内部抵抗を低減す
ることができる活性炭を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is to provide an activated carbon capable of solving such disadvantages and reducing the internal resistance of the polarizable electrode when the polarizable electrode of the electric double layer capacitor is formed. The purpose is to provide.

【0010】また、本発明の目的は、前記活性炭を用い
る分極性電極を提供することにもある。
Another object of the present invention is to provide a polarizable electrode using the activated carbon.

【0011】また、本発明の目的は、前記活性炭を用い
る電気二重層キャパシタを提供することにもある。
Another object of the present invention is to provide an electric double layer capacitor using the activated carbon.

【0012】さらに、本発明の目的は、前記活性炭の製
造方法を提供することにもある。
Still another object of the present invention is to provide a method for producing the activated carbon.

【0013】[0013]

【課題を解決するための手段】本発明者らは、活性炭粒
子を前記導電フィラー及び結着剤と混合してなる前記電
気二重層キャパシタの分極性電極の内部構造について検
討した。この結果、前記導電フィラーは活性炭粒子の周
囲に配されて活性炭粒子同士を電気的に接続する働きを
しているとの知見を得た。また、活性炭粒子間の電荷の
受け渡しの大部分は前記導電フィラーを経由して行われ
ているとの知見を得た。
Means for Solving the Problems The present inventors have studied the internal structure of the polarizable electrode of the electric double layer capacitor obtained by mixing activated carbon particles with the conductive filler and the binder. As a result, it has been found that the conductive filler is disposed around the activated carbon particles and functions to electrically connect the activated carbon particles to each other. In addition, it has been found that the majority of charge transfer between activated carbon particles is performed via the conductive filler.

【0014】従って、前記分極性電極の内部抵抗を低減
するには、活性炭粒子の内部構造を改良して活性炭粒子
自体の抵抗を低くするよりも、活性炭粒子間の抵抗を低
くする方が有効であると考えられる。
Therefore, in order to reduce the internal resistance of the polarizable electrode, it is more effective to lower the resistance between the activated carbon particles than to improve the internal structure of the activated carbon particles to lower the resistance of the activated carbon particles themselves. It is believed that there is.

【0015】ところが、前記導電フィラーは略球状で、
その直径は約200Åであり、前記活性炭粒子の約1/
500である。このために、前記導電フィラーは、前記
活性炭粒子と点接触するに過ぎず、接触面積が少ないの
で、活性炭粒子との間で十分な電気的な接続効率が得ら
れない。そこで、本発明者らは、活性炭粒子表面の導電
性を改良することにより、前記導電フィラーと前記活性
炭粒子との電気的な接続効率が向上され、ひいては活性
炭粒子間の抵抗を低減できることを見出した。
However, the conductive filler is substantially spherical.
Its diameter is about 200 ° and about 1 / of the activated carbon particles.
500. For this reason, the conductive filler only makes point contact with the activated carbon particles and has a small contact area, so that sufficient electrical connection efficiency with the activated carbon particles cannot be obtained. Therefore, the present inventors have found that by improving the conductivity of the activated carbon particles, the electrical connection efficiency between the conductive filler and the activated carbon particles is improved, and the resistance between the activated carbon particles can be reduced. .

【0016】本発明者らにより先に出願されている特願
平8−132050号明細書記載の活性炭粒子は、粒子
の表面から内部に向けて黒鉛の積層構造が形成されてい
る。前記活性炭粒子によれば、表面に導電性を有する黒
鉛が露出しているので、該黒鉛に前記導電性フィラーが
接触することにより活性炭粒子間の抵抗を低くすること
ができる。しかし、前記明細書記載の活性炭粒子では、
前記黒鉛の積層構造が粒子表面から内部に向けて形成さ
れているので、表面に露出する黒鉛は全体の10〜20
%に過ぎず、さらに改良が望まれる。
The activated carbon particles described in the specification of Japanese Patent Application No. 8-13050 previously filed by the present inventors have a laminated structure of graphite from the surface of the particles toward the inside. According to the activated carbon particles, since the conductive graphite is exposed on the surface, the resistance between the activated carbon particles can be reduced by bringing the conductive filler into contact with the graphite. However, in the activated carbon particles described in the above specification,
Since the graphite laminated structure is formed from the particle surface toward the inside, the graphite exposed on the surface is 10 to 20% in total.
%, And further improvement is desired.

【0017】本発明は前記目的を達成するために、かか
る検討結果に鑑みてなされたものであり、本発明の電気
二重層キャパシタ用活性炭は、該活性炭粒子の少なくと
も一部の表面が該表面に沿って形成された黒鉛の積層構
造層により被覆されていることを特徴とする。尚、本明
細書において、「黒鉛の積層構造層」との用語は、6員
炭素環が二次元的に連なった層が積み重なり、層と層と
がファン・デア・ワールス力により結合している構造を
意味する。
The present invention has been made in view of the above-described results in order to achieve the above object. The activated carbon for an electric double layer capacitor of the present invention has at least a part of the surface of the activated carbon particles on the surface. It is characterized by being covered with a laminated structure layer of graphite formed along. In the present specification, the term “graphite laminated structure layer” refers to a layer in which six-membered carbon rings are two-dimensionally connected to each other, and the layers are joined by van der Waals force. Means structure.

【0018】本発明の活性炭によれば、粒子の表面が導
電性を有する黒鉛の積層構造層により被覆されている。
従って、本発明の活性炭を導電フィラー及び結着剤と混
合して電気二重層キャパシタの分極性電極を構成したと
きに、該活性炭粒子の周囲に配された導電フィラーが前
記黒鉛と接触する確率が高くなり、該活性炭粒子間の電
荷の受け渡しを容易に行うことができる。
According to the activated carbon of the present invention, the surfaces of the particles are covered with a laminated structure layer of graphite having conductivity.
Therefore, when the activated carbon of the present invention is mixed with a conductive filler and a binder to form a polarizable electrode of an electric double layer capacitor, the probability that the conductive filler disposed around the activated carbon particles comes into contact with the graphite is reduced. As a result, charges can be easily transferred between the activated carbon particles.

【0019】また、本発明の分極性電極は、前記粒子の
少なくとも一部の表面が黒鉛の積層構造層により被覆さ
れた活性炭と、導電性フィラーと、結着剤とからなるこ
とを特徴とする。
Further, the polarizable electrode according to the present invention is characterized in that at least a part of the surface of the particles is made of activated carbon coated with a graphite laminated structure layer, a conductive filler, and a binder. .

【0020】本発明の分極性電極によれば、前記の様に
粒子間の電荷の受け渡しを容易に行うことができる活性
炭が用いられているので、その内部抵抗を低減すること
ができる。
According to the polarizable electrode of the present invention, since the activated carbon which can easily transfer charges between particles is used as described above, the internal resistance can be reduced.

【0021】また、本発明の電気二重層キャパシタは、
セパレータを介して対向した一対の分極性電極と、各分
極性電極に設けられた集電部材と、電解液とからなる電
気二重層キャパシタにおいて、該分極性電極は粒子の少
なくとも一部の表面が黒鉛の積層構造層により被覆され
た活性炭と、導電性フィラーと、結着剤とからなること
を特徴とする。
Further, the electric double layer capacitor of the present invention comprises:
A pair of polarizable electrodes facing each other with a separator interposed therebetween, a current collecting member provided on each polarizable electrode, and an electric double layer capacitor including an electrolytic solution, wherein the polarizable electrode has at least a part of the surface of particles. It is characterized by comprising activated carbon covered with a graphite laminated structure layer, a conductive filler, and a binder.

