JPH111331A - Production of quartz glass optical member - Google Patents

Production of quartz glass optical member

Info

Publication number
JPH111331A
JPH111331A JP9187598A JP9187598A JPH111331A JP H111331 A JPH111331 A JP H111331A JP 9187598 A JP9187598 A JP 9187598A JP 9187598 A JP9187598 A JP 9187598A JP H111331 A JPH111331 A JP H111331A
Authority
JP
Japan
Prior art keywords
quartz glass
temperature
optical member
glass optical
glass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9187598A
Other languages
Japanese (ja)
Other versions
JP2862001B2 (en
Inventor
Susumu Hachiuma
進 八馬
Shinya Kikukawa
信也 菊川
Yukinori Ota
幸則 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14038744&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH111331(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10091875A priority Critical patent/JP2862001B2/en
Publication of JPH111331A publication Critical patent/JPH111331A/en
Application granted granted Critical
Publication of JP2862001B2 publication Critical patent/JP2862001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quartz glass optical member free from striae by performing a thermal treatment in a chlorine-free atmosphere, heating the synthesized quartz glass at a higher temperature than its softening point, and subsequently deforming the quartz glass obtained by the oxyhydrogen flame hydrolysis method with the gravity in the same direction as the growth axial direction of the quartz glass. SOLUTION: This method for producing a quartz glass optical member comprises heating and hydrolyzing a glass-producing raw material such as SiCl4 in an oxyhydrogen flame to deposit and grow the obtained quartz glass particles on a substrate, heating the formed porous quartz glass at a constant heating rate under an atmosphere having a partial steam pressure of <=0.002 mmHg, holding the heated quartz glass at 800-1,250 deg.C for 1-30 hr to reduce the content of OH groups, heating the quartz glass at 1,350-1,500 deg.C, further heating the clarified quartz glass at a higher temperature of 1650-1800 deg.C than the softening point to deform the heated quartz glass by its own weight in the same direction as the growth axial direction of the quartz glass, and subsequently quenching the deformed quartz glass at a cooling rate of 40 deg.C/hr. Thus, the produced shaped quartz glass has an OH group content of <=100 ppm in a fluctuation margin of ±5 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高エネルギー密度
の光学系に用いられるミラー、レンズ、エタロン、フィ
ルタ、プリズム等の光学部材に適合する高均質な光学用
石英ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly homogeneous quartz glass for optical use which is suitable for optical members such as a mirror, a lens, an etalon, a filter, and a prism used in a high energy density optical system.

【0002】[0002]

【従来の技術】石英ガラスは、近赤外から真空紫外域ま
での広範囲にわたって透明な材料であることならびに寸
法安定性に優れることのために、高エネルギー密度の光
を用いる光学系のための光学部材としても最適な材料で
ある。しかしながら、石英ガラスは通常用いられる光学
ガラスに比較して溶融温度が高く、通常用いられる光学
ガラスを徐冷して脈理(屈折率の変動)を除去する温度
域では徐冷が困難で、屈折率の変動のない光学用石英ガ
ラスを得ることは困難であった。
2. Description of the Related Art Quartz glass is a transparent material over a wide range from the near infrared to the vacuum ultraviolet region and has excellent dimensional stability. It is the most suitable material for the member. However, quartz glass has a higher melting temperature than commonly used optical glass, and it is difficult to gradually cool the commonly used optical glass in a temperature range where the striae (fluctuation in refractive index) is removed by slow cooling. It was difficult to obtain a quartz glass for optics with no change in the rate.

【0003】このような高温度での熱処理により石英ガ
ラス中の脈理を除去する方法としては、例えば特開昭6
2−158121には、高純度石英ガラスを1800℃
以上の高温で溶融させた上に、2気圧以上の静水圧力下
で処理する方法が開示されている。しかしながら、この
ような高温高圧に耐え得る装置は、必然的に大がかりと
なり高価とならざるを得ない。
A method for removing striae in quartz glass by heat treatment at such a high temperature is disclosed in, for example,
2-158121 has a high purity quartz glass of 1800 ° C.
A method of melting at a high temperature as described above and treating at a hydrostatic pressure of 2 atm or more is disclosed. However, a device that can withstand such high temperature and pressure is inevitably bulky and expensive.

【0004】また、特開昭64−28240には、石英
ガラスを軟化点以上の温度に加熱して自重変形を行わせ
る操作を繰り返し行い、しかも操作毎の自重変形方向を
変えて、内部の脈理を除去する方法が開示されている。
この方法では、軟化点以上の成形操作を繰り返し行う必
要があり、工程が煩雑になる問題点があった。
Japanese Patent Application Laid-Open No. 64-28240 discloses an operation in which quartz glass is repeatedly heated to a temperature higher than the softening point and deformed under its own weight. A method is disclosed for removing the problem.
In this method, it is necessary to repeatedly perform a molding operation at a temperature equal to or higher than the softening point, and there is a problem that the process becomes complicated.

【0005】一方近年、超LSIの製造においては、サ
ブミクロン以下のパターン解像度が要求され、フォトリ
ソグラフィーの露光光源としてより紫外光のKrFエキ
シマレーザ(λ=248nm)又はArFレーザ(λ=
193nm)が検討されている。このように露光光源が
短波長になると、露光装置に使用される光学部材として
は、それらの波長域における透過性の問題から商業的に
応用可能な光学材料としては石英ガラスしかない。した
がって、露光装置の収差補正を不要とするためには、石
英ガラス自体の屈折率の変動を1×10-6以下に抑える
必要がある。
On the other hand, in recent years, in the manufacture of VLSI, a pattern resolution of submicron or less has been required, and a KrF excimer laser (λ = 248 nm) or an ArF laser (λ =
193 nm). As described above, when the exposure light source has a short wavelength, there is only quartz glass as a commercially applicable optical material as an optical member used in the exposure apparatus due to a problem of transparency in those wavelength ranges. Therefore, in order to eliminate the need for correcting the aberration of the exposure apparatus, it is necessary to suppress the fluctuation of the refractive index of the quartz glass itself to 1 × 10 −6 or less.

【0006】石英ガラスの脈理が徐冷により除去された
としても、石英ガラス中に屈折率の変動を与えるような
元素が分布していれば、その元素がもたらす屈折率の変
動のために超LSIの露光装置の光学部材として使用可
能な高均質性を達成することは困難である。例えばG.
Hetherington等(1962)は、石英ガラ
ス中に含有されるOH基量は屈折率に対して、約−1×
10-6/10ppmの変動をあたえることを報告してい
る。また石英ガラス中のCl元素も、1×10-6/10
ppm程度の屈折率変動をもたらすといわれている(S
usa等(1985))。
[0006] Even if the striae of the quartz glass are removed by slow cooling, if an element that causes a change in the refractive index is distributed in the quartz glass, the ultra-smallness of the element causes the change in the refractive index. It is difficult to achieve high homogeneity that can be used as an optical member of an LSI exposure apparatus. For example, G.
Heatherington et al. (1962) reported that the amount of OH groups contained in quartz glass was about -1 ×
It gives a variation of 10 −6 / 10 ppm. The Cl element in the quartz glass is also 1 × 10 −6 / 10
It is said to cause a refractive index fluctuation of about ppm (S
usa et al. (1985)).

【0007】したがって、屈折率の変動が1×10-6
下の光学用石英ガラス体を製造する際には、該石英ガラ
ス中に含有されるOH基量ならびにCl量の変動幅をな
くし、石英ガラス体中のOH基量ならびにCl量をあら
ゆるところで均一にすればよいことは容易に推察され
る。ところがガラス形成原料を火炎加水分解して多孔質
ガラス体を形成した後透明ガラス化した石英ガラスや、
ガラス形成原料を火炎加水分解して石英ガラスを直接基
材に堆積させる方法で製造される石英ガラスにおいても
製造時の温度分布等の影響によりOH基量を石英ガラス
全域にわたって均一にすることは困難であった。
Therefore, when manufacturing an optical quartz glass body having a refractive index variation of 1 × 10 −6 or less, the fluctuation range of the OH group content and the Cl content contained in the quartz glass is eliminated, and It is easily presumed that the OH group content and the Cl content in the glass body may be made uniform everywhere. However, quartz glass that has been transformed into a vitreous glass by forming a porous glass body by flame hydrolysis of a glass forming raw material,
Even with quartz glass manufactured by flame hydrolysis of glass-forming raw materials and directly depositing quartz glass on a substrate, it is difficult to make the amount of OH groups uniform over the entire quartz glass due to the influence of temperature distribution and the like during manufacturing. Met.

【0008】次に考えられるOH基量の変動を抑える方
法としては、石英ガラス中に含有されるOH基量の絶対
値を減少させることである。多孔質石英ガラス体を透明
ガラス化する方法において、該方法で製造される石英ガ
ラス中のOH基量を、Cl2、CCl4 等のハロゲン化
合物で多孔質ガラス体を処理することによって低減化す
る技術は、低伝送損失な光ファイバを製造する手段とし
て公知な技術である。しかしながら、かかる方法で作製
された石英ガラス中には、Cl元素が分布し、それが屈
折率の変動をもたらし所望の均質性を達成することが困
難であった。
The next conceivable method for suppressing the fluctuation of the OH group amount is to reduce the absolute value of the OH group amount contained in the quartz glass. In a method of vitrifying a porous quartz glass body, the amount of OH groups in the quartz glass produced by the method is reduced by treating the porous glass body with a halogen compound such as Cl 2 or CCl 4. The technique is a technique known as a means for producing an optical fiber with low transmission loss. However, the Cl element is distributed in the quartz glass produced by such a method, which causes a change in the refractive index, and it is difficult to achieve a desired homogeneity.

