JP4707865B2 - Cryogenic air separator - Google Patents

Cryogenic air separator Download PDF

Info

Publication number
JP4707865B2
JP4707865B2 JP2001120208A JP2001120208A JP4707865B2 JP 4707865 B2 JP4707865 B2 JP 4707865B2 JP 2001120208 A JP2001120208 A JP 2001120208A JP 2001120208 A JP2001120208 A JP 2001120208A JP 4707865 B2 JP4707865 B2 JP 4707865B2
Authority
JP
Japan
Prior art keywords
gas
air
liquefied
raw material
vaporized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001120208A
Other languages
Japanese (ja)
Other versions
JP2002318069A (en
Inventor
明 吉野
洋実 木山
武治 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2001120208A priority Critical patent/JP4707865B2/en
Publication of JP2002318069A publication Critical patent/JP2002318069A/en
Application granted granted Critical
Publication of JP4707865B2 publication Critical patent/JP4707865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04363Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/02Compressor intake arrangement, e.g. filtering or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液化天然ガスを有効に利用した深冷空気分離装置に関するものである。
【0002】
【従来の技術】
従来から、空気を原料として冷却液化し窒素,酸素等の沸点の違いを利用して気化窒素ガス,気化酸素ガス等を分離発生させる深冷空気分離装置には、寒冷源として膨脹タービンを用いる方法がよく採用されているが、膨脹タービンを用いず、その代わりに液化窒素ガスもしくは液化酸素ガス等を寒冷源として精留塔に導入する方法も採用されている。
【0003】
また、日本等の非産出地域において利用されている天然ガスは、そのほとんどが、産地で液化され輸送された液化天然ガスを原料とするものであり、輸送後の需要地では、主に大気や用水等との熱交換により気化されて利用されている。
【0004】
一方、近年普及しているコージェネレーションシステム(以下、「CGS」と略す)は、発電時に発生する熱を電力とともに併給できる分散型発電システムであり、重油,LPG,液化天然ガス(LNG),天然ガス(NG)等の燃料を燃焼させてエンジンもしくはガスタービンを駆動し、この回転力により発電機を回転させて電力を得るとともに、上記燃焼により発生する熱をも蒸気,温水等の形で得るものである。このように、CGSによれば、発電時に発生する熱をも利用することができることから、商用電力に比べてエネルギー効率が高く、また、落雷の影響による瞬時電圧低下等が少ないため、安定して電力を供給することができる。
【0005】
上記の深冷空気分離装置の一例を、図7に示す。この深冷空気分離装置は、空気を原料とし、製品ガスとして気化窒素ガスを分離発生させる装置であり、膨脹タービンの代わりに、寒冷源として液化窒素ガスを精留塔(図示せず)に導入するようにしている。
【0006】
より詳しく説明すると、原料空気は吸気フィルター1を通して装置内部に取り込まれ、原料空気圧縮機2で圧縮されたのち、冷凍機3で冷却され、脱湿器4の一方の吸着槽4a(もしくは4b)に送られる。この一方の吸着槽4a(もしくは4b)では、圧縮原料空気中の水分,CO2 ,ハイドロカーボン等の不純物が除去される。また、上記脱湿器4は、吸着と再生を2塔の吸着槽4a,4bで交互に繰り返す温度スイング式吸着分離方式の機器であり、その加温再生は、深冷分離コールドボックス6から導出される廃ガスの一部を電気式の再生ヒーター5で加温したのち、脱湿器4の他方の吸着槽4b(もしくは4a)に流通させることにより行われる。なお、上記深冷分離コールドボックス6内には、圧縮原料空気を冷却して精留塔に供給する熱交換器(図示せず),精留塔内の還流液生成用の凝縮器(図示せず)も、精留塔とともに組み込まれている。
【0007】
つぎに、脱湿器4で不純物が除去された圧縮原料空気は、深冷分離コールドボックス6内の熱交換器を経由して精留塔に送られ、この精留塔内で一旦液化されたのち、沸点の違いを利用する分留操作により窒素成分が分離される。そして、この分留操作によって原料空気から分離された窒素成分は製品窒素ガスとして、また、(窒素成分が分離された)原料空気の残りの成分は廃ガスとして、それぞれ精留塔から取り出され、深冷分離コールドボックス6から導出される。
【0008】
そして、深冷分離コールドボックス6から導出される製品窒素ガスは、製品窒素圧縮機7で用途に従った所定の圧力に昇圧されたのち、供給パイプ8を通って需要先に送られる。一方、廃ガスは、その一部が脱湿器4の加温再生に使用されたのち大気中に排出され、残部はそのまま大気中に排出される。
【0009】
一方、液化窒素貯槽9には、装置外から車両等により輸送され補給された液化窒素ガスが貯められている。そして、上記精留塔に、寒冷源として液化窒素貯槽9内の液化窒素ガスがパイプ10a,10bを通って供給される。また、装置停止時に製品ガスの供給を切らさないようにするためのバックアップ,需要量が供給能力を上回る場合のピークカットもしくは液化窒素ガス用途に対して、液化窒素貯槽9からパイプ10a,10cを通って液化窒素ガスの供給が行われる。
【0010】
【発明が解決しようとする課題】
しかしながら、気化窒素ガスおよび気化酸素ガスの少なくとも一方を製造する深冷空気分離装置において、液化窒素ガスおよび液化酸素ガスの少なくとも一方を製造することは装置が複雑となり、容易なことではない。特に、既設の装置を改造する場合には、かなり困難である。そこで、上記の深冷空気分離装置では、バックアップ用,ピークカット用等のために液化窒素ガスおよび液化酸素ガスの少なくとも一方を装置外から補給して別に貯蔵しておく必要がある。また、図7に示す深冷空気分離装置のように、膨脹タービンを用いず、その代わりに液化窒素ガスを寒冷源として精留塔に導入する装置では、常に液化窒素ガスを装置外から補給する必要がある。
【0011】
また、上記の深冷空気分離装置では、原料空気の温度が上がると、原料空気圧縮機(図7の原料空気圧縮機2を参照)の能力が低下し、原料空気量が低下するため製品ガス発生量が低下する。また、原料空気の温度が上がると原料空気中に含まれる水分量も増加し、原料空気中の水分,CO2,ハイドロカーボン等を除去する脱湿器(図7の脱湿器4を参照)において処理できる原料空気量が制限されるため、製品ガス発生量が低下する。そこで、原料空気冷却用の冷凍機(図7の冷凍機3を参照)を設置する場合もあるが、この場合には、冷凍機が必要である分、高価になり、メンテナンスも余分に必要となる。
【0012】
また、原料空気圧縮機2等の回転機および脱湿器4にかなりの動力および熱が必要であり、一般的には、その動力源および熱源として、エネルギー効率が低い商用電力が使われている。
【0013】
一方、日本等に産地から輸送される液化天然ガスは、産地でかなりのエネルギーを使って液化されているにもかかわらず、日本等では、主に大気や用水等との熱交換により気化されて使用されており、その冷熱エネルギーはあまり有効に利用されていない。
【0014】
また、CGSにおけるエネルギー効率は熱をいかに有効利用するかにより決まり、熱負荷が少ない場合はCGSを導入しても、発生熱全量の有効利用が困難となるため、エネルギー効率は悪くなってしまう。また、電力の最終利用形態が回転機である場合には、CGS側発電機での回転力−電力変換ロスおよび回転機側電動機における電力−回転力変換ロスが生じる。また、ガスタービンを用いるCGSでは、燃焼空気圧縮機がタービンに接続されており、この燃焼空気圧縮機での余剰空気の利用または燃焼空気圧縮機の能力もしくは機能のアップによっても、CGS外部への空気取り出しが可能でありながら、燃焼空気圧縮機が有効に使用されていない。
【0015】
本発明は、このような事情に鑑みなされたもので、液化天然ガスを有効利用して、装置から容易に液化窒素ガスおよび液化酸素ガスの少なくとも一方を製造し、もしくは原料空気を冷却することができ、さらにCGSと組み合わせることにより、エネルギー効率が高く、環境性等に優れた深冷空気分離装置の提供をその目的とする。
【0016】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、原料空気を精留塔に導入し製品ガスとして気化窒素ガスおよび気化酸素ガスの少なくとも一方を製造し、この製品ガスを製品ガス圧縮機を用いて圧縮するとともに、上記製品ガスの少なくとも一部を、装置外から供給される液化天然ガスと熱交換させて冷却するLNG熱交換器を有する深冷空気分離装置であって、上記原料空気を圧縮する原料空気圧縮機と、圧縮された原料空気と上記LNG熱交換器を通過した低温の天然ガスとを熱交換させて冷却する圧縮空気冷却器と、この圧縮空気冷却器を経由した原料空気を導入して深冷分離する精留塔と、上記圧縮空気冷却器で気化した天然ガスを燃料とするコージェネレーションシステムと、上記圧縮空気冷却器と精留塔との間に配置され、原料空気中の水分を除去する脱湿器と、この脱湿器の再生用ヒーターとを備え、このコージェネレーションシステムは、上記気化した天然ガスを燃焼させた排ガスにより駆動されるガスタービンと、このガスタービンと同軸に接続された発電機と、上記ガスタービンと同軸に接続された燃焼空気圧縮機と、上記ガスタービン駆動後の排ガスの温熱を利用して水蒸気を発生させる排ガスボイラとを有し、上記発電機から得られた電力を、上記製品ガス圧縮機に供給するとともに、上記再生用ヒーターに、脱湿器の加熱再生用熱源として、上記ガスタービン駆動後の排ガスの一部、もしくは、上記排ガスボイラで発生した水蒸気の一部が、供給されるようにした深冷空気分離装置を要旨とする。
【0017】
すなわち、本発明の深冷空気分離装置は、原料空気から製品ガスとして気化窒素ガスおよび気化酸素ガスの少なくとも一方を製造する深冷空気分離装置であって、製品ガスの少なくとも一部を、装置外から供給される液化天然ガスと熱交換させることにより冷却して液化するようにしている。したがって、液化天然ガスが持つ冷熱エネルギーを有効利用し、従来は気化窒素ガスおよび気化酸素ガスの少なくとも一方しか製造することができない深冷空気分離装置から、容易に液化窒素ガスおよび液化酸素ガスの少なくとも一方を製造することができる。
