JPH11130441A - Production of nickel-containing hydroxide - Google Patents

Production of nickel-containing hydroxide

Info

Publication number
JPH11130441A
JPH11130441A JP9308108A JP30810897A JPH11130441A JP H11130441 A JPH11130441 A JP H11130441A JP 9308108 A JP9308108 A JP 9308108A JP 30810897 A JP30810897 A JP 30810897A JP H11130441 A JPH11130441 A JP H11130441A
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
reaction
hydroxide
mother liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9308108A
Other languages
Japanese (ja)
Inventor
Shigeaki Tomita
成明 富田
Naoki Komata
直樹 古俣
Koichi Hibi
宏一 日比
Shinichi Ohashi
信一 大橋
Akira Aizawa
明 相沢
Takao Yaginuma
隆夫 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ise Chemicals Corp
Original Assignee
Ise Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ise Chemicals Corp filed Critical Ise Chemicals Corp
Priority to JP9308108A priority Critical patent/JPH11130441A/en
Publication of JPH11130441A publication Critical patent/JPH11130441A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hydroxide having sufficient packing density, small in the generation of fine particles and free from the dispersion of characteristics by supplying an aq. solution containing a Ni salt and metal elements except Ni and an alkali aq. solution to a reaction vessel while stirring and continuing the reaction while keeping the slurry concentration in the reaction vessel to a specific range. SOLUTION: The aq. solution containing the Ni salt (e.g. nickel sulfate) and the metal elements (e.g. Co and Zn) except Ni and the alkali aq. solution (e.g. NaOH aq. solution) are supplied to the reaction vessel and the reaction is continued while keeping the slurry concentration in the reaction vessel to 300-1200 g/L. Preferably ammonia is continuously supplied to the reaction vessel to control the ammonia concentration in the mother liquor to 0.3-3.0 g/L and Ni ion concentration in the mother liquor to 0.01-2.0 ppm. As a result, the Ni- containing spherical hydroxide having >=2.0 g/L tapping density, >=8 μm average particle diameter and <=2.0% cumulative distribution of <=1 μm particle is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に二次電池用の
正極活物質に用いる水酸化ニッケルの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing nickel hydroxide used mainly as a positive electrode active material for a secondary battery.

【0002】[0002]

【従来の技術】ニッケル−水素二次電池やニッケル−カ
ドミウム二次電池等のアルカリ二次電池の正極活物質に
は水酸化ニッケルが主材料として用いられている。近年
の二次電池の高エネルギー密度化、高性能化、低コスト
化の要求にともない、正極にペースト式ニッケル電極が
用いられることが主流になりつつある。ペースト式電極
に用いられる水酸化ニッケルについても、高特性のもの
が求められており、より高い充填性、高い放電容量、良
好なペースト剤との相性等が要求されている。
2. Description of the Related Art Nickel hydroxide is mainly used as a positive electrode active material for alkaline secondary batteries such as nickel-hydrogen secondary batteries and nickel-cadmium secondary batteries. With the recent demand for higher energy density, higher performance, and lower cost of secondary batteries, the use of paste-type nickel electrodes for the positive electrode is becoming mainstream. The nickel hydroxide used for the paste electrode is also required to have high characteristics, and higher filling properties, higher discharge capacity, better compatibility with the paste agent, and the like are required.

【0003】このペースト式電極では、充放電サイクル
の繰り返しによる電極の膨化により放電容量が低下す
る、高温での充放電効率が低下するという問題がある。
これらはγーNiOOHの生成に起因すると考えられて
おり、その防止策が数多く研究されている。例えば、特
開平5−217580号では、Znを代表するII属元
素及びCoを固溶させた水酸化ニッケルを用いることが
提案されており、工業的にも実用化されている。
[0003] This paste-type electrode has a problem that the discharge capacity is reduced due to the expansion of the electrode due to the repetition of the charge / discharge cycle, and the charge / discharge efficiency at high temperatures is reduced.
These are thought to be due to the formation of γ-NiOOH, and many preventive measures have been studied. For example, Japanese Patent Application Laid-Open No. Hei 5-217580 proposes the use of nickel hydroxide in which a Group II element representing Zn and Co are dissolved as a solid solution, and it has been practically used industrially.

【0004】水酸化ニッケルの製造方法は従来より数多
く検討されている。例えば、特開昭63−16555
号、特開昭63−16556号では、ニッケル塩水溶液
とアルカリ水溶液をpH等が制御された同一槽内に導入
して水酸化ニッケルを製造する方法が提案されている。
また例えば、特開平2−6340号では、pHを9〜1
2の一定値に制御した槽内に、ニッケル塩水溶液、アル
カリ水溶液、アンモニア供給体を同時にかつ連続的に供
給し、連続的に槽内の液を取り出すことにより球状の水
酸化ニッケルを製造する方法が提案されている。
[0004] Many methods for producing nickel hydroxide have been studied in the past. For example, JP-A-63-16555
And JP-A-63-16556 propose a method for producing nickel hydroxide by introducing a nickel salt aqueous solution and an alkaline aqueous solution into the same tank whose pH and the like are controlled.
In addition, for example, in JP-A-2-6340, the pH is 9-1.
2. A method for producing spherical nickel hydroxide by simultaneously and continuously supplying a nickel salt aqueous solution, an alkaline aqueous solution, and an ammonia supplier to a tank controlled to a constant value of 2, and continuously taking out the liquid in the tank. Has been proposed.

【0005】特開平6−340247号では、ニッケル
を含む水溶液とアルカリ水溶液とを同時にかつ連続的に
供給し、反応液内のニッケルイオン濃度を10〜100
mg/リットルに制御しつつ、反応槽容積1m3 あたり
0.5kw以上の電力で撹拌することが提案されてい
る。さらに例えば、特開平8−119636号では、ニ
ッケル塩水溶液、アンモニア水及び水酸化アルカリ水溶
液を連続的に供給し、供給液による容量増加と媒体液除
去による容量減少を繰り返して水酸化ニッケルを製造す
る方法が提案されている。
In Japanese Patent Application Laid-Open No. 6-340247, an aqueous solution containing nickel and an aqueous alkaline solution are simultaneously and continuously supplied so that the nickel ion concentration in the reaction solution is 10 to 100%.
It has been proposed to stir with an electric power of 0.5 kW or more per 1 m 3 of reaction vessel volume while controlling the concentration to mg / liter. Further, for example, in JP-A-8-119636, nickel hydroxide is produced by continuously supplying an aqueous solution of a nickel salt, aqueous ammonia and an aqueous solution of an alkali hydroxide, and repeatedly increasing the capacity by the supply liquid and decreasing the capacity by removing the medium liquid. A method has been proposed.