【0009】さらには特開平2−102139には、石
英ガラス中のOH基濃度をなめらかな凹型に分布させる
ことによって均質性を向上させる方法が開示されてい
る。この方法では、石英ガラス中に凹型のOH基分布を
形成させる必要があり、熱処理条件を精密に制御する必
要があった。さらに気相反応法により多孔質石英ガラス
体を経て形成された石英ガラスについては、該石英ガラ
ス中には凸型のOH基分布が形成されるため、特開平2
−102139に開示された方法を応用することは実質
的に不可能である問題があった。
Furthermore, Japanese Patent Application Laid-Open No. 2-102139 discloses a method for improving the homogeneity by distributing the OH group concentration in quartz glass in a smooth concave shape. In this method, it is necessary to form a concave OH group distribution in the quartz glass, and it is necessary to precisely control the heat treatment conditions. Further, regarding quartz glass formed through a porous quartz glass body by a gas phase reaction method, a convex OH group distribution is formed in the quartz glass.
There was a problem that it was practically impossible to apply the method disclosed in -102139.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、前述
の問題点を解消し、高エネルギー密度の光を利用する光
学系に応用可能な、実質的に脈理のない光学用石英ガラ
ス部材とその製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a quartz glass member for optical use having substantially no striae which can be applied to an optical system utilizing light of high energy density. And a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、ガラス形成原料を火炎加
水分解させて形成される多孔質石英ガラス体を加熱し透
明ガラス化して製造される気相反応法石英ガラスにおい
て、該石英ガラス中のCl含有量が10ppm以下、O
H基含有量が100ppm以下であって、かつ重金属及
びアルカリの含有量の総計が1ppm以下であることを
特徴とする光学用石英ガラスを提供する。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a porous quartz glass body formed by flame hydrolysis of a glass-forming raw material is heated and made into a transparent vitreous glass. In the vapor-phase reaction-processed quartz glass, the Cl content in the quartz glass is 10 ppm or less, and O
An optical quartz glass characterized by having an H group content of 100 ppm or less and a total content of heavy metals and alkalis of 1 ppm or less.

【0012】また本発明は、上記光学用石英ガラスにお
いて、少なくとも1方向について直径220mmの円形
で囲まれる領域にわたって屈折率の変動幅が1×10-6
以下であることを特徴とする光学用石英ガラスを提供す
る。
Further, according to the present invention, in the above quartz glass for optical use, the fluctuation range of the refractive index is 1 × 10 −6 over a region surrounded by a circle having a diameter of 220 mm in at least one direction.
An optical quartz glass characterized by the following is provided.

【0013】また本発明は、(1)ガラス形成原料を火
炎加水分解して形成される石英ガラス微粒子を基材に堆
積・成長させて多孔質石英ガラス体を形成する工程、
(2)前記多孔質石英ガラス体を透明ガラス化温度以下
の温度域で一定時間保持し加熱処理する工程、(3)前
記加熱処理された多孔質石英ガラス体を、透明ガラス化
温度まで昇温・透明ガラス化して石英ガラス体を得る工
程、(4)前記石英ガラス体を軟化点以上の温度に加熱
して成形石英ガラス体を得る工程、さらに、(5)前記
成形石英ガラス体を徐冷点近傍の温度域を所定の冷却速
度以下の冷却速度で徐冷する工程からなることを特徴と
する、Cl含有量が10ppm以下、OH基含有量が1
00ppm以下であってかつ重金属及びアルカリの含有
量の総計が1ppm以下である光学用石英ガラスの製造
方法を提供する。
The present invention also provides (1) a step of depositing and growing quartz glass fine particles formed by flame hydrolysis of a glass forming raw material on a substrate to form a porous quartz glass body;
(2) a step of holding the porous quartz glass body at a temperature within the transparent vitrification temperature or lower for a certain period of time and performing a heat treatment; and (3) raising the temperature of the heat-treated porous quartz glass body to a transparent vitrification temperature. -A step of obtaining a quartz glass body by vitrification, (4) a step of heating the quartz glass body to a temperature equal to or higher than the softening point to obtain a formed quartz glass body, and (5) gradually cooling the formed quartz glass body. A step of gradually cooling the temperature region near the point at a cooling rate lower than a predetermined cooling rate, wherein the Cl content is 10 ppm or less and the OH group content is 1
Provided is a method for producing optical quartz glass having a total content of heavy metals and alkalis of not more than 00 ppm and not more than 1 ppm.

【0014】[0014]

【発明の実施の形態】本発明において、あらかじめガラ
ス形成原料を火炎加水分解して得られる石英ガラス微粒
子を基材に堆積・成長させた多孔質石英ガラス体を透明
ガラス化する温度以下の温度域で水蒸気分圧の低い雰囲
気中に一定時間加熱保持した後、透明ガラス化温度に昇
温加熱して透明ガラス化して石英ガラス体とする。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a temperature range not higher than the temperature at which a porous quartz glass body obtained by depositing and growing quartz glass fine particles obtained by previously flame-hydrolyzing a glass-forming raw material on a substrate is turned into a transparent glass. After heating for a certain period of time in an atmosphere having a low water vapor partial pressure, the glass is heated to a transparent vitrification temperature and heated to form a transparent glass to form a quartz glass body.

【0015】用いられるガラス形成原料としては、ガス
化可能な原料であれば特に制限されないが、SiCl
4 、SiHCl3 、SiH2 Cl2 、Si(CH3 )C
3 等の塩化物、SiF4 、SiHF3 、SiH22
等のフッ化物、SiBr4 、SiHBr3 等の臭化物、
SiI4 のヨウ化物などのハロゲン化ケイ素化合物が作
業性やコストの面から好ましい。多孔質石英ガラス体
は、これらのガラス形成原料を通常の酸水素火炎中で加
水分解し、生じた石英ガラス微粒子を基材上に堆積させ
て形成される。
The glass-forming raw material used is not particularly limited as long as it is a gasizable raw material.
4 , SiHCl 3 , SiH 2 Cl 2 , Si (CH 3 ) C
chlorides such as l 3, SiF 4, SiHF 3 , SiH 2 F 2
Such as fluoride, bromide such as SiBr 4 , SiHBr 3 ,
A silicon halide compound such as iodide of SiI 4 is preferred in terms of workability and cost. The porous quartz glass body is formed by hydrolyzing these glass forming raw materials in a normal oxyhydrogen flame and depositing the resulting quartz glass fine particles on a substrate.

【0016】このようにして得られた多孔質石英ガラス
体は、ついで低水蒸気分圧雰囲気下で一定時間加熱保持
された後、透明ガラス化温度まで昇温されて透明ガラス
化して石英ガラスとなる。すなわち、例えば、多孔質体
は雰囲気制御可能な電気炉内にあらかじめ装着された
後、一定の昇温速度で加熱される。
The porous quartz glass body thus obtained is heated and held for a certain period of time in a low steam partial pressure atmosphere, and then heated to a transparent vitrification temperature to form a transparent vitreous quartz glass. . That is, for example, after the porous body is previously mounted in an electric furnace whose atmosphere can be controlled, the porous body is heated at a constant heating rate.

【0017】ついで所定の温度に到達の後、乾燥ガスを
雰囲気中に導入し、多孔質体が接する雰囲気を置換する
ことにより雰囲気中の水蒸気分圧を所定値以下に低減す
る。その水蒸気分圧としては、0.002mmHg以下
であることが好ましく、これより大きい場合には最終的
に得られる石英ガラス中のOH基量を低減させることが
困難なため好ましくない。この水蒸気分圧0.002m
mHg以下は、露点温度が−70℃以下であることと同
等である。
Then, after reaching a predetermined temperature, a dry gas is introduced into the atmosphere, and the atmosphere in contact with the porous body is replaced to reduce the partial pressure of water vapor in the atmosphere to a predetermined value or less. The water vapor partial pressure is preferably 0.002 mmHg or less. If it is higher than 0.002 mmHg, it is not preferable because it is difficult to reduce the amount of OH groups in the finally obtained quartz glass. This steam partial pressure 0.002m
A pressure of mHg or lower is equivalent to a dew point temperature of -70 ° C or lower.

【0018】また加熱保持する温度域としては、800
〜1250℃の範囲内が好ましく、この温度域より低い
温度では実質的な効果が得られず、またこの温度域を超
えた温度では多孔質体の表面のガラス化が進行するた
め、多孔質体内部を所望の低水蒸気分圧雰囲気に置換で
きず好ましくない。また、この温度域であれば、加熱処
理の方法としては、一定温度に保持してもよく、またこ
の温度域内を所定の時間の範囲内で昇温させながら処理
してもよい。
The heating temperature range is 800
The temperature is preferably in the range of from 1250 ° C. to below 1250 ° C. Substantial effects cannot be obtained at a temperature lower than this temperature range, and vitrification of the surface of the porous body proceeds at a temperature exceeding this temperature range. It is not preferable because the inside cannot be replaced with a desired low steam partial pressure atmosphere. In this temperature range, the heat treatment may be performed at a constant temperature, or may be performed while increasing the temperature within this temperature range within a predetermined time.

【0019】またこの温度域での保持時間は、保持温度
に依存するため一概に規定できないが1〜30時間程度
の範囲から選ぶことが好ましく、これより短時間の場合
には実質的な効果がなく、またこれより長時間かけた場
合にもその効果は変わらないために生産効率等を考慮に
入れると好ましくない。また、乾燥ガスとしては窒素、
ヘリウム、アルゴン等を通常、使用できるが、乾燥ガス
として使用できれば必ずしもこれらのガスに限定されな
い。
The holding time in this temperature range cannot be specified unconditionally because it depends on the holding temperature, but is preferably selected from a range of about 1 to 30 hours. In addition, the effect does not change even when it is applied for a longer time, so that it is not preferable to take production efficiency into consideration. In addition, nitrogen as a drying gas,
Helium, argon and the like can be usually used, but are not necessarily limited to these gases as long as they can be used as a drying gas.

【0020】次いでこのような加熱処理の後、多孔質ガ
ラス体はガラス化温度まで昇温されてガラス化される。
ガラス化温度としては、1350〜1500℃の範囲か
ら選ぶことが好ましい。さらに、加熱処理とガラス化処
理は、それぞれ別の加熱装置で行われてもよいが、その
場合には、移送時に水分が吸着したりすることを防止す
る等の処置を講じることが好ましい。したがって、さら
に好ましい実施態様としては、加熱処理とガラス化を同
一の設備で行うことが好ましい。
Next, after such a heat treatment, the porous glass body is heated to a vitrification temperature and vitrified.
The vitrification temperature is preferably selected from the range of 1350 to 1500 ° C. Further, the heat treatment and the vitrification treatment may be performed by different heating devices, but in such a case, it is preferable to take measures such as preventing moisture from adsorbing during the transfer. Therefore, as a more preferred embodiment, it is preferable to perform the heat treatment and the vitrification in the same facility.