【0018】
さらに、従来は常に装置外から補給が必要であった液化窒素ガスおよび液化酸素ガスの少なくとも一方の補給量を削減しもしくは補給を無くすことができる。また、必要な寒冷源より多くの液化窒素ガスおよび液化酸素ガスの少なくとも一方を製造することにより、この余剰分を他の用途に(例えば、装置停止時でのバックアップ用もしくは需要量が供給能力を上回る場合のピークカット用等に)供給することができる。
【0019】
また、本発明の深冷空気分離装置は、精留塔に導入される原料空気の少なくとも一部を、装置外から供給される液化天然ガスと熱交換させることにより冷却するようにしている。したがって、液化天然ガスが持つ冷熱エネルギーを有効利用し、精留塔に導入される原料空気を冷却することができる。そして、上記冷却を脱湿器手前で行う場合には、原料空気中の水分を減少することができ、原料空気吸入量を維持したままで脱湿器の処理能力を軽減することができる。特に、従来において、原料空気冷却用の冷凍機を設置していた場合には、この冷凍機を能力削減もしくは不要とすることができる。
【0020】
一方、本発明の深冷空気分離装置は、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる電力を装置の動力源として利用するようにしている。そのため、エネルギー効率が高く、環境性にも優れ、低コストにて安定的に製品ガスを発生することができる。なお、本発明において、「CGS」とは、発電時に発生する熱を、発電により得られる電力とともに併給できる分散型発電システムを指し、例えば、燃料を燃焼させてガスタービン等を駆動し、この回転力により発電機を回転させて電力を得るとともに、上記燃焼により発生する熱をも蒸気,温水等の形態で得るようにしたシステムを含む意味である。
【0021】
また、本発明の深冷空気分離装置、上記圧縮空気冷却器と精留塔との間に、原料空気中の水分を除去する脱湿器と、この脱湿器の再生用ヒーターとを備え、上記再生用ヒーターに、脱湿器の加熱再生用熱源として、上記ガスタービン駆動後の排ガスの一部、もしくは、上記排ガスボイラで発生した水蒸気の一部が、供給されるようになっている。これにより、CGSからの熱を排ガスもしくは蒸気の形態で取り出し、脱湿器の加温再生用熱源として利用する(例えば、上記排ガスもしくは蒸気と、深冷空気分離装置の廃ガスとを熱交換させて上記廃ガスを加温し、この廃ガスを脱湿器の吸着槽に加温再生用ガスとして流す形態で利用する)ことができるため、割高な商用電力の消費が削減でき、装置の運転コストの低減が可能になるうえ、エネルギー効率も改善されて省エネルギーとなり、環境に対してもよい。
【0022】
なお、上記深冷空気分離装置において、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる蒸気により蒸気タービンを回転させ、この回転力を利用して原料空気圧縮機を駆動するようにした場合には、従来は電動機駆動の電力負荷であった回転機がCGSの熱負荷となるため、CGSにおける熱利用率が増加し、エネルギー効率の向上ができる。また、CGSから得られる電力を回転機の動力源として利用する場合には、CGS側発電機での回転力−電力変換ロスおよび回転機側電動機における電力−回転力変換ロスが生じるが、本発明では、蒸気タービンで発生する回転力を利用して直接回転機を回すことにより上記両変換ロスをなくすことができ、さらにコスト低減およびエネルギー効率の改善ができる。
【0023】
また、上記深冷空気分離装置において、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる回転力を利用して原料空気圧縮機を駆動するようにした場合には、CGS側発電機での回転力−電力変換ロスおよび回転機側電動機における電力−回転力変換ロスをなくすことができ、コスト削減およびエネルギー効率の改善ができる。
【0024】
さらに、上記深冷空気分離装置において、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる燃焼用圧縮空気の一部を取り出し、原料空気として利用するようにした場合には、CGS側発電機での回転力−電力変換ロスおよび回転機側電動機における電力−回転力変換ロスをなくすことができる。また、深冷空気分離装置側の原料空気圧縮機をなくすこともできるため、エネルギー効率の改善およびより一層のコスト削減が可能となる。なお、このようなことは、ガスタービンの燃焼空気圧縮機での余剰空気の利用または燃焼空気圧縮機の能力もしくは機能のアップによっても、可能である。
【0025】
そして、上記深冷空気分離装置において、上記熱交換により製品ガスが液化して生成される液化窒素ガスおよび液化酸素ガスの少なくとも一方を貯槽に溜めるようにした場合には、貯槽に溜めた液化窒素ガスおよび液化酸素ガスの少なくとも一方をバックアップ用やピークカット用等として使用することにより、装置外から補給する液化窒素ガスおよび液化酸素ガスの少なくとも一方を削減することができる。
【0026】
なお、上記深冷空気分離装置において、熱交換後に気化して得られる天然ガスを製品ガスと共に需要家に供給することもできる。また、本発明の深冷空気分離装置は、CGSから得られる電力,熱,圧縮空気等をも需要家に供給することもできる。
【0027】
また、上記深冷空気分離装置は、窒素ガス,酸素ガスだけではなく、天然ガス,電力,熱,圧縮空気をも安価に安定して供給しうる総合的なユーティリティ供給システムであり、需要家における利便性の向上,合理化,事業コストの低減,省エネルギーに貢献できる。また、エネルギー効率が高く、地球温暖化等の環境問題に対しても寄与できる。
【0028】
【発明の実施の形態】
つぎに、本発明の参考形態(図1,2)および実施の形態(図3〜6)を図面にもとづいて詳しく説明する。
【0029】
図1は深冷空気分離装置の一参考形態を示している。この参考形態では、図7に示す深冷空気分離装置において、製品窒素ガスの一部を、装置外から供給される液化天然ガス(LNG)と熱交換して冷却,液化することにより液化窒素ガスを製造する液化コールドボックス11が設けられている。
【0030】
より詳しく説明すると、上記液化コールドボックス11には、LNG熱交換器13と、装置外から外部供給パイプ17を介して液化天然ガスが供給される窒素液化器14と、この窒素液化器14の内部に配設される凝縮器15と、気液分離器16とが収容されており、上記LNG熱交換器13に、供給パイプ8を通る製品窒素ガス(気化窒素ガス)の一部が、供給パイプ8から分岐する分岐パイプ12aを介して導入される。また、上記凝縮器15には、LNG熱交換器13で冷却された気化窒素ガスが、導出パイプ12bを介して導入される。また、上記気液分離器16には、上記凝縮器15を経た液化窒素ガスが、フラッシュバルブ18を設けた連結パイプ12cを介して導入される。そして、上記気液分離器16内の液化部分(液化窒素ガス)が液化窒素ガス供給パイプ19を介して液化窒素貯槽9に供給されて貯蔵される。
【0031】
図1の参考図において、20は上記分岐パイプ12aに配設された窒素昇圧機であり、21aは上記窒素液化器14内の液化天然ガスをLNG熱交換器13に送る第1送給パイプであり、23aは上記窒素液化器14内の天然ガスをLNG熱交換器13に送る第2送給パイプである。25aは上記気液分離器16内の気化部分(気化窒素ガス)をLNG熱交換器13に送る第3送給パイプであり、LNG熱交換器13を経た気化窒素ガスは、第3連結パイプ25bを介して供給パイプ8に製品窒素ガスとして供給される。それ以外の部分は図7に示す深冷空気分離装置と同様であり、同様の部分には同じ符号を付している。
【0032】
上記構成において、図7に示す深冷空気分離装置における深冷分離コールドボックス6から導出したのち製品窒素圧縮機7により昇圧した製品窒素ガスは、その一部が分岐パイプ12aを通り、窒素昇圧機20でさらに昇圧されたのち、液化コールドボックス11に導入される。上記窒素昇圧機20において、気化窒素ガスを昇圧するのは気化窒素ガスの液化温度(沸点)を上げ、液化天然ガスの冷熱により液化が容易に起こるようにするためである。一方、上記製品窒素ガスの残部は、供給パイプ8を経て、そのまま需要家に送出される。
【0033】
分岐パイプ12aを通って液化コールドボックス11に導入された気化窒素ガスは、まず、LNG熱交換器13において、窒素液化器14の底部から導出される液化天然ガス、窒素液化器14で気化した天然ガス、および気液分離器16で気化した気化窒素ガスと熱交換して冷却され、つぎに、凝縮器15において、窒素液化器14に外部供給パイプ17を介して供給される液化天然ガスと熱交換して冷却,液化される。つぎに、窒素液化器14を通過した液化窒素ガスはフラッシュバルブ18で減圧されたのち、気液分離器16に導入されて気化部分(気化窒素ガス)と液化部分(液化窒素ガス)とに分離される。気液分離器16内の気化部分は、LNG熱交換器13を通り、製品窒素ガスとして供給パイプ8に供給され、供給パイプ8を通る製品窒素ガスに合流し、一方、液化部分は液化窒素貯槽9に一旦貯蔵されたのち、寒冷源用の液化窒素ガスとして深冷分離コールドボックス6内の精留塔に導入される。また、装置停止時のバックアップ用,ピークカット用および液化窒素用途に対しても、この液化窒素貯槽9から液化窒素ガスの供給が行われる。
【0034】
一方、液化コールドボックス11に装置外から導入される液化天然ガスは、まず窒素液化器14で、つぎにLNG熱交換器13で気化窒素ガスに冷熱が回収されることにより、自身が気化加温されて液化コールドボックス11から導出される。この液化コールドボックス11から導出された天然ガスは、まだ低温状態にある。
【0035】
上記のように、この参考形態では、液化窒素ガスが製造できない深冷空気分離装置でも、製品窒素ガスから液化窒素ガスの製造ができる。したがって、寒冷源,バックアップ等のために液化窒素貯槽9に蓄えられる液化窒素ガスの、装置外からの補給を削減しもしくは無くすことができる。また、液化天然ガスの冷熱エネルギーが有効に活用できる。
【0036】
なお、この参考形態では、深冷空気分離装置は、寒冷源として液化窒素ガスを使用する深冷空気分離装置であるが、これに限定するものではなく、寒冷源として液化窒素ガスを使用しない深冷空気分離装置であってもよい。また、後述する、図3〜図6の実施の形態においても、同様である。
【0037】
図2は深冷空気分離装置の他の参考形態を示している。この参考形態では、原料空気の冷却も液化天然ガスの冷熱を利用して行われている。
【0038】
この参考形態では、原料空気圧縮機2出口側に設けた冷凍機3に代えて、圧縮空気冷却器27を設けている。上記構成において、外部供給パイプ17により装置外から供給される液化天然ガスが、第1分岐パイプ29aを介して原料空気圧縮機2出口側の圧縮空気冷却器27に通され、液化天然ガスの冷熱により原料空気の冷却が行われる。
【0039】
上記のように、この参考形態では、原料空気の冷却が行われることにより、冷凍機3の削除ができる。また、脱湿器4の処理能力の軽減および大気温度上昇時の原料空気圧縮機2の能力低下防止ができる。
【0040】
図3は本発明の深冷空気分離装置の第1の実施の形態を示している。この実施の形態では、図1に示す参考形態と異なり、製品窒素ガスの一部を液化天然ガスとの熱交換により液化し、この熱交換により気化した天然ガスを、図2に示す参考形態のように、原料空気の冷却にも利用している。また、上記天然ガスを燃料としてCGS(ガスタービン式コージェネレーションシステム)を運転し、得られる電力および熱を深冷空気分離装置の動力源として利用している。
