JP2814805B2 - Quartz glass substrate for polysilicon TFT LCD - Google Patents

Quartz glass substrate for polysilicon TFT LCD

Info

Publication number
JP2814805B2
JP2814805B2 JP3327149A JP32714991A JP2814805B2 JP 2814805 B2 JP2814805 B2 JP 2814805B2 JP 3327149 A JP3327149 A JP 3327149A JP 32714991 A JP32714991 A JP 32714991A JP 2814805 B2 JP2814805 B2 JP 2814805B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass substrate
temperature
less
polysilicon tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3327149A
Other languages
Japanese (ja)
Other versions
JPH05139775A (en
Inventor
進 八馬
信也 菊川
幸則 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18195861&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2814805(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3327149A priority Critical patent/JP2814805B2/en
Priority to US07/912,776 priority patent/US5330941A/en
Publication of JPH05139775A publication Critical patent/JPH05139775A/en
Application granted granted Critical
Publication of JP2814805B2 publication Critical patent/JP2814805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポリシリコンTFT式
LCD用石英ガラス基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass substrate for a polysilicon TFT type LCD.

【0002】[0002]

【従来の技術】石英ガラスは、透明なガラス材料の中で
は最も耐熱性が高く、また熱膨張率が極めて小さく寸法
安定性に優れていること、更に化学的な耐久性に優れて
いることのために、近年、ポリシリコンTFT式LCD
用の基板材料として、特にビデオカメラのビューファイ
ンダー等に用いられる小型のポリシリコンTFT用とし
て用いられている。ポリシリコンTFTの製造方法は一
般的には、製造温度レベルにより、(1)高温プロセス
法(最高プロセス温度約1000℃程度)、(2)中温
プロセス法(最高プロセス温度約700℃程度)、
(3)低温プロセス法(最高プロセス温度約500℃程
度)の3種類に大別される。
2. Description of the Related Art Quartz glass has the highest heat resistance among transparent glass materials, has a very small coefficient of thermal expansion, has excellent dimensional stability, and has excellent chemical durability. Recently, polysilicon TFT type LCD
Used as a substrate material for small-sized polysilicon TFTs used in viewfinders of video cameras and the like. In general, polysilicon TFTs are manufactured in the following manners depending on the manufacturing temperature level: (1) high-temperature process (maximum process temperature of about 1000 ° C.);
(3) It is roughly classified into three types: a low-temperature process method (a maximum process temperature of about 500 ° C.).

【0003】一般的に、テレビやディスプレー等の大面
積TFTの場合、製造コスト面からプロセスの低温化の
方向での開発が、現在盛んに進められている。ところが
一方、ビデオカメラのビューファインダー用等の小型の
ポリシリコンTFTについては、高温プロセスを採用し
た場合、従来のLSI製造ラインを大幅に変更すること
無く製造することができるため、LSI製造で培われた
信頼性の高いプロセス技術を有効活用でき、高歩留まり
で高品質のTFTを製造できるメリットが有るため、高
温プロセスでの製造が主流となっている。
In general, in the case of large-area TFTs such as televisions and displays, developments in the direction of lowering the process are being actively pursued from the viewpoint of manufacturing costs. On the other hand, small polysilicon TFTs for video camera viewfinders and the like can be manufactured without significant changes in conventional LSI manufacturing lines when a high-temperature process is adopted. In addition, there is a merit that a high-reliability process technology can be effectively used and a high-quality TFT can be manufactured with a high yield. Therefore, a high-temperature process is mainly used.

【0004】この場合の問題点は、基板材料であるガラ
スの耐熱性にあり、かかる観点から石英ガラスが用いら
れるのが通常である。しかしながら、石英ガラスの耐熱
性も、その種類・製造方法によりかなり差異を有してお
り、一般的にはいわゆる溶融石英ガラスが耐熱性という
観点からは最も優れており、徐冷点(ガラスの粘度が1
13ズを示す温度)で1170〜1220℃程度で
ある。
A problem in this case is the heat resistance of glass as a substrate material, and quartz glass is usually used from such a viewpoint. However, the heat resistance of the quartz glass is also best has a viscosity of annealing point (glass has a considerable difference is generally so-called fused silica glass from the viewpoint of heat resistance by the type and manufacturing method Is 1
0 13 is approximately 1,170-1,220 ° C. in temperature) which indicates the port A's.