【0021】こうして得られた石英ガラス体を軟化点以
上の温度に加熱し、所望の形状に成形加工を行い光学用
石英ガラス部材を製造する。成形加工の温度域は、16
50〜1800℃の範囲から選択することが好ましい。
1650℃より低い温度では石英ガラスの粘度が高いた
め実質的に自重変形が行われず、またSi02 の結晶相
であるクリストバライトの成長がおこりいわゆる失透が
生じるため好ましくない。また1800℃より高い温度
では、SiO2 の昇華が無視できなくなり好ましくな
い。また、石英ガラス体の自重変形を行わせる方向は、
特に規定されないが多孔質ガラス体の成長方向と同一で
あることが好ましい。
The quartz glass body thus obtained is heated to a temperature equal to or higher than the softening point and formed into a desired shape to produce an optical quartz glass member. The temperature range of the forming process is 16
It is preferable to select from the range of 50 to 1800 ° C.
At a temperature lower than 1650 ° C., the viscosity of quartz glass is high, so that its own weight is not substantially deformed, and cristobalite, which is a crystal phase of SiO 2 , grows, so that so-called devitrification occurs, which is not preferable. At a temperature higher than 1800 ° C., sublimation of SiO 2 cannot be ignored, which is not preferable. The direction in which the quartz glass body undergoes its own weight deformation is:
Although not particularly defined, it is preferable that the direction is the same as the growth direction of the porous glass body.

【0022】さらにこうして得られた成形石英ガラス体
を石英ガラスの徐冷点近傍の温度域で徐冷して、光学用
石英ガラス部材を製造する。石英ガラスの徐冷時の冷却
速度は大きさにもよるが、40℃/時間以下であること
が好ましい。40℃/時間を超えると、成形ガラス体外
周部における屈折率の変動幅が大きくなり、結果として
本発明の目的とする屈折率の変動幅が1×10-6以下と
なる領域が成形ガラス体中央部にほぼ限られ、光学用石
英ガラスの製品歩留まりを著しく低下させる。石英ガラ
スの徐冷点はおおむね1100℃であるので、徐冷速度
を40℃/時間以下とする温度域としては、1000℃
以上1200℃以下が適切である。
Further, the formed quartz glass body thus obtained is gradually cooled in a temperature range near the annealing point of the quartz glass to produce an optical quartz glass member. The cooling rate during the slow cooling of the quartz glass depends on the size, but is preferably 40 ° C./hour or less. When the temperature exceeds 40 ° C./hour, the fluctuation range of the refractive index in the outer peripheral portion of the molded glass body becomes large, and as a result, the region where the fluctuation range of the refractive index aimed at by the present invention is 1 × 10 −6 or less is formed. It is almost limited to the central part and significantly reduces the product yield of optical quartz glass. Since the annealing point of quartz glass is approximately 1100 ° C., the temperature range in which the annealing rate is 40 ° C./hour or less is 1000 ° C.
A temperature of at least 1200 ° C is appropriate.

【0023】以上のような工程を経て得られる石英ガラ
スは、石英ガラス中に含有されるOH基量が100pp
m以下となり、該ガラス中のOH基量の変動幅はほとん
どの領域において±5ppm以内であり均質性に優れる
石英ガラスである。また、本発明により製造される石英
ガラスは、ガラス形成原料として高純度な合成原料が使
用可能なこと、溶融工程を経ないためルツボ等からの不
純物の混入がないこと等から、鉄、ニッケル等の重金属
元素やナトリウム、カリウム等のアルカリ金属元素の不
純物総量が1ppm以下と極めて高純度であり、KrF
レーザやArFレーザ等の紫外線に対しても蛍光発光や
ソーラリゼーション等を生じず、耐紫外線性にも優れて
いる。
The quartz glass obtained through the above steps has an OH group content of 100 pp in the quartz glass.
m or less, and the fluctuation range of the OH group content in the glass is within ± 5 ppm in most regions, and it is a quartz glass excellent in homogeneity. In addition, the quartz glass produced according to the present invention is made of iron, nickel, etc., because a high-purity synthetic raw material can be used as a glass forming raw material, and there is no impurity from a crucible or the like because it does not go through a melting step. The total amount of impurities of heavy metal elements and alkali metal elements such as sodium, potassium and the like is extremely high as 1 ppm or less, and KrF
It does not emit fluorescent light, solarization, etc., even with ultraviolet rays such as lasers and ArF lasers, and has excellent ultraviolet resistance.

【0024】[0024]

【作用】本発明の方法により、ガラス形成原料を火炎加
水分解させて形成される多孔質石英ガラス体を透明ガラ
ス化して得られる合成石英ガラス中のOH基量が低減さ
れる機構は、必ずしも明確ではないが、低露点温度のガ
ス雰囲気で透明ガラス化以前に熱処理することによっ
て、多孔質石英ガラス中のシラノール基が遊離してしま
うものと考えられる。
The mechanism by which the amount of OH groups in the synthetic quartz glass obtained by subjecting the porous quartz glass body formed by flame hydrolysis of the raw material for forming a glass to a transparent vitrification by the method of the present invention is not necessarily clear. However, it is considered that silanol groups in the porous quartz glass are released by heat treatment before vitrification in a gas atmosphere having a low dew-point temperature.

【0025】ガラス形成原料を火炎加水分解させて形成
される多孔質石英ガラス体を透明ガラス化して得られる
合成石英ガラス体を、その軟化点以上の温度において自
重変形させて製造される合成石英ガラスブロックは、多
孔質石英ガラス体の成長面内においてOH基量の分布幅
が大きく、該合成石英ガラスブロックの多孔質石英ガラ
ス体の成長面内において屈折率の変動をもたらし、高均
質な合成石英ガラス体を得ることが困難であった。
A synthetic quartz glass produced by subjecting a synthetic quartz glass body obtained by subjecting a glass forming raw material to a transparent vitrification to a transparent quartz glass body formed by flame hydrolysis and subjecting the synthetic quartz glass body to its own weight deformation at a temperature above its softening point. The block has a large distribution width of the OH group amount within the growth surface of the porous quartz glass body, and causes a change in the refractive index within the growth surface of the porous quartz glass body of the synthetic quartz glass block, and the highly homogeneous synthetic quartz. It was difficult to obtain a glass body.

【0026】しかしながら、本発明の方法によれば、合
成石英ガラス体中のOH基量の絶対値を低減させること
によって、変動幅を抑え、OH基の変動に基づく屈折率
の揺らぎを抑えることが可能になったと推察される。し
かも本発明の方法は、OH基量の低減化の方法として従
来より公知のハロゲン化物を使用しないため、公知の方
法では石英ガラス中に残留するハロゲンの影響が全く無
く、高均質性が達成されたものと思われる。
However, according to the method of the present invention, by reducing the absolute value of the amount of OH groups in the synthetic quartz glass body, the fluctuation range can be suppressed, and the fluctuation of the refractive index due to the fluctuation of the OH groups can be suppressed. It is presumed that it has become possible. In addition, the method of the present invention does not use a conventionally known halide as a method for reducing the amount of OH groups, so that the known method has no effect of halogen remaining in quartz glass and achieves high homogeneity. It seems to have been.

【0027】[0027]

【実施例】以下、本発明の詳細についてさらに実施例に
より説明するが、本発明はこれら実施例により限定され
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0028】実施例1 公知の方法により、SiCl4 を酸水素火炎中で加熱加
水分解させて形成された直径35cm、長さ100cm
の多孔質石英ガラス体を室温で雰囲気制御可能な電気炉
内に設置した。ついで露点温度−70℃の窒素ガスで電
気炉内雰囲気を置換した後、露点温度−70℃の窒素ガ
スを流しながら500℃/時間の昇温速度で1000℃
まで昇温した。引き続き昇温速度を50℃/時間とし、
1250℃まで昇温して、その温度で5時間保持した。
Example 1 A 35 cm diameter and 100 cm length formed by heating and hydrolyzing SiCl 4 in an oxyhydrogen flame by a known method.
Was placed in an electric furnace capable of controlling the atmosphere at room temperature. Then, after replacing the atmosphere in the electric furnace with a nitrogen gas having a dew point temperature of -70 ° C, the nitrogen gas having a dew point temperature of -70 ° C was flowed at a temperature rising rate of 500 ° C / hour at 1000 ° C.
Temperature. Subsequently, the heating rate was set to 50 ° C./hour,
The temperature was raised to 1250 ° C. and maintained at that temperature for 5 hours.

【0029】こうして得られた熱処理済みの多孔質石英
ガラス体を透明ガラス化のための炉内最高温度が145
0℃に制御された電気炉内上部に設置し、炉内を露点温
度が−70℃のヘリウムガスで置換した後、80cm/
時間の速度で下降させながら最高温度域を通過させて透
明ガラス化を行った。こうして得られた透明石英ガラス
を、カーボン製発熱体を有する電気炉内で、軟化点以上
の1750℃に加熱して自重変形を行わせ、250×2
50×120mmのブロック形状に成形した。引き続
き、電気炉内に成形ブロックをセットしたまま電気炉の
温度を1200℃まで降温させ、以後30℃/時間の冷
却速度で徐冷を行い、炉内温度が1000℃になったと
ころで給電を停止し炉内放冷した。
The heat-treated porous quartz glass body thus obtained has a maximum furnace temperature of 145 for vitrification.
It was installed in the upper part of an electric furnace controlled at 0 ° C., and the inside of the furnace was replaced with helium gas having a dew point temperature of −70 ° C., and then 80 cm /
The glass was passed through the highest temperature range while being lowered at the speed of time, and vitrification was performed. The transparent quartz glass thus obtained is heated to 1750 ° C. above the softening point in an electric furnace having a heating element made of carbon and deformed under its own weight.
It was formed into a block shape of 50 × 120 mm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C. while the molding block was set in the electric furnace, and thereafter, the temperature was gradually cooled at a cooling rate of 30 ° C./hour, and the power supply was stopped when the temperature in the furnace reached 1000 ° C. The furnace was allowed to cool.