【0041】
この第1の実施の形態では、図1に示す参考形態において、原料空気圧縮機2出口側に設けた冷凍機3に代えて、図2に示す参考形態と同様の圧縮空気冷却器27を設けている。また、取り出しパイプ31は、両連結パイプ21b,23bに接続するとともに圧縮空気冷却器27に接続する第1取り出しパイプ31aと、圧縮空気冷却器27から延びる第2取り出しパイプ31bとからなっており、両取り出しパイプ31a,31bに加温器24(図1,2参照)を設けていない。また、電気式の再生ヒーター5(図1,2参照)に代えて、蒸気を通す方式の再生ヒーター32を用いている。また、この第1の実施の形態では、吸気フィルター33,燃焼空気圧縮機34,燃焼器35,ガスタービン36,発電機37,排ガスボイラ38等を有するCGSを備えている。図3において、39aは排ガスボイラ38に水を導入する水導入パイプである。39bは排ガスボイラ38から蒸気を導出する蒸気導出パイプであり、この蒸気導出パイプ39bで導出された蒸気の一部は供給パイプ40aを介して使用され、残部は蒸気導入パイプ40bを介して再生ヒーター32に導入されたのち蒸気回収パイプ40cを介して回収される。それ以外の部分は図1に示す参考形態と同様であり、同様の部分には同じ符号を付している。
【0042】
上記構成において、外部供給パイプ17により装置外から供給される液化天然ガスは、液化コールドボックス11で製品窒素ガスの液化に利用されて気化したのち、原料空気圧縮機2出口側の圧縮空気冷却器27に導入されて原料空気を冷却している。この第1の実施の形態では、液化コールドボックス11から導出される天然ガスはまだ低温状態であり、つぎに原料空気の冷却に利用される。また、原料空気の冷却用としては、原料空気圧縮機2出口側のみに圧縮空気冷却器27を設けている。
【0043】
また、この第1の実施の形態では、圧縮空気冷却器27を経由した天然ガスが連結パイプ41を通り、ガスタービン式CGSの燃料として燃焼器35に導入されている。このガスタービン式CGSでは、燃焼用空気が吸気フィルター33を経由して燃焼空気圧縮機34に導入され、この燃焼空気圧縮機34で圧縮されたのち、燃焼器35に導入されて天然ガスとの燃焼が行われる。そして、燃焼器35から噴射される燃焼ガスの推力によりガスタービン36が回され、この回転力により発電機37が駆動され発電が行われる。そして、発電機37で発電された電力は深冷空気分離装置の原料空気圧縮機2,製品窒素圧縮機7,窒素昇圧機20およびその他の付帯機器(図示せず)の動力源として使用される。なお、燃焼空気圧縮機34もガスタービン36の回転力により駆動されている。
【0044】
また、ガスタービン36で推力が奪われて排出される燃焼排ガスは、排ガスボイラ38に送られて排熱が回収されたあとに大気に放出される。また、排ガスボイラ38では、燃焼排ガスとの熱交換により、水導入パイプ39aを介して装置外から供給される水から蒸気が製造される。この蒸気は蒸気導出パイプ39bから導出され、その一部が再生ヒーター32の熱源として使用される。なお、この実施の形態では、余剰な天然ガス,電力,蒸気は、製品窒素ガスとともに需要先に供給されている。
【0045】
上記のように、この第1の実施の形態では、液化天然ガスの冷熱が有効利用されているとともに、この利用により得られる天然ガスを燃料とするCGSを導入し、得られる電力および蒸気を深冷空気分離装置に利用している。このため、割高な商用電力の削減ができ、装置運転コストの低減,エネルギー効率改善による省エネルギーがなされている。
【0046】
図4は本発明の深冷空気分離装置の第2の実施の形態を示している。この第2の実施の形態では、図3に示す第1の実施の形態と異なり、CGSからの蒸気を利用して回転力を得る蒸気タービン43を設置し、この蒸気タービン43で深冷空気分離装置の原料空気圧縮機2を駆動している。また、再生ヒーター32へのCGSの熱利用が、図3に示す第1の実施の形態と別の形態になっており、蒸気ではなく直接排ガスを利用することにより行われている。したがって、上記再生ヒーター32としては、排ガスを通す方式のものが用いられている。
【0047】
この第2の実施の形態では、排ガスボイラ38で製造される蒸気の一部を蒸気タービン43に供給する蒸気供給パイプ44aおよび蒸気タービン43を経た蒸気を回収する蒸気回収パイプ44bを設けている。また、ガスタービン36から排出される燃焼排ガスの一部を、図3に示す第1の実施の形態と同様に、排ガスボイラ38に送るとともに、残部を、排ガス導入パイプ45aを介して再生ヒーター32の熱源として使用している。図において、45bは再生ヒーター32を経た燃焼排ガスを大気に放出する排ガス放出パイプである。
【0048】
上記のように、この第2の実施の形態では、蒸気タービン43で発生する回転力を利用して直接原料空気圧縮機2を回すことにより、図3に示す第1の実施の形態では生じていた変換ロス(CGS側発電機37での回転力−電力変換ロスおよび原料空気圧縮機2側電動機における電力−回転力変換ロス)を無くすことができ、さらにコストの低減およびエネルギー効率の改善を図ることができる。また、従来は電力負荷であった原料空気圧縮機2がCGSの熱負荷となるため、CGSにおける熱利用が増加し、より一層の総合的なエネルギー効率の向上が可能となる。
【0049】
なお、この第2の実施の形態では、原料空気圧縮機2のみを蒸気タービン43の回転力で駆動しているが、製品窒素圧縮機7,窒素昇圧機20に関しても、駆動機構を統合型メカニカルギヤ等により工夫すれば、蒸気タービン43で駆動することが可能である。
【0050】
図5は本発明の深冷空気分離装置の第3の実施の形態を示している。この第3の実施の形態では、図3に示す第1の実施の形態と異なり、原料空気圧縮機2をCGSのガスタービン36の回転力により直接駆動している。
【0051】
上記のように、この第3の実施の形態では、原料空気圧縮機2がガスタービン36の回転力により直接駆動されているため、エネルギーの変換ロスがなく、その分コスト低減およびエネルギー効率の改善がなされている。
【0052】
なお、この第3の実施の形態でも、原料空気圧縮機2のみをガスタービン36の回転力により駆動しているが、製品窒素圧縮機7,窒素昇圧機20に関しても、駆動機構を統合型メカニカルギヤ等により工夫すれば、ガスタービン36にて駆動することが可能である。
【0053】
図6は本発明の深冷空気分離装置の第4の実施の形態を示している。この第4の実施の形態では、図5に示す第3の実施の形態と異なり、深冷空気分離装置の原料空気圧縮機2をなくし、その代わりにガスタービン式CGSの燃焼空気圧縮機34から圧縮空気の一部を導出し、これを原料空気として深冷空気分離装置に利用するようにしている。すなわち、深冷空気分離装置の原料空気圧縮機2とガスタービン式CGSの燃焼空気圧縮機34を統合して空気圧縮機46とし、これをガスタービン36の回転力により駆動している。図において、47は空気圧縮機46から導出した圧縮空気の一部を原料空気として圧縮空気冷却器27に供給する供給パイプである。
【0054】
上記のように、この第4の実施の形態では、深冷空気分離装置の原料空気圧縮分における発動機変換ロス,電動機変換ロスをなくすことができる。また、深冷空気分離装置側の原料空気圧縮機2をなくすこともできるため、エネルギー効率の改善および一層のコスト削減が可能になる。
【0055】
【発明の効果】
以上のように、本発明の深冷空気分離装置によれば、液化天然ガスが持つ冷熱エネルギーを有効利用し、従来は気化窒素ガスおよび気化酸素ガスの少なくとも一方しか製造することができない深冷空気分離装置から、容易に液化窒素ガスおよび液化酸素ガスの少なくとも一方を製造することができる。
【0056】
さらに、本発明の深冷空気分離装置によれば、従来は常に装置外から補給が必要であった液化窒素ガスおよび液化酸素ガスの少なくとも一方の補給量を削減しもしくは補給を無くすことができる。また、必要な寒冷源より多くの液化窒素ガスおよび液化酸素ガスの少なくとも一方を製造することにより、この余剰分を他の用途に(例えば、装置停止時でのバックアップ用もしくは需要量が供給能力を上回る場合のピークカット用等に)供給することができる。
【0057】
また、本発明の深冷空気分離装置よれば、液化天然ガスが持つ冷熱エネルギーを有効利用し、精留塔に導入される原料空気を冷却することができる。そして、上記冷却を脱湿器手前で行う場合には、原料空気中の水分を減少することができ、原料空気吸入量を維持したままで脱湿器の処理能力を軽減することができる。特に、従来において、原料空気冷却用の冷凍機を設置していた場合には、この冷凍機を能力削減もしくは不要とすることができる。
【0058】
さらに、本発明の深冷空気分離装置において、上記熱交換により製品ガスが液化して生成される液化窒素ガスおよび液化酸素ガスの少なくとも一方を貯槽に溜めるようにした場合には、貯槽に溜めた液化窒素ガスおよび液化酸素ガスの少なくとも一方をバックアップ用やピークカット用等として使用することにより、装置外から補給する液化窒素ガスおよび液化酸素ガスの少なくとも一方を削減することができる。
【0059】
また、本発明の深冷空気分離装置によれば、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる電力を装置の動力源として利用するようにしているため、エネルギー効率が高く、環境性にも優れ、低コストにて安定的に製品ガスを発生することができる。
【0060】
本発明の深冷空気分離装置において、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてCGSを運転し、得られる排ガスもしくは蒸気を、原料空気中の水分を除去する脱湿器の加温再生用熱源として利用するようにした場合には、CGSからの熱を排ガスもしくは蒸気の形態で取り出し、脱湿器の加温再生用熱源として利用する(例えば、上記排ガスもしくは蒸気と、深冷空気分離装置の廃ガスとを熱交換させて上記廃ガスを加温し、この廃ガスを脱湿器の吸着槽に加温再生用ガスとして流す形態で利用する)ことができるため、割高な商用電力の消費が削減でき、装置の運転コストの低減が可能になるうえ、エネルギー効率も改善されて省エネルギーとなり、環境に対してもよい。
【0061】
本発明の深冷空気分離装置において、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる蒸気により蒸気タービンを回転させ、この回転力を利用して原料空気圧縮機を駆動するようにした場合には、従来は電動機駆動の電力負荷であった回転機がCGSの熱負荷となるため、CGSにおける熱利用率が増加し、エネルギー効率の向上ができる。また、CGSから得られる電力を回転機の動力源として利用する場合に比べ、本発明では、蒸気タービンで発生する回転力を利用して直接回転機を回すことにより上記両変換ロスをなくすことができ、さらにコスト低減およびエネルギー効率の改善ができる。
【0062】
本発明の深冷空気分離装置において、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる回転力を利用して原料空気圧縮機を駆動するようにした場合には、CGS側発電機での回転力−電力変換ロスおよび回転機側電動機における電力−回転力変換ロスをなくすことができ、コスト削減およびエネルギー効率の改善ができる。