【0006】一方、ニッケル−水素二次電池やニッケル
−カドミウム二次電池等のアルカリ二次電池のサイクル
特性の向上と高温特性の向上を目的として、正極材とな
る水酸化ニッケルにZnやCo等を添加することが行わ
れている(例えば、特開平2−30061号)。前述の
どの製造方法も、Zn等を固溶させない水酸化ニッケル
については良好なものが製造できることもあるが、Zn
を固溶させる水酸化ニッケルに適用した場合には良好な
水酸化ニッケルを製造できない。すなわち、水酸化ニッ
ケルの充填密度が充分ではない、微小粒子が生成する、
粒子の流動性が低下する、製造された粒子の特性がばら
つく等の問題がある。
On the other hand, for the purpose of improving the cycle characteristics and the high-temperature characteristics of alkaline secondary batteries such as nickel-hydrogen secondary batteries and nickel-cadmium secondary batteries, nickel hydroxide used as a positive electrode material is made of Zn or Co. (For example, JP-A-2-30061). In any of the above-described production methods, a good nickel hydroxide that does not dissolve Zn or the like may be produced in some cases.
When applied to nickel hydroxide which forms a solid solution, good nickel hydroxide cannot be produced. That is, the packing density of nickel hydroxide is not sufficient, fine particles are generated,
There are problems such as a decrease in the fluidity of the particles and variations in the characteristics of the produced particles.

【0007】このような水酸化ニッケル粒子を用いて電
池を製造しようとすると、充填密度が充分でない場合
は、体積当たりの活物質量が減少するので電池の放電容
量が低下する、微小粒子が発生した場合は添加する導電
剤の効果が充分に得られないので放電容量が低下する、
粒子の流動性が低下した場合はペーストの塗布性が悪く
なる、製造された粒子の特性がばらつくと電池の性能も
ばらつくというさまざまな問題があった。
When a battery is manufactured using such nickel hydroxide particles, if the packing density is not sufficient, the amount of active material per volume is reduced, so that the discharge capacity of the battery is reduced. In the case where the effect of the conductive agent to be added is not sufficiently obtained, the discharge capacity is reduced,
When the fluidity of the particles is reduced, there are various problems that the applicability of the paste is deteriorated, and when the characteristics of the manufactured particles are varied, the performance of the battery is also varied.

【0008】さらに、電池性能向上と低コスト化の要求
から、活物質のより高密度化、より高利用率化、活物質
と混合する導電性コバルト化合物等の低減化等が課題と
なっている。
Further, due to demands for improved battery performance and cost reduction, there have been issues such as higher density of the active material, higher utilization, and reduction of the conductive cobalt compound mixed with the active material. .

【0009】[0009]

【発明が解決しようとする課題】本発明は上記の問題を
解決することを課題とするものである。すなわち、Zn
等を固溶させる水酸化ニッケルの製造に関して、水酸化
ニッケルの充填密度が充分であり、微小粒子の生成が少
なく、粒子の流動性が良好であり、製造された粒子の特
性のバラツキがない水酸化ニッケルの製造方法を提供す
ることを目的とする。より具体的には球状で、タップ密
度が2.0g/ミリリットル以上、平均粒径が8μm以
上、1μm以下の粒子の累積分布量が2.0%以下の水
酸化ニッケルの製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems. That is, Zn
For the production of nickel hydroxide for solid-solution of water and the like, the packing density of nickel hydroxide is sufficient, the generation of fine particles is small, the fluidity of the particles is good, and there is no variation in the characteristics of the produced particles. An object of the present invention is to provide a method for producing nickel oxide. More specifically, the present invention provides a method for producing nickel hydroxide having a spherical shape, a tap density of 2.0 g / ml or more, and an average particle size of 8 μm or more and 1 μm or less, with a cumulative distribution of 2.0% or less. With the goal.

【0010】[0010]

【課題を解決するための手段】本発明では、ニッケル塩
を含む水溶液とアルカリ水溶液を、撹拌した反応槽に供
給することにより反応させてニッケルを含有する水酸化
物を製造する方法において、反応槽内のスラリー濃度が
300〜1200g/リットルの範囲内で反応を持続さ
せる。ここでスラリー濃度とは、反応液1リットル当た
りに含まれる粒子の重量を意味する。
According to the present invention, there is provided a method for producing a nickel-containing hydroxide by supplying an aqueous solution containing a nickel salt and an aqueous alkaline solution to a stirred reactor by reacting them. The reaction is continued within a slurry concentration of 300 to 1200 g / liter. Here, the slurry concentration means the weight of particles contained per liter of the reaction solution.

【0011】また、ニッケル塩を含む水溶液とは、目的
生成物のニッケルを含有する水酸化物に含まれる金属原
子をあらかじめ溶解し混合した水溶液のことを意味し、
アルカリ水溶液とは、水酸化ナトリウムや水酸化カリウ
ム等のアルカリ金属やアルカリ土類金属の水酸化物の水
溶液のことを意味する。
The aqueous solution containing a nickel salt means an aqueous solution obtained by previously dissolving and mixing metal atoms contained in a hydroxide containing nickel as a target product,
The aqueous alkaline solution means an aqueous solution of an alkali metal or alkaline earth metal hydroxide such as sodium hydroxide or potassium hydroxide.

【0012】ニッケル塩を含む水溶液が連続的に供給さ
れるため、反応中のスラリー濃度は経時的に増加するの
で、スラリー量を調製するため周期的に槽内のスラリー
を抜くことになるが、その上限のスラリー濃度を300
〜1200g/リットルの範囲内のある値で一定に制御
する。上限のスラリー濃度はニッケル塩系水溶液等の供
給レートと周期的な抜き出し量で決定される。
Since the aqueous solution containing the nickel salt is continuously supplied, the concentration of the slurry during the reaction increases with time, so that the slurry in the tank is periodically drained to adjust the amount of the slurry. The upper limit slurry concentration is 300
It is controlled to be constant at a certain value within the range of ~ 1200 g / liter. The upper limit of the slurry concentration is determined by the supply rate of the nickel salt-based aqueous solution or the like and the periodic withdrawal amount.