【0030】こうして得られた石英ガラスブロックの1
20mm方向の中心部より、250×250×57mm
の石英ガラスブロックを切り出し、その中心部220m
mφの内部及び外部について精密干渉計(ZygoIV)
により屈折率分布を評価した。またOH基量分布は、2
50×250×120mm石英ガラスブロックより屈折
率分布を評価した部分のすぐ隣の場所より、2mm厚み
のガラス板を切り出し日本分光社製簡易FTIR装置に
より3700cm-1の吸収により定量した。Cl含有量
は得られた石英ガラスをアルカリ溶融したのち、イオン
クロマトグラフィー法により定量した。結果を表1に示
す。
The thus obtained quartz glass block 1
250 x 250 x 57 mm from the center in the 20 mm direction
Cut out a quartz glass block of 220m
Precision interferometer for inside and outside of mφ (Zygo IV)
Was used to evaluate the refractive index distribution. The distribution of OH groups is 2
A glass plate having a thickness of 2 mm was cut out from a place immediately adjacent to the portion where the refractive index distribution was evaluated from a 50 × 250 × 120 mm quartz glass block, and quantified by absorption at 3700 cm −1 using a simple FTIR apparatus manufactured by JASCO Corporation. The Cl content was determined by ion chromatography after melting the obtained quartz glass with alkali. Table 1 shows the results.

【0031】比較例1 1250℃での熱処理を行わない他は、実施例1と同一
の方法で作製した石英ガラスブロックの中心部220m
mφの屈折率変動幅、OH基量及びその分布幅、Cl含
有量を表1に示す。
Comparative Example 1 A central portion 220 m of a quartz glass block produced in the same manner as in Example 1 except that no heat treatment at 1250 ° C. was performed.
Table 1 shows the refractive index fluctuation width of mφ, the OH group amount and its distribution width, and the Cl content.

【0032】比較例2 徐冷工程の冷却速度を80℃/時間とした以外は、実施
例1と同一の方法で作製した石英ガラスブロックの外周
部の屈折率変動幅を表1に示す。
Comparative Example 2 Table 1 shows the refractive index fluctuation width of the outer peripheral portion of the quartz glass block produced by the same method as in Example 1 except that the cooling rate in the slow cooling step was 80 ° C./hour.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の方法によれば、石英ガラス中に
Cl元素などの不純物の残存を生じさせることなくOH
基量を低減させることが可能であり、それに基づく屈折
率の揺らぎを抑止せしめ、石英ガラスの屈折率変動幅を
1×10-6以下にして均質性を向上することが可能であ
る。これにより高エネルギー密度の光を利用する光学系
に応用できる、実質的に脈理のない光学用石英ガラス部
材が得られる。
According to the method of the present invention, OH can be produced without leaving impurities such as Cl element in quartz glass.
It is possible to reduce the amount of base, suppress fluctuation of the refractive index based on the base amount, and improve the homogeneity by setting the fluctuation range of the refractive index of quartz glass to 1 × 10 −6 or less. As a result, an optical quartz glass member having substantially no striae, which can be applied to an optical system utilizing light of high energy density, is obtained.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年7月21日[Submission date] July 21, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】明細書[Document Name] Statement

【発明の名称】石英ガラス光学部材の製造方法Method for manufacturing a silica glass optical member [Title of the Invention]

【特許請求の範囲】[Claims]

請求項8酸水素火炎加水分解法によって成長軸に沿
って合成される石英ガラス体よりなる、紫外レーザを照
射して用いる石英ガラス光学部材の製造方法であって、 該製造工程中の加熱処理は非塩素雰囲気中で行うととも
に、 合成された石英ガラス体を軟化点以上の温度に加熱し、
酸水素火炎加水分解法における石英ガラス体の成長軸方
向と同一方向に変形を行わせて、成形石英ガラス体を得
る工程を備え、 製造された石英ガラス光学部材のCl含有量を10pp
m以下、OH基含有量の面内分布を±5ppm以下とす
ることを特徴とする石英ガラス光学部材の製造方法。
8. The growth axis along the growth axis by oxyhydrogen flame hydrolysis.
Illuminates an ultraviolet laser made of a quartz glass body
A method for manufacturing a quartz glass optical member to be used by irradiation, wherein the heat treatment during the manufacturing process is performed in a non-chlorine atmosphere.
Then, the synthesized quartz glass body is heated to a temperature above the softening point,
Growth axis of quartz glass body in oxyhydrogen flame hydrolysis method
The quartz glass body by deforming it in the same direction as
And the Cl content of the manufactured quartz glass optical member is reduced to 10 pp.
m, and the in-plane distribution of the OH group content is ± 5 ppm or less.
A method for producing a quartz glass optical member.

【請求項】製造された石英ガラス光学部材のOH基含
有量が100ppm以下である請求項1、2、3、4、
5、6、7又は記載の石英ガラス光学部材の製造方
法。
9. OH group content of the produced quartz glass optical members Ru der less 100ppm Motomeko 1,2,3,4,
5,6, 7 or 8 production method of quartz glass optical member according.

【請求項10】製造された石英ガラス光学部材は、少な
くとも1方向について直径220mmの円形で囲まれる
領域にわたって屈折率の変動幅が1×10-6以下であ
求項1、2、3、4、5、6、7、8又は記載の石
英ガラス光学部材の製造方法。
10. A manufactured silica glass optical member, Ru der fluctuation width in refractive index 1 × 10 -6 or less over a region surrounded for at least one direction at a circle with a diameter of 220mm
Motomeko 1,2,3,4,5,6,7, 8 or 9 manufacturing method of stone <br/> silica glass optical member according.

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高エネルギー密度
の光学系に用いられるミラー、レンズ、エタロン、フィ
ルタ、プリズム等の光学部材に適合する高均質な石英ガ
ラス光学部材の製造方法に関する。
The present invention relates to a mirror used in an optical system of high energy density, a lens, an etalon, a filter, a method for producing a high homogeneous quartz glass optical member meets the optical member such as a prism.

【0002】[0002]

【従来の技術】石英ガラスは、近赤外から真空紫外域ま
での広範囲にわたって透明な材料であることならびに寸
法安定性に優れることのために、高エネルギー密度の光
を用いる光学系のための光学部材としても最適な材料で
ある。しかしながら、石英ガラスは通常用いられる光学
ガラスに比較して溶融温度が高く、通常用いられる光学
ガラスを徐冷して脈理(屈折率の変動)を除去する温度
域では徐冷が困難で、屈折率の変動のない石英ガラス
学部材を得ることは困難であった。
2. Description of the Related Art Quartz glass is a transparent material over a wide range from the near infrared to the vacuum ultraviolet region and has excellent dimensional stability. It is the most suitable material for the member. However, quartz glass has a higher melting temperature than commonly used optical glass, and it is difficult to gradually cool the commonly used optical glass in a temperature range where the striae (fluctuation in refractive index) is removed by slow cooling. quartz glass light not name the stone of the rate change of
It was difficult to obtain a scientific member .

【0003】このような高温度での熱処理により石英ガ
ラス中の脈理を除去する方法としては、例えば特開昭6
2−158121には、高純度石英ガラスを1800℃
以上の高温で溶融させ、かつ、2気圧以上の静水圧力下
で処理する方法が開示されている。しかしながら、この
ような高温高圧に耐え得る装置は、必然的に大がかりと
なり高価とならざるを得ない。
A method for removing striae in quartz glass by heat treatment at such a high temperature is disclosed in, for example,
2-158121 has a high purity quartz glass of 1800 ° C.
Melted at a temperature higher than, and a method of treatment under hydrostatic pressure of 2 atm or more is disclosed. However, a device that can withstand such high temperature and pressure is inevitably bulky and expensive.

【0004】また、特開昭64−28240には、石英
ガラスを軟化点以上の温度に加熱して自重変形を行わせ
る操作を繰り返し行い、しかも操作毎の自重変形方向を
変えて、内部の脈理を除去する方法が開示されている。
この方法では、軟化点以上の成形操作を繰り返し行う必
要があり、工程が煩雑になる問題点があった。
Japanese Patent Application Laid-Open No. 64-28240 discloses an operation in which quartz glass is repeatedly heated to a temperature higher than the softening point and deformed under its own weight. A method is disclosed for removing the problem.
In this method, it is necessary to repeatedly perform a molding operation at a temperature equal to or higher than the softening point, and there is a problem that the process becomes complicated.

【0005】一方近年、超LSIの製造においては、サ
ブミクロン以下のパターン解像度が要求され、フォトリ
ソグラフィーの露光光源としてより紫外光のKrFエキ
シマレーザ(λ=248nm)又はArFレーザ(λ=
193nm)が検討されている。このように露光光源が
短波長になると、露光装置に使用される光学部材として
は、それらの波長域における透過性の問題から商業的に
応用可能な光学材料としては石英ガラスしかない。した
がって、露光装置の収差補正を不要とするためには、石
英ガラス自体の屈折率の変動を1×10-6以下に抑える
ことが好ましい
On the other hand, in recent years, in the manufacture of VLSI, a pattern resolution of submicron or less has been required, and a KrF excimer laser (λ = 248 nm) or an ArF laser (λ =
193 nm). As described above, when the exposure light source has a short wavelength, there is only quartz glass as a commercially applicable optical material as an optical member used in the exposure apparatus due to a problem of transparency in those wavelength ranges. Therefore, in order to eliminate the need for correcting the aberration of the exposure apparatus, the fluctuation of the refractive index of the quartz glass itself is suppressed to 1 × 10 −6 or less.
Is preferred .

【0006】石英ガラスの脈理が徐冷により除去された
としても、石英ガラス中に屈折率の変動を与えるような
元素が分布していれば、その元素がもたらす屈折率の変
動のために超LSIの露光装置の光学部材として使用可
能な高均質性を達成することは困難である。例えばG.
Hetherington等(1962)は、石英ガラ
ス中に含有されるOH基量は屈折率に対して、約−1×
10-6/10ppmの変動をえることを報告してい
る。また石英ガラス中のCl元素も、1×10-6/10
ppm程度の屈折率変動をもたらすといわれている(S
usa等(1985))。
[0006] Even if the striae of the quartz glass are removed by slow cooling, if an element that causes a change in the refractive index is distributed in the quartz glass, the ultra-smallness of the element causes the change in the refractive index. It is difficult to achieve high homogeneity that can be used as an optical member of an LSI exposure apparatus. For example, G.
Heatherington et al. (1962) reported that the amount of OH groups contained in quartz glass was about -1 ×
It has reported that may grant a variation of 10 -6 / 10 ppm. The Cl element in the quartz glass is also 1 × 10 −6 / 10
It is said to cause a refractive index fluctuation of about ppm (S
usa et al. (1985)).