【0063】
本発明の深冷空気分離装置において、上記熱交換により液化天然ガスが気化して生成される天然ガスを燃料としてガスタービン式コージェネレーションシステムを運転し、得られる燃焼用圧縮空気の一部を取り出し、原料空気として利用するようにした場合には、CGS側発電機での回転力−電力変換ロスおよび回転機側電動機における電力−回転力変換ロスをなくすことができる。また、深冷空気分離装置側の原料空気圧縮機をなくすこともできるため、エネルギー効率の改善およびより一層のコスト削減が可能となる。なお、このようなことは、ガスタービンの燃焼空気圧縮機での余剰空気の利用または燃焼空気圧縮機の能力もしくは機能のアップによっても、可能である。
【図面の簡単な説明】
【図1】 深冷空気分離装置の一参考形態を示す説明図である。
【図2】 深冷空気分離装置の他の参考形態を示す説明図である。
【図3】 本発明の深冷空気分離装置の第1の実施の形態を示す説明図である。
【図4】 本発明の深冷空気分離装置の第2の実施の形態を示す説明図である。
【図5】 本発明の深冷空気分離装置の第3の実施の形態を示す説明図である。
【図6】 本発明の深冷空気分離装置の第4の実施の形態を示す説明図である。
【図7】 従来例の説明図である。
【符号の説明】
17 外部供給パイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cryogenic air separation device that effectively utilizes liquefied natural gas.
[0002]
[Prior art]
Conventionally, a method of using an expansion turbine as a cold source in a cryogenic air separation apparatus that cools and liquefies air as a raw material and separates and generates vaporized nitrogen gas, vaporized oxygen gas, etc. using the difference in boiling points of nitrogen, oxygen, etc. However, instead of using an expansion turbine, a method of introducing liquefied nitrogen gas or liquefied oxygen gas or the like into the rectification column as a cold source is also employed instead.
[0003]
In addition, most of the natural gas used in non-production areas such as Japan is made from liquefied natural gas liquefied and transported in the production area. Vaporized by heat exchange with irrigation water.
[0004]
On the other hand, the cogeneration system (hereinafter abbreviated as “CGS”), which has been widely used in recent years, is a distributed power generation system that can supply heat generated during power generation together with electric power, and includes heavy oil, LPG, liquefied natural gas (LNG), natural The engine or gas turbine is driven by burning fuel such as gas (NG) and the generator is rotated by this rotational force to obtain electric power, and the heat generated by the combustion is also obtained in the form of steam, hot water, etc. Is. As described above, according to CGS, heat generated during power generation can also be used. Therefore, energy efficiency is higher than that of commercial power, and since there is less instantaneous voltage drop due to the effect of lightning strike, it is stable. Electric power can be supplied.
[0005]
An example of the cryogenic air separation device is shown in FIG. This cryogenic air separation device is a device that separates and generates vaporized nitrogen gas as a product gas using air as a raw material. Instead of an expansion turbine, liquefied nitrogen gas is introduced into a rectifying column (not shown) as a cold source. Like to do.
[0006]
More specifically, the raw material air is taken into the apparatus through the intake filter 1, compressed by the raw material air compressor 2, then cooled by the refrigerator 3, and one adsorption tank 4 a (or 4 b) of the dehumidifier 4. Sent to. In this one adsorption tank 4a (or 4b), moisture in compressed air, CO 2 , Impurities such as hydrocarbons are removed. Further, the dehumidifier 4 is a temperature swing type adsorption separation apparatus in which adsorption and regeneration are alternately repeated in the two adsorption tanks 4 a and 4 b, and the warming regeneration is derived from the cryogenic separation cold box 6. A part of the waste gas to be heated is heated by the electric regenerative heater 5 and then distributed to the other adsorption tank 4b (or 4a) of the dehumidifier 4. In the deep cold separation cold box 6, a heat exchanger (not shown) that cools the compressed raw material air and supplies it to the rectifying column, and a condenser for generating a reflux liquid in the rectifying column (not shown). Z) is also incorporated with the rectification tower.
[0007]
Next, the compressed raw material air from which impurities have been removed by the dehumidifier 4 is sent to the rectification column via the heat exchanger in the cryogenic separation cold box 6 and once liquefied in the rectification column. After that, nitrogen components are separated by fractional distillation operation utilizing the difference in boiling points. And the nitrogen component separated from the raw material air by this fractionation operation is taken out from the rectification tower as the product nitrogen gas, and the remaining components of the raw material air (the nitrogen component is separated) as waste gas, respectively. Derived from the cryogenic cold box 6.
[0008]
The product nitrogen gas derived from the deep cold separation cold box 6 is boosted to a predetermined pressure according to the application by the product nitrogen compressor 7 and then sent to the customer through the supply pipe 8. On the other hand, a part of the waste gas is discharged into the atmosphere after being used for heating regeneration of the dehumidifier 4, and the remainder is discharged into the atmosphere as it is.