【0013】スラリー濃度が300g/リットル未満の
場合は水酸化ニッケルのタップ密度が低く、充填性が不
十分となる。スラリー濃度が1200g/リットルを超
えると反応槽内のスラリーの粘度が上昇して撹拌性が悪
くなる。より好ましいスラリー濃度は400〜1000
g/リットルである。
When the slurry concentration is less than 300 g / liter, the tap density of nickel hydroxide is low and the filling property is insufficient. If the slurry concentration exceeds 1200 g / liter, the viscosity of the slurry in the reaction tank increases, and the agitation property deteriorates. More preferred slurry concentration is 400-1000
g / liter.

【0014】本発明では、ニッケル及び亜鉛等の添加物
を合計した金属元素の反応槽への供給レート(R)が、 R≦(1/11100)×D×V (R:金属元素の供給レート(モル/h)、D:設定ス
ラリー濃度(g/リットル)、V:反応槽の容積(リッ
トル))の範囲内で反応を行う。この場合の金属元素の
供給レートとは、反応槽に1時間あたりに供給するニッ
ケル塩を含む水溶液中に含まれる金属原子の総計のモル
量を意味する。
In the present invention, the supply rate (R) of a metal element to which a total of additives such as nickel and zinc is added to a reaction tank is as follows: R ≦ (1/11100) × D × V (R: supply rate of metal element) (Mol / h), D: set slurry concentration (g / liter), V: reaction tank volume (liter)). The supply rate of the metal element in this case means the total molar amount of metal atoms contained in the aqueous solution containing the nickel salt supplied to the reaction tank per hour.

【0015】例えば、CoとZnを固溶させた水酸化ニ
ッケルをそれぞれの硫酸塩水溶液から製造する際、供給
する水溶液に含まれるNiとCoとZnを合わせた金属
の濃度と、硫酸塩水溶液の供給レートの積となる。供給
レートが(1/11100)×D×Vを超えると、水酸
化ニッケル粒子が球状になり難く、微粒子が発生しやす
い。供給レートが低くなりすぎると生産性が悪く実用的
でない。より好ましい供給レートの範囲は、 (1/44500)×D×V≦R≦(1/15500)
×D×V である。
For example, when producing nickel hydroxide in which Co and Zn are dissolved as solid solutions from respective sulfate aqueous solutions, the concentration of the combined metal of Ni, Co and Zn contained in the supplied aqueous solution and the concentration of the sulfate aqueous solution are determined. It is the product of the supply rates. If the supply rate exceeds (1/11100) × D × V, the nickel hydroxide particles are unlikely to be spherical, and fine particles are easily generated. If the supply rate is too low, the productivity is poor and not practical. A more preferable range of the supply rate is (1/44500) × D × V ≦ R ≦ (1/15500)
× D × V.

【0016】また、本発明ではニッケル塩を含む水溶液
とアルカリ水溶液とともに、アンモニア水溶液を反応槽
にほぼ連続的に供給することが好ましい。アンモニア供
給により水酸化ニッケルの球形化が促される。
In the present invention, it is preferable to supply an aqueous ammonia solution to the reaction vessel almost continuously, together with an aqueous solution containing a nickel salt and an aqueous alkaline solution. The supply of ammonia promotes spheroidization of nickel hydroxide.

【0017】本発明では、反応は撹拌した反応槽中で行
い、反応槽内は完全均一混合型に撹拌されていることが
好ましい。ニッケルを含有する水酸化物を製造する際、
アンモニアが存在すると反応母液にニッケル錯体が存在
するが、このとき錯体を形成していると考えられるニッ
ケルイオン濃度は0.01〜2.0ppmになるように
制御することが好ましい。0.01ppm未満であると
微細粒子の生成量が多くなり、2.0ppmを超えると
水酸化ニッケル結晶粒子の結晶性が良化しすぎて放電容
量が低下する。より好ましい反応母液中の上記ニッケル
イオン濃度は0.01〜1.0ppmである。
In the present invention, the reaction is preferably carried out in a stirred reaction tank, and the inside of the reaction tank is preferably stirred in a completely uniform mixing type. When producing hydroxides containing nickel,
When ammonia is present, a nickel complex is present in the reaction mother liquor. At this time, it is preferable to control the concentration of nickel ions considered to form a complex to be 0.01 to 2.0 ppm. If the amount is less than 0.01 ppm, the amount of fine particles generated increases. If the amount exceeds 2.0 ppm, the crystallinity of the nickel hydroxide crystal particles is excessively improved, and the discharge capacity decreases. The more preferable nickel ion concentration in the reaction mother liquor is 0.01 to 1.0 ppm.

【0018】反応液中のアンモニア濃度は0.1〜2.
0g/リットルになるようにアンモニア溶液の供給量を
制御することが好ましい。0.1g/リットル未満であ
ると水酸化ニッケルのタップ密度が低く、2.0g/リ
ットルを超えると水酸化ニッケル結晶粒子の結晶性が良
化しすぎて放電容量が低下する。より好ましいアンモニ
アの濃度は0.2〜1.0g/リットルである。
The concentration of ammonia in the reaction solution is 0.1-2.
It is preferable to control the supply amount of the ammonia solution so as to be 0 g / liter. When it is less than 0.1 g / liter, the tap density of nickel hydroxide is low, and when it exceeds 2.0 g / liter, the crystallinity of the nickel hydroxide crystal particles is excessively improved and the discharge capacity is reduced. A more preferred concentration of ammonia is 0.2 to 1.0 g / liter.

【0019】反応槽内の反応母液のpHは10.5〜1
2.5の範囲内のほぼ一定値に制御することが好まし
い。pHが10.5未満であると水酸化ニッケル結晶粒
子の結晶性が良化しすぎて放電容量が低下する。12.
5を超えると好ましくない微細粒子の発生量が多くな
る。より好ましいpHは11.0〜11.5である。
The pH of the reaction mother liquor in the reaction tank is from 10.5 to 1
It is preferable to control to a substantially constant value in the range of 2.5. When the pH is less than 10.5, the crystallinity of the nickel hydroxide crystal particles is excessively improved, and the discharge capacity decreases. 12.
If it exceeds 5, the amount of generation of undesirable fine particles increases. More preferable pH is 11.0 to 11.5.

