JPH1113479A - Gas turbine power generation method - Google Patents

Gas turbine power generation method

Info

Publication number
JPH1113479A
JPH1113479A JP16861697A JP16861697A JPH1113479A JP H1113479 A JPH1113479 A JP H1113479A JP 16861697 A JP16861697 A JP 16861697A JP 16861697 A JP16861697 A JP 16861697A JP H1113479 A JPH1113479 A JP H1113479A
Authority
JP
Japan
Prior art keywords
liquid oxygen
gas turbine
power generation
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16861697A
Other languages
Japanese (ja)
Inventor
Mitsunori Mushiaki
光徳 虫明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16861697A priority Critical patent/JPH1113479A/en
Publication of JPH1113479A publication Critical patent/JPH1113479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the output of a gas turbine so as to reduce power generation costs by spraying liquid oxygen to the suction side of the combustion air compressor of the gas turbine and mixing it with compressed air. SOLUTION: Liquid oxygen in a liquid oxygen storage tank 1 for storing liquid oxygen by utilizing surplus power or the like at night is supplied to an oxygen mixing device 4 to be mixed with air, and obtained mixed gas is sprayed from an injection nozzle to the suction side of a combustion air compressor 6. High-pressure combustion compressed air thereby obtained is supplied to a combustor 8 together with fuel gas boosted from a fuel gas compressor 7. A gas turbine 9 is driven by high-pressure gas generated in this combustor 8 and, by the power thereof, a generator 5 is driven together with the combustion air compressor 6 and the fuel gas compressor 7. A waste heat recovery boiler 10 is arranged in the rear stage of the gas turbine 9, a steam turbine 11 is driven by generated steam and motive power is transmitted to the generator 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体酸素を用いる
ガスタービン発電方法に関し、とくに圧縮風量が低下す
る夏期あるいは電力不足時に効率のよい発電を行う技術
の確立を目指すものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine power generation method using liquid oxygen, and more particularly to the establishment of a technique for efficiently generating power in summer when the amount of compressed air decreases or when power is insufficient.

【0002】[0002]

【従来の技術】現在、夜間の余剰電力を利用して、空気
を圧縮してそれを圧縮空気貯蔵タンクに貯蔵しておき、
例えば昼間の、電力を多量に必要とするときに、外圧縮
空気貯蔵タンクに貯蔵されていた圧縮空気を膨張させて
発電する圧縮空気貯蔵発電装置が、自家発電設備などと
して実用に供されている (特開平4−347335号公
報参照) 。その他、ガスタービン燃焼器の燃焼用圧縮空
気に酸素ガスを富化する技術や、ガスタービンの吸気室
に設けた噴霧ノズルを通じて液体空気を直接噴霧して吸
気冷却して圧縮比を高めることにより、電力不足時の発
電量の増大を図る技術などが実用化されている。
2. Description of the Related Art At present, air is compressed using excess power at night and stored in a compressed air storage tank.
For example, in the daytime, when a large amount of power is required, a compressed air storage power generation device that expands the compressed air stored in the external compressed air storage tank to generate power has been put to practical use as a private power generation facility or the like. (See JP-A-4-347335). In addition, the technology to enrich oxygen gas in the compressed air for combustion of the gas turbine combustor, and by directly spraying liquid air through the spray nozzle provided in the intake chamber of the gas turbine to cool the intake air and increase the compression ratio, Techniques for increasing the amount of power generation at the time of power shortage have been put to practical use.

【0003】そのうち、図3に示す方法は、夜間の低廉
な余剰電力を利用し、空気圧縮機31をモータ/発電機32
により回転駆動し、圧縮空気を製造してアフタークーラ
33で常温近くに冷却したのち、空気貯蔵器34に蓄え、次
いで、昼間の電力需要時 (ピークあるいはミドル時)
に、この圧縮空気を空気予熱器35により排熱予熱を行っ
た後、燃焼器36に導いて定圧燃焼し、発電用ガスタービ
ン37によりモータ/発電機32を回転して電力を得る方法
である。
The method shown in FIG. 3 utilizes an inexpensive surplus electric power at night and converts the air compressor 31 into a motor / generator 32.
After-cooler driven by rotation to produce compressed air
After cooling to near room temperature in 33, store it in the air storage 34, then during daytime power demand (peak or middle)
In this method, after the compressed air is preheated by an air preheater 35, it is guided to a combustor 36 to perform constant-pressure combustion, and a motor / generator 32 is rotated by a power generation gas turbine 37 to obtain electric power. .