[0009]
On the other hand, the liquefied nitrogen storage tank 9 stores liquefied nitrogen gas transported and replenished by a vehicle or the like from outside the apparatus. And the liquefied nitrogen gas in the liquefied nitrogen storage tank 9 is supplied to the said rectification tower through the pipes 10a and 10b as a cold source. Also, for the purpose of backup to prevent the product gas from being cut off when the equipment is stopped, peak cut when the demand exceeds the supply capacity, or liquefied nitrogen gas, the liquefied nitrogen storage tank 9 is passed through the pipes 10a and 10c. Then, liquefied nitrogen gas is supplied.
[0010]
[Problems to be solved by the invention]
However, in a cryogenic air separator that produces at least one of vaporized nitrogen gas and vaporized oxygen gas, producing at least one of liquefied nitrogen gas and liquefied oxygen gas is complicated and not easy. In particular, it is quite difficult to modify existing equipment. Therefore, in the above-described cryogenic air separation device, it is necessary to supply and store separately at least one of liquefied nitrogen gas and liquefied oxygen gas from outside the device for backup, peak cut, and the like. Further, in an apparatus that does not use an expansion turbine and instead introduces liquefied nitrogen gas into the rectifying column as a cold source, as in the cryogenic air separation apparatus shown in FIG. 7, the liquefied nitrogen gas is always replenished from outside the apparatus. There is a need.
[0011]
Further, in the above-described cryogenic air separation apparatus, when the temperature of the raw material air rises, the capability of the raw material air compressor (see the raw material air compressor 2 in FIG. 7) decreases, and the amount of raw material air decreases, so the product gas The amount generated is reduced. In addition, when the temperature of the raw material air rises, the amount of water contained in the raw material air also increases, and the moisture in the raw material air, CO 2 Since the amount of raw material air that can be processed in a dehumidifier that removes hydrocarbons (see dehumidifier 4 in FIG. 7) is limited, the amount of product gas generated decreases. Therefore, there may be a case where a refrigerator for cooling the raw material air (see the refrigerator 3 in FIG. 7) is installed, but in this case, the amount of the refrigerator required is increased and the maintenance is also required. Become.
[0012]
Further, a rotating machine such as the raw material air compressor 2 and the dehumidifier 4 require a considerable amount of power and heat. Generally, commercial power having low energy efficiency is used as the power source and the heat source. .
[0013]
On the other hand, liquefied natural gas transported from production areas to Japan, etc. is vaporized mainly by heat exchange with the atmosphere, water, etc. in Japan, even though it is liquefied using considerable energy in production areas. It is used and its cold energy is not used much effectively.
[0014]
In addition, the energy efficiency in CGS is determined by how effectively heat is used. If the heat load is small, even if CGS is introduced, it is difficult to effectively use the total amount of generated heat, resulting in poor energy efficiency. Moreover, when the final utilization form of electric power is a rotary machine, the rotational force-power conversion loss in a CGS side generator and the electric power-rotational force conversion loss in a rotary machine side motor arise. Moreover, in CGS using a gas turbine, a combustion air compressor is connected to the turbine, and the use of surplus air in the combustion air compressor or the improvement of the capability or function of the combustion air compressor can also lead to the outside of the CGS. Although the air can be taken out, the combustion air compressor is not effectively used.
[0015]
The present invention has been made in view of such circumstances, and it is possible to easily produce at least one of liquefied nitrogen gas and liquefied oxygen gas from an apparatus, or cool raw material air by effectively using liquefied natural gas. Further, by combining with CGS, the object is to provide a chilled air separation device that is high in energy efficiency and excellent in environmental performance.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present invention Into the rectification tower Liquefied natural gas is produced by producing at least one of vaporized nitrogen gas and vaporized oxygen gas as product gas, compressing the product gas using a product gas compressor, and supplying at least a part of the product gas from outside the apparatus. A chilled air separation apparatus having an LNG heat exchanger that cools by heat exchange with a raw material air compressor that compresses the raw material air, a compressed raw material air, and a low temperature that has passed through the LNG heat exchanger Compressed air cooler that cools natural gas by heat exchange, and this A rectifying column for deep cooling separation by introducing raw air via a compressed air cooler, and Cogeneration system using natural gas fueled by compressed air cooler A dehumidifier that is disposed between the compressed air cooler and the rectifying column and removes moisture in the raw air, and a regeneration heater for the dehumidifier, The cogeneration system includes a gas turbine driven by exhaust gas obtained by burning the vaporized natural gas, a generator connected coaxially with the gas turbine, and a combustion connected coaxially with the gas turbine. It has an air compressor and an exhaust gas boiler that generates steam by using the temperature of exhaust gas after driving the gas turbine, and supplies the power obtained from the generator to the product gas compressor At the same time, a part of the exhaust gas after driving the gas turbine or a part of the water vapor generated in the exhaust gas boiler is supplied to the regeneration heater as a heat regeneration heat source of the dehumidifier. The chilled air separation apparatus as described above is summarized.
[0017]
That is, the cryogenic air separation device of the present invention is a cryogenic air separation device that produces at least one of vaporized nitrogen gas and vaporized oxygen gas as a product gas from raw material air, and at least a part of the product gas is removed from the outside of the device. The liquid is cooled and liquefied by heat exchange with the liquefied natural gas supplied from the factory. Therefore, it is possible to effectively use the cold energy of liquefied natural gas, and from a cryogenic air separation apparatus that has conventionally been able to produce at least one of vaporized nitrogen gas and vaporized oxygen gas, easily at least liquefied nitrogen gas and liquefied oxygen gas. One can be manufactured.
[0018]
Furthermore, the supply amount of at least one of the liquefied nitrogen gas and the liquefied oxygen gas, which has conventionally been always required to be supplied from outside the apparatus, can be reduced or eliminated. In addition, by producing at least one of liquefied nitrogen gas and liquefied oxygen gas more than the necessary cold source, this surplus can be used for other purposes (for example, for backup at the time of equipment shutdown or the demand amount provides the supply capacity. For peak cuts in the case of exceeding).
[0019]
Further, the cryogenic air separation apparatus of the present invention cools at least a part of the raw air introduced into the rectification column by heat exchange with liquefied natural gas supplied from outside the apparatus. Therefore, it is possible to cool the raw material air introduced into the rectification column by effectively using the cold energy of the liquefied natural gas. And when performing the said cooling in front of a dehumidifier, the water | moisture content in raw material air can be reduced and the processing capacity of a dehumidifier can be reduced, maintaining the raw material air inhalation amount. In particular, in the past, when a refrigerator for cooling the raw material air has been installed, the capacity of the refrigerator can be reduced or eliminated.
[0020]
On the other hand, the cryogenic air separation apparatus of the present invention operates a gas turbine cogeneration system using natural gas generated by vaporizing liquefied natural gas by the heat exchange as a fuel, and uses the obtained electric power as a power source of the apparatus. I am trying to use it. Therefore, the energy efficiency is high, the environment is excellent, and the product gas can be stably generated at a low cost. In the present invention, “CGS” refers to a distributed power generation system that can supply heat generated during power generation together with power obtained by power generation. For example, a gas turbine is driven by burning fuel and this rotation is performed. It means to include a system in which the generator is rotated by force to obtain electric power and the heat generated by the combustion is also obtained in the form of steam, hot water or the like.
[0021]
Also, Cryogenic air separation device of the present invention Is A dehumidifier for removing moisture in the raw material air and a regeneration heater for the dehumidifier between the compressed air cooler and the rectifying tower, and the regeneration heater includes a dehumidifier As a heat source for heating regeneration, a part of the exhaust gas after driving the gas turbine or a part of the steam generated in the exhaust gas boiler is supplied. . This The heat from CGS is taken out in the form of exhaust gas or steam and used as a heat source for warming regeneration of the dehumidifier (for example, the exhaust gas or steam and the waste gas of the chilled air separation device are subjected to heat exchange to Waste gas can be heated, and this waste gas can be used as a heating regeneration gas in the adsorption tank of the dehumidifier), which can reduce the consumption of expensive commercial power and reduce the operating cost of the equipment. In addition to being able to reduce, energy efficiency is also improved, saving energy and good for the environment.
[0022]
The above In the cryogenic air separation device, the gas turbine cogeneration system is operated using the natural gas generated by the vaporization of the liquefied natural gas by the heat exchange as a fuel, and the steam turbine is rotated by the obtained steam. When the raw material air compressor is driven by using the rotating machine, which has been a motor-driven power load in the past, becomes a heat load of the CGS, the heat utilization rate in the CGS increases and energy efficiency is increased. You can improve. Further, when the electric power obtained from the CGS is used as a power source for the rotating machine, a rotational force-power conversion loss in the CGS-side generator and an electric power-rotational force conversion loss in the rotating machine-side motor occur. Then, both the conversion losses can be eliminated by directly rotating the rotating machine using the rotational force generated in the steam turbine, and further the cost can be reduced and the energy efficiency can be improved.
[0023]
Also, above In the cryogenic air separator, the gas turbine cogeneration system is operated using the natural gas generated by vaporizing the liquefied natural gas through the heat exchange as described above, and the raw air compressor is driven using the resulting rotational force. In such a case, the rotational force-power conversion loss in the CGS-side generator and the power-rotational force conversion loss in the rotating machine-side electric motor can be eliminated, and cost reduction and energy efficiency can be improved.
[0024]
In addition, the above In the cryogenic air separation device, the gas turbine cogeneration system is operated using the natural gas generated by the vaporization of the liquefied natural gas by the heat exchange as a fuel, and a part of the resulting compressed compressed air is taken out, and the raw air In the case where it is used, the rotational force-power conversion loss in the CGS side generator and the power-rotational force conversion loss in the rotating machine side electric motor can be eliminated. In addition, since the raw air compressor on the chilled air separation device side can be eliminated, it is possible to improve energy efficiency and further reduce costs. Such a thing is also possible by using surplus air in the combustion air compressor of the gas turbine or improving the capability or function of the combustion air compressor.