【0020】本発明ではニッケル塩を含む水溶液とは、
目的生成物となるニッケルを含有する水酸化物に含まれ
る金属元素を含む塩をあらかじめ溶解した水溶液を意味
する。ニッケル塩を含む水溶液におけるニッケル塩とし
て、硫酸塩、塩化物塩、硝酸塩が使用可能であるが、水
酸化ニッケル中に残留するイオンの電池への影響から硫
酸塩が好ましく、硫酸ニッケル水溶液と他の金属の硫酸
塩の水溶液の混合液を用いてニッケルを含有する水酸化
物を製造する。硫酸ニッケルと混合する金属塩溶液は一
種類でも複数種類以上でも問題ない。
In the present invention, the aqueous solution containing a nickel salt is
It means an aqueous solution in which a salt containing a metal element contained in a nickel-containing hydroxide as a target product is dissolved in advance. As the nickel salt in the aqueous solution containing the nickel salt, a sulfate, a chloride, and a nitrate can be used. However, a sulfate is preferable because of the effect of the ions remaining in the nickel hydroxide on the battery. A nickel-containing hydroxide is produced using a mixed solution of an aqueous solution of a metal sulfate. The metal salt solution mixed with nickel sulfate may be of one type or a plurality of types.

【0021】好ましくはニッケル塩を含む水溶液とし
て、 0<([Co]+[Zn])/([Ni]+[Co]+
[Zn])<0.1となるような硫酸ニッケルと硫酸コ
バルトと硫酸亜鉛の混合水溶液を用いることができる。
ただし、[M]はM元素のモル濃度を表わす。これらの
硫酸ニッケルと他の金属塩の混合した水溶液の総計の金
属塩濃度は0.1モル/リットル〜1.5モル/リット
ルであることが好ましい。
Preferably, as an aqueous solution containing a nickel salt, 0 <([Co] + [Zn]) / ([Ni] + [Co] +
[Zn]) It is possible to use a mixed aqueous solution of nickel sulfate, cobalt sulfate and zinc sulfate so as to satisfy <0.1.
Here, [M] represents the molar concentration of the M element. The total metal salt concentration of the aqueous solution in which nickel sulfate and other metal salts are mixed is preferably 0.1 mol / liter to 1.5 mol / liter.

【0022】本発明の製造方法で得られたニッケルを含
有する水酸化物は、球状で、タップ密度が2.0g/ミ
リリットル以上、平均粒径が8μm以上、1μm以下の
粒子の累積分布量が2.0%以下であるため、ニッケル
−水素電池やニッケル−カドミウム電池等の正極活物質
として用いた場合、充填が高密度となり、添加する導電
材の効果が良好であるため、電池反応に関与しない活物
質が少ないので高放電容量となり、Zn等が固溶してい
るので、サイクル特性に優れ、高温特性に優れた電池を
作製することができる。
The nickel-containing hydroxide obtained by the production method of the present invention is spherical and has a cumulative density of particles having a tap density of 2.0 g / ml or more and an average particle diameter of 8 μm or more and 1 μm or less. Since it is 2.0% or less, when used as a positive electrode active material of a nickel-hydrogen battery, a nickel-cadmium battery, or the like, the packing density is high and the effect of the conductive material to be added is good, so that it is involved in the battery reaction. Since the amount of active material that is not present is small, a high discharge capacity is obtained, and a battery having excellent cycle characteristics and high temperature characteristics can be manufactured because Zn and the like are dissolved in solid solution.

【0023】[0023]

【作用】ニッケル塩とアルカリから水酸化ニッケルを生
成させる実験を繰り返したところ、詳しいことは明らか
ではないが、おおよそ以下のような知見が得られた。
[Action] Repeated experiments on the production of nickel hydroxide from nickel salts and alkalis have revealed the following findings, although the details are not clear.

【0023】詳細な水酸化ニッケルの結晶成長機構・凝
集機構は明らかではないが、特にZnを固溶させようと
する場合、無固溶の場合に比べ、タップ密度が下がる、
平均粒径が下がる、微小粒子が生成するという問題が生
じる。アンモニアの供給量を増やす、反応槽のpHを下
げることにより、タップ密度の低下、平均粒径の低下、
微小粒子の生成は防ぐことができるが、水酸化ニッケル
の結晶性が向上しすぎて、充放電特性の良くないものに
なってしまう。また、撹拌強度を上げることによりタッ
プ密度は向上するが、平均粒径は低下し、微小粒子の生
成が増加する傾向がある。
Although the detailed crystal growth mechanism and aggregation mechanism of nickel hydroxide are not clear, particularly when Zn is to be solid-dissolved, the tap density is lower than in the case of no solid solution.
There is a problem that the average particle size is reduced and fine particles are generated. Increasing the supply of ammonia, lowering the pH of the reaction vessel, lowering the tap density, lowering the average particle size,
Although generation of fine particles can be prevented, the crystallinity of nickel hydroxide is excessively improved, resulting in poor charge / discharge characteristics. Further, although the tap density is improved by increasing the stirring intensity, the average particle size tends to decrease and the generation of fine particles tends to increase.

【0024】そこで、反応槽のスラリー濃度を増加させ
たところ、タップ密度は増加し、平均粒径が増加し、微
小粒子の生成も抑制されることが明らかとなった。詳細
は明らかではないが、粒子と粒子の衝突が、核発生と凝
集に好適に作用させられることが一因になっていると考
えられる。
Therefore, it was found that when the slurry concentration in the reaction tank was increased, the tap density increased, the average particle diameter increased, and the generation of fine particles was suppressed. Although the details are not clear, it is considered that one of the causes is that the collision between the particles favorably acts on nucleation and aggregation.

【0025】さらに、反応槽への原料塩供給レートを低
下させることも、タップ密度、平均粒径の増加、微小粒
子の生成の抑制に効果的であることが解った。やはり詳
しいことは明らかではないが、反応槽への原料塩供給レ
ートが少ないことにより、槽内にある粒子に対する新し
く核発生する粒子の量が減少するため、核発生と粒子の
凝集の進行具合が変化することによるものと考えられ
る。また、反応を連続的に行うことができるので、特性
にバラツキが少ない水酸化ニッケル粒子が連続的に生産
できる。
Further, it has been found that lowering the feed rate of the raw material salt to the reaction tank is also effective in increasing the tap density, the average particle diameter, and suppressing the generation of fine particles. Although the details are not clear, the low rate of salt supply to the reactor reduces the amount of newly nucleated particles with respect to the particles in the tank. It is thought to be due to change. In addition, since the reaction can be continuously performed, nickel hydroxide particles having little variation in characteristics can be continuously produced.