【0004】[0004]

【発明が解決しようとする課題】燃焼用圧縮空気に対し
て酸素ガスを富化する形式の従来発電設備によれば、ガ
スタービンでの燃焼温度を上げることにより熱効率が向
上するから、空気圧縮機の圧縮風量が低下する夏期など
のように、発電量を絞らざるを得なくなった場合に、発
電出力を定格まで回復させることができ、また、低カロ
リーの燃料ガスを使用する場合に好適である。しかし、
現実的には、約1000kcal/Nm3以上のガスでは、現在のガ
スタービン翼冷却技術を越える高温となるので、用途が
限定されるという問題があった。
According to the conventional power generation system of the type in which oxygen gas is enriched in the compressed air for combustion, the heat efficiency is improved by increasing the combustion temperature in the gas turbine. When the amount of power generation has to be reduced, such as in summer when the amount of compressed air decreases, the power generation output can be restored to the rated value, and it is suitable for using low-calorie fuel gas. . But,
In reality, a gas of about 1000 kcal / Nm 3 or more has a problem that the application is limited because the temperature becomes higher than the current gas turbine blade cooling technology.

【0005】一方、液体空気による吸気冷却を行う上記
従来技術の場合は、空気圧縮機の圧縮風量が低下する夏
期にその圧縮機の入口温度を下げることができるから、
発電量を増加させることができる。しかし、低カロリー
ガスの燃焼温度を上げて効率向上を図ることができない
という問題があった。
[0005] On the other hand, in the case of the above-described conventional technique in which intake air is cooled by liquid air, the inlet temperature of the air compressor can be reduced in summer when the amount of compressed air of the air compressor is reduced.
The amount of power generation can be increased. However, there is a problem that the efficiency cannot be improved by increasing the combustion temperature of the low-calorie gas.

【0006】次に、図3に示す従来の圧縮空気貯蔵発電
プラントの場合、空気貯蔵器34の容積が大きいため、設
備コストが嵩み、実用化のネックとなっていた。また、
設置面積が大きいため、設置場所が地価の安い遠隔地等
に限定される。事実、現在実用化されているプラント
は、天然の岩塩層低空洞を利用した地域のみである。
Next, in the case of the conventional compressed air storage power generation plant shown in FIG. 3, the capacity of the air storage 34 is large, so that the equipment cost is increased and this is a bottleneck for practical use. Also,
Since the installation area is large, the installation place is limited to remote places where land prices are low. In fact, the only plants currently in practical use are those that utilize natural low-salt cavities.

【0007】本発明の主たる目的は、ガスタービンの出
力を増大させて発電コストの低下を図ることにある。本
発明の他の目的は、低カロリーガスを高温燃焼して効率
向上を図ることにある。本発明の他の目的は、夏期でも
定格フル運転の可能な発電方法を提案することにある。
本発明のさらに他の目的は、空気貯蔵器の小型化を実現
して、設備コストを下げることにある。
A main object of the present invention is to increase the output of a gas turbine to reduce the power generation cost. Another object of the present invention is to improve efficiency by burning low-calorie gas at a high temperature. Another object of the present invention is to propose a power generation method capable of full rated operation even in summer.
It is still another object of the present invention to reduce the size of an air storage device and reduce equipment costs.