[0025]
And the above In the cryogenic air separator, when at least one of the liquefied nitrogen gas and liquefied oxygen gas produced by liquefying the product gas by heat exchange is stored in the storage tank, the liquefied nitrogen gas and liquefied gas stored in the storage tank are stored. By using at least one of oxygen gas for backup or peak cut, at least one of liquefied nitrogen gas and liquefied oxygen gas replenished from outside the apparatus can be reduced.
[0026]
In addition, the above In the cryogenic air separation device, natural gas obtained by vaporization after heat exchange can be supplied to customers together with product gas. Moreover, the chilled air separation apparatus of the present invention can also supply power, heat, compressed air, etc. obtained from CGS to consumers.
[0027]
Also, the above The cryogenic air separation device is a comprehensive utility supply system that can stably supply not only nitrogen gas and oxygen gas but also natural gas, electric power, heat, and compressed air at a low cost. It can contribute to improvement, rationalization, reduction of business cost and energy saving. Moreover, energy efficiency is high and it can contribute also to environmental problems, such as global warming.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Next, reference embodiments (FIGS. 1 and 2) and embodiments (FIGS. 3 to 6) of the present invention will be described in detail with reference to the drawings.
[0029]
FIG. 1 shows a reference form of a cryogenic air separation device. In this reference embodiment, in the cryogenic air separation apparatus shown in FIG. 7, liquefied nitrogen gas is obtained by cooling and liquefying a part of product nitrogen gas by exchanging heat with liquefied natural gas (LNG) supplied from outside the apparatus. The liquefaction cold box 11 which manufactures is provided.
[0030]
More specifically, the liquefied cold box 11 includes an LNG heat exchanger 13, a nitrogen liquefier 14 to which liquefied natural gas is supplied from outside the apparatus via an external supply pipe 17, and the inside of the nitrogen liquefier 14. A condenser 15 and a gas-liquid separator 16 are housed in the LNG heat exchanger 13, and a part of product nitrogen gas (vaporized nitrogen gas) passing through the supply pipe 8 is supplied to the LNG heat exchanger 13. 8 is introduced via a branch pipe 12a that branches from 8. Further, the vaporized nitrogen gas cooled by the LNG heat exchanger 13 is introduced into the condenser 15 through the outlet pipe 12b. In addition, liquefied nitrogen gas that has passed through the condenser 15 is introduced into the gas-liquid separator 16 through a connecting pipe 12 c provided with a flash valve 18. The liquefied portion (liquefied nitrogen gas) in the gas-liquid separator 16 is supplied to the liquefied nitrogen storage tank 9 via the liquefied nitrogen gas supply pipe 19 and stored.
[0031]
In the reference diagram of FIG. 1, 20 is a nitrogen booster disposed in the branch pipe 12 a, and 21 a is a first supply pipe that sends liquefied natural gas in the nitrogen liquefier 14 to the LNG heat exchanger 13. And 23a is a second feed pipe for sending the natural gas in the nitrogen liquefier 14 to the LNG heat exchanger 13. 25a is a third feed pipe that sends the vaporized portion (vaporized nitrogen gas) in the gas-liquid separator 16 to the LNG heat exchanger 13, and the vaporized nitrogen gas that has passed through the LNG heat exchanger 13 is the third connecting pipe 25b. Is supplied as product nitrogen gas to the supply pipe 8 via The other parts are the same as those of the cryogenic air separation device shown in FIG. 7, and the same reference numerals are given to the same parts.
[0032]
In the above configuration, the product nitrogen gas derived from the cold separation cold box 6 in the cryogenic air separation apparatus shown in FIG. 7 and then pressurized by the product nitrogen compressor 7 partially passes through the branch pipe 12a, and the nitrogen booster The pressure is further increased at 20 and then introduced into the liquefied cold box 11. In the nitrogen booster 20, the vaporized nitrogen gas is pressurized in order to increase the liquefaction temperature (boiling point) of the vaporized nitrogen gas so that liquefaction easily occurs due to the cold heat of the liquefied natural gas. On the other hand, the remainder of the product nitrogen gas is sent to the consumer as it is through the supply pipe 8.
[0033]
The vaporized nitrogen gas introduced into the liquefied cold box 11 through the branch pipe 12 a is first liquefied natural gas led out from the bottom of the nitrogen liquefier 14 in the LNG heat exchanger 13, natural gas vaporized in the nitrogen liquefier 14. The gas and the vaporized nitrogen gas vaporized by the gas-liquid separator 16 are cooled by exchanging heat, and then in the condenser 15, the liquefied natural gas and heat supplied to the nitrogen liquefier 14 via the external supply pipe 17. It is exchanged and cooled and liquefied. Next, the liquefied nitrogen gas that has passed through the nitrogen liquefier 14 is decompressed by the flash valve 18 and then introduced into the gas-liquid separator 16 to be separated into a vaporized portion (vaporized nitrogen gas) and a liquefied portion (liquefied nitrogen gas). Is done. The vaporized portion in the gas-liquid separator 16 passes through the LNG heat exchanger 13 and is supplied to the supply pipe 8 as product nitrogen gas and merges with the product nitrogen gas that passes through the supply pipe 8, while the liquefied portion is a liquefied nitrogen storage tank. After being stored in 9, it is introduced as a liquefied nitrogen gas for a cold source into a rectifying column in the cold separation cold box 6. The liquefied nitrogen gas is also supplied from the liquefied nitrogen storage tank 9 for backup, peak cut, and liquefied nitrogen applications when the apparatus is stopped.
[0034]
On the other hand, the liquefied natural gas introduced into the liquefied cold box 11 from the outside of the apparatus is first recovered by the nitrogen liquefier 14 and then by the LNG heat exchanger 13 to recover the cold heat to the vaporized nitrogen gas. And derived from the liquefied cold box 11. Natural gas derived from the liquefied cold box 11 is still in a low temperature state.
[0035]
As described above, in this reference embodiment, liquefied nitrogen gas can be produced from product nitrogen gas even in a chilled air separator that cannot produce liquefied nitrogen gas. Accordingly, it is possible to reduce or eliminate the supply of liquefied nitrogen gas stored in the liquefied nitrogen storage tank 9 for a cold source, backup or the like from the outside of the apparatus. Moreover, the cold energy of liquefied natural gas can be used effectively.
[0036]
In this reference embodiment, the cryogenic air separation device is a cryogenic air separation device that uses liquefied nitrogen gas as a cold source, but is not limited to this, and a deep air that does not use liquefied nitrogen gas as a cold source. It may be a cold air separation device. The same applies to the embodiments shown in FIGS.
[0037]
FIG. 2 shows another embodiment of the cryogenic air separation device. In this reference embodiment, the cooling of the raw material air is also performed using the cold energy of liquefied natural gas.
[0038]
In this reference embodiment, a compressed air cooler 27 is provided in place of the refrigerator 3 provided on the outlet side of the raw material air compressor 2. In the above configuration, the liquefied natural gas supplied from the outside of the apparatus through the external supply pipe 17 is passed through the first branch pipe 29a to the compressed air cooler 27 on the outlet side of the raw material air compressor 2 to cool the liquefied natural gas. Thus, the raw material air is cooled.
[0039]
As described above, in this reference embodiment, the refrigerator 3 can be deleted by cooling the raw material air. Further, the processing capacity of the dehumidifier 4 can be reduced and the capacity of the raw air compressor 2 can be prevented from being lowered when the atmospheric temperature rises.
[0040]
FIG. 3 shows a first embodiment of the cryogenic air separation device of the present invention. In this embodiment, unlike the reference embodiment shown in FIG. 1, a part of the product nitrogen gas is liquefied by heat exchange with liquefied natural gas, and the natural gas vaporized by this heat exchange is converted into the reference embodiment shown in FIG. Thus, it is also used for cooling raw material air. In addition, a CGS (Gas Turbine Cogeneration System) is operated using the natural gas as a fuel, and the electric power and heat obtained are used as a power source for the chilled air separation device.
[0041]
In the first embodiment, a compressed air cooler 27 similar to the reference embodiment shown in FIG. 2 is provided in place of the refrigerator 3 provided on the outlet side of the raw material air compressor 2 in the reference embodiment shown in FIG. ing. The take-out pipe 31 includes a first take-out pipe 31a that is connected to both the connecting pipes 21b and 23b and is connected to the compressed air cooler 27, and a second take-out pipe 31b that extends from the compressed air cooler 27. The heaters 24 (see FIGS. 1 and 2) are not provided in the two extraction pipes 31a and 31b. Further, instead of the electric regenerative heater 5 (see FIGS. 1 and 2), a regenerative heater 32 that uses steam is used. Moreover, in this 1st Embodiment, CGS which has the intake filter 33, the combustion air compressor 34, the combustor 35, the gas turbine 36, the generator 37, the exhaust gas boiler 38, etc. is provided. In FIG. 3, 39 a is a water introduction pipe for introducing water into the exhaust gas boiler 38. Reference numeral 39b denotes a steam outlet pipe for extracting steam from the exhaust gas boiler 38. A part of the steam led out by the steam outlet pipe 39b is used via the supply pipe 40a, and the remainder is regenerated heater via the steam introduction pipe 40b. Then, it is recovered through the steam recovery pipe 40c. Other parts are the same as those in the reference embodiment shown in FIG. 1, and the same reference numerals are given to the same parts.