【0007】したがって、屈折率の変動が1×10-6
の石英ガラス光学部材を製造する際には、該石英ガラ
ス中に含有されるOH基量ならびにCl量の変動幅をな
くし、石英ガラス体中のOH基量ならびにCl量をあら
ゆるところで均一にすればよいことは容易に推察され
る。ところがガラス形成原料を火炎加水分解して多孔質
ガラス体を形成した後透明ガラス化した石英ガラスや、
ガラス形成原料を火炎加水分解して石英ガラスを直接基
材に堆積させる方法で製造される石英ガラスにおいても
製造時の温度分布等の影響によりOH基量を石英ガラス
全域にわたって均一にすることは困難であった。
Accordingly, when the variation of the refractive index to produce a 1 × 10 -6 or less of quartz glass optical members, eliminates the OH group content and Cl content of the variation range is contained in the quartz glass, quartz It is easily presumed that the OH group content and the Cl content in the glass body may be made uniform everywhere. However, quartz glass that has been transformed into a vitreous glass by forming a porous glass body by flame hydrolysis of a glass forming raw material,
Even with quartz glass manufactured by flame hydrolysis of glass-forming raw materials and directly depositing quartz glass on a substrate, it is difficult to make the amount of OH groups uniform over the entire quartz glass due to the influence of temperature distribution and the like during manufacturing. Met.

【0008】次に考えられるOH基量の変動を抑える方
法としては、石英ガラス中に含有されるOH基量の絶対
値を減少させることである。多孔質石英ガラス体を透明
ガラス化する方法において、該方法で製造される石英ガ
ラス中のOH基量を、Cl2、CCl4 等のハロゲン化
合物で多孔質ガラス体を処理することによって低減化す
る技術は、低伝送損失な光ファイバを製造する手段とし
て公知な技術である。しかしながら、かかる方法で作製
された石英ガラス中には、Cl元素が分布し、それが屈
折率の変動をもたらし所望の均質性を達成することが困
難であった。
The next conceivable method for suppressing the fluctuation of the OH group amount is to reduce the absolute value of the OH group amount contained in the quartz glass. In a method of vitrifying a porous quartz glass body, the amount of OH groups in the quartz glass produced by the method is reduced by treating the porous glass body with a halogen compound such as Cl 2 or CCl 4. The technique is a technique known as a means for producing an optical fiber with low transmission loss. However, the Cl element is distributed in the quartz glass produced by such a method, which causes a change in the refractive index, and it is difficult to achieve a desired homogeneity.

【0009】さらには特開平2−102139には、石
英ガラス中のOH基濃度をなめらかな凹型に分布させる
ことによって均質性を向上させる方法が開示されてい
る。この方法では、石英ガラス中に凹型のOH基分布を
形成させる必要があり、熱処理条件を精密に制御する必
要があった。さらに気相反応法により多孔質石英ガラス
体を経て形成された石英ガラスについては、該石英ガラ
ス中には凸型のOH基分布が形成されるため、特開平2
−102139に開示された方法を応用することは実質
的に不可能である問題があった。
Furthermore, Japanese Patent Application Laid-Open No. 2-102139 discloses a method for improving the homogeneity by distributing the OH group concentration in quartz glass in a smooth concave shape. In this method, it is necessary to form a concave OH group distribution in the quartz glass, and it is necessary to precisely control the heat treatment conditions. Further, regarding quartz glass formed through a porous quartz glass body by a gas phase reaction method, a convex OH group distribution is formed in the quartz glass.
There was a problem that it was practically impossible to apply the method disclosed in -102139.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、前述
の問題点を解消し、高エネルギー密度の光を利用する光
学系に応用可能な、実質的に脈理のない石英ガラス光学
部材の製造方法を提供することにある。
An object of the present invention is to provide a, to solve the problems described above, which can be applied to an optical system utilizing light of high energy density, substantially name has quartz glass optical striae
An object of the present invention is to provide a method for manufacturing a member .

【0011】[0011]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、酸水素火炎加水分解法に
よって成長軸に沿って合成される石英ガラス体よりな
る、紫外レーザを照射して用いる石英ガラス光学部材の
製造方法であって、該製造工程中の加熱処理は非塩素雰
囲気中で行うとともに、合成された石英ガラス体を軟化
点以上の温度に加熱し、酸水素火炎加水分解法における
石英ガラス体の成長軸方向と同一方向に重力による変形
を行わせて、成形石英ガラス体を得る工程を備えること
を特徴とする石英ガラス光学部材の製造方法、を提供す
る。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is directed to an oxyhydrogen flame hydrolysis method.
Therefore, the quartz glass body synthesized along the growth axis
Of silica glass optical members
A heat treatment during the manufacturing process is performed in a non-chlorine atmosphere.
Performs in an atmosphere and softens the synthesized quartz glass body
Heat to a temperature above the point, in the oxyhydrogen flame hydrolysis method
Gravity deformation of quartz glass body in the same direction as the growth axis
To obtain a molded quartz glass body
And a method for producing a quartz glass optical member .

【0012】また本発明は、(1)ガラス形成原料を火
炎加水分解して形成される石英ガラス微粒子を基材に堆
積・成長させて多孔質石英ガラス体を形成する工程、
(2)前記多孔質石英ガラス体を非塩素低水蒸気分圧雰
囲気下において、透明ガラス化温度以下の温度域で一定
時間保持し加熱処理してOH基含有量を低減する工程、
(3)前記加熱処理された多孔質石英ガラス体を、透明
ガラス化温度まで昇温・透明ガラス化して石英ガラス体
を得る工程、及び (4)前記石英ガラス体を軟化点以上
の温度に加熱して多孔質石英ガラス体の成長方向と同一
方向に変形を行わせて、成形石英ガラス体を得る工程、
を備えることを特徴とする上記の石英ガラス光学部材の
製造方法、を提供する。
Further, the present invention provides(1) Fire the glass forming material
Quartz glass fine particles formed by flame hydrolysis
Forming and growing a porous quartz glass body,
(2) The porous quartz glass body is placed in a non-chlorine low-vapor partial pressure atmosphere.
Under ambient temperature, constant in the temperature range below the vitrification temperature
A process of reducing the OH group content by holding for a time and performing a heat treatment;
(3) The heat-treated porous quartz glass body is transparent.
Heated to the vitrification temperature and turned into a transparent vitrified quartz glass body
Obtaining, and (4) The quartz glass body has a softening point or higher.
Heating to the same temperature as the growth direction of the porous quartz glass body
Forming a quartz glass body by deforming in the direction,
Of the above quartz glass optical member, characterized by comprising
Production method,I will provide a.

【0013】また本発明は、酸水素火炎加水分解法によ
って成長軸に沿って合成される石英ガラス体よりなる、
紫外レーザを照射して用いる石英ガラス光学部材の製造
方法であって、 該製造工程中の加熱処理は非塩素雰囲気
中で行うとともに、 合成された石英ガラス体を軟化点以
上の温度に加熱し、酸水素火炎加水分解法における石英
ガラス体の成長軸方向と同一方向に変形を行わせて、成
形石英ガラス体を得る工程を備え、製造された石英ガラ
ス光学部材のCl含有量を10ppm以下、OH基含有
量の面内分布を±5ppm以下とすることを特徴とする
石英ガラス光学部材の製造方法、を提供する。
[0013] The present invention also provides an oxyhydrogen flame hydrolysis method.
Consisting of a quartz glass body synthesized along the growth axis,
Manufacture of quartz glass optical components using ultraviolet laser irradiation
A method, heat treatment in the manufacturing process non-chlorine atmosphere
And the synthesized quartz glass body
Heated to above temperature, quartz in oxyhydrogen flame hydrolysis method
Deformation is performed in the same direction as the growth axis of the glass body.
The step of obtaining a shaped quartz glass body, the manufactured quartz glass
The optical component has a Cl content of 10 ppm or less and an OH group
Characterized in that the in-plane distribution of the amount is ± 5 ppm or less.
A method for manufacturing a quartz glass optical member .

【0014】[0014]

【発明の実施の形態】本発明においては、製造工程中の
加熱処理は非塩素雰囲気中で行うので、石英ガラスに含
有される塩素の量を低減できる。また、合成された石英
ガラス体を軟化点以上の温度に加熱し、酸水素火炎加水
分解法における石英ガラス体の成長軸方向と同一方向に
変形を行わせて、成形石英ガラス体を得る工程、を備え
る。これにより、OH基含有量のばらつきを低減でき
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, during a manufacturing process,
Since the heat treatment is performed in a non-chlorine atmosphere,
The amount of chlorine contained can be reduced. Also, synthetic quartz
Heat the glass body to a temperature above the softening point,
In the same direction as the growth axis direction of the quartz glass body in the decomposition method
Deforming to obtain a molded quartz glass body.
You. This can reduce variations in OH group content.
You.

【0015】本発明で用いられるガラス形成原料として
は、ガス化可能な原料であれば特に制限されるものでは
ないが、SiCl4 、SiHCl3 、SiH2 Cl2
Si(CH3 )Cl3 等の塩化物、SiF4 、SiHF
3 、SiH22 等のフッ化物、SiBr4 、SiHB
3 等の臭化物、SiI4 のヨウ化物などのハロゲン化
ケイ素化合物が作業性やコストの面から好ましい。本発
明においては、ガラス形成原料を火炎加水分解して形成
される石英ガラス微粒子を基材に堆積・成長させて多孔
質石英ガラス体を一旦形成したのち、この多孔質石英ガ
ラス体を透明ガラス化することが好ましい。この工程に
よれば、OH基の絶対量を低減できるので、OH基のば
らつきをより低く抑えうる。この多孔質石英ガラス体
は、これらのガラス形成原料を通常の酸水素火炎中で加
水分解し、生じた石英ガラス微粒子を基材上に堆積させ
て形成される。
The glass forming raw material used in the present invention is not particularly limited as long as it is a raw material that can be gasified, but SiCl 4 , SiHCl 3 , SiH 2 Cl 2 ,
Chloride such as Si (CH 3 ) Cl 3 , SiF 4 , SiHF
3 , fluoride such as SiH 2 F 2 , SiBr 4 , SiHB
r 3, etc. bromides, silicon halide compounds such as iodides of SiI 4 is preferable in view of workability and cost. Departure
In Ming, glass-forming raw materials are formed by flame hydrolysis.
Deposited and grown quartz glass particles on the substrate
Once the porous quartz glass body is formed, this porous quartz glass
It is preferable to make the lath body transparent vitrified. In this process
According to this, since the absolute amount of OH groups can be reduced,
Fluctuation can be suppressed lower. This porous quartz glass body
Applies these glass-forming materials in a normal oxyhydrogen flame.
Decompose water and deposit the resulting quartz glass particles on the substrate
Formed.