【0022】本発明の電気二重層キャパシタによれば、
前記分極性電極が前記の様に粒子間の電荷の受け渡しを
容易に行うことができる活性炭により構成されているの
で、該分極性電極の内部抵抗が低減され、電荷を容易に
取り出すことができる。従って、本発明の電気二重層キ
ャパシタによれば、キャパシタ全体の有効な静電容量を
向上することができる。また、前記分極性電極を構成す
る活性炭粒子間の電荷の受け渡しが容易であるので、充
電する際に前記活性炭粒子に対する給電性能を安定化
し、キャパシタとしての静電容量自体を大きくすること
ができる。
According to the electric double layer capacitor of the present invention,
Since the polarizable electrode is made of activated carbon which can easily transfer charges between particles as described above, the internal resistance of the polarizable electrode is reduced, and charges can be easily taken out. Therefore, according to the electric double layer capacitor of the present invention, the effective capacitance of the entire capacitor can be improved. In addition, since it is easy to transfer electric charges between the activated carbon particles constituting the polarizable electrode, the power supply performance to the activated carbon particles during charging can be stabilized, and the capacitance itself as a capacitor can be increased.

【0023】本発明の電気二重層キャパシタ用活性炭
は、石油ピッチから抽出されるメゾフェース相を冷却、
固化したメゾフェース樹脂の表面を部分酸化して不融化
することによりメゾフェースピッチを得る工程と、該メ
ゾフェースピッチを不活性気体気流下500〜900℃
で加熱して炭化させる工程と、前記工程で得られた炭化
物を該炭化物1重量部に対して1.2〜2.4重量部の
アルカリ金属水酸化物と混合し、不活性気体気流下55
0〜850℃で加熱してアルカリ賦活する工程とからな
ることを特徴とする製造方法により有利に製造すること
ができる。
The activated carbon for an electric double layer capacitor of the present invention cools a mesophase extracted from petroleum pitch,
A step of obtaining a mesoface pitch by partially oxidizing the surface of the solidified mesoface resin to make it infusible, and forming the mesoface pitch in an inert gas stream at 500 to 900 ° C.
Heating and carbonizing the mixture, and mixing the carbide obtained in the above step with 1.2 to 2.4 parts by weight of an alkali metal hydroxide based on 1 part by weight of the carbide.
And a step of heating at 0 to 850 ° C. to activate the alkali.

【0024】本発明の活性炭の製造方法では、メゾフェ
ースピッチを原料とする。メゾフェースピッチを得るに
は、まず、石油ピッチからメゾフェース相を抽出する。
前記石油ピッチは、原油からガソリン、灯油等を分留す
る過程で排出される残滓である。前記メゾフェース相は
前記石油ピッチの液相での炭化の進行に伴い多核−多環
芳香族分子が成長し、その一部または全部が液晶状態を
示す様になったものである。前記メゾフェース相は、冷
却すると固体状の樹脂となる。そこで、前記樹脂の表面
を部分酸化し、該表面の高分子を酸素で架橋させ、さら
に分子量を増大させて不融化することにより、メゾフェ
ースピッチが得られる。
In the method for producing activated carbon of the present invention, mesophase pitch is used as a raw material. In order to obtain a mesophase pitch, first, a mesophase phase is extracted from a petroleum pitch.
The petroleum pitch is a residue discharged in the process of fractionating gasoline, kerosene and the like from crude oil. In the mesophase phase, polynuclear-polycyclic aromatic molecules grow with the progress of carbonization in the liquid phase of the petroleum pitch, and a part or all of the molecules show a liquid crystal state. The mesophase becomes a solid resin when cooled. Then, the surface of the resin is partially oxidized, the polymer on the surface is crosslinked with oxygen, and the molecular weight is further increased to render the resin infusible, thereby obtaining a mesoface pitch.

【0025】次に前記メゾフェースピッチを前記条件下
に加熱して炭化すると、該メゾフェースピッチ表面の不
融化された部分の多核−多環芳香族分子が黒鉛化する。
この結果、表面が黒鉛の積層構造層により被覆された炭
化物が得られるものと考えられる。
Next, when the mesophase pitch is heated and carbonized under the above conditions, the polynuclear-polycyclic aromatic molecules in the infusibilized portion on the surface of the mesophase pitch are graphitized.
As a result, it is considered that a carbide whose surface is covered with the graphite laminated structure layer is obtained.

【0026】黒鉛の積層構造層を備える炭化物は、ポリ
塩化ビニル、タール等の易黒鉛化性樹脂を加熱して炭化
することによっても得られる。しかし、ポリ塩化ビニ
ル、タール等は低融点であるので、前記不融化のために
300〜400℃に加熱すると溶融してしまう。従っ
て、本発明はメゾフェースピッチを原料とすることが必
要であり、ポリ塩化ビニル、タール等の易黒鉛化性樹脂
は、本発明に適用することができない。
A carbide having a graphite laminated structure layer can also be obtained by heating and carbonizing a graphitizable resin such as polyvinyl chloride or tar. However, since polyvinyl chloride and tar have a low melting point, they are melted when heated to 300 to 400 ° C. for infusibility. Therefore, in the present invention, it is necessary to use mesoface pitch as a raw material, and easily graphitizable resins such as polyvinyl chloride and tar cannot be applied to the present invention.

【0027】また、前記炭化によれば、前記メゾフェー
スピッチから水素、側鎖等が脱離して、賦活により最終
製品の活性炭を得るために適した孔径の細孔が形成され
た炭化物が得られる。
According to the carbonization, hydrogen, side chains and the like are desorbed from the mesophase pitch, and a carbonized material having pores suitable for obtaining activated carbon of a final product by activation is obtained. .

【0028】次に、前記炭化物を前記条件下にアルカリ
賦活することにより、前記炭化のための加熱の際に焼結
して閉塞された細孔が開削され、その表面が黒鉛の積層
構造層により被覆された活性炭を得ることができる。
Next, by activating the carbide under the above-mentioned conditions, pores which are sintered and closed at the time of heating for carbonization are cut out, and the surface thereof is formed by a graphite laminated structure layer. A coated activated carbon can be obtained.

【0029】尚、本発明の製造方法によれば、ポリ塩化
ビニル等の塩素を含む易黒鉛化樹脂を使用しないので、
炭化の工程において塩素化合物を発生することが無い。
According to the production method of the present invention, since a graphitizable resin containing chlorine such as polyvinyl chloride is not used,
No chlorine compound is generated in the carbonization process.