【0026】[0026]

【実施例】【Example】

(実施例1〜4)硫酸ニッケルと硫酸コバルトと硫酸亜
鉛を[Ni]:[Co]:[Zn]=1:0.015:
0.078のモル比になるように秤量し、金属塩濃度が
0.8モル/リットルの水溶液を調製した。撹拌した1
00リットルの反応槽に、金属塩水溶液とアンモニア水
溶液を定量ポンプを用いて連続的に供給し、pHが一定
になるように水酸化ナトリウムを断続的に供給した。反
応槽の外周部にスラリー沈降層を設け、生成粒子を含ま
ない反応母液のみをオーバーフローにより抜き出し、内
部の反応容積をほぼ一定に保持した。金属塩の供給レー
ト(モル/h)を1/35700×(スラリー濃度)×
(反応槽の容積)とし、スラリー濃度が表1のようにな
るように金属塩水溶液の供給量を制御した。また、所定
のスラリー濃度、供給原料と槽内のスラリーの比になる
ように表1に約6.25リットルのスラリーを24時間
に一度抜き出した。
(Examples 1 to 4) Nickel sulfate, cobalt sulfate and zinc sulfate were converted to [Ni]: [Co]: [Zn] = 1: 0.015:
An aqueous solution having a metal salt concentration of 0.8 mol / liter was prepared by weighing to a molar ratio of 0.078. Stir 1
An aqueous metal salt solution and an aqueous ammonia solution were continuously supplied to a 00-liter reaction tank using a metering pump, and sodium hydroxide was intermittently supplied so that the pH became constant. A slurry settling layer was provided on the outer periphery of the reaction tank, and only the reaction mother liquor containing no generated particles was extracted by overflow, and the internal reaction volume was kept substantially constant. The supply rate (mol / h) of the metal salt is 1/35700 × (slurry concentration) ×
(Volume of the reaction tank), and the supply amount of the metal salt aqueous solution was controlled so that the slurry concentration was as shown in Table 1. Further, about 6.25 liters of the slurry was extracted once every 24 hours in Table 1 so as to have a predetermined slurry concentration and a ratio of the feed material and the slurry in the tank.

【0027】アンモニア濃度の供給量は反応槽内のアン
モニア濃度が0.7g/リットルになるように調製し
た。反応槽の温度は40℃に、pHは11.3となるよ
うに制御した。上述の要領で反応を開始した。定常化後
に24時間毎に採取したスラリーを蓄積したものを濾過
し、硫酸根等除去のため水酸化ナトリウム水溶液中に浸
漬し、60℃で24時間加熱した。浸漬したスラリーを
水洗、濾過し、大気中100℃で約20時間加熱乾燥
し、水酸化ニッケル試料とした。
The supply amount of the ammonia concentration was adjusted so that the ammonia concentration in the reaction tank was 0.7 g / liter. The temperature of the reaction vessel was controlled at 40 ° C., and the pH was controlled at 11.3. The reaction was started as described above. After accumulating the slurry collected every 24 hours after the stabilization, the slurry was filtered, immersed in an aqueous sodium hydroxide solution for removing sulfate groups and the like, and heated at 60 ° C. for 24 hours. The immersed slurry was washed with water, filtered, and dried by heating at 100 ° C. in the atmosphere for about 20 hours to obtain a nickel hydroxide sample.

【0028】スラリー濃度を変えて作製したいくつかの
試料(実施例1〜4)について、粒度分布、タップ密
度、X線回析の半価幅を測定した。粒度分布はレーザー
回析散乱式粒度分布測定装置(HORIBA社LA−7
00)にて測定した。タップ密度は200cm3 の容器
を用い、400回のタッピングを行い測定した。またX
線回析の半価幅はCuKα線源で、θ/2θ走査で3
8.5°付近、すなわち(101)面について測定し
た。測定結果を表1に示す。
With respect to several samples (Examples 1 to 4) prepared by changing the slurry concentration, the particle size distribution, tap density, and half width of X-ray diffraction were measured. The particle size distribution is measured by a laser diffraction / scattering type particle size distribution analyzer (HORIBA LA-7).
00). The tap density was measured by performing tapping 400 times using a 200 cm 3 container. Also X
The half width of the line diffraction is 3 in θ / 2θ scan with CuKα radiation source.
It measured about 8.5 degree, ie, about (101) plane. Table 1 shows the measurement results.

【0029】[0029]

【比較例1】設定スラリー濃度1400g/リットル、
金属塩供給レート3.92モル/hで、実施例1〜4と
同じ、金属塩組成で、同様にして水酸化ニッケル粒子を
作製した。結果を表1に示す。
Comparative Example 1 Set slurry concentration 1400 g / liter,
Nickel hydroxide particles were produced in the same manner as in Examples 1 to 4 with the same metal salt composition at a metal salt supply rate of 3.92 mol / h. Table 1 shows the results.

【比較例2】設定スラリー濃度200g/リットル、金
属塩供給レート0.56モル/hで、実施例1〜4と同
じ金属塩組成で、同様にして水酸化ニッケル粒子を作製
した。結果を表1に示す。
Comparative Example 2 Nickel hydroxide particles were produced in the same manner as in Examples 1 to 4 at a set slurry concentration of 200 g / liter and a metal salt supply rate of 0.56 mol / h with the same metal salt composition as in Examples 1 to 4. Table 1 shows the results.

【比較例3】硫酸ニッケルと硫酸コバルトと硫酸亜鉛を
[Ni]:[Co]:[Zn]=1:0.015:0の
モル比になるように秤量し、金属塩濃度が0.8モル/
リットルの水溶液を調製し、設定スラリー濃度200g
/リットル、金属塩供給レート0.56モル/hで、実
施例1〜4と同様にして水酸化ニッケル粒子を作製し
た。結果を表1に示す。
Comparative Example 3 Nickel sulfate, cobalt sulfate and zinc sulfate were weighed so that the molar ratio of [Ni]: [Co]: [Zn] = 1: 0.015: 0 and the metal salt concentration was 0.8. Mol /
Prepare 1 liter of aqueous solution and set slurry concentration 200g
/ Liter and a metal salt supply rate of 0.56 mol / h, nickel hydroxide particles were produced in the same manner as in Examples 1 to 4. Table 1 shows the results.