【0016】このようにして得られた多孔質石英ガラス
体は、ついで低水蒸気分圧雰囲気下で一定時間加熱保持
された後、透明ガラス化温度まで昇温されて透明ガラス
化して石英ガラスとされることが好ましい
[0016] The thus obtained porous quartz glass body is then after being held for a certain time heating under low water vapor partial pressure atmosphere is to a transparent vitrification temperature is warm transparent vitrified quartz glass Preferably .

【0017】すなわち、例えば、多孔質石英ガラス体は
雰囲気制御可能な電気炉内にあらかじめ装着された後、
一定の昇温速度で加熱される。ついで所定の温度に到達
の後、乾燥ガスを雰囲気中に導入し、多孔質石英ガラス
体が接する雰囲気を置換することにより雰囲気中の水蒸
気分圧を所定値以下に低減する。その水蒸気分圧として
は、0.002mmHg以下であることが好ましく、こ
れより大きい場合には最終的に得られる石英ガラス中の
OH基量を低減させることが困難となるおそれがある
この水蒸気分圧0.002mmHg以下は、露点温度が
−70℃以下であることと同等である。
That is, for example, a porous quartz glass body is
After being installed in an atmosphere controllable electric furnace in advance,
It is heated at a constant heating rate. Next, after reaching a predetermined temperature, a dry gas is introduced into the atmosphere to replace the atmosphere in contact with the porous quartz glass body, thereby reducing the partial pressure of water vapor in the atmosphere to a predetermined value or less. As the water vapor partial pressure, it may preferably, may be difficult to reduce the OH groups of the silica glass finally obtained when greater than this or less 0.002MmHg.
The water vapor partial pressure of 0.002 mmHg or less is equivalent to the dew point temperature of -70 ° C or less.

【0018】また加熱保持する温度域としては、800
〜1250℃の範囲内が好ましく、この温度域より低い
温度では実質的な効果が得られない場合があり、またこ
の温度域を超えた温度では多孔質体の表面のガラス化が
進行するため、多孔質体内部を所望の低水蒸気分圧雰囲
気に置換できないおそれがある。また、この温度域であ
れば、加熱処理の方法としては、一定温度に保持しても
よく、またこの温度域内を所定の時間の範囲内で昇温さ
せながら処理してもよい。
The heating temperature range is 800
The temperature is preferably in the range of ~ 1250 ° C. At temperatures lower than this temperature range, a substantial effect may not be obtained, and at temperatures exceeding this temperature range, vitrification of the surface of the porous body proceeds. There is a possibility that the interior of the porous body can not be replaced with a desired low steam partial pressure atmosphere. In this temperature range, the heat treatment may be performed at a constant temperature, or may be performed while increasing the temperature within this temperature range within a predetermined time.

【0019】またこの温度域での保持時間は、保持温度
に依存するため一概に規定できないが1〜30時間程度
の範囲から選ぶことが好ましく、これより短時間の場合
には実質的な効果が得られないおそれがあり、またこれ
より長時間かけた場合にその効果は変わらないため
生産効率等を低下させるおそれがある。また、乾燥ガス
としては窒素、ヘリウム、アルゴン等を通常、使用でき
るが、乾燥ガスとして使用できれば必ずしもこれらのガ
スに限定されない。
The holding time in this temperature range cannot be specified unconditionally because it depends on the holding temperature, but is preferably selected from a range of about 1 to 30 hours. It may not be obtained, and if it takes longer than this, its effect will not change ,
There is a possibility that production efficiency or the like may be reduced . In addition, nitrogen, helium, argon, and the like can be generally used as the drying gas, but are not necessarily limited to these gases as long as they can be used as the drying gas.

【0020】次いでこのような加熱処理の後、多孔質ガ
ラス体はガラス化温度まで昇温されてガラス化される。
ガラス化温度としては、1350〜1500℃の範囲か
ら選ぶことが好ましい。さらに、加熱処理とガラス化処
理は、それぞれ別の加熱装置で行われてもよいが、その
場合には、移送時に水分が吸着したりすることを防止す
る等の処置を講じることが好ましい。したがって、さら
に好ましい実施態様としては、加熱処理とガラス化を同
一の設備で行うことが好ましい。
Next, after such a heat treatment, the porous glass body is heated to a vitrification temperature and vitrified.
The vitrification temperature is preferably selected from the range of 1350 to 1500 ° C. Further, the heat treatment and the vitrification treatment may be performed by different heating devices, but in such a case, it is preferable to take measures such as preventing moisture from adsorbing during the transfer. Therefore, as a more preferred embodiment, it is preferable to perform the heat treatment and the vitrification in the same facility.

【0021】こうして得られた石英ガラス体を軟化点以
上の温度に加熱し、所望の形状に成形加工を行い石英ガ
ラス光学部材を製造する。成形加工の温度域は、165
0〜1800℃の範囲から選択することが好ましい。1
650℃より低い温度では石英ガラスの粘度が高いため
実質的に自重変形が行われず、またSi02 の結晶相で
あるクリストバライトの成長がおこりいわゆる失透が生
じるおそれがある。また1800℃より高い温度では、
SiO2 の昇華が無視できなくなる場合がある。前述の
とおり、本発明では、石英ガラス体の自重変形を行わせ
る方向は、多孔質ガラス体の成長方向と同一とする
[0021] The quartz glass body thus obtained was heated to a temperature of the softening point or higher, to produce a row have stone quartz glass optical member formed into a desired shape. The temperature range of the forming process is 165
It is preferable to select from the range of 0 to 1800 ° C. 1
650 ° C. substantially self-weight deformation is not performed due to the high viscosity of the quartz glass at lower temperatures, also occurs the growth of cristobalite which is Si0 2 crystal phase there is a risk that so-called devitrification occurs. At temperatures higher than 1800 ° C,
There is a case in sublimation of SiO 2 is ing can not be ignored. The aforementioned
As, in the present invention, a direction for causing the self-weight deformation of the quartz glass body is the same as the growth direction of the multi-porous glass body.

【0022】さらにこうして得られた成形石英ガラス体
を石英ガラスの徐冷点近傍の温度域で徐冷して、石英ガ
ラス光学部材を製造することが好ましい。石英ガラスの
徐冷時の冷却速度は大きさにもよるが、40℃/時間以
下であることが好ましい。40℃/時間を超えると、成
形ガラス体外周部における屈折率の変動幅が大きくな
り、結果として本発明の目的とする屈折率の変動幅が1
×10-6以下となる領域が成形ガラス体中央部にほぼ限
られ、石英ガラス光学部材の製品歩留まりを著しく低下
させるおそれがある。石英ガラスの徐冷点はおおむね1
100℃であるので、徐冷速度を40℃/時間以下とす
る温度域としては、1000℃以上1200℃以下が適
切である。
The gradual cooling further said the molded quartz glass body obtained in a temperature range in the vicinity annealing point of quartz glass, it is preferable to produce a quartz glass optical member. The cooling rate during the slow cooling of the quartz glass depends on the size, but is preferably 40 ° C./hour or less. When the temperature exceeds 40 ° C./hour, the fluctuation range of the refractive index in the outer peripheral portion of the molded glass body becomes large, and as a result, the fluctuation range of the refractive index aimed at by the present invention becomes 1
× area to be 10 -6 or less is limited substantially to the formed glass body central portion, which may significantly reduce the product yield of the quartz glass optical member. The annealing point of quartz glass is roughly 1
Since the temperature is 100 ° C., the temperature range in which the slow cooling rate is 40 ° C./hour or less is preferably 1000 ° C. or more and 1200 ° C. or less.

【0023】以上のような工程を経て得られる石英ガラ
スは、石英ガラス中に含有されるOH基量が100pp
m以下となり、該ガラス中のOH基量の変動幅はほとん
どの領域において±5ppm以内であり均質性に優れる
石英ガラスである。また、本発明により製造される石英
ガラスは、ガラス形成原料として高純度な合成原料が使
用可能なこと、溶融工程を経ないためルツボ等からの不
純物の混入がないこと等から、鉄、ニッケル等の重金属
元素やナトリウム、カリウム等のアルカリ金属元素の不
純物総量が1ppm以下と極めて高純度であり、KrF
レーザやArFレーザ等の紫外線に対しても蛍光発光や
ソーラリゼーション等を生じず、耐紫外線性にも優れて
いる。
The quartz glass obtained through the above steps has an OH group content of 100 pp in the quartz glass.
m or less, and the fluctuation range of the OH group content in the glass is within ± 5 ppm in most regions, and it is a quartz glass excellent in homogeneity. In addition, the quartz glass produced according to the present invention is made of iron, nickel, etc., because a high-purity synthetic raw material can be used as a glass forming raw material, and there is no impurity from a crucible or the like because it does not go through a melting step. The total amount of impurities of heavy metal elements and alkali metal elements such as sodium, potassium and the like is extremely high as 1 ppm or less, and KrF
It does not emit fluorescent light, solarization, etc., even with ultraviolet rays such as lasers and ArF lasers, and has excellent ultraviolet resistance.

【0024】[0024]

【作用】本発明の方法により、ガラス形成原料を火炎加
水分解させて形成される多孔質石英ガラス体を透明ガラ
ス化して得られる合成石英ガラス中のOH基量が低減さ
れる機構は、必ずしも明確ではないが、酸水素火炎加水
分解法における石英ガラス体の成長軸方向と同一方向に
変形を行うことによって、OH基量分布が低減するもの
と推察される。また、低露点温度のガス雰囲気で透明ガ
ラス化以前に熱処理する場合は、多孔質石英ガラス中の
シラノール基が遊離するものと考えられる。
The mechanism by which the amount of OH groups in the synthetic quartz glass obtained by subjecting the porous quartz glass body formed by flame hydrolysis of the raw material for forming a glass to a transparent vitrification by the method of the present invention is not necessarily clear. Not oxyhydrogen flame water
In the same direction as the growth axis direction of the quartz glass body in the decomposition method
Deformation reduces the distribution of OH groups
It is inferred. Also, if the heat treatment to the transparent vitrification earlier gas atmosphere of low dew point temperatures, silanol groups of porous silica glass is believed to liberate.