[0042]
In the above configuration, the liquefied natural gas supplied from the outside of the apparatus by the external supply pipe 17 is vaporized by being used for liquefying the product nitrogen gas in the liquefied cold box 11, and then the compressed air cooler on the outlet side of the raw material air compressor 2 27 is introduced to cool the raw material air. In the first embodiment, the natural gas derived from the liquefied cold box 11 is still in a low temperature state and is then used for cooling the raw air. For cooling the raw material air, a compressed air cooler 27 is provided only on the outlet side of the raw material air compressor 2.
[0043]
In the first embodiment, the natural gas passing through the compressed air cooler 27 passes through the connecting pipe 41 and is introduced into the combustor 35 as fuel for the gas turbine CGS. In this gas turbine type CGS, combustion air is introduced into the combustion air compressor 34 via the intake filter 33, compressed by the combustion air compressor 34, and then introduced into the combustor 35, where it is mixed with natural gas. Combustion takes place. The gas turbine 36 is rotated by the thrust of the combustion gas injected from the combustor 35, and the generator 37 is driven by this rotational force to generate power. The electric power generated by the generator 37 is used as a power source for the raw air compressor 2, the product nitrogen compressor 7, the nitrogen booster 20 and other ancillary equipment (not shown) of the cryogenic air separator. . The combustion air compressor 34 is also driven by the rotational force of the gas turbine 36.
[0044]
Further, the combustion exhaust gas exhausted with the thrust removed by the gas turbine 36 is sent to the exhaust gas boiler 38 and exhaust heat is recovered, and then released into the atmosphere. In the exhaust gas boiler 38, steam is produced from water supplied from outside the apparatus through the water introduction pipe 39a by heat exchange with the combustion exhaust gas. This steam is led out from the steam lead-out pipe 39b, and a part thereof is used as a heat source for the regenerative heater 32. In this embodiment, surplus natural gas, electric power, and steam are supplied to the customer together with the product nitrogen gas.
[0045]
As described above, in the first embodiment, the cold energy of liquefied natural gas is effectively utilized, and CGS using natural gas obtained by this utilization as fuel is introduced, and the resulting electric power and steam are deepened. Used for cold air separators. For this reason, it is possible to reduce expensive commercial power, and to save energy by reducing apparatus operating costs and improving energy efficiency.
[0046]
FIG. 4 shows a second embodiment of the cryogenic air separation device of the present invention. In the second embodiment, unlike the first embodiment shown in FIG. 3, a steam turbine 43 that obtains a rotational force using steam from the CGS is installed, and the steam turbine 43 is used to perform chilled air separation. The raw material air compressor 2 of the apparatus is driven. Further, the heat utilization of the CGS to the regenerative heater 32 is different from the first embodiment shown in FIG. 3, and is performed by directly using exhaust gas instead of steam. Therefore, as the regenerative heater 32, an exhaust gas type is used.
[0047]
In the second embodiment, a steam supply pipe 44 a that supplies a part of the steam produced by the exhaust gas boiler 38 to the steam turbine 43 and a steam recovery pipe 44 b that recovers the steam that has passed through the steam turbine 43 are provided. Further, as in the first embodiment shown in FIG. 3, a part of the combustion exhaust gas discharged from the gas turbine 36 is sent to the exhaust gas boiler 38, and the remainder is regenerated through the exhaust gas introduction pipe 45a. It is used as a heat source. In the figure, 45b is an exhaust gas discharge pipe for releasing the combustion exhaust gas that has passed through the regenerative heater 32 to the atmosphere.
[0048]
As described above, in the second embodiment, the raw material air compressor 2 is directly rotated by using the rotational force generated in the steam turbine 43, so that this occurs in the first embodiment shown in FIG. Conversion loss (rotational power-power conversion loss in the CGS side generator 37 and power-rotational force conversion loss in the raw air compressor 2 side electric motor) can be eliminated, and cost reduction and energy efficiency are further improved. be able to. In addition, since the raw material air compressor 2 that has conventionally been an electric power load becomes a heat load of the CGS, the heat utilization in the CGS increases, and it becomes possible to further improve the overall energy efficiency.
[0049]
In the second embodiment, only the raw material air compressor 2 is driven by the rotational force of the steam turbine 43, but the drive mechanism of the product nitrogen compressor 7 and the nitrogen booster 20 is integrated mechanical. If it is devised by a gear or the like, it can be driven by the steam turbine 43.
[0050]
FIG. 5 shows a third embodiment of the cryogenic air separation device of the present invention. In the third embodiment, unlike the first embodiment shown in FIG. 3, the raw air compressor 2 is directly driven by the rotational force of the gas turbine 36 of the CGS.
[0051]
As described above, in the third embodiment, since the raw air compressor 2 is directly driven by the rotational force of the gas turbine 36, there is no energy conversion loss, and the cost is reduced and the energy efficiency is improved accordingly. Has been made.
[0052]
In the third embodiment, only the raw material air compressor 2 is driven by the rotational force of the gas turbine 36, but the drive mechanism for the product nitrogen compressor 7 and the nitrogen booster 20 is integrated mechanical. If it is devised by a gear or the like, it can be driven by the gas turbine 36.
[0053]
FIG. 6 shows a fourth embodiment of the cryogenic air separation device of the present invention. In the fourth embodiment, unlike the third embodiment shown in FIG. 5, the raw air compressor 2 of the cryogenic air separation device is eliminated, and instead of the combustion air compressor 34 of the gas turbine CGS. A part of the compressed air is derived, and this is used as raw material air for the cryogenic air separation device. That is, the raw air compressor 2 of the cryogenic air separator and the combustion air compressor 34 of the gas turbine CGS are integrated into an air compressor 46, which is driven by the rotational force of the gas turbine 36. In the figure, 47 is a supply pipe for supplying a part of the compressed air derived from the air compressor 46 to the compressed air cooler 27 as raw air.
[0054]
As described above, in the fourth embodiment, it is possible to eliminate the motor conversion loss and the motor conversion loss in the raw material air compression of the cryogenic air separation device. Further, since the raw air compressor 2 on the chilled air separation device side can be eliminated, energy efficiency can be improved and cost can be further reduced.
[0055]
【The invention's effect】
As described above, according to the chilled air separation apparatus of the present invention, the chilled air that effectively utilizes the cold energy of the liquefied natural gas and conventionally can produce at least one of vaporized nitrogen gas and vaporized oxygen gas. From the separator, it is possible to easily produce at least one of liquefied nitrogen gas and liquefied oxygen gas.
[0056]
Furthermore, according to the cryogenic air separation device of the present invention, it is possible to reduce or eliminate the replenishment amount of at least one of the liquefied nitrogen gas and the liquefied oxygen gas that has conventionally been necessary to replenish from outside the device. In addition, by producing at least one of liquefied nitrogen gas and liquefied oxygen gas more than the necessary cold source, this surplus can be used for other purposes (for example, for backup at the time of equipment shutdown or the demand amount provides the supply capacity. For peak cuts in the case of exceeding).
[0057]
Moreover, according to the cryogenic air separation apparatus of this invention, the raw material air introduce | transduced into a rectification tower can be cooled using the cold energy which liquefied natural gas has effectively. And when performing the said cooling in front of a dehumidifier, the water | moisture content in raw material air can be reduced and the processing capacity of a dehumidifier can be reduced, maintaining the raw material air inhalation amount. In particular, in the past, when a refrigerator for cooling the raw material air has been installed, the capacity of the refrigerator can be reduced or eliminated.
[0058]
Furthermore, in the cryogenic air separation apparatus of the present invention, when at least one of the liquefied nitrogen gas and the liquefied oxygen gas generated by liquefying the product gas by the heat exchange is stored in the storage tank, the product gas is stored in the storage tank. By using at least one of the liquefied nitrogen gas and the liquefied oxygen gas for backup or peak cutting, at least one of the liquefied nitrogen gas and liquefied oxygen gas to be replenished from outside the apparatus can be reduced.
[0059]
Further, according to the cryogenic air separation device of the present invention, the gas turbine cogeneration system is operated using the natural gas generated by vaporizing the liquefied natural gas by the heat exchange as a fuel, and the obtained electric power is used as the power of the device. Since it is used as a source, it has high energy efficiency, excellent environmental properties, and can stably generate product gas at low cost.
[0060]
In the cryogenic air separation apparatus of the present invention, the CGS is operated using the natural gas generated by vaporizing the liquefied natural gas by the heat exchange as a fuel, and the obtained exhaust gas or steam is removed from the raw air to remove moisture. When used as a heat source for heating and regeneration of a humidifier, heat from the CGS is taken out in the form of exhaust gas or steam and used as a heat source for heating and regeneration of a dehumidifier (for example, the exhaust gas or steam described above) And the waste gas of the cryogenic air separation device can be heat-exchanged to heat the waste gas, and the waste gas can be used as a heating regeneration gas in the adsorption tank of the dehumidifier). Therefore, the consumption of expensive commercial power can be reduced, the operation cost of the apparatus can be reduced, the energy efficiency is improved, the energy is saved, and the environment is good.