【0030】また、本発明の製造方法では、得られた活
性炭は粒子状として電気二重層キャパシタの分極性電極
に用いられる。ここで、前記活性炭は、前記粒子状とす
るために、前記メゾフェース樹脂を溶融して紡糸したの
ち前記のように不融化してメゾフェースピッチ繊維と
し、該メゾフェースピッチ繊維に前記炭化させる工程と
前記アルカリ賦活する工程とを施したのち、生成物を粉
砕して粒子状としてもよい。また、前記活性炭は、前記
メゾフェース樹脂を微粒状に粉砕したのち前記のように
不融化してメゾフェースピッチを得て、該メゾフェース
ピッチ繊維に前記炭化させる工程と前記アルカリ賦活す
る工程とを施して粒子状活性炭としてもよい。
In the production method of the present invention, the obtained activated carbon is used in the form of particles for a polarizable electrode of an electric double layer capacitor. Here, the activated carbon, in order to form the particles, the mesoface resin is melted and spun and then infusibilized as described above to form mesoface pitch fibers, and the step of carbonizing the mesoface pitch fibers. After the step of activating the alkali, the product may be pulverized into particles. Further, the activated carbon is subjected to a step of pulverizing the mesophase resin into fine particles and then infusing as described above to obtain a mesoface pitch, and the step of carbonizing the mesoface pitch fibers and the step of alkali activation. It may be a particulate activated carbon.

【0031】[0031]

【発明の実施の形態】次に、添付の図面を参照しながら
本発明の実施の形態についてさらに詳しく説明する。図
1は本発明の電気二重層キャパシタの一実施態様を示す
説明的断面図であり、図2は本実施形態の活性炭の粒子
構造を示す電子顕微鏡写真の摸写図であり、図3は従来
の活性炭の粒子構造を示す電子顕微鏡写真の摸写図であ
る。また、図4は、図2及び図3に示す活性炭粒子を用
いた分極性電極の内部抵抗及び静電容量を示すグラフで
あり、図5は、本実施形態の活性炭の炭化温度と該活性
炭を用いた分極性電極の静電容量の関係を示すグラフで
あり、図6は、本実施形態の活性炭のアルカリ賦活に用
いるアルカリ金属水酸化物の量と該活性炭を用いた分極
性電極の静電容量の関係を示すグラフである。
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view showing an embodiment of the electric double layer capacitor of the present invention, FIG. 2 is an electron micrograph showing the particle structure of the activated carbon of the present embodiment, and FIG. FIG. 5 is a mimetic diagram of an electron micrograph showing the particle structure of activated carbon of Example 1. FIG. 4 is a graph showing the internal resistance and the capacitance of the polarizable electrode using the activated carbon particles shown in FIGS. 2 and 3, and FIG. 5 shows the carbonization temperature of the activated carbon of this embodiment and the activated carbon. FIG. 6 is a graph showing the relationship between the capacitances of the polarizable electrodes used. FIG. 6 shows the amount of the alkali metal hydroxide used for the alkali activation of the activated carbon of the present embodiment and the capacitance of the polarizable electrodes using the activated carbon. It is a graph which shows the relationship of capacity.

【0032】本実施態様の電気二重層キャパシタは、図
1示のように、活性炭からなる一対の分極性電極1,1
をセパレータ2を介して対向させて設けた構成となって
いる。分極性電極1には、テトラアルキルアンモニウム
塩等を有機溶媒に溶解させた溶液が電解液として含浸さ
れている。図1示の電気二重層キャパシタは、セパレー
タ2を介して対向する分極性電極1,1をアルミニウム
製容器3に収容されている。アルミニウム製容器3は、
パッキン4を介してアルミニウム製蓋体5により閉蓋さ
れるようになっている。容器3及び蓋体5はそれぞれ分
極性電極1,1に接触して各分極性電極1に対する集電
部材となるとともに、外部回路に対する接続端子を兼ね
ている。
As shown in FIG. 1, the electric double layer capacitor of this embodiment has a pair of polarizable electrodes 1 and 1 made of activated carbon.
Are provided facing each other with the separator 2 interposed therebetween. The polarizable electrode 1 is impregnated with a solution obtained by dissolving a tetraalkylammonium salt or the like in an organic solvent as an electrolytic solution. In the electric double layer capacitor shown in FIG. 1, the polarizable electrodes 1 and 1 facing each other via a separator 2 are accommodated in an aluminum container 3. Aluminum container 3
The lid is closed by an aluminum lid 5 via a packing 4. The container 3 and the lid 5 respectively contact the polarizable electrodes 1 and 1 to serve as current collecting members for the polarizable electrodes 1 and also serve as connection terminals for external circuits.

【0033】本実施形態では、前記分極性電極1は、粒
子の表面が黒鉛の積層構造層により被覆された活性炭粒
子を、ファーネスブラック等の導電性フィラー及びテト
ラフルオロエチレン等の結着剤と混合し、成形したもの
である。
In this embodiment, the polarizable electrode 1 is obtained by mixing activated carbon particles whose surfaces are coated with a graphite laminated structure layer with a conductive filler such as furnace black and a binder such as tetrafluoroethylene. And molded.

【0034】次に、前記活性炭粒子の製造方法について
説明する。
Next, a method for producing the activated carbon particles will be described.

【0035】前記活性炭粒子を製造するときには、ま
ず、原油の分留残滓である石油ピッチからメゾフェース
相を抽出し、次にこれを冷却、固化しメゾフェース樹脂
を得る。固化したメゾフェース樹脂は、その融点以上に
加熱、溶融して紡糸することにより繊維とされ、該繊維
を350〜400℃で加熱することによりその表面が部
分酸化されて不融化された繊維状のメゾフェースピッチ
が得られる。前記繊維状のメゾフェースピッチとして
は、例えばペトカ社から市販されているものがある。
本実施形態では、前記メゾフェースピッチを加熱するこ
とにより炭化し、得られた炭化物をアルカリ賦活して活
性炭繊維とし、さらに該活性炭繊維を粉砕して微粒子と
する。また、前記の様に固化したメゾフェース樹脂を粉
砕して微粒子にした後、不融化し、炭化及びアルカリ賦
活を行ってもよい。
When producing the activated carbon particles, first, a mesophase phase is extracted from petroleum pitch, which is a fractionated residue of crude oil, and then cooled and solidified to obtain a mesophase resin. The solidified mesophase resin is heated to above its melting point, melted and spun into fibers, and by heating the fibers at 350 to 400 ° C., the surface is partially oxidized to make the fibers infusible and infusible. A face pitch is obtained. Examples of the fibrous mesoface pitch include those commercially available from Petka Corporation.
In the present embodiment, the mesoface pitch is carbonized by heating, and the obtained carbide is activated with alkali to form activated carbon fibers, and the activated carbon fibers are pulverized into fine particles. Further, the mesophase resin solidified as described above may be pulverized into fine particles, then infusibilized, and carbonized and alkali activated.

【0036】前記メゾフェースピッチの炭化は、窒素等
の不活性気体気流下、500〜900℃で、好ましくは
500〜800℃で加熱することにより行う。前記メゾ
フェースピッチは、前記加熱により、水素、側鎖等が脱
離して、炭素骨格のみが残る炭化物となる。前記加熱温
度が500℃未満では炭化が困難で電気二重層キャパシ
タの分極性電極として用いたときには静電容量の劣化が
著しく、900℃を超えると形成される細孔の孔径が電
気二重層キャパシタの分極性電極として用いるには過大
になる。
The mesophase pitch is carbonized by heating at 500 to 900 ° C., preferably 500 to 800 ° C., in a stream of an inert gas such as nitrogen. The mesoface pitch becomes a carbide in which hydrogen, side chains, and the like are eliminated by the heating, leaving only a carbon skeleton. When the heating temperature is less than 500 ° C., carbonization is difficult, and when used as a polarizable electrode of an electric double layer capacitor, the capacitance is significantly deteriorated. It becomes too large to use as a polarizing electrode.