【表1】 [Table 1]

【0030】表1に示すように、設定スラリー濃度が増
加するとともに平均粒径は増加し、1μm以下の微粒子
の存在量は減少し、タップ密度が上昇する。実施例の範
囲内のスラリー濃度設定にすることによりタップ密度が
2.0g/ミリリットル以上、平均粒径が8μm以上、
1μm以下の粒子の累積分布量が2.0%以下の水酸化
ニッケルが製造されることがわかる。また製造された粒
子をSEM観察したところ、粒子の形状はほぼ球形であ
った。
As shown in Table 1, as the set slurry concentration increases, the average particle size increases, the amount of fine particles of 1 μm or less decreases, and the tap density increases. By setting the slurry concentration within the range of the example, the tap density is 2.0 g / ml or more, the average particle diameter is 8 μm or more,
It can be seen that nickel hydroxide having a cumulative distribution of particles of 1 μm or less of 2.0% or less is produced. When the produced particles were observed by SEM, the shape of the particles was substantially spherical.

【0031】比較例1ではスラリー濃度が高すぎて、投
入液の撹拌等が充分でなくなり、粒度分布がブロードに
なり平均粒径は低下した。また設定スラリー濃度が低い
場合は、比較例3のようにZn等の添加量が少ないもの
については、平均粒径、タップ密度ともに充分な水酸化
ニッケルが製造できるが、設定スラリー濃度が比較例3
と同じでも、比較例2のようにZn等を多く含む場合は
平均粒径、タップ密度ともに満足できる水酸化ニッケル
が製造できないことがわかる。
In Comparative Example 1, the slurry concentration was too high, stirring of the input solution was not sufficient, the particle size distribution became broad, and the average particle size decreased. When the set slurry concentration is low, nickel hydroxide with a small amount of Zn or the like as in Comparative Example 3 can produce sufficient nickel hydroxide in both the average particle diameter and the tap density.
It can be seen that even if the same as in Comparative Example 2, when a large amount of Zn or the like is contained as in Comparative Example 2, nickel hydroxide satisfying both the average particle diameter and the tap density cannot be produced.

【0031】(実施例5〜8)硫酸ニッケルと硫酸コバ
ルトと硫酸亜鉛を[Ni]:[Co]:[Zn]=1:
0.015:0.078のモル比になるように秤量し、
金属塩濃度が0.8モル/リットルの水溶液を調製し
た。撹拌した100リットルの反応槽に、金属塩水溶液
とアンモニア水溶液を定量ポンプを用いて連続的に供給
し、pHが一定になるように水酸化ナトリウムを断続的
に供給した。反応槽の外周部にスラリー沈降層を設け、
生成粒子を含まない反応母液のみをオーバーフローによ
り抜き出し、内部の反応容積をほぼ一定に保持した。設
定スラリー濃度が800g/リットルとなり、原料とな
る金属塩の供給レートが表2のようになるように反応を
行った。また、所定のスラリー濃度に合わせてスラリー
を24時間に一度抜き出す量を決定した。
(Examples 5 to 8) Nickel sulfate, cobalt sulfate and zinc sulfate were converted to [Ni]: [Co]: [Zn] = 1:
Weigh to a molar ratio of 0.015: 0.078,
An aqueous solution having a metal salt concentration of 0.8 mol / liter was prepared. An aqueous metal salt solution and an aqueous ammonia solution were continuously supplied to the stirred 100 liter reaction tank using a metering pump, and sodium hydroxide was intermittently supplied so that the pH became constant. A slurry settling layer is provided on the outer periphery of the reaction tank,
Only the reaction mother liquor containing no generated particles was withdrawn by overflow, and the internal reaction volume was kept almost constant. The reaction was performed so that the set slurry concentration became 800 g / liter and the supply rate of the metal salt as a raw material became as shown in Table 2. Further, the amount of the slurry to be withdrawn once every 24 hours was determined in accordance with the predetermined slurry concentration.

【0032】アンモニア濃度の供給量は反応槽内のアン
モニア濃度が0.7g/リットルになるように調製し
た。反応槽の温度は40℃に、pHは11.3となるよ
うに制御した。上述の要領で反応を開始した。定常化後
に24時間毎に採取したスラリーを蓄積したものを濾過
し、硫酸根等除去のため水酸化ナトリウム水溶液中に浸
漬し、60℃で24時間加熱した。浸漬したスラリーを
水洗、濾過し、大気中100℃で約20時間加熱乾燥
し、水酸化ニッケル試料とした。金属塩供給レートを変
えて作製したいくつかの試料(実施例5〜8)につい
て、粒度分布、タップ密度、X線回折の半価幅を比較例
1と同様な方法で測定した。測定結果を表2に示す。
The supply amount of the ammonia concentration was adjusted so that the ammonia concentration in the reaction tank was 0.7 g / liter. The temperature of the reaction vessel was controlled at 40 ° C., and the pH was controlled at 11.3. The reaction was started as described above. After accumulating the slurry collected every 24 hours after the stabilization, the slurry was filtered, immersed in an aqueous sodium hydroxide solution for removing sulfate groups and the like, and heated at 60 ° C. for 24 hours. The immersed slurry was washed with water, filtered, and dried by heating at 100 ° C. in the atmosphere for about 20 hours to obtain a nickel hydroxide sample. For some samples (Examples 5 to 8) produced by changing the metal salt supply rate, the particle size distribution, tap density, and half width of X-ray diffraction were measured in the same manner as in Comparative Example 1. Table 2 shows the measurement results.

【0033】(比較例4)金属塩供給レートを12モル
/hとし、設定スラリー濃度を800g/リットルと
し、実施例5〜8と同様な金属組成・条件で水酸化ニッ
ケル粒子を作製した。 (比較例5)金属塩供給レートを12モル/h、設定ス
ラリー濃度を800g/リットル、[Ni]:[C
o]:[Zn]=1:0.015:0の金属組成で、実
施例5〜8と同様な条件で水酸化ニッケル粒子を作製し
た。
(Comparative Example 4) Nickel hydroxide particles were produced under the same metal composition and conditions as in Examples 5 to 8, except that the supply rate of the metal salt was 12 mol / h, the set slurry concentration was 800 g / liter. (Comparative Example 5) Metal salt supply rate: 12 mol / h, set slurry concentration: 800 g / liter, [Ni]: [C
o]: [Zn] = 1: 0.015: 0, and nickel hydroxide particles were produced under the same conditions as in Examples 5 to 8.