【0005】これに対し、合成石英ガラスからなる基板
は、ガラス中に含まれる泡・異物等の品質面からははる
かに優れているが、一方、一般に合成石英ガラスの徐冷
点は1050〜1120℃程度であって溶融石英ガラス
に比較し100〜150℃程度低く、耐熱性がより低い
ので、ポリシリコンTFT製造上合成石英ガラスからな
る基板には問題があった。
On the other hand, a substrate made of synthetic quartz glass is far superior in terms of the quality of bubbles and foreign matter contained in the glass, but the annealing point of synthetic quartz glass is generally 1050 to 1050. 1120 ° C. about a was compared to fused silica 10 0 to 0.99 ° C. about low, since the lower heat resistance, there is a problem in a substrate made of polysilicon TFT manufacturing synthetic silica glass.

【0006】また、一般に石英ガラスは、TFT製造工
程等で用いられるプラズマエッチング等の真空紫外光の
照射によって、230〜300nmの波長範囲に吸収を
伴う構造欠陥を生成することが知られている。これらの
構造欠陥の中には蛍光発光を伴うものがあり、これらの
蛍光発光のためにカラー液晶表示素子を作成した場合に
は色調を損ねるといった実用上の問題を有していた。
Further, it is generally known that quartz glass generates structural defects accompanied by absorption in a wavelength range of 230 to 300 nm by irradiation with vacuum ultraviolet light such as plasma etching used in a TFT manufacturing process or the like. Some of these structural defects are accompanied by fluorescent light emission, and when a color liquid crystal display element is produced for such fluorescent light emission, there is a practical problem that the color tone is impaired.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、前述
の問題点を解消し、ビューファインダー等に用いられる
ポリシリコンTFT式LCD製造用に適した、耐熱性に
優れ、蛍光発光の実質的に無いポリシリコンTFT式L
CD用石英ガラス基板を提供するにある。
The object of the present invention is to solve the above is to solve the problems described above, suitable for a polysilicon TFT type LCD production used in the viewfinder over like, excellent in heat resistance, substantial fluorescence emission Polysilicon TFT type L
It is to provide a quartz glass substrate for CD.

【0008】[0008]

【課題を解決するための手段】本発明は前述の課題を解
決するべくなされたものであり、ハロゲン含有量が10
ppm以下、OH含有量が100ppm以下、重金属お
よびアルカリ金属の含有量の総計が1ppm以下であっ
て、徐冷点が1150℃以上であることを特徴とするポ
リシリコンTFT式LCD用石英ガラス基板を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a halogen content of 10%.
ppm or less, an OH content of 100 ppm or less, a total content of heavy metals and alkali metals of 1 ppm or less, and a slow cooling point of 1150 ° C. or more. To provide.

【0009】また本発明は、上記ポリシリコンTFT式
LCD用石英ガラス基板において、基板面内の屈折率の
変動幅が5×10-6以下であることを特徴とするポリシ
リコンTFT式LCD用石英ガラス基板を提供するもの
である。
The present invention also provides a quartz glass substrate for a polysilicon TFT type LCD, wherein the variation range of the refractive index in the substrate surface is 5 × 10 -6 or less. A glass substrate is provided.

【0010】また本発明は、上記ポリシリコンTFT式
LCD用石英ガラス基板において、該石英ガラス基板を
プラズマエッチング処理したとき、該処理の前後での波
長230〜300nmの範囲の吸光係数の増加が、0.
005cm-1以下であることを特徴とするポリシリコン
TFT式LCD用石英ガラス基板を提供するものであ
る。
Further, the present invention provides the above-mentioned quartz glass substrate for a polysilicon TFT type LCD, wherein when the quartz glass substrate is subjected to plasma etching treatment, an increase in the extinction coefficient in a wavelength range of 230 to 300 nm before and after the treatment is caused by: 0.
An object of the present invention is to provide a quartz glass substrate for a polysilicon TFT type LCD, which is not more than 005 cm -1 .