【0037】前記加熱温度が800℃を超えると得られ
た炭化物の炭素骨格が強固になり、該炭化物を賦活する
ためにより高温、より多量のアルカリ金属水酸化物を用
いるような厳しい条件が必要となる。前記のような厳し
い条件下に賦活を行うと、加熱に用いる炉が損傷し、炉
材が活性炭に混入する虞がある。従って、前記炭化は5
00〜800℃で加熱することにより行うことが好まし
い。
When the heating temperature exceeds 800 ° C., the carbon skeleton of the obtained carbide becomes strong, and severe conditions such as using a higher temperature and using a larger amount of an alkali metal hydroxide to activate the carbide are required. Become. If the activation is performed under such severe conditions, the furnace used for heating may be damaged, and the furnace material may be mixed into the activated carbon. Therefore, the carbonization is 5
It is preferable to carry out by heating at 00 to 800 ° C.

【0038】また、前記加熱は不活性気体気流下で行わ
ないと、炭素骨格が酸化されて炭化物が得られない。
If the heating is not carried out in an inert gas stream, the carbon skeleton is oxidized and no carbide can be obtained.

【0039】前記炭化物の賦活は、該炭化物1重量部に
対して1.2〜2.4重量部、好ましくは1.2〜2.
2重量部の水酸化カリウムと混合し、窒素等の不活性気
体気流下550〜850℃で加熱して行うことにより、
最終製品の活性炭を得るために適した孔径の細孔が形成
される。前記アルカリ賦活には、前記水酸化カリウム以
外のアルカリ金属水酸化物を用いることが可能で、例え
ば水酸化ナトリウム、水酸化リチウム等を挙げることが
できるが、安価であることから水酸化カリウムが好まし
い。前記水酸化カリウムは、前記炭化物1重量部に対し
て1.2重量部未満では細孔の孔径を十分に大きくする
ことができず、また2.4重量部を超えると細孔が大き
くなり過ぎて、体積当りの静電容量が低下する。
The activation of the carbide is 1.2 to 2.4 parts by weight, preferably 1.2 to 2.2 parts by weight, based on 1 part by weight of the carbide.
By mixing with 2 parts by weight of potassium hydroxide and heating at 550 to 850 ° C. under a stream of an inert gas such as nitrogen,
A pore having a pore size suitable for obtaining the activated carbon of the final product is formed. For the alkali activation, it is possible to use an alkali metal hydroxide other than the potassium hydroxide, for example, sodium hydroxide, lithium hydroxide, etc., but potassium hydroxide is preferred because it is inexpensive. . When the amount of the potassium hydroxide is less than 1.2 parts by weight with respect to 1 part by weight of the carbide, the pore diameter of the pores cannot be sufficiently increased, and when the amount exceeds 2.4 parts by weight, the pores become too large. Thus, the capacitance per volume decreases.

【0040】前記水酸化カリウムは、前記炭化物1重量
部に対して2.2重量部を超えると細孔が大きくなって
体積当りの静電容量が低下する傾向があり、また、活性
炭の収量が低減する傾向がある。従って、前記水酸化カ
リウムは、前記炭化物1重量部に対して1.2〜2.2
重量部とすることが好ましい。
When the amount of the potassium hydroxide exceeds 2.2 parts by weight with respect to 1 part by weight of the carbide, the pores tend to become large and the capacitance per unit volume tends to decrease. Tends to decrease. Therefore, the potassium hydroxide is 1.2 to 2.2 parts by weight based on 1 part by weight of the carbide.
It is preferable to use parts by weight.

【0041】また、前記賦活は、加熱温度が550℃未
満では得られた活性炭の細孔の孔径を十分に大きくする
ことができず、該活性炭を分極性電極に用いたときに細
孔が目詰まりし、長期間に亘って使用したときに、静電
容量が低下する。一方、前記加熱温度が850℃を超え
ると、得られた活性炭の細孔の孔径が過大になり、該活
性炭の容積当たりの静電容量が小さくなる。また、前記
加熱温度が850℃を超えると、加熱に用いる炉が損傷
し、炉材が活性炭に混入する虞がある。
Further, in the activation, if the heating temperature is lower than 550 ° C., the pore size of the pores of the obtained activated carbon cannot be made sufficiently large. When clogged, the capacitance decreases when used for a long period of time. On the other hand, when the heating temperature exceeds 850 ° C., the pore size of the obtained activated carbon becomes excessively large, and the capacitance per volume of the activated carbon becomes small. If the heating temperature exceeds 850 ° C., the furnace used for heating may be damaged, and the furnace material may be mixed into the activated carbon.

【0042】また、前記加熱は不活性気体気流下で行わ
ないと、前記炭化物が酸化され、所望の活性炭が得られ
ないことがある。
If the heating is not performed in an inert gas stream, the carbides may be oxidized and a desired activated carbon may not be obtained.

【0043】次に、本発明の実施例について説明する。Next, an embodiment of the present invention will be described.

【0044】[0044]

【実施例1】本実施例では、石油ピッチから得られたメ
ゾフェース樹脂を溶融、紡糸し、不融化して得られた繊
維状のメゾフェースピッチ(ペトカ社製)を、まず、窒
素気流下650℃の温度で1時間加熱して炭化物とし
た。次いで、前記炭化物1重量部に対して1.6重量部
の水酸化カリウムを混合し、窒素気流下800℃の温度
で5時間加熱してアルカリ賦活を行って活性炭繊維を得
た。そして、得られた活性炭繊維を粉砕して微粒子とし
た。
Example 1 In this example, a fibrous mesoface pitch (manufactured by Petka) obtained by melting, spinning, and infusing a mesoface resin obtained from petroleum pitch was first placed in a nitrogen stream 650. It was heated at a temperature of ° C. for 1 hour to form a carbide. Next, 1.6 parts by weight of potassium hydroxide was mixed with 1 part by weight of the carbide, and the mixture was heated at a temperature of 800 ° C. for 5 hours in a nitrogen stream to perform alkali activation to obtain activated carbon fibers. Then, the obtained activated carbon fiber was pulverized into fine particles.

【0045】本実施例の活性炭の断面の電子顕微鏡写真
の摸写図を図2に示す。図2において、すじ状に表わさ
れている部分11が黒鉛の積層構造層である。従って、
本実施例の活性炭12は、その表面が一様に黒鉛の積層
構造層11により被覆されていることが明らかである。
FIG. 2 shows a schematic view of an electron micrograph of a cross section of the activated carbon of this embodiment. In FIG. 2, a portion 11 represented in a stripe shape is a graphite laminated structure layer. Therefore,
It is apparent that the surface of the activated carbon 12 of this embodiment is uniformly covered with the graphite laminated structure layer 11.