【表2】 [Table 2]

【0034】表2に示すように、反応槽内のスラリーに
対する金属塩供給レートが減少するとともに平均粒径は
増加し、1μm以下の微粒子の存在量は減少し、タップ
密度が上昇する。実施例の範囲内の金属塩供給レートに
することにより、タップ密度が2.0g/ミリリットル
以上、平均粒径が8μm以上、1μm以下の粒子の累積
分布量が2.0%以下の水酸化ニッケルが製造されるこ
とがわかる。また製造された粒子をSEM観察したとこ
ろ、粒子の形状はほぼ球形であった。
As shown in Table 2, as the metal salt supply rate to the slurry in the reactor decreases, the average particle size increases, the amount of fine particles having a particle size of 1 μm or less decreases, and the tap density increases. Nickel hydroxide having a tap density of 2.0 g / ml or more and an average particle diameter of 8 μm or more and 1 μm or less having a cumulative distribution of 2.0% or less by adjusting the metal salt supply rate within the range of the embodiment. It can be seen that is manufactured. When the produced particles were observed by SEM, the shape of the particles was substantially spherical.

【0035】金属塩供給レートをさらに低下させると、
更なる向上が予測されるが、製造に著しい時間を要し、
実用上現実的ではないと考えられるので実施していな
い。比較例4では反応槽内のスラリーに対する金属塩供
給レートが高すぎるため、粒子の核発生と凝集が良好に
作用しなくなると考えられ、粒径、タップ密度ともに充
分なものができない。比較例5のようにZn等の添加量
がすくない場合は、高い金属塩供給レートでも粒径、タ
ップ密度ともに満足できる水酸化ニッケルが製造できる
ことがわかる。
When the metal salt supply rate is further reduced,
Further improvement is expected, but it takes significant time to manufacture,
Not implemented because it is considered impractical in practice. In Comparative Example 4, since the metal salt supply rate to the slurry in the reaction tank was too high, it is considered that nucleation and agglomeration of particles do not work well, and sufficient particle size and tap density cannot be obtained. In the case where the amount of Zn or the like is small as in Comparative Example 5, it can be seen that nickel hydroxide satisfying both the particle size and the tap density can be produced even at a high metal salt supply rate.

【0036】[0036]