【0011】本発明において、石英ガラス基板に含有さ
れるハロゲン量は、10ppm以下であ、10ppm
を超えるハロゲンが含有される場合には、耐熱性が低下
する。また、OH含有量は、100ppm以下であ
特には50ppm以下であることが好ましい。100p
pmを超えるOH量を含有する場合には、ハロゲンと同
じく耐熱性が低下する
[0011] In the present invention, the halogen content contained in the quartz glass substrate state, and are less 10 ppm, 10 ppm
If more than halogen is contained, heat resistance decreases
I do . In addition, OH content of state, and are less than 100ppm,
In particular, it is preferably at most 50 ppm. 100p
When containing OH content of more than pm, like heat resistance is lowered and a halogen.

【0012】重金属およびアルカリ金属の含有量につい
ては、その総和が1ppm以下であ、1ppmを超え
て含有する場合には、短波長領域での分光透過率の低下
をもたらす。また、徐冷点とはガラスの粘度が1013
アズを示す温度であるが、これは1150℃以上であ
、かかる温度以上の徐冷点を有すれば、ポリシリコン
TFT作成上のプロセス温度としておよそ1000℃を
採用することが可能とな
[0012] For the content of heavy metals and the alkali metals, the sum Ri der below 1ppm, when content exceeds 1ppm is to cod also a decrease in the spectral transmittance in a short wavelength region. The viscosity of the glass is the annealing point 10 13 po
Is a temperature showing the as-which 1150 ° C. or higher der
Ri, if it has more than such a temperature of the anneal point, that Do is possible to employ a roughly 1000 ° C. As the process temperature on the creation polysilicon TFT.

【0013】また、光学的な均質性を得るためには、面
内の屈折率の変動幅が5×10-6以下であることが好ま
しい。かかる変動幅を超える場合には、光学的な均質性
を確保することが困難となるため好ましくない。
Further, in order to obtain optical homogeneity, it is preferable that the variation range of the in-plane refractive index is 5 × 10 −6 or less. Exceeding such a fluctuation range is not preferable because it becomes difficult to ensure optical homogeneity.

【0014】また、前記プラズマエッチング処理前後で
の波長230〜300nmの範囲の吸光係数の増加は、
0.005cm-1以下であることが好ましい。ここに、
吸光係数αは、透過光量をI、入射光量をIo 、反射率
をR、ガラス基板の厚みをt(cm)とした時に、 I/Io =(1−R)2 ・exp(−α・t) で定義される値である。
The increase in the extinction coefficient in the wavelength range of 230 to 300 nm before and after the plasma etching treatment is as follows:
It is preferably 0.005 cm -1 or less. here,
The extinction coefficient α is I / I o = (1−R) 2 · exp (−α), where I is the amount of transmitted light, I o is the amount of incident light, R is the reflectance, and t (cm) is the thickness of the glass substrate. -The value defined by t).

【0015】ここに、吸光係数の増加が、0.005c
-1以下であれば、これに伴う蛍光発光も、入射光量の
10万分の1から100万分の1程度となり、実用上の
問題を生じない。かかる範囲を逸脱する場合には、色調
の変化や着色き起こし好ましくない。
Here, the increase in the extinction coefficient is 0.005 c
If it is less than m −1 , the resulting fluorescence emission will also be about 1 / 100,000 to 1 / 100,000 of the incident light amount, and will not cause a practical problem. When departing from the above range is not preferable cause pull the color change or coloring or the like.

【0016】かかる石英ガラス基板の製造方法として
は、上記の項目を満足していれば特に制約はないが、例
えば、予めガラス形成原料を加熱加水分解して得られる
石英ガラス微粒子を基材に堆積・成長させた多孔質石英
ガラス体を透明ガラス化する温度以下の温度域で水蒸気
分圧の低い雰囲気中に一定時間加熱保持した後、透明ガ
ラス化温度に昇温加熱して透明ガラス化して石英ガラス
体とする方法により作成することが可能である。
The method of manufacturing such a quartz glass substrate is not particularly limited as long as the above-mentioned items are satisfied. For example, quartz glass fine particles obtained by heating and hydrolyzing a glass-forming raw material are previously deposited on a substrate.・ After heating and maintaining the grown porous quartz glass body in an atmosphere with a low partial pressure of water vapor for a certain period of time in a temperature range not higher than the temperature at which the vitreous quartz is vitrified, the temperature is raised to the vitrification temperature and heated to clear vitrification to form quartz. It can be made by a method of forming a glass body.