【0046】次に、本実施例の活性炭を、導電性フィラ
ーとしてのファーネスブラック(電気化学社製、商品
名:デンカブラック)及び結着剤と混合し、圧粉成形し
て図1示の分極性電極1とした。
Next, the activated carbon of the present example was mixed with furnace black (trade name: Denka Black, manufactured by Denki Kagaku) as a conductive filler and a binder, and the mixture was compacted and compacted as shown in FIG. Polar electrode 1 was used.

【0047】本実施例では、活性炭:導電性フィラー:
結着剤の混合比を重量比で、86:9:5としたもの、
90:5:5としたもの、93:2:5としたもの、9
5:0:5としたものの4種の分極性電極1を製造し、
各一対の分極性電極1,1をセパレーター2としてのガ
ラスフィルター(ADVATEC社製、商品名:GA−
100)の両面に取着して容器3に収容した。そして、
テトラエチルアンモニウムテトラフロロボーレート
(〔(C2 5 4 N〕+ BF4 - )の1モル/リット
ルの炭酸プロピレン溶液を電解液として注入し、容器3
を蓋体5で閉蓋することにより4種の電気二重層キャパ
シタを形成した。
In this embodiment, activated carbon: conductive filler:
A mixing ratio of the binder of 86: 9: 5 by weight,
90: 5: 5, 93: 2: 5, 9
5: 0: 5, four kinds of polarizable electrodes 1 were manufactured,
A glass filter (manufactured by ADVATEC, trade name: GA-
100) and housed in the container 3. And
Tetraethylammonium tetrafluoroethane baud rate ([(C 2 H 5) 4 N] + BF 4 -) 1 mole / liter propylene carbonate solution was injected as an electrolytic solution, a container 3
Was closed with a lid 5 to form four types of electric double layer capacitors.

【0048】次に、前記4種の電気二重層キャパシタに
ついて、分極性電極1の内部抵抗及び単位容積当たりの
静電容量を測定した。結果を図4に示す。
Next, the internal resistance and the capacitance per unit volume of the polarizable electrode 1 were measured for the four types of electric double layer capacitors. FIG. 4 shows the results.

【0049】[0049]

【比較例1】本比較例では、ポリ塩化ビニル樹脂を、窒
素気流下650℃の温度で1時間加熱して炭化し、得ら
れた炭化物1重量部に対して1.6重量部の水酸化カリ
ウムを混合し、窒素気流下800℃の温度で5時間加熱
してアルカリ賦活を行って活性炭を得た。
Comparative Example 1 In this comparative example, a polyvinyl chloride resin was carbonized by heating at 650 ° C. for 1 hour in a nitrogen stream, and 1.6 parts by weight of hydroxylated resin was obtained with respect to 1 part by weight of the obtained carbide. Potassium was mixed and heated at a temperature of 800 ° C. for 5 hours in a nitrogen stream to activate the alkali to obtain activated carbon.

【0050】本比較例の活性炭の断面の電子顕微鏡写真
の摸写図を図3に示す。図3では、黒鉛の積層構造層は
図2と同様に、すじ状の部分11として表わされてい
る。従って、本比較例の活性炭13では、黒鉛の積層構
造層11は活性炭13の表面から内部に向けて形成され
ており、活性炭13の表面に露出している黒鉛が少ない
ことが明らかである。
FIG. 3 shows a schematic view of an electron micrograph of a cross section of the activated carbon of this comparative example. In FIG. 3, the layered structure layer of graphite is represented as a streak-like portion 11 as in FIG. Therefore, in the activated carbon 13 of this comparative example, the graphite laminated structure layer 11 is formed from the surface of the activated carbon 13 toward the inside, and it is clear that the graphite exposed on the surface of the activated carbon 13 is small.

【0051】次に、本比較例の活性炭を用いた以外は、
実施例1と同一にして、活性炭:導電性フィラー:結着
剤の混合比を重量比で、86:9:5としたもの、9
0:5:5としたもの、93:2:5としたもの、9
5:0:5としたものの4種の分極性電極1を製造し
た。次に、前記4種の分極性電極1を用い、実施例1と
同一にして、4種の電気二重層キャパシタを形成した。
Next, except that the activated carbon of this comparative example was used,
The same as in Example 1 except that the mixing ratio of activated carbon: conductive filler: binder was 86: 9: 5 by weight, 9
0: 5: 5, 93: 2: 5, 9
Four types of polarizable electrodes 1 having a ratio of 5: 0: 5 were manufactured. Next, four types of electric double layer capacitors were formed using the four types of polarizable electrodes 1 in the same manner as in Example 1.

【0052】次に、前記4種の電気二重層キャパシタに
ついて、分極性電極1の内部抵抗及び単位容積当たりの
静電容量を測定した。結果を図4に、前記実施例1の結
果と併せて示す。
Next, the internal resistance and the capacitance per unit volume of the polarizable electrode 1 were measured for the four types of electric double layer capacitors. FIG. 4 shows the results together with the results of Example 1.

【0053】図4から、実施例1の活性炭を用いる分極
性電極1によれば、導電性フィラーの量が等量であれ
ば、比較例1の活性炭を用いる分極性電極1よりも内部
抵抗が低くなり、この傾向は導電性フィラーの量が増え
るほど顕著になることが明らかである。また、実施例1
の活性炭を用いる分極性電極1によれば、導電性フィラ
ーの量が等量であれば、比較例1の活性炭を用いる分極
性電極1よりも静電容量が大きくなることが明らかであ
る。これは、明らかに、実施例1の活性炭粒子表面の導
電性が改良されている結果と考えることができる。
FIG. 4 shows that the polarizable electrode 1 using activated carbon of Example 1 has a lower internal resistance than the polarizable electrode 1 using activated carbon of Comparative Example 1 if the amount of the conductive filler is equal. It is clear that this tendency becomes more pronounced as the amount of the conductive filler increases. Example 1
According to the polarizable electrode 1 using activated carbon, it is apparent that the capacitance is larger than that of the polarizable electrode 1 using activated carbon of Comparative Example 1 when the amount of the conductive filler is equal. This can clearly be attributed to the improved conductivity of the activated carbon particle surfaces of Example 1.

【0054】[0054]

【実施例2】本実施例では、石油ピッチから得られたメ
ゾフェース樹脂を溶融、紡糸し、不融化して得られた繊
維状のメゾフェースピッチ(ペトカ社製)を、まず、窒
素気流下、それぞれ500℃、600℃、700℃、7
50℃、800℃、850℃及び900℃の温度で1時
間加熱して、7種の炭化物を得た。次いで、前記各炭化
物1重量部に対して1.6重量部の水酸化カリウムを混
合し、窒素気流下、それぞれ550℃、650℃、75
0℃及び800℃の範囲の温度で5時間加熱してアルカ
リ賦活を行って、28種の活性炭繊維を得た。そして、
得られた各活性炭繊維を粉砕して微粒子とした。
Example 2 In this example, a fibrous mesoface pitch (manufactured by Petka) obtained by melting, spinning, and infusing a mesoface resin obtained from petroleum pitch was first placed under a nitrogen stream. 500 ° C, 600 ° C, 700 ° C, 7 respectively
Heating at a temperature of 50 ° C., 800 ° C., 850 ° C., and 900 ° C. for 1 hour provided seven kinds of carbides. Next, 1.6 parts by weight of potassium hydroxide was mixed with 1 part by weight of each of the above-mentioned carbides, and the mixture was heated at 550 ° C., 650 ° C.
By heating at a temperature in the range of 0 ° C. and 800 ° C. for 5 hours to activate the alkali, 28 types of activated carbon fibers were obtained. And
Each of the obtained activated carbon fibers was pulverized into fine particles.