【0008】[0008]

【課題を解決するための手段】上掲の目的の実現に向け
て鋭意研究した結果、発明者らは下記要旨構成にかかる
本発明を開発するに到った。即ち、本発明は、液体酸素
をガスタービンの燃焼用空気圧縮機の吸入側に噴霧して
圧縮空気と混合することを特徴とするガスタービン発電
方法である。とくに、本発明は、夜間の余剰電力などを
利用して酸素を液化貯蔵すると共に、電力不足時または
夏期の圧縮風量低下時に、その貯蔵した液体酸素を取り
出し、これをガスタービンの燃焼用空気圧縮機の吸入側
に噴霧し、圧縮空気と混合することを特徴とするガスタ
ービン発電方法である。なお、本発明においては、上記
液体酸素については、深冷空気分離装置から得られた液
体酸素を貯蔵することなく、直接空気圧縮機の吸入側に
噴霧気化させて混合するようにして用いることが好まし
い。
Means for Solving the Problems As a result of earnest research for realizing the above-mentioned object, the inventors have developed the present invention having the following gist configuration. That is, the present invention is a gas turbine power generation method characterized in that liquid oxygen is sprayed on the suction side of a combustion air compressor of a gas turbine and mixed with compressed air. In particular, the present invention liquefies and stores oxygen using surplus power at night, etc., and extracts the stored liquid oxygen when power is insufficient or when the amount of compressed air in summer is low, and compresses the stored oxygen for air compression for gas turbine combustion. A gas turbine power generation method characterized in that the gas is sprayed on the suction side of the machine and mixed with compressed air. In the present invention, the liquid oxygen may be used such that the liquid oxygen obtained from the cryogenic air separation device is not directly stored but is directly vaporized and mixed into the suction side of the air compressor. preferable.

【0009】[0009]

【発明の実施の形態】図1は、本発明にかかる発電方法
に用いる設備の第1の実施例であり、図示の1〜4は液
体酸素貯蔵プラントBを示している。この図において符
号の1は液体酸素貯蔵タンク、2は液体酸素用ポンプ、
3は大気吸入フィルター、4は液体酸素と大気とを混合
し吸気冷却するための酸素ミキシング装置である。一
方、図示の5〜11は発電プラントAを示している。図
示の符号の5は発電機であり、この発電機5の同軸上に
燃焼用空気圧縮器6と燃料ガス圧縮器7とが順次に連結
されていると共に、その軸延長上には燃焼器8を付帯す
るガスタービン9が駆動連結されている。そして、その
ガスタービン9の後段には廃熱回収ボイラ10と蒸気タ
ービン11とが連結されている。
FIG. 1 shows a first embodiment of equipment used for a power generation method according to the present invention. In this figure, 1 is a liquid oxygen storage tank, 2 is a pump for liquid oxygen,
Reference numeral 3 denotes an air intake filter, and reference numeral 4 denotes an oxygen mixing device for mixing liquid oxygen and the atmosphere and cooling the intake air. On the other hand, reference numerals 5 to 11 in FIG. Numeral 5 denotes a generator. A combustion air compressor 6 and a fuel gas compressor 7 are sequentially connected on the same axis of the generator 5, and a combustor 8 Is drivingly connected. A waste heat recovery boiler 10 and a steam turbine 11 are connected to a stage subsequent to the gas turbine 9.

【0010】次に、上記のように構成されている本発明
方法の実施に用いる上記発電設備の動作について説明す
る。この設備において、液体酸素貯蔵タンク1に貯蔵さ
れている液体酸素は、酸素ミキシング装置4を介して空
気と混合され、得られる低温・定圧の混合ガスは燃焼用
空気圧縮機6の吸い込み側に噴霧ノズルにて噴霧されて
圧縮空気と混合し、高圧に昇圧, 昇温された燃焼用圧縮
空気を生成する。
Next, the operation of the above-described power generation facility used for carrying out the method of the present invention configured as described above will be described. In this facility, the liquid oxygen stored in the liquid oxygen storage tank 1 is mixed with air via an oxygen mixing device 4 and the resulting low temperature / constant pressure mixed gas is sprayed on the suction side of a combustion air compressor 6. The fuel is sprayed by the nozzle and mixed with the compressed air to generate combustion compressed air that has been pressurized and heated to a high pressure.