【発明の効果】本発明の方法により得られるニッケルを
含有する水酸化物、特にZn等を固溶させる水酸化ニッ
ケルは粒子の特性のバラツキが小で、微小粒子が少な
く、粒子の流動性が良好であって充填密度が充分であ
る。本発明の方法により得られるニッケルを含有する水
酸化物を正極活物質として用いることにより、放電容量
の大きい優れたニッケル−水素電池やニッケル−カドミ
ウム電池が得られる。
The nickel-containing hydroxide obtained by the method of the present invention, particularly nickel hydroxide which forms a solid solution with Zn or the like, has a small variation in the characteristics of the particles, a small number of fine particles, and a low fluidity of the particles. Good and sufficient packing density. By using a nickel-containing hydroxide obtained by the method of the present invention as a positive electrode active material, an excellent nickel-hydrogen battery or nickel-cadmium battery having a large discharge capacity can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/30 H01M 10/30 Z (72)発明者 大橋 信一 千葉県長生郡白子町牛込4017 伊勢化学工 業株式会社内 (72)発明者 相沢 明 千葉県長生郡白子町牛込4017 伊勢化学工 業株式会社内 (72)発明者 柳沼 隆夫 千葉県長生郡白子町牛込4017 伊勢化学工 業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/30 H01M 10/30 Z (72) Inventor Shinichi Ohashi 4017 Ushigome, Shiroko-cho, Nagao-gun, Chiba Prefecture Inside Ise Chemical Industry Co., Ltd. (72) Inventor Akira Aizawa 4017 Ushigome, Shiroko-cho, Nagao-gun, Chiba Prefecture Inside Ise Chemical Industry Co., Ltd. (72) Inventor Takao Yaginuma 4017 Ushigome, Shiroko-cho, Nagao County, Chiba Prefecture Inside Ise Chemical Industry Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル塩を含む水溶液とアルカリ水溶
液とを撹拌した反応槽に供給することにより反応させて
ニッケルを含有する水酸化物を製造する方法において、
ニッケル塩を含む水溶液としてニッケル塩とニッケル以
外の金属元素を含む水溶液を用い、反応槽内のスラリー
濃度を300〜1200g/リットルの範囲内に維持し
つつ反応を持続させることを特徴とするニッケルを含有
する水酸化物の製造方法。
1. A method for producing a nickel-containing hydroxide by supplying an aqueous solution containing a nickel salt and an aqueous alkali solution to a stirred reaction vessel to cause a reaction,
An aqueous solution containing a nickel salt and a metal element other than nickel is used as the aqueous solution containing a nickel salt, and the reaction is continued while maintaining the slurry concentration in the reaction tank within a range of 300 to 1200 g / liter. A method for producing a contained hydroxide.
【請求項2】 ニッケル塩を含む水溶液としてニッケル
とコバルトと亜鉛を含む水溶液を用いることを特徴とす
る請求項1のニッケルを含有する水酸化物の製造方法。
2. The method for producing a hydroxide containing nickel according to claim 1, wherein an aqueous solution containing nickel, cobalt and zinc is used as the aqueous solution containing a nickel salt.
【請求項3】 ニッケル塩を含む水溶液として、 0<([Co]+[Zn])/([Ni]+[Co]+
[Zn])<0.1 (ただし、[M]はM元素のモル濃度)となるような硫
酸ニッケルと硫酸コバルトと硫酸亜鉛の混合水溶液を用
いることを特徴とする請求項1のニッケルを含有する水
酸化物の製造方法。
3. An aqueous solution containing a nickel salt, wherein 0 <([Co] + [Zn]) / ([Ni] + [Co] +
2. A nickel-containing solution according to claim 1, wherein a mixed aqueous solution of nickel sulfate, cobalt sulfate and zinc sulfate is used so that [Zn]) <0.1 (where [M] is the molar concentration of the M element). Of producing hydroxide.
【請求項4】 ニッケル及び亜鉛等の添加物を合計した
金属元素の反応槽への供給レート(R)が、 R≦(1/11100)×D×V (R:金属元素の供給レート(モル/h)、D:設定ス
ラリー濃度(g/リットル)、V:反応槽の容積(リッ
トル))で表せることを特徴とする請求項1、2または
3のニッケルを含有する水酸化物の製造方法。
4. A supply rate (R) of a metal element to which a total of additives such as nickel and zinc is added to a reaction tank is as follows: R ≦ (1/11100) × D × V (R: supply rate of metal element (mol / H), D: set slurry concentration (g / liter), V: reaction tank volume (liter)), the method for producing a nickel-containing hydroxide according to claim 1, 2 or 3. .
【請求項5】 ニッケル塩を含む水溶液とアルカリ水溶
液とともに、アンモニアを反応槽にほぼ連続的に供給
し、反応母液中のアンモニア濃度が0.3〜3.0g/
リットルかつ反応母液中のニッケルイオン濃度が0.0
1〜2.00ppmであることを特徴とする請求項1、
2、3または4のニッケルを含有する水酸化物の製造方
法。
5. Ammonia is supplied almost continuously to a reaction vessel together with an aqueous solution containing a nickel salt and an alkaline aqueous solution, so that the ammonia concentration in the reaction mother liquor is 0.3 to 3.0 g /
Liter and the nickel ion concentration in the reaction mother liquor is 0.0
1 to 2.00 ppm.
A method for producing a hydroxide containing 2, 3 or 4 nickel.
【請求項6】 ニッケル塩を含む水溶液とアルカリ水溶
液とともに、アンモニアを反応槽にほぼ連続的に供給
し、反応母液中のアンモニア濃度が0.3〜3.0g/
リットル、反応母液中のニッケルイオン濃度が2.00
ppm以下かつ反応母液のpHが10.5〜12.5で
あることを特徴とする請求項1、2、3または請求項4
のニッケルを含有する水酸化物の製造方法。
6. Ammonia is supplied almost continuously to a reaction vessel together with an aqueous solution containing a nickel salt and an alkaline aqueous solution, so that the ammonia concentration in the reaction mother liquor is 0.3 to 3.0 g / ml.
Liter, nickel ion concentration in the reaction mother liquor is 2.00
The pH of the reaction mother liquor is not more than 1 ppm and the pH of the reaction mother liquor is 10.5-12.5.
For producing a nickel-containing hydroxide.
【請求項7】 ニッケル塩を含む水溶液とアルカリ水溶
液とともに、アンモニアを反応槽にほぼ連続的に供給
し、反応母液中のアンモニア濃度が0.3〜3.0g/
リットル、反応母液中のニッケルイオン濃度が2.00
ppm以下、反応母液のpHが10.5〜12.5かつ
反応槽内の温度が25〜50℃であることを特徴とする
請求項1、2、3または4のニッケルを含有する水酸化
物の製造方法。
7. Along with an aqueous solution containing a nickel salt and an alkaline aqueous solution, ammonia is almost continuously supplied to a reaction tank so that the ammonia concentration in the reaction mother liquor is 0.3 to 3.0 g / m 2.
Liter, nickel ion concentration in the reaction mother liquor is 2.00
The nickel-containing hydroxide according to claim 1, 2, 3 or 4, wherein the pH of the reaction mother liquor is 10.5 to 12.5 and the temperature in the reaction vessel is 25 to 50 ° C. Manufacturing method.
【請求項8】 請求項1〜7いずれか1項に記載の製造
方法で得られた、球状でタップ密度が2.0g/ミリリ
ットル以上、平均粒径が8μm以上、1μm以下の粒子
の累積分布量が2.0%以下のニッケルを含有する水酸
化物。
8. Cumulative distribution of spherical particles having a tap density of 2.0 g / ml or more and an average particle diameter of 8 μm or more and 1 μm or less, obtained by the production method according to claim 1. A hydroxide containing nickel in an amount of 2.0% or less.
【請求項9】 請求項1〜7いずれか1項に記載の製造
方法で得られたニッケルを含有する水酸化物を正極活物
質として有するニッケル−水素電池用電極。
9. An electrode for a nickel-hydrogen battery having a nickel-containing hydroxide obtained by the method according to claim 1 as a positive electrode active material.
【請求項10】請求項1〜7いずれか1項に記載の製造
方法で得られたニッケルを含有する水酸化物を正極活物
質として有するニッケル−カドミウム電池用電極。
10. A nickel-cadmium battery electrode comprising, as a positive electrode active material, a nickel-containing hydroxide obtained by the production method according to any one of claims 1 to 7.
JP9308108A 1997-10-23 1997-10-23 Production of nickel-containing hydroxide Pending JPH11130441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9308108A JPH11130441A (en) 1997-10-23 1997-10-23 Production of nickel-containing hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9308108A JPH11130441A (en) 1997-10-23 1997-10-23 Production of nickel-containing hydroxide

Publications (1)

Publication Number Publication Date
JPH11130441A true JPH11130441A (en) 1999-05-18

Family

ID=17976976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9308108A Pending JPH11130441A (en) 1997-10-23 1997-10-23 Production of nickel-containing hydroxide

Country Status (1)

Country Link
JP (1) JPH11130441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069420A1 (en) * 2001-02-26 2002-09-06 Fdk Corporation Alkaline primary battery
KR101214187B1 (en) 2011-08-19 2012-12-21 주식회사 세화엔스텍 Treatment of wastewater from electroless nickel plating process
JP2019104655A (en) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 Production method of nickel-containing hydroxide
JP2020037496A (en) * 2018-09-03 2020-03-12 住友金属鉱山株式会社 Method for producing nickel-containing hydroxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069420A1 (en) * 2001-02-26 2002-09-06 Fdk Corporation Alkaline primary battery
US7344803B2 (en) * 2001-02-26 2008-03-18 Fdk Corporation Alkaline primary battery
KR101214187B1 (en) 2011-08-19 2012-12-21 주식회사 세화엔스텍 Treatment of wastewater from electroless nickel plating process
JP2019104655A (en) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 Production method of nickel-containing hydroxide
JP2020037496A (en) * 2018-09-03 2020-03-12 住友金属鉱山株式会社 Method for producing nickel-containing hydroxide

Similar Documents

Publication Publication Date Title