【0055】次に、本実施例の各活性炭を、導電性フィ
ラーとしてのファーネスブラック(電気化学社製、商品
名:デンカブラック)及び結着剤と、活性炭:導電性フ
ィラー:結着剤=85:10:5(重量比)となるよう
に混合し、圧粉成形して図1示の分極性電極1とした以
外は、実施例1と同一にして28種の電気二重層キャパ
シタを製造した。
Next, each activated carbon of the present example was prepared by using furnace black (manufactured by Denki Kagaku Co., trade name: Denka Black) as a conductive filler and a binder, and activated carbon: conductive filler: binder = 85. : 10: 5 (weight ratio), and 28 kinds of electric double layer capacitors were manufactured in the same manner as in Example 1 except that the polarizable electrode 1 shown in FIG. 1 was obtained by compacting. .

【0056】次に、前記各電気二重層キャパシタを用い
て充放電を行い、前記各分極性電極1の単位容積当たり
の静電容量を測定した。結果を図5に示す。
Next, charge / discharge was performed using each of the electric double layer capacitors, and the capacitance per unit volume of each of the polarizable electrodes 1 was measured. FIG. 5 shows the results.

【0057】図5から、500〜900℃の範囲の温度
で炭化させ、550〜800℃の範囲の温度でアルカリ
賦活した活性炭によれば、単位容積当たりの静電容量が
ファラッド級になることが判る。
As shown in FIG. 5, according to the activated carbon carbonized at a temperature in the range of 500 to 900 ° C. and activated with alkali at a temperature in the range of 550 to 800 ° C., the capacitance per unit volume may become farad class. I understand.

【0058】次に、前記各電気二重層キャパシタのう
ち、500℃、600℃、700℃、750℃、800
℃及び850℃の温度で炭化し、800℃でアルカリ賦
活した活性炭を用いる6種の電気二重層キャパシタにつ
いて、初期静電容量に対し、3.5Vで充放電を100
サイクル繰り返した後の静電容量維持率を測定した。結
果を下記表1に示す。
Next, among the electric double layer capacitors, 500 ° C., 600 ° C., 700 ° C., 750 ° C., 800
Charging / discharging at 3.5 V with respect to the initial capacitance of six types of electric double layer capacitors using activated carbon carbonized at temperatures of 800 ° C. and 850 ° C. and activated at 800 ° C.
The capacitance retention after the cycle was repeated was measured. The results are shown in Table 1 below.

【0059】[0059]

【表1】 [Table 1]

【0060】表1から、炭化温度が700℃から600
℃、500℃と低くなるにつれて、静電容量維持率が低
減することが明らかであり、炭化温度が500℃未満の
ときには、静電容量維持率がさらに低減して静電容量の
劣化が著しくなる。
As shown in Table 1, the carbonization temperature was from 700 ° C. to 600
It is evident that the capacitance retention rate decreases as the temperature decreases to 500 ° C. and 500 ° C. When the carbonization temperature is lower than 500 ° C., the capacitance retention rate further decreases, and the deterioration of the capacitance becomes remarkable. .

【0061】[0061]

【実施例3】本実施例では、石油ピッチから得られたメ
ゾフェース樹脂を溶融、紡糸し、不融化して得られた繊
維状のメゾフェースピッチ(ペトカ社製)を、まず、窒
素気流下、それぞれ500℃、600℃、700℃、7
50℃、800℃及び850℃の温度で1時間加熱し
て、6種の炭化物を得た。次いで、前記各炭化物1重量
部に対して、500℃で炭化した炭化物にはそれぞれ、
1.2重量部、1.4重量部、1.6重量部、1.8重
量部及び2.0重量部の水酸化カリウムを混合し、他の
炭化物にはそれぞれ1.2重量部、1.4重量部、1.
6重量部、1.8重量部及び2.0重量部、2.2重量
部、2.4重量部の水酸化カリウムを混合し、窒素気流
下800℃の温度で5時間加熱してアルカリ賦活を行っ
て、40種の活性炭繊維を得た。そして、得られた各活
性炭繊維を粉砕して微粒子とした。
Example 3 In this example, a fibrous mesoface pitch (manufactured by Petka) obtained by melting, spinning, and infusing a mesoface resin obtained from petroleum pitch was first placed under a nitrogen stream. 500 ° C, 600 ° C, 700 ° C, 7 respectively
Heating at 50 ° C., 800 ° C. and 850 ° C. for 1 hour resulted in six carbides. Next, for 1 part by weight of each of the above-mentioned carbides,
1.2 parts by weight, 1.4 parts by weight, 1.6 parts by weight, 1.8 parts by weight and 2.0 parts by weight of potassium hydroxide were mixed, and 1.2 parts by weight, 1 part by weight and .4 parts by weight;
6 parts by weight, 1.8 parts by weight, 2.0 parts by weight, 2.2 parts by weight, and 2.4 parts by weight of potassium hydroxide are mixed and heated at a temperature of 800 ° C. for 5 hours in a nitrogen stream to activate the alkali. To obtain 40 types of activated carbon fibers. Each of the obtained activated carbon fibers was pulverized into fine particles.

【0062】次に、本実施例の各活性炭を、導電性フィ
ラーとしてのファーネスブラック(電気化学社製、商品
名:デンカブラック)及び結着剤と、活性炭:導電性フ
ィラー:結着剤=85:10:5(重量比)となるよう
に混合し、圧粉成形して図1示の分極性電極1とした以
外は、実施例1と同一にして40種の電気二重層キャパ
シタを製造した。
Next, each of the activated carbons of the present embodiment was prepared by using furnace black (manufactured by Denki Kagaku Co., trade name: Denka Black) as a conductive filler and a binder, and activated carbon: conductive filler: binder = 85. : 10: 5 (weight ratio) and 40 kinds of electric double layer capacitors were manufactured in the same manner as in Example 1 except that the mixture was pressed and compacted to obtain the polarizable electrode 1 shown in FIG. .

【0063】次に、前記各電気二重層キャパシタを用い
て充放電を行い、前記分極性電極1の単位容積当たりの
静電容量を測定した。結果を図6に示す。
Next, charge / discharge was performed using each of the electric double layer capacitors, and the capacitance per unit volume of the polarizable electrode 1 was measured. FIG. 6 shows the results.

【0064】図6から、500〜850℃の範囲の温度
で炭化させ、得られた炭化物1重量部に対して1.2〜
2.4重量部の水酸化カリウムを混合してアルカリ賦活
した活性炭によれば、単位容積当たりの静電容量がファ
ラッド級になることが判る。
FIG. 6 shows that carbonization was performed at a temperature in the range of 500 to 850 ° C., and 1.2 to 1 part by weight of the obtained carbide.
According to activated carbon mixed with 2.4 parts by weight of potassium hydroxide and alkali-activated, the capacitance per unit volume is found to be farad class.