【0017】用いられるガラス形成原料としては、ガス
化可能な原料であれば特に制限されるものではないが、
SiCl4 SiHCl3 、SiH2 Cl2 、Si(C
3)Cl3 等の塩化物、SiF4 、SiHF3 Si
22 等のフッ化物、SiBr4 SiHBr3 等の
臭化物、SiI4 の沃化物のハロゲン化珪素化合物が
作業性やコストの面から好ましい。多孔質石英ガラス体
は、これらのガラス形成原料を通常の酸水素火炎中で加
水分解し、基材上に堆積させて形成される。このように
して得られた多孔質石英ガラス体は、ついで低水蒸気分
圧雰囲気下で一定時間加熱保持された後、透明ガラス化
温度まで昇温されて透明ガラス化して石英ガラスとな
る。
The glass forming raw material used is not particularly limited as long as it is a gasizable raw material.
SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Si (C
H 3 ) chlorides such as Cl 3 , SiF 4 , SiHF 3 , Si
Fluoride such as H 2 F 2 , bromide such as SiBr 4 and SiHBr 3 , and silicon halide compound such as iodide of SiI 4 are preferable in terms of workability and cost. The porous quartz glass body is formed by hydrolyzing these glass forming raw materials in an ordinary oxyhydrogen flame and depositing them on a substrate. The porous quartz glass body thus obtained is then heated and held for a certain period of time in a low steam partial pressure atmosphere, and then heated to a transparent vitrification temperature to be vitrified to form quartz glass.

【0018】すなわち、例えば、多孔質石英ガラス体は
雰囲気制御可能な電気炉内に予め装着された後、一定の
昇温速度で加熱される。ついで所定の温度に到達の後、
乾燥ガスを雰囲気中に導入し、多孔質石英ガラス体が接
する雰囲気を置換することにより雰囲気中の水蒸気分圧
を所定値以下に低減させる。その水蒸気分圧としては、
0.002mmHg以下であることが好ましく、これ
超える場合には最終的に得られる石英ガラス中のOH量
を低減させることが困難なため好ましくない。
That is, for example, after the porous quartz glass body is previously mounted in an electric furnace whose atmosphere can be controlled, it is heated at a constant heating rate. Then, after reaching the predetermined temperature,
By introducing a dry gas into the atmosphere and replacing the atmosphere in contact with the porous quartz glass body, the partial pressure of water vapor in the atmosphere is reduced to a predetermined value or less. As the water vapor partial pressure,
Preferably 0.002mmHg or less, it
If it exceeds, it is not preferable because it is difficult to reduce the OH content in the finally obtained quartz glass.

【0019】また加熱保持する温度域としては、800
〜1250℃の範囲内が好ましく、この温度域未満の温
度では実質的な効果が得られず、またこの温度域を超え
温度では多孔質石英ガラス体の表面の透明ガラス化が
進行するため、多孔質石英ガラス体内部を所望の低水蒸
気分圧雰囲気に置換することができず好ましくない。
The temperature range for heating and holding is 800
Is preferably in the range of to 1250 ° C., no substantial effect is obtained at temperatures below this temperature range, also exceed this temperature range
That since at temperatures vitrification of the surface of the porous quartz glass body proceeds is not preferable not possible to replace the porous quartz glass body portion to a desired low water vapor partial pressure atmosphere.

【0020】また、この温度域であれば、加熱処理の方
法としては、一定温度に保持してもく、またこの温度
域内を所定の時間の範囲内で昇温させながら処理しても
い。またこの温度域での保持時間は、保持温度に依存
するため一概に規定することはできないが1〜30時間
程度が好ましく、これ未満の場合には、実質的な効果が
なく、またこれより長時間かけた場合にもその効果は変
わらないために生産効率等を考慮に入れると好ましくな
い。
Further, if this temperature range, as the method of heat treatment, rather it may also be held at a constant temperature, also be treated while warming the temperature range within a predetermined time
Not good. Also, the holding time in this temperature range depends on the holding temperature and cannot be specified unconditionally, but is preferably about 1 to 30 hours, and if it is less than this, there is no substantial effect and the holding time is longer. Even if it takes time, the effect does not change, so it is not preferable to take production efficiency and the like into consideration.