【0025】ガラス形成原料を火炎加水分解させて形成
される多孔質石英ガラス体を透明ガラス化して得られる
合成石英ガラス体から製造される合成石英ガラスブロッ
クは、多孔質石英ガラス体の成長面内においてOH基量
の分布幅が大きく、該合成石英ガラスブロックの多孔質
石英ガラス体の成長面内において屈折率の変動をもたら
し、高均質な合成石英ガラス体を得ることが困難であっ
た。
A synthetic quartz glass block produced from a synthetic quartz glass body obtained by subjecting a glass forming raw material to a transparent vitrification by subjecting a porous quartz glass body formed by flame hydrolysis to an in-growth surface of the porous quartz glass body In this method, the distribution width of the OH group content was large, and the refractive index fluctuated within the growth surface of the porous quartz glass body of the synthetic quartz glass block, making it difficult to obtain a highly homogeneous synthetic quartz glass body.

【0026】しかしながら、本発明の方法によれば、合
成石英ガラス体中のOH基量の絶対値を低減させるとと
もに、変動幅を抑え、OH基の変動に基づく屈折率の揺
らぎを抑えることが可能になったと推察される。しかも
本発明の方法は、OH基量の低減化の方法として従来よ
り公知のハロゲン化物を使用しないため、公知の方法で
は石英ガラス中に残留するハロゲンの影響が全く無く、
高均質性が達成されたものと思われる。
[0026] However, according to the method of the present invention, when reducing the absolute value of the OH groups of the synthetic quartz glass body in preparative
In addition , it is presumed that the fluctuation width can be suppressed, and the fluctuation of the refractive index based on the fluctuation of the OH group can be suppressed. Moreover, since the method of the present invention does not use a conventionally known halide as a method for reducing the amount of OH groups, the known method has no effect of halogen remaining in quartz glass at all,
It appears that high homogeneity was achieved.

【0027】[0027]

【実施例】以下、本発明の詳細についてさらに実施例に
より説明するが、本発明はこれら実施例により限定され
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0028】実施例1 公知の方法により、SiCl4 を酸水素火炎中で加熱加
水分解させて形成された直径35cm、長さ100cm
の多孔質石英ガラス体を室温で雰囲気制御可能な電気炉
内に設置した。ついで露点温度−70℃の窒素ガスで電
気炉内雰囲気を置換した後、露点温度−70℃の窒素ガ
スを流しながら500℃/時間の昇温速度で1000℃
まで昇温した。引き続き昇温速度を50℃/時間とし、
1250℃まで昇温して、その温度で5時間保持した。
Example 1 A 35 cm diameter and 100 cm length formed by heating and hydrolyzing SiCl 4 in an oxyhydrogen flame by a known method.
Was placed in an electric furnace capable of controlling the atmosphere at room temperature. Then, after replacing the atmosphere in the electric furnace with a nitrogen gas having a dew point temperature of -70 ° C, the nitrogen gas having a dew point temperature of -70 ° C was flowed at a temperature rising rate of 500 ° C / hour at 1000 ° C.
Temperature. Subsequently, the heating rate was set to 50 ° C./hour,
The temperature was raised to 1250 ° C. and maintained at that temperature for 5 hours.

【0029】こうして得られた熱処理済みの多孔質石英
ガラス体を透明ガラス化のための炉内最高温度が145
0℃に制御された電気炉内上部に設置し、炉内を露点温
度が−70℃のヘリウムガスで置換した後、80cm/
時間の速度で下降させながら最高温度域を通過させて透
明ガラス化を行った。こうして得られた透明石英ガラス
を、カーボン製発熱体を有する電気炉内で、軟化点以上
の1750℃に加熱して自重変形を行わせ、250×2
50×120mmのブロック形状に成形した。引き続
き、電気炉内に成形ブロックをセットしたまま電気炉の
温度を1200℃まで降温させ、以後30℃/時間の冷
却速度で徐冷を行い、炉内温度が1000℃になったと
ころで給電を停止し炉内放冷した。
The heat-treated porous quartz glass body thus obtained has a maximum furnace temperature of 145 for vitrification.
It was installed in the upper part of an electric furnace controlled at 0 ° C., and the inside of the furnace was replaced with helium gas having a dew point temperature of −70 ° C., and then 80 cm /
The glass was passed through the highest temperature range while being lowered at the speed of time, and vitrification was performed. The transparent quartz glass thus obtained is heated to 1750 ° C. above the softening point in an electric furnace having a heating element made of carbon and deformed under its own weight.
It was formed into a block shape of 50 × 120 mm. Subsequently, the temperature of the electric furnace was lowered to 1200 ° C. while the molding block was set in the electric furnace, and thereafter, the temperature was gradually cooled at a cooling rate of 30 ° C./hour, and the power supply was stopped when the temperature in the furnace reached 1000 ° C. The furnace was allowed to cool.

【0030】こうして得られた石英ガラスブロックの1
20mm方向の中心部より、250×250×57mm
の石英ガラスブロックを切り出し、その中心部220m
mφの内部及び外部について精密干渉計(ZygoIV)
により屈折率分布を評価した。またOH基量分布は、2
50×250×120mm石英ガラスブロックより屈折
率分布を評価した部分のすぐ隣の場所より、2mm厚み
のガラス板を切り出し日本分光社製簡易FTIR装置に
より3700cm-1の吸収により定量した。Cl含有量
は得られた石英ガラスをアルカリ溶融したのち、イオン
クロマトグラフィー法により定量した。結果を表1に示
す。
The thus obtained quartz glass block 1
250 x 250 x 57 mm from the center in the 20 mm direction
Cut out a quartz glass block of 220m
Precision interferometer for inside and outside of mφ (Zygo IV)
Was used to evaluate the refractive index distribution. The distribution of OH groups is 2
A glass plate having a thickness of 2 mm was cut out from a place immediately adjacent to the portion where the refractive index distribution was evaluated from a 50 × 250 × 120 mm quartz glass block, and quantified by absorption at 3700 cm −1 using a simple FTIR apparatus manufactured by JASCO Corporation. The Cl content was determined by ion chromatography after melting the obtained quartz glass with alkali. Table 1 shows the results.

【0031 [0031 ]

0032 [ 0032 ]

0033】 [ 0033]

表1 [ Table 1 ]

【0034】[0034]