【0065】次に、前記各電気二重層キャパシタのう
ち、600℃の温度で炭化した炭化物に対し、得られた
炭化物1重量部当り1.2重量部、1.4重量部、1.
6重量部、2.0重量部、2.2重量部、2.4重量部
の水酸化カリウムを混合し、窒素気流下800℃の温度
で5時間加熱してアルカリ賦活を行ったときの活性炭の
収率を表2に示す。
Next, of the electric double layer capacitors, 1.2 parts by weight, 1.4 parts by weight, 1 part by weight, and 1 part by weight of the obtained carbonized carbonized carbide at a temperature of 600 ° C.
Activated carbon obtained by mixing 6 parts by weight, 2.0 parts by weight, 2.2 parts by weight, and 2.4 parts by weight of potassium hydroxide and heating at 800 ° C. for 5 hours in a nitrogen stream to carry out alkali activation. Are shown in Table 2.

【0066】[0066]

【表2】 [Table 2]

【0067】表2から、炭化物1重量部当りに混合する
水酸化カリウムの量が多くなるほど活性炭の収率が低下
し、水酸化カリウムが炭化物1重量部当り2.4重量部
を超えると、さらに活性炭の収率の低下が著しくなる。
From Table 2, it can be seen that as the amount of potassium hydroxide mixed per 1 part by weight of carbide increases, the yield of activated carbon decreases, and when potassium hydroxide exceeds 2.4 parts by weight per 1 part by weight of carbide, The yield of activated carbon significantly decreases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気二重層キャパシタの一実施態様を
示す説明的断面図。
FIG. 1 is an explanatory sectional view showing one embodiment of an electric double layer capacitor of the present invention.

【図2】本実施形態の活性炭の粒子構造を示す電子顕微
鏡写真の摸写図。
FIG. 2 is a simulated view of an electron micrograph showing the particle structure of the activated carbon of the present embodiment.

【図3】従来の活性炭の粒子構造を示す電子顕微鏡写真
の摸写図。
FIG. 3 is a schematic view of an electron micrograph showing the particle structure of a conventional activated carbon.

【図4】図2及び図3に示す活性炭粒子を用いた分極性
電極の内部抵抗及び静電容量を示すグラフ。
FIG. 4 is a graph showing the internal resistance and capacitance of a polarizable electrode using the activated carbon particles shown in FIGS. 2 and 3.

【図5】本実施形態の活性炭の炭化温度と該活性炭を用
いた分極性電極の静電容量の関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the carbonization temperature of the activated carbon of the present embodiment and the capacitance of a polarizable electrode using the activated carbon.

【図6】本実施形態の活性炭のアルカリ賦活に用いるア
ルカリ金属水酸化物の量と該活性炭を用いた分極性電極
の静電容量の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the amount of an alkali metal hydroxide used for alkali activation of activated carbon of the present embodiment and the capacitance of a polarizable electrode using the activated carbon.

【符号の説明】[Explanation of symbols]

1…分極性電極、 2…セパレータ、 3,5…集電部
材、 11…黒鉛の積層構造、 12…活性炭。
DESCRIPTION OF SYMBOLS 1 ... Polarizable electrode, 2 ... Separator, 3,5 ... Current collection member, 11 ... Laminated structure of graphite, 12 ... Activated carbon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野口 実 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Minoru Noguchi 1-4-1 Chuo, Wako-shi, Saitama Pref.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】活性炭または活性炭繊維を粉砕して得られ
た粒子であって、該粒子の少なくとも一部の表面が該表
面に沿って形成された黒鉛の積層構造層により被覆され
ていることを特徴とする電気二重層キャパシタ用活性
炭。
1. A particle obtained by pulverizing activated carbon or activated carbon fiber, wherein at least a part of the surface of the particle is covered with a laminated structure layer of graphite formed along the surface. Activated carbon for electric double layer capacitors.
【請求項2】電気二重層キャパシタに用いる分極性電極
であって、粒子の少なくとも一部の表面が該表面に沿っ
て形成された黒鉛の積層構造層により被覆された活性炭
と、導電性フィラーと、結着剤とからなることを特徴と
する分極性電極。
2. A polarizable electrode used for an electric double layer capacitor, wherein at least a part of the surface of the particle is activated carbon covered with a graphite laminated structure layer formed along the surface; And a binder.
【請求項3】セパレータを介して対向した一対の分極性
電極と、各分極性電極に設けられた集電部材と、電解液
とからなる電気二重層キャパシタにおいて、該分極性電
極は粒子の少なくとも一部の表面が該表面に沿って形成
された黒鉛の積層構造層により被覆された活性炭と、導
電性フィラーと、結着剤とからなることを特徴とする電
気二重層キャパシタ。
3. An electric double layer capacitor comprising a pair of polarizable electrodes facing each other with a separator interposed therebetween, a current collecting member provided on each polarizable electrode, and an electrolytic solution. An electric double layer capacitor comprising: activated carbon, a part of which is covered with a graphite laminated structure layer formed along the surface; a conductive filler; and a binder.
【請求項4】石油ピッチから抽出されるメゾフェース相
を冷却、固化したメゾフェース樹脂の表面を部分酸化し
て不融化することによりメゾフェースピッチを得る工程
と、該メゾフェースピッチを不活性気体気流下500〜
900℃で加熱して炭化させる工程と、前記工程で得ら
れた炭化物を該炭化物1重量部に対して1.2〜2.4
重量部のアルカリ金属水酸化物と混合し、不活性気体気
流下550〜850℃で加熱してアルカリ賦活する工程
とからなることを特徴とする電気二重層キャパシタ用活
性炭の製造方法。
4. A step of cooling the mesophase extracted from petroleum pitch and partially oxidizing and solidifying the surface of the solidified mesophase resin to obtain a mesoface pitch, and subjecting the mesoface pitch to an inert gas stream. 500 ~
A step of heating at 900 ° C. to carbonize, and the carbide obtained in the step is 1.2 to 2.4 with respect to 1 part by weight of the carbide.
Mixing with a part by weight of an alkali metal hydroxide and heating at 550 to 850 ° C. in an inert gas stream to activate the alkali.
【請求項5】前記メゾフェース樹脂を溶融して紡糸した
のちその表面を部分酸化し不融化してメゾフェースピッ
チ繊維とし、該メゾフェースピッチ繊維に前記炭化させ
る工程と前記アルカリ賦活する工程とを施したのち、生
成物を粉砕して粒子状活性炭を得ることを特徴とする請
求項4記載の電気二重層キャパシタ用活性炭の製造方
法。
5. A step of melting and spinning the mesophase resin and partially oxidizing and infusing the surface thereof to form mesoface pitch fibers, and subjecting the mesoface pitch fibers to the carbonizing step and the alkali activating step. 5. The method for producing activated carbon for an electric double layer capacitor according to claim 4, wherein the product is pulverized to obtain particulate activated carbon.
【請求項6】前記メゾフェース樹脂を微粒状に粉砕した
のちその表面を部分酸化し不融化してメゾフェースピッ
チを得ることを特徴とする請求項4または請求項5記載
の電気二重層キャパシタ用活性炭の製造方法。
6. The activated carbon for an electric double layer capacitor according to claim 4, wherein the mesophase resin is pulverized into fine particles, and then the surface is partially oxidized and made infusible to obtain a mesophase pitch. Manufacturing method.
【請求項7】前記炭化は500〜800℃で加熱するこ
とを特徴とする請求項4乃至請求項6のいずれかの項記
載の電気二重層キャパシタ用活性炭の製造方法。
7. The method for producing activated carbon for an electric double layer capacitor according to claim 4, wherein the carbonization is heated at 500 to 800 ° C.
【請求項8】前記アルカリ金属水酸化物は前記炭化物1
重量部に対して1.2〜2.2重量部を混合することを
特徴とする請求項4乃至請求項7のいずれかの項記載の
電気二重層キャパシタ用活性炭の製造方法。
8. The method according to claim 1, wherein the alkali metal hydroxide is the carbide 1
The method for producing activated carbon for electric double layer capacitors according to any one of claims 4 to 7, wherein 1.2 to 2.2 parts by weight is mixed with respect to part by weight.
JP10157027A 1997-09-01 1998-06-05 Activated carbon for electric double layer capacitor and its manufacture Pending JPH11135380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10157027A JPH11135380A (en) 1997-09-01 1998-06-05 Activated carbon for electric double layer capacitor and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-251357 1997-09-01
JP25135797 1997-09-01
JP10157027A JPH11135380A (en) 1997-09-01 1998-06-05 Activated carbon for electric double layer capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH11135380A true JPH11135380A (en) 1999-05-21