【0021】また、乾燥ガスとしては、窒素、ヘリウ
ム、アルゴン等を通常用いることができるが、乾燥ガス
として使用できれば必ずしもこれらのガスに限定される
ものではない。ついでこのような加熱処理の後、多孔質
石英ガラス体は透明ガラス化温度まで昇温されて透明
ラス化される。透明ガラス化温度としては、1350〜
1500℃の範囲から採用することが好ましい。更に、
加熱処理と透明ガラス化処理は、それぞれ別の加熱装置
で行われてもいが、その場合には、移送時に水分が吸
着したりすることを防止する等の処置を講じることが好
ましい。したがって、さらに好ましい実施態様として
は、加熱処理とガラス化を同一の設備で行うことが好ま
しい。
As the dry gas, nitrogen, helium, argon or the like can be usually used, but it is not necessarily limited to these gases as long as it can be used as the dry gas. Then, after such heat treatment,
Quartz glass body is transparent glass <br/> las reduction is heated to a transparent vitrification temperature. The transparent vitrification temperature is 1350-
It is preferable to adopt from the range of 1500 ° C. Furthermore,
Heat treatment and vitrification process, it may also be carried out in separate heating devices bur, in that case, it is preferable to take measures such as water at the time of transfer to prevent or adsorption. Therefore, as a more preferred embodiment, it is preferable to perform the heat treatment and the vitrification in the same facility.

【0022】こうして得られた石英ガラス体を軟化点以
上の温度に加熱し、所望の形状に成形加工を行い石英ガ
ラスインゴットを製造する。成形加工の温度域は、16
50〜1800℃の範囲から選択することが好ましい。
1650℃未満の温度では石英ガラスの粘度が高いた
め、実質的に自重変形が行われず、またSi02 の結晶
相であるクリストバライトの成長がおこりいわゆる失透
が生じるため好ましくなく、1800℃を超える温度で
は、SiO2 の昇華が無視できなくなり好ましくない。
また、石英ガラス体の自重変形を行わせる方向は、特に
規定されないが多孔質石英ガラス体の成長方向と同一で
あることが好ましい。
The quartz glass body thus obtained is heated to a temperature equal to or higher than the softening point and formed into a desired shape to produce a quartz glass ingot. The temperature range of the forming process is 16
It is preferable to select from the range of 50 to 1800 ° C.
At a temperature lower than 1650 ° C., the viscosity of quartz glass is high, so that its own weight is not substantially deformed, and cristobalite, which is a crystal phase of SiO 2 , grows and so-called devitrification occurs. In this case, sublimation of SiO 2 cannot be ignored, which is not preferable.
The direction in which the quartz glass body undergoes its own weight deformation is not particularly limited, but is preferably the same as the growth direction of the porous quartz glass body.

【0023】こうして得られる石英ガラスインゴット
は、さらに研削加工、スライス加工、研磨加工を経て、
基板とされる。なお、透過率の改善のために、必要に応
じてスライスした基板を水素を含む雰囲気中で熱処理し
てもい。
The quartz glass ingot thus obtained is further subjected to grinding, slicing, and polishing.
It is a substrate. In order to improve the transmittance, but it may also be heat-treated substrate sliced if necessary in an atmosphere containing hydrogen.

【0024】以上のような工程を経て得られる石英ガラ
スは、石英ガラス中に含有されるOH量が100ppm
以下であり、該ガラス中のOH量の変動幅がほとんどの
領域にいて±5ppm以内であって均質性に優れる石
英ガラスである。
The quartz glass obtained through the above steps has an OH content of 100 ppm in the quartz glass.
Or less, a silica glass having excellent homogeneity is within ± 5 ppm variation width of the OH content is have you to most areas of the glass.

【0025】また、本発明の石英ガラスは、ガラス形成
原料として高純度な合成原料が使用可能なこと、溶融工
程を経ないためルツボ等からの不純物の混入がないこと
等から、鉄、ニッケル等の重金属元素やナトリウム、カ
リウム等のアルカリ金属元素の不純物総量が1ppm以
下と極めて高純度であり、これをポリシリコンTFT製
造用に供した場合、高温処理を経ても不純物がシリコン
膜その他の部位に拡散してその部位を劣化させることが
ない。
In addition, the quartz glass of the present invention can be used as a raw material for forming a glass, because a high-purity synthetic raw material can be used and no impurities are mixed in from a crucible because it does not go through a melting step. The total amount of impurities of heavy metal elements and alkali metal elements such as sodium and potassium is extremely high as 1 ppm or less, and when this is used for the production of polysilicon TFTs, the impurities remain in the silicon film and other parts even after high temperature treatment. It does not diffuse and degrade the site .