【0011】以上説明したように、本発明発電方法によ
れば、圧縮空気に対し低温で中圧の液体酸素を富化する
ことになるので、同じ圧力比を得るのに動力が少なくて
すみ、同じ使用動力では圧力比を著しく増大させること
ができる。一方で、空気圧縮機6の上流 (吸入側) で吸
気冷却された酸素富化圧縮空気を混合するから、燃焼器
8は高圧で昇温された圧縮空気が供給されることになる
ので、燃焼器8での燃焼効率を向上させることができる
と共に、高温・高圧の燃焼ガスを生成させることができ
る。従って、本発明発電方法は、圧縮風量が低下する夏
期の発電量を確保するのに極めて有効である。
As described above, according to the power generation method of the present invention, low-pressure and medium-pressure liquid oxygen are enriched with respect to the compressed air, so that less power is required to obtain the same pressure ratio. At the same operating power, the pressure ratio can be increased significantly. On the other hand, since the oxygen-enriched compressed air intake-cooled at the upstream side (inlet side) of the air compressor 6 is mixed, the combustor 8 is supplied with the compressed air whose temperature has been raised at a high pressure. The combustion efficiency in the vessel 8 can be improved, and high-temperature and high-pressure combustion gas can be generated. Therefore, the power generation method of the present invention is extremely effective for securing a power generation amount in summer when the amount of compressed air decreases.

【0012】なお、電力不足時は、ガスタービン9の出
力のほかに、該ガスタービン9から出る廃熱ガス顕熱を
利用して同軸上に連結してある蒸気タービン11を駆動
し、余分の出力を得ることができるようにしてあるの
で、タービン出力をより一層増大させて発電効率の一層
の向上を図ることができる。
When the power is insufficient, the steam turbine 11 connected coaxially is driven by utilizing the sensible heat of the waste heat gas emitted from the gas turbine 9 in addition to the output of the gas turbine 9, and an extra Since the output can be obtained, the turbine output can be further increased and the power generation efficiency can be further improved.

【0013】次に、図2は本発明発電方法の第2の実施
例を示すものであり、発電プラントAに対し、液体酸素
貯蔵タンクBに代え、液体酸素発生プラントCを接続し
た設備を用いる。この液体酸素発生プラントCは、液体
酸素を発生させてこれを貯蔵することなく直接使用に供
するための深冷空気分離装置Dを主体とするものであ
る。このプラントCの構成は、原料空気圧縮機12にて
圧縮した空気を水洗冷却塔13に導いて原料空気前処理
吸着器14にて前処理し、その前処理空気を熱交換器1
5にて冷却し、さらに下部精留塔16a、上部精留塔1
6bにて精留して液体酸素を発生させると同時に、その
一部を前記ポンプ2を介して酸素ミキシング装置4に供
給するか、前記熱交換器15に供給して熱交換させたの
ち、液体酸素貯蔵タンク1に貯蔵するようになってい
る。
Next, FIG. 2 shows a second embodiment of the power generation method according to the present invention. In the power generation plant A, equipment in which a liquid oxygen generation plant C is connected instead of the liquid oxygen storage tank B is used. . The liquid oxygen generation plant C mainly includes a cryogenic air separation device D for generating liquid oxygen and directly using it without storing it. The configuration of the plant C is such that the air compressed by the raw material air compressor 12 is guided to the washing cooling tower 13 and pretreated by the raw material air pretreatment adsorber 14, and the pretreated air is converted into the heat exchanger 1.
5, and the lower rectification column 16a and the upper rectification column 1
After rectifying the liquid oxygen at 6b to generate liquid oxygen, a part of the liquid oxygen is supplied to the oxygen mixing device 4 via the pump 2 or supplied to the heat exchanger 15 for heat exchange. The oxygen is stored in the oxygen storage tank 1.

【0014】要するに、かかる深冷空気分離装置Dを用
いて液体酸素を供給するようにすれば、基本的には液化
装置や液体酸素貯蔵タンクやタンクローリーなどの輸送
設備が不要となり、大幅な設備費の削減が可能である。
In short, if liquid oxygen is supplied by using the cryogenic air separation device D, basically, transportation equipment such as a liquefaction device, a liquid oxygen storage tank and a tank lorry is not required, and large equipment costs are required. Can be reduced.