Family

ID=26484613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10157027A Pending JPH11135380A (en) 1997-09-01 1998-06-05 Activated carbon for electric double layer capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH11135380A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013390A1 (en) * 1999-08-10 2001-02-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
JP2001302226A (en) * 2000-04-19 2001-10-31 Kawasaki Steel Corp Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material
JP2002308614A (en) * 2001-04-11 2002-10-23 Adchemco Corp Powdery activated carbon, production method therefor and electric double layer capacitor using the activated carbon
US6592838B1 (en) 1999-10-21 2003-07-15 Matsushita Electric Industrial Co., Ltd. Activated carbon for use in electric double layer capacitor and method of producing the same
WO2006006218A1 (en) * 2004-07-09 2006-01-19 Osaka Gas Co., Ltd. Active carbon for electric double layer capacitor, active carbon electrode for electric double layer capacitor and electric double layer capacitor utilizing the same
JP2006131464A (en) * 2004-11-08 2006-05-25 Jfe Chemical Corp Porous carbon material, manufacturing method thereof and electric double layer capacitor
DE10039174B4 (en) * 1999-08-10 2006-06-29 Honda Giken Kogyo K.K. Electrode for an electric double layer capacitor and slurry for forming the same
EP1571127A3 (en) * 2004-03-01 2006-09-27 Mitsubishi Gas Chemical Company, Inc. Production process for carbonized product and carbonized product obtained by the same process
KR100671154B1 (en) 2005-05-20 2007-01-17 재단법인 포항산업과학연구원 Preparation method of high capacitance carbon electrode of supercapacitor from mesophase pitch
CN108574078A (en) * 2017-03-13 2018-09-25 浙江高铭节能科技有限公司 A kind of valve-regulated iron-nickel storage battery and manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214646B1 (en) 1999-08-10 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
WO2001013390A1 (en) * 1999-08-10 2001-02-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
DE10039174B4 (en) * 1999-08-10 2006-06-29 Honda Giken Kogyo K.K. Electrode for an electric double layer capacitor and slurry for forming the same
US6592838B1 (en) 1999-10-21 2003-07-15 Matsushita Electric Industrial Co., Ltd. Activated carbon for use in electric double layer capacitor and method of producing the same
JP2001302226A (en) * 2000-04-19 2001-10-31 Kawasaki Steel Corp Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material
JP2002308614A (en) * 2001-04-11 2002-10-23 Adchemco Corp Powdery activated carbon, production method therefor and electric double layer capacitor using the activated carbon
EP1571127A3 (en) * 2004-03-01 2006-09-27 Mitsubishi Gas Chemical Company, Inc. Production process for carbonized product and carbonized product obtained by the same process
KR101151987B1 (en) * 2004-03-01 2012-06-01 미츠비시 가스 가가쿠 가부시키가이샤 Production process for carbonized product and carbonized product obtained by the same process
US7625543B2 (en) 2004-03-01 2009-12-01 Mitsubishi Gas Chemical Company, Inc. Production process for carbonized product and carbonized product obtained by the same process
WO2006006218A1 (en) * 2004-07-09 2006-01-19 Osaka Gas Co., Ltd. Active carbon for electric double layer capacitor, active carbon electrode for electric double layer capacitor and electric double layer capacitor utilizing the same
JP2006131464A (en) * 2004-11-08 2006-05-25 Jfe Chemical Corp Porous carbon material, manufacturing method thereof and electric double layer capacitor
KR100671154B1 (en) 2005-05-20 2007-01-17 재단법인 포항산업과학연구원 Preparation method of high capacitance carbon electrode of supercapacitor from mesophase pitch
CN108574078A (en) * 2017-03-13 2018-09-25 浙江高铭节能科技有限公司 A kind of valve-regulated iron-nickel storage battery and manufacturing method
CN108574078B (en) * 2017-03-13 2023-09-01 浙江高铭节能科技有限公司 Valve-controlled iron-nickel storage battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
WO1998005083A1 (en) Nonaqueous electrolyte secondary cell
EP1783792A1 (en) Active carbon for electric double layer capacitor, active carbon electrode for electric double layer capacitor and electric double layer capacitor utilizing the same
JPH11135380A (en) Activated carbon for electric double layer capacitor and its manufacture
KR100479188B1 (en) Electric double layer capacitor with improved activated carbon electrodes
US6291069B1 (en) Activated carbon for electric double layer capacitor and method of manufacturing same
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP3634408B2 (en) Carbon material for electrode of lithium battery and method for producing the same
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP3722965B2 (en) Carbon material for electric double layer capacitors
JPH08162375A (en) Electrical double-layer capacitor and manufacture of polarizable electrode used therefor
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JP4179581B2 (en) Activated carbon, its production method and its use
JP2001006670A (en) Bulk mesophase and manufacture thereof
JP3965086B2 (en) Method for producing activated carbon for electric double layer capacitor and electric double layer capacitor using the same
JP2005093777A (en) Electric double layer capacitor
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2005093778A (en) Electric double layer capacitor
JP2005093779A (en) Electric double layer capacitor
JP3406486B2 (en) Method for producing activated carbon for organic solvent-based electric double layer capacitor electrode
JPH10284061A (en) Manufacture of carbon material for negative electrode of lithium ion secondary battery
JP3593140B2 (en) Method for producing carbon material for secondary battery negative electrode
JPH0521274A (en) Polarizing electrode and manufacturing method thereof
JPH10112319A (en) Carbon material for lithium secondary battery, and its manufacture
JP2005209703A (en) Electrochemical capacitor and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213