【0026】以下、本発明の詳細についてさらに実施例
により説明するが、当然のことながら本発明の内容はこ
れら実施例に限定されるものではない。
Hereinafter, the present invention will be described in further detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

【0027】[0027]

【実施例】[実施例1] 公知の方法により、SiCl4 を酸水素火炎中で加熱加
水分解させて形成た直径35cm、長さ100cmの
多孔質石英ガラス体を室温で雰囲気制御可能な電気炉内
に設置した。ついで露点温度−70℃の窒素ガスで電気
炉内雰囲気を置換した後、露点温度−70℃の窒素ガス
を流しながら500℃/hrの昇温速度で1000℃ま
で昇温した。
EXAMPLES Example 1 By a known method, a porous quartz glass body having a diameter of 35 cm and a length of 100 cm formed by heating and hydrolyzing SiCl 4 in an oxyhydrogen flame can control the atmosphere at room temperature. Installed in the furnace. Then, after replacing the atmosphere in the electric furnace with a nitrogen gas having a dew point of -70 ° C, the temperature was raised to 1000 ° C at a rate of 500 ° C / hr while flowing a nitrogen gas having a dew point of -70 ° C.

【0028】引き続き昇温速度を50℃/hrとし、1
250℃まで昇温して、その温度で10hr保持した。
こうして得られた熱処理済みの多孔質石英ガラス体を透
明ガラス化のための炉内最高温度が1450℃に制御さ
れた電気炉内上部に設置し、炉内を露点温度が−70℃
のヘリウムガスで置換した後、80cm/hrの速度で
下降させながら最高温度域を通過させて透明ガラス化を
行った。
Subsequently, the temperature was raised at a rate of 50 ° C./hr.
The temperature was raised to 250 ° C. and maintained at that temperature for 10 hours.
The heat-treated porous quartz glass body thus obtained is placed in an upper part of an electric furnace controlled at a maximum furnace temperature of 1450 ° C. for transparent vitrification, and the furnace has a dew point temperature of −70 ° C.
After the helium gas was replaced with the helium gas, the glass was passed through the highest temperature range while being lowered at a speed of 80 cm / hr to perform vitrification.

【0029】こうして得られた透明石英ガラスを、カー
ボン製発熱体を有する電気炉内で、軟化点以上の175
0℃に加熱して自重変形を行わせ、170mmφ×40
0mmの円柱インゴット形状に成形した。こうして得ら
れた石英ガラスインゴットの長手方向の中心部より、1
70mmφ×57mmの石英ガラスインゴットを切り出
し、形状を揃えるために円筒研削を行い、160mmφ
とした後、精密干渉計(ZygoIV)により屈折率分布
を評価した。
The transparent quartz glass thus obtained was placed in an electric furnace having a heating element made of carbon at a temperature of 175 ° C. or above the softening point.
Heat to 0 ° C to deform under its own weight, 170 mm φ × 40
It was formed into a 0 mm cylindrical ingot shape. From the center in the longitudinal direction of the quartz glass ingot thus obtained, 1
70 mm cut out quartz glass ingot phi × 57 mm, subjected to cylindrical grinding to align the shape, 160 mm phi
After that, the refractive index distribution was evaluated using a precision interferometer (Zygo IV).

【0030】またOH量およびその分布は、170mm
φ×400mm石英ガラスインゴットより屈折率分布を
評価した部分のすぐ隣の場所より、2mm厚みのガラス
板を切り出し日本分光社製簡易FTIR装置により37
00cm-1の吸収により定量した。Cl含有量は得られ
た石英ガラスをアルカリ溶融したのち、イオンクロマト
グラフィー法により定量した。また、徐冷点は、サンプ
ルサイズ2.4mm×5mm×60mmのサンプルを切
り出し、スパン52mmで、ビームベンディング法によ
り測定した。結果を表1に示す。
The OH content and its distribution are 170 mm
A glass plate having a thickness of 2 mm was cut out from a place immediately adjacent to the portion where the refractive index distribution was evaluated from a φ × 400 mm quartz glass ingot, and was cut out with a simple FTIR apparatus manufactured by JASCO Corporation.
Quantified by absorption at 00 cm -1 . The Cl content was determined by ion chromatography after melting the obtained quartz glass with alkali. The annealing point was measured by cutting out a sample having a sample size of 2.4 mm × 5 mm × 60 mm and measuring the span at 52 mm by the beam bending method. Table 1 shows the results.