[0061]
In the cryogenic air separation device of the present invention, the gas turbine cogeneration system is operated using the natural gas generated by vaporizing the liquefied natural gas by the heat exchange as a fuel, and the steam turbine is rotated by the obtained steam. When the raw material air compressor is driven using the rotational force, since the rotating machine, which was a motor-driven power load in the past, becomes a heat load of the CGS, the heat utilization rate in the CGS increases. Energy efficiency can be improved. Further, in comparison with the case where electric power obtained from CGS is used as a power source for a rotating machine, the present invention eliminates both the conversion losses by directly rotating the rotating machine using the rotational force generated by the steam turbine. In addition, cost reduction and energy efficiency can be improved.
[0062]
In the cryogenic air separation apparatus of the present invention, the gas turbine cogeneration system is operated using the natural gas generated by vaporizing the liquefied natural gas by the heat exchange as a fuel, and the resulting air is used to compress the raw air When the machine is driven, the rotational force-power conversion loss in the CGS-side generator and the power-rotational force conversion loss in the rotary machine-side electric motor can be eliminated, thereby reducing costs and improving energy efficiency. .
[0063]
In the cryogenic air separation apparatus of the present invention, the gas turbine cogeneration system is operated using the natural gas generated by vaporizing the liquefied natural gas by the heat exchange as a fuel, and a part of the resulting compressed compressed air is taken out. When used as raw material air, it is possible to eliminate the rotational force-power conversion loss in the CGS side generator and the power-rotational force conversion loss in the rotating machine side electric motor. In addition, since the raw air compressor on the chilled air separation device side can be eliminated, it is possible to improve energy efficiency and further reduce costs. Such a thing is also possible by using surplus air in the combustion air compressor of the gas turbine or improving the capability or function of the combustion air compressor.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a reference embodiment of a cryogenic air separation device.
FIG. 2 is an explanatory view showing another reference embodiment of the cryogenic air separation device.
FIG. 3 is an explanatory view showing a first embodiment of a cryogenic air separator according to the present invention.
FIG. 4 is an explanatory view showing a second embodiment of the cryogenic air separation device of the present invention.
FIG. 5 is an explanatory view showing a third embodiment of the cryogenic air separator according to the present invention.
FIG. 6 is an explanatory view showing a fourth embodiment of the cryogenic air separator according to the present invention.
FIG. 7 is an explanatory diagram of a conventional example.
[Explanation of symbols]
17 External supply pipe

Claims (1)

原料空気を精留塔に導入し製品ガスとして気化窒素ガスおよび気化酸素ガスの少なくとも一方を製造し、この製品ガスを製品ガス圧縮機を用いて圧縮するとともに、上記製品ガスの少なくとも一部を、装置外から供給される液化天然ガスと熱交換させて冷却するLNG熱交換器を有する深冷空気分離装置であって、上記原料空気を圧縮する原料空気圧縮機と、圧縮された原料空気と上記LNG熱交換器を通過した低温の天然ガスとを熱交換させて冷却する圧縮空気冷却器と、この圧縮空気冷却器を経由した原料空気を導入して深冷分離する精留塔と、上記圧縮空気冷却器で気化した天然ガスを燃料とするコージェネレーションシステムと、上記圧縮空気冷却器と精留塔との間に配置され、原料空気中の水分を除去する脱湿器と、この脱湿器の再生用ヒーターとを備え、このコージェネレーションシステムは、上記気化した天然ガスを燃焼させた排ガスにより駆動されるガスタービンと、このガスタービンと同軸に接続された発電機と、上記ガスタービンと同軸に接続された燃焼空気圧縮機と、上記ガスタービン駆動後の排ガスの温熱を利用して水蒸気を発生させる排ガスボイラとを有し、上記発電機から得られた電力を、上記製品ガス圧縮機に供給するとともに、上記再生用ヒーターに、脱湿器の加熱再生用熱源として、上記ガスタービン駆動後の排ガスの一部、もしくは、上記排ガスボイラで発生した水蒸気の一部が、供給されるようになっていることを特徴とする深冷空気分離装置。Raw material air is introduced into a rectifying column to produce at least one of vaporized nitrogen gas and vaporized oxygen gas as a product gas, the product gas is compressed using a product gas compressor, and at least a part of the product gas is A cryogenic air separation apparatus having an LNG heat exchanger that cools by cooling with liquefied natural gas supplied from outside the apparatus, the raw material air compressor that compresses the raw material air, the compressed raw material air, and the above A compressed air cooler that cools the low-temperature natural gas that has passed through the LNG heat exchanger by heat exchange, a rectifying column that cools and cools by introducing the raw air through the compressed air cooler, and the compression A cogeneration system that uses natural gas vaporized by an air cooler as a fuel, a dehumidifier that is disposed between the compressed air cooler and the rectifying tower and removes moisture in the raw air, and the dehumidifier of And a raw heater, the cogeneration system includes a gas turbine driven by the exhaust gas is burned natural gas as described above vaporized, a generator connected to the gas turbine coaxially, to the gas turbine coaxially A combustion air compressor connected to the combustion gas compressor; At the same time, a part of the exhaust gas after driving the gas turbine or a part of the steam generated in the exhaust gas boiler is supplied to the regeneration heater as a heat regeneration heat source of the dehumidifier. and cryogenic air separation unit, characterized in that are.
JP2001120208A 2001-04-18 2001-04-18 Cryogenic air separator Expired - Lifetime JP4707865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001120208A JP4707865B2 (en) 2001-04-18 2001-04-18 Cryogenic air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001120208A JP4707865B2 (en) 2001-04-18 2001-04-18 Cryogenic air separator

Publications (2)

Publication Number Publication Date
JP2002318069A JP2002318069A (en) 2002-10-31
JP4707865B2 true JP4707865B2 (en) 2011-06-22

Family

ID=18970291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001120208A Expired - Lifetime JP4707865B2 (en) 2001-04-18 2001-04-18 Cryogenic air separator

Country Status (1)

Country Link
JP (1) JP4707865B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640586B1 (en) * 2002-11-01 2003-11-04 Conocophillips Company Motor driven compressor system for natural gas liquefaction
JP2007322032A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Desiccant air conditioning system
US8601833B2 (en) 2007-10-19 2013-12-10 Air Products And Chemicals, Inc. System to cold compress an air stream using natural gas refrigeration
FR2957408B1 (en) * 2010-03-09 2015-07-17 Air Liquide METHOD AND APPARATUS FOR HEATING AN AIR GAS FROM AN AIR SEPARATION APPARATUS
TWI746977B (en) 2019-01-22 2021-11-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 Gas liquefaction method and gas liquefaction device
JP7355979B2 (en) 2019-09-26 2023-10-04 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード gas liquefaction equipment
CN114053801A (en) * 2021-12-09 2022-02-18 安徽中科昊海气体科技有限公司 Neon gas recovery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4616081B1 (en) * 1966-04-30 1971-05-01
JPS55118568A (en) * 1979-03-02 1980-09-11 Osaka Gas Co Ltd Method of cooling air
JPH09138063A (en) * 1995-11-14 1997-05-27 Osaka Gas Co Ltd Air separating method and air separating device utilizing liquefied natural gas cold heat
JPH10238367A (en) * 1997-02-24 1998-09-08 Hitachi Ltd Energy storage type gas turbine power generating system
JPH11142054A (en) * 1997-11-04 1999-05-28 Nippon Sanso Kk Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2060184B1 (en) * 1969-09-10 1973-11-16 Air Liquide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4616081B1 (en) * 1966-04-30 1971-05-01
JPS55118568A (en) * 1979-03-02 1980-09-11 Osaka Gas Co Ltd Method of cooling air
JPH09138063A (en) * 1995-11-14 1997-05-27 Osaka Gas Co Ltd Air separating method and air separating device utilizing liquefied natural gas cold heat
JPH10238367A (en) * 1997-02-24 1998-09-08 Hitachi Ltd Energy storage type gas turbine power generating system
JPH11142054A (en) * 1997-11-04 1999-05-28 Nippon Sanso Kk Method and system for air liquefaction separation utilizing cold heat of liquefied natural gas

Also Published As

Publication number Publication date
JP2002318069A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US10100979B2 (en) Liquid air as energy storage
JP5202945B2 (en) Structure and method for power generation integrated with LNG regasification
CA2525428C (en) Liquefied natural gas regasification configuration and method
JPH09228852A (en) Air separation method for incorporating combustion turbine
JP2014532833A (en) Power generation system and corresponding method
US20150192065A1 (en) Process and apparatus for generating electric energy
US20080115531A1 (en) Cryogenic Air Separation Process and Apparatus
US9810103B2 (en) Method and device for generating electrical energy
WO2007129152A1 (en) Cryogenic air separation process
JP2641581B2 (en) Power generation method
JP3460433B2 (en) Energy storage type gas turbine power generation system
US10177629B2 (en) Method for generating electrical energy and energy generation plant
US4227374A (en) Methods and means for storing energy
JP3063030B2 (en) Pressurized air separation method with use of waste expansion for compression of process streams
US20110308275A1 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
AU747306B2 (en) Installation producing low voltage electricity integrated in a unit separating gas from air
JP4707865B2 (en) Cryogenic air separator
JPH04127850A (en) Liquid air storage power generating system
JP4213389B2 (en) Production, storage and utilization system for liquefied CO2 and dry ice and production, storage and utilization system for liquefied CO2 and hydrogen
US9458762B2 (en) Method and device for generating electrical energy
US20230408192A1 (en) Power generation process utilizing fuel, liquid air and/or oxygen with zero co2 emissions
JP2001141359A (en) Air separator
US9608498B2 (en) Method and device for generating electrical energy
JPS58176407A (en) Multi spindle compound cycle power generating method
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4707865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250