【発明の効果】本発明の方法によれば、石英ガラス中に
Cl元素などの不純物の残存を生じさせることなくOH
基量分布を低減させることが可能であり、それに基づく
屈折率の揺らぎを抑止せしめ、石英ガラスの屈折率変動
幅を1×10-6以下にして均質性を向上することが可能
である。これにより高エネルギー密度の光を利用する光
学系に応用できる、実質的に脈理のない石英ガラス光学
部材が得られる。
According to the method of the present invention, OH can be produced without leaving impurities such as Cl element in quartz glass.
It is possible to reduce the base amount distribution , suppress the fluctuation of the refractive index based on the distribution , and improve the homogeneity by making the refractive index fluctuation width of quartz glass 1 × 10 −6 or less. Thus it can be applied to an optical system utilizing light of high energy density, substantially name has quartz glass optical <br/> member striae are obtained.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】酸水素火炎加水分解法によって成長軸に沿
って合成される石英ガラス体よりなる紫外レーザを照射
して用いる石英ガラス光学部材の製造方法であって、 該製造工程中の加熱処理は非塩素雰囲気中で行うととも
に、 合成された石英ガラス体を軟化点以上の温度に加熱し、
酸水素火炎加水分解法における石英ガラス体の成長軸方
向と同一方向に重力による変形を行わせて、成形石英ガ
ラス体を得る工程を備えることを特徴とする石英ガラス
光学部材の製造方法。
1. A method for manufacturing a quartz glass optical member using an ultraviolet laser composed of a quartz glass body synthesized along a growth axis by an oxyhydrogen flame hydrolysis method, wherein a heat treatment is performed during the manufacturing process. Is carried out in a non-chlorine atmosphere, and the synthesized quartz glass body is heated to a temperature above the softening point,
A method for producing a quartz glass optical member, comprising a step of performing deformation by gravity in the same direction as the growth axis direction of the quartz glass body in the oxyhydrogen flame hydrolysis method to obtain a formed quartz glass body.
【請求項2】(1)ガラス形成原料を火炎加水分解して
形成される石英ガラス微粒子を基材に堆積・成長させて
多孔質石英ガラス体を形成する工程、 (2)前記多孔質石英ガラス体を非塩素低水蒸気分圧雰
囲気下において、透明ガラス化温度以下の温度域で一定
時間保持し加熱処理してOH基含有量を低減する工程、 (3)前記加熱処理された多孔質石英ガラス体を、透明
ガラス化温度まで昇温・透明ガラス化して石英ガラス体
を得る工程、及び (4)前記石英ガラス体を軟化点以上の温度に加熱して
多孔質石英ガラス体の成長方向と同一方向に変形を行わ
せて、成形石英ガラス体を得る工程、を備えることを特
徴とする請求項1記載の石英ガラス光学部材の製造方
法。
(2) a step of depositing and growing quartz glass fine particles formed by flame hydrolysis of a glass forming raw material on a substrate to form a porous quartz glass body; (2) the porous quartz glass A step of keeping the body in a non-chlorine low-vapor partial pressure atmosphere in a temperature range not higher than the transparent vitrification temperature for a certain period of time and performing a heat treatment to reduce the OH group content; (3) the heat-treated porous quartz glass (4) heating the quartz body to a transparent vitrification temperature to obtain a quartz glass body, and heating the quartz glass body to a temperature equal to or higher than the softening point to be the same as the growth direction of the porous quartz glass body. 2. The method for manufacturing a quartz glass optical member according to claim 1, further comprising a step of obtaining a shaped quartz glass body by performing deformation in a direction.
【請求項3】前記透明ガラス化温度以下の温度域で一定
時間保持し加熱処理する工程において、雰囲気の露点温
度が−70℃以下であることを特徴とする請求項2記載
の石英ガラス光学部材の製造方法。
3. The quartz glass optical member according to claim 2, wherein the dew-point temperature of the atmosphere is -70 ° C. or less in the step of performing the heat treatment while maintaining the temperature within the temperature range below the transparent vitrification temperature for a predetermined time. Manufacturing method.
【請求項4】前記透明ガラス化温度以下の温度域が80
0〜1250℃であることを特徴とする請求項2又は3
記載の石英ガラス光学部材の製造方法。
4. The temperature range below the transparent vitrification temperature is 80.
The temperature is 0 to 1250 ° C.
The manufacturing method of the quartz glass optical member according to the above.
【請求項5】前記透明ガラス化温度以下の温度域で保持
する時間が1〜30時間であることを特徴とする請求項
2、3又は4記載の石英ガラス光学部材の製造方法。
5. The method for producing a quartz glass optical member according to claim 2, wherein the holding time in the temperature range below the transparent vitrification temperature is 1 to 30 hours.
【請求項6】前記成形石英ガラス体を徐冷点近傍の温度
域を40℃/時間以下の冷却速度で徐冷することを特徴
とする請求項2、3、4又は5記載の石英ガラス光学部
材の製造方法。
6. The quartz glass optical device according to claim 2, wherein the shaped quartz glass body is gradually cooled in a temperature range near the annealing point at a cooling rate of 40 ° C./hour or less. Manufacturing method of the member.
【請求項7】製造された石英ガラス光学部材のCl含有
量が10ppm以下、OH基含有量の面内分布が±5p
pm以下であることを特徴とする請求項1、2、3、
4、5又は6記載の石英ガラス光学部材の製造方法。
7. The manufactured quartz glass optical member has a Cl content of 10 ppm or less and an in-plane distribution of OH group content of ± 5 p.
pm or less.
7. The method for producing a quartz glass optical member according to 4, 5, or 6.
【請求項8】製造された石英ガラス光学部材のOH基含
有量が100ppm以下であることを特徴とする請求項
1、2、3、4、5、6又は7記載の紫外レーザ用石英
ガラス光学部材の製造方法。
8. The quartz glass optical element for an ultraviolet laser according to claim 1, wherein the manufactured quartz glass optical member has an OH group content of 100 ppm or less. Manufacturing method of the member.
【請求項9】製造された石英ガラス光学部材は、少なく
とも1方向について直径220mmの円形で囲まれる領
域にわたって屈折率の変動幅が1×10-6以下であるこ
とを特徴とする請求項1、2、3、4、5、6、7又は
8記載の紫外レーザ用石英ガラス光学部材の製造方法。
9. The manufactured quartz glass optical member has a refractive index fluctuation width of 1 × 10 −6 or less over a region surrounded by a circle having a diameter of 220 mm in at least one direction. The method for producing a quartz glass optical member for an ultraviolet laser according to 2, 3, 4, 5, 6, 7, or 8.
【請求項10】石英ガラス中のCl含有量が10ppm
以下、OH基含有量の面内分布が±5ppm以下であっ
て、かつ重金属及びアルカリの含有量の総計が1ppm
以下であることを特徴とする紫外レーザを照射して用い
る石英ガラス光学部材。
10. The Cl content in quartz glass is 10 ppm.
Hereinafter, the in-plane distribution of the OH group content is ± 5 ppm or less, and the total content of heavy metals and alkalis is 1 ppm.
A quartz glass optical member used by irradiating an ultraviolet laser, characterized in that:
【請求項11】OH基含有量が100ppm以下である
ことを特徴とする請求項10記載の石英ガラス光学部
材。
11. The quartz glass optical member according to claim 10, wherein the OH group content is 100 ppm or less.
【請求項12】少なくとも1方向について直径220m
mの円形で囲まれる領域にわたって屈折率の変動幅が1
×10-6以下であることを特徴とする請求項10又は1
1記載の石英ガラス光学部材。
12. A diameter of 220 m in at least one direction.
The variation width of the refractive index is 1 over the region surrounded by the circle of m.
10. The method according to claim 10, wherein the value is not more than × 10 -6.
2. The quartz glass optical member according to 1.
JP10091875A 1998-04-03 1998-04-03 Manufacturing method of quartz glass optical member Expired - Lifetime JP2862001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10091875A JP2862001B2 (en) 1998-04-03 1998-04-03 Manufacturing method of quartz glass optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10091875A JP2862001B2 (en) 1998-04-03 1998-04-03 Manufacturing method of quartz glass optical member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20748691A Division JP2861512B2 (en) 1991-07-24 1991-07-24 Manufacturing method of quartz glass optical member

Publications (2)

Publication Number Publication Date
JPH111331A true JPH111331A (en) 1999-01-06
JP2862001B2 JP2862001B2 (en) 1999-02-24

Family

ID=14038744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10091875A Expired - Lifetime JP2862001B2 (en) 1998-04-03 1998-04-03 Manufacturing method of quartz glass optical member

Country Status (1)

Country Link
JP (1) JP2862001B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036772A3 (en) * 1999-03-17 2001-03-21 Heraeus Quarzglas GmbH & Co. KG Method for producing optical quartz glass for excimer lasers and vertical-type heating furnace
EP1101741A2 (en) * 1999-11-15 2001-05-23 Heraeus Quarzglas GmbH & Co. KG Quartz glass product for an optical element and process of its manufacture
JP2001302274A (en) * 2000-04-24 2001-10-31 Sumitomo Metal Ind Ltd Quartz glass for ultraviolet light and method for producing the same
EP1164431A1 (en) * 1999-09-13 2001-12-19 Asahi Glass Company Ltd. Pellicle and method for manufacture thereof
EP1319635A3 (en) * 2001-12-14 2003-12-17 Shin-Etsu Chemical Co., Ltd. Glass optical fibre preform and method of its manufacture
WO2003091171A3 (en) * 2002-04-26 2004-10-14 Heraeus Tenevo Ag Method for the production of a cylindrical quartz glass body having a low oh content
JP2006176377A (en) * 2004-12-24 2006-07-06 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass having controlled oh group concentration and silica glass body
WO2006088236A1 (en) * 2005-02-18 2006-08-24 Asahi Glass Co., Ltd. Process for producing synthetic quartz glass, jig for synthetic-quartz-glass production, and synthetic quartz glass for optical member
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
CN103159396A (en) * 2011-12-11 2013-06-19 宜城市大平水晶工艺品有限公司 Device for producing crystal glass
JP2019502638A (en) * 2015-12-18 2019-01-31 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of quartz glass bodies in high melting point metal melting crucibles
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036772A3 (en) * 1999-03-17 2001-03-21 Heraeus Quarzglas GmbH & Co. KG Method for producing optical quartz glass for excimer lasers and vertical-type heating furnace
US6508084B1 (en) 1999-03-17 2003-01-21 Heraeus Quarzglas Gmbh & Co. Kg Method for producing optical quartz glass for excimer lasers and vertical-type heating furnace
EP1164431A1 (en) * 1999-09-13 2001-12-19 Asahi Glass Company Ltd. Pellicle and method for manufacture thereof
EP1164431A4 (en) * 1999-09-13 2003-04-09 Asahi Glass Co Ltd Pellicle and method for manufacture thereof
EP1101741A2 (en) * 1999-11-15 2001-05-23 Heraeus Quarzglas GmbH & Co. KG Quartz glass product for an optical element and process of its manufacture
EP1101741A3 (en) * 1999-11-15 2001-10-31 Heraeus Quarzglas GmbH & Co. KG Quartz glass product for an optical element and process of its manufacture
JP2001302274A (en) * 2000-04-24 2001-10-31 Sumitomo Metal Ind Ltd Quartz glass for ultraviolet light and method for producing the same
JP4500411B2 (en) * 2000-04-24 2010-07-14 株式会社オハラ Quartz glass for ultraviolet rays and method for producing the same
CN100413798C (en) * 2001-12-14 2008-08-27 信越化学工业株式会社 Manufacturing method for preplasticizing parison and preplasticizing parison
EP1319635A3 (en) * 2001-12-14 2003-12-17 Shin-Etsu Chemical Co., Ltd. Glass optical fibre preform and method of its manufacture
CN1305791C (en) * 2002-04-26 2007-03-21 赫罗伊斯·坦尼沃有限责任公司 Method for the production of a cylindrical quartz glass body having a low oh content
WO2003091171A3 (en) * 2002-04-26 2004-10-14 Heraeus Tenevo Ag Method for the production of a cylindrical quartz glass body having a low oh content
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2006176377A (en) * 2004-12-24 2006-07-06 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass having controlled oh group concentration and silica glass body
WO2006088236A1 (en) * 2005-02-18 2006-08-24 Asahi Glass Co., Ltd. Process for producing synthetic quartz glass, jig for synthetic-quartz-glass production, and synthetic quartz glass for optical member
US7992413B2 (en) 2005-02-18 2011-08-09 Asahi Glass Company, Limited Process for producing synthetic quartz glass
CN103159396A (en) * 2011-12-11 2013-06-19 宜城市大平水晶工艺品有限公司 Device for producing crystal glass
JP2019502638A (en) * 2015-12-18 2019-01-31 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of quartz glass bodies in high melting point metal melting crucibles
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Also Published As

Publication number Publication date
JP2862001B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
JP2862001B2 (en) Manufacturing method of quartz glass optical member
US5523266A (en) Optical member of synthetic quartz glass for excimer lasers and method for producing same
US6143676A (en) Synthetic silica glass used with uv-rays and method producing the same
JP4792705B2 (en) Silica glass containing TiO2 and method for producing the same
EP2178804B1 (en) Method of making fused silica having low oh and od levels
EP2229347B1 (en) TiO2-SiO2 GLASS
EP2247544B1 (en) Tio2-containing silica glass and optical member for lithography using the same
JP2861512B2 (en) Manufacturing method of quartz glass optical member
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
KR20090039668A (en) Manufacture of large articles in synthetic vitreous silica
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JPH05178632A (en) Optical quartz glass having high heat resistance and its production
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP4017863B2 (en) Annealing furnace and method for producing optical synthetic quartz glass
JPH10324528A (en) Optical quartz glass
JP5733350B2 (en) Silica glass containing TiO2 and method for producing the same
JP4110362B2 (en) Method for producing synthetic quartz glass member
JP2814805B2 (en) Quartz glass substrate for polysilicon TFT LCD
JPH05139778A (en) Quartz glass substrate for photomask having high heat resistance
JP3126188B2 (en) Quartz glass substrate for photomask
JP3126187B2 (en) Quartz glass substrate for polysilicon TFT LCD
JP5402975B2 (en) Silica glass containing TiO2 and method for producing the same
JPH05139779A (en) Quartz glass substrate for photomask

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981110