【0031】また、上記の石英ガラスインゴットからサ
ンプルを切り出し、100%水素雰囲気中で1000
℃、14時間の熱処理をした後、研磨して30mmの厚
さに整えた後透過率を測定した。ついで、東京応化製ド
ライエッチャー(S−600)を用い、酸素/四塩化炭
素プラズマ(0.35torr、200W)中で5分間
のプラズマエッチング処理を行い、透過率を測定した。
プラズマエッチング処理前後での230〜300nmの
範囲での透過率の減少は0.5%であり、この値から換
算して吸光係数の増加は、0.002cm-1であった。
Further, a sample was cut out from the above quartz glass ingot and 1000% in a 100% hydrogen atmosphere.
After heat treatment at 14 ° C. for 14 hours, the resultant was polished to a thickness of 30 mm, and the transmittance was measured. Next, using a dry etcher (S-600) manufactured by Tokyo Ohka, a plasma etching treatment was performed in oxygen / carbon tetrachloride plasma (0.35 torr, 200 W) for 5 minutes, and the transmittance was measured.
The decrease in transmittance in the range of 230 to 300 nm before and after the plasma etching treatment was 0.5%, and the increase in the extinction coefficient calculated from this value was 0.002 cm -1 .

【0032】[実施例2] 実施例1と同一の方法で作成した石英ガラスインゴット
からサンプルを切りだし、水素雰囲気の水素濃度が30
%であること以外は実施例1と同様の後処理を行い、プ
ラズマエッチング前後での透過率の変化を測定したとこ
ろ、透過率の減少は1%であり、この値から換算して吸
光係数の増加は0.004cm-1であった。
Example 2 A sample was cut out from a quartz glass ingot prepared in the same manner as in Example 1, and the hydrogen concentration in a hydrogen atmosphere was 30%.
%, The same post-treatment as in Example 1 was performed, and the change in transmittance before and after plasma etching was measured. The decrease in transmittance was 1%. The increase was 0.004 cm -1 .

【0033】[比較例] 1250℃での熱処理を行わないほかは、実施例1と同
一の方法で作製した石英ガラスインゴットの屈折率分
布、OH量およびその分布幅、Cl含有量、および徐冷
点を表1に示す。
Comparative Example A refractive index distribution, an OH content and its distribution width, a Cl content, and a slow cooling of a quartz glass ingot produced by the same method as in Example 1 except that the heat treatment at 1250 ° C. was not performed. The points are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】上述したように、本発明のポリシリコン
TFT式LCD用石英ガラス基板は、徐冷点が高く、耐
熱性に優れ、かつプラズマエッチング処理前後での短波
長側の吸光係数の増加が小さく、実質的に蛍光発光が無
い優れた特徴を有する。また、本発明のポリシリコンT
FT式LCD用石英ガラス基板は光学的均質性にも優れ
た特徴を有する。
[Effect of the Invention] As described above, polysilicon TFT type quartz glass substrate for an LCD of the present invention, high anneal points, excellent heat resistance, and the absorption light coefficient in the short wavelength side of the before and after plasma etching process It has excellent characteristics with little increase and substantially no fluorescence emission. Also, the polysilicon T of the present invention
The quartz glass substrate for the FT type LCD has a feature excellent in optical homogeneity.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C03C 3/06 G02F 1/1333 500──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C03C 3/06 G02F 1/1333 500