【0015】[0015]

【実施例】図1に示すような本発明方法の実施に適合す
る発電設備を使用して、夏期の出力低下時に、液体酸素
を空気圧縮器6の吸入側に8kg/cm2で供給し、微細噴霧
ノズルにより霧化、気化させて燃焼用圧縮空気と混合し
た。この試験装置の定格運転設計値と、従来の夏期運転
データ (液体空気単独及び酸素ガス単独) および液体酸
素を燃焼用圧縮空気に混合した場合のデータを表1に示
す。表1に示すように、圧縮風量が低下する夏期でも、
液体酸素を体積割合で6%混合することにより、定格フ
ル出力の発生が可能となり、さらに熱効率は2%向上す
ることがわかった。その結果、ガスタービンの出力は5
%向上することがわかった。
EXAMPLES Using the power generation equipment compatible with the practice of the present invention method as shown in FIG. 1, when the output reduction of the summer, the liquid oxygen is supplied at 8 kg / cm 2 on the suction side of the air compressor 6, It was atomized and vaporized by a fine spray nozzle and mixed with compressed air for combustion. Table 1 shows the rated operation design values of this test apparatus, conventional summer operation data (liquid air alone and oxygen gas alone), and data obtained when liquid oxygen was mixed with the compressed air for combustion. As shown in Table 1, even in summer when the amount of compressed air decreases,
It has been found that by mixing 6% by volume of liquid oxygen, a rated full output can be generated, and the thermal efficiency is further improved by 2%. As a result, the output of the gas turbine is 5
% Improvement.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上説明したように本発明方法によれ
ば、液体酸素を空気圧縮機の吸入側で混合することによ
り、圧縮空気の温度を下げることができるから、空気の
のみ込み量が増え、夏期でも定格フル発電が可能とな
る。また、空気圧縮機の入口空気温度が下がる分だけ空
気圧縮機の空気圧縮原単価が改善され、かつ圧縮空気の
酸素温度が上がるので、燃焼ガス温度の上昇によってガ
スタービンの熱効率が向上し、ひいては発電効率を向上
させることができる。その他、設備コストや電力コスト
の低下に役立つ。
As described above, according to the method of the present invention, the temperature of the compressed air can be reduced by mixing the liquid oxygen on the suction side of the air compressor. In addition, rated full power generation is possible even in summer. In addition, the unit cost of air compression of the air compressor is improved by an amount corresponding to the decrease in the inlet air temperature of the air compressor, and the oxygen temperature of the compressed air is increased. Power generation efficiency can be improved. In addition, it helps to reduce equipment costs and power costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例に用いる発電設備の構成
図。
FIG. 1 is a configuration diagram of a power generation facility used in a first embodiment of the present invention.

【図2】本発明の他の例に用いる発電設備の構成図。FIG. 2 is a configuration diagram of a power generation facility used in another example of the present invention.

【図3】従来例の発電設備の構成図。FIG. 3 is a configuration diagram of a conventional power generation facility.

【符号の説明】[Explanation of symbols]

1 液体酸素タンク 2 液体酸素ポンプ 3 吸入フィルター 4 酸素ミキシング装置 5 発電機 6 燃焼用空気圧縮機 7 燃料ガス圧縮機 8 燃焼器 9 ガスタービン 10 廃熱回収ボイラ 11 蒸気タービン 12 原料空気圧縮機 13 水洗冷却塔 14 原料空気前処理吸着器 15 空気熱交換器 16a 下部精留塔 16b 上部精留塔 A 発電プラント B 液体酸素貯蔵タンク C 液体酸素発生プラント D 深冷空気分離装置 DESCRIPTION OF SYMBOLS 1 Liquid oxygen tank 2 Liquid oxygen pump 3 Suction filter 4 Oxygen mixing device 5 Generator 6 Combustion air compressor 7 Fuel gas compressor 8 Combustor 9 Gas turbine 10 Waste heat recovery boiler 11 Steam turbine 12 Raw material air compressor 13 Rinse Cooling tower 14 Raw material air pretreatment adsorber 15 Air heat exchanger 16a Lower rectification tower 16b Upper rectification tower A Power generation plant B Liquid oxygen storage tank C Liquid oxygen generation plant D Cryogenic air separation device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体酸素をガスタービンの燃焼用空気圧
縮機の吸入側に噴霧して圧縮空気と混合することを特徴
とするガスタービン発電方法。
1. A gas turbine power generation method, characterized in that liquid oxygen is sprayed on a suction side of a combustion air compressor of a gas turbine and mixed with compressed air.
【請求項2】 燃焼用空気圧縮機への液体酸素の供給源
として、深冷空気分離装置から得られた液体酸素を用い
ることを特徴とする請求項1に記載のガスタービン発電
方法。
2. The gas turbine power generation method according to claim 1, wherein liquid oxygen obtained from a cryogenic air separation device is used as a supply source of the liquid oxygen to the combustion air compressor.
JP16861697A 1997-06-25 1997-06-25 Gas turbine power generation method Pending JPH1113479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16861697A JPH1113479A (en) 1997-06-25 1997-06-25 Gas turbine power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16861697A JPH1113479A (en) 1997-06-25 1997-06-25 Gas turbine power generation method

Publications (1)

Publication Number Publication Date
JPH1113479A true JPH1113479A (en) 1999-01-19

Family

ID=15871369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16861697A Pending JPH1113479A (en) 1997-06-25 1997-06-25 Gas turbine power generation method

Country Status (1)

Country Link
JP (1) JPH1113479A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535258A (en) * 2000-05-30 2003-11-25 トゥルベク アクティエボラーグ Integrated gas compressor
JP2007262951A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method and device for operating gas turbine power generation device
KR100860020B1 (en) * 2007-12-21 2008-09-25 한국에너지기술연구원 Oxy-fuel combustion boiler system having liquid-oxygen vaporizer exchanging heat with flue gas for carbon capture
CN108798903A (en) * 2018-05-31 2018-11-13 华电电力科学研究院有限公司 A kind of system and operation method using liquid oxygen misting cooling heat engine inlet air
JP2020051674A (en) * 2018-09-26 2020-04-02 関西電力株式会社 Heat exchange equipment, power generation facility and heat exchange method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535258A (en) * 2000-05-30 2003-11-25 トゥルベク アクティエボラーグ Integrated gas compressor
JP2007262951A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method and device for operating gas turbine power generation device
KR100860020B1 (en) * 2007-12-21 2008-09-25 한국에너지기술연구원 Oxy-fuel combustion boiler system having liquid-oxygen vaporizer exchanging heat with flue gas for carbon capture
CN108798903A (en) * 2018-05-31 2018-11-13 华电电力科学研究院有限公司 A kind of system and operation method using liquid oxygen misting cooling heat engine inlet air
JP2020051674A (en) * 2018-09-26 2020-04-02 関西電力株式会社 Heat exchange equipment, power generation facility and heat exchange method

Similar Documents

Publication Publication Date Title
US10830107B2 (en) Natural gas combined power generation process with zero carbon emission
CA2110262C (en) Power plant utilizing compressed air energy storage and saturation
US4329842A (en) Power conversion system utilizing reversible energy of liquefied natural gas
JP2601631B2 (en) How to integrate air separation and gas turbine power generation
US4829763A (en) Process for producing power
US6571548B1 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
EP0150990B1 (en) Process for producing power
US7305832B2 (en) Work extraction arrangement
US20120151961A1 (en) Liquid Air As Energy Storage
US20120255312A1 (en) Method and System to Produce Electric Power
JP3460433B2 (en) Energy storage type gas turbine power generation system
CN104169542A (en) Electricity generation device and method
JPH09138063A (en) Air separating method and air separating device utilizing liquefied natural gas cold heat
US4227374A (en) Methods and means for storing energy
US6393867B1 (en) Installation producing low voltage electricity integrated in a unit separating gas from air
JPH04127850A (en) Liquid air storage power generating system
JPH1113479A (en) Gas turbine power generation method
CN111076496A (en) Peak regulation system and peak regulation method for air separation device of thermal power plant
JP4707865B2 (en) Cryogenic air separator
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
JP2002242694A (en) Energy storing type gas turbine generator
JPH0797933A (en) Intake air cooling device of gas turbine
CN112923660A (en) Backup system flow setting of air separation device with 2%/min variable load capacity
US9608498B2 (en) Method and device for generating electrical energy
JP2001159318A (en) Cryogenic power generating device