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハロゲン含有量が10ppm以下、OH含
有量が100ppm以下、重金属およびアルカリ金属
含有量の総計が1ppm以下であって、徐冷点が115
0℃以上であることを特徴とするポリシリコンTFT式
LCD用石英ガラス基板。
1. A halogen content of 10 ppm or less, an OH content of 100 ppm or less, a total content of heavy metals and alkali metals of 1 ppm or less, and a slow cooling point of 115 ppm.
A quartz glass substrate for a polysilicon TFT type LCD, wherein the temperature is 0 ° C. or higher.
【請求項2】請求項1記載のポリシリコンTFT用石英
ガラス基板において、基板面内の屈折率の変動幅が5×
10-6以下であることを特徴とするポリシリコンTFT
式LCD用石英ガラス基板。
2. The quartz glass substrate for a polysilicon TFT according to claim 1, wherein a variation width of the refractive index in the substrate surface is 5 ×.
Polysilicon TFT characterized by being 10 -6 or less
Quartz glass substrate for LCD.
【請求項3】請求項1または2記載のポリシリコンTF
T式LCD用石英ガラス基板において、該石英ガラス基
板をプラズマエッチング処理したとき、該処理の前後で
の波長230〜300nmの範囲の吸光係数の増加が、
0.005cm-1以下であることを特徴とするポリシリ
コンTFT式LCD用石英ガラス基板。
3. The polysilicon TF according to claim 1, wherein
In a quartz glass substrate for a T-type LCD, when the quartz glass substrate is subjected to plasma etching treatment, an increase in the extinction coefficient in a wavelength range of 230 to 300 nm before and after the treatment,
A quartz glass substrate for a polysilicon TFT type LCD, having a thickness of 0.005 cm -1 or less.
JP3327149A 1991-07-24 1991-11-15 Quartz glass substrate for polysilicon TFT LCD Expired - Fee Related JP2814805B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3327149A JP2814805B2 (en) 1991-11-15 1991-11-15 Quartz glass substrate for polysilicon TFT LCD
US07/912,776 US5330941A (en) 1991-07-24 1992-07-13 Quartz glass substrate for polysilicon thin film transistor liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327149A JP2814805B2 (en) 1991-11-15 1991-11-15 Quartz glass substrate for polysilicon TFT LCD

Publications (2)

Publication Number Publication Date
JPH05139775A JPH05139775A (en) 1993-06-08
JP2814805B2 true JP2814805B2 (en) 1998-10-27

Family

ID=18195861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327149A Expired - Fee Related JP2814805B2 (en) 1991-07-24 1991-11-15 Quartz glass substrate for polysilicon TFT LCD

Country Status (1)

Country Link
JP (1) JP2814805B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376401B1 (en) 1998-09-07 2002-04-23 Tosoh Corporation Ultraviolet ray-transparent optical glass material and method of producing same

Also Published As

Publication number Publication date
JPH05139775A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JP5035516B2 (en) Method for producing titania-doped quartz glass for photomask
KR101513310B1 (en) Titania-doped quartz glass member and making method
EP1608596B1 (en) Silica glass containing tio2 and process for its production
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
EP1035084B1 (en) Synthetic fused silica glass member
WO2005066090A1 (en) Silica glass
US5330941A (en) Quartz glass substrate for polysilicon thin film transistor liquid crystal display
JP2862001B2 (en) Manufacturing method of quartz glass optical member
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP2022526062A (en) Low hydroxy group high purity quartz glass and its preparation method
JP3228676B2 (en) High purity silica glass for far ultraviolet rays and method for producing the same
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2004123420A (en) Synthetic silica glass member for optical use and its manufacturing process
JP2861512B2 (en) Manufacturing method of quartz glass optical member
KR101492663B1 (en) Titania and sulfur co-doped quartz glass member and making method
JP2814805B2 (en) Quartz glass substrate for polysilicon TFT LCD
JPH05178632A (en) Optical quartz glass having high heat resistance and its production
JP3126187B2 (en) Quartz glass substrate for polysilicon TFT LCD
JP3630533B2 (en) Synthetic silica glass large plate for high output vacuum ultraviolet ray and method for producing the same
JP4110362B2 (en) Method for producing synthetic quartz glass member
JP3965552B2 (en) Method for producing synthetic quartz glass
JP3126188B2 (en) Quartz glass substrate for photomask
JP2003192364A (en) Synthetic quartz glass substrate
JP5418428B2 (en) Heat treatment method for synthetic quartz glass block
JP3427136B2 (en) Synthetic quartz glass manufacturing apparatus and manufacturing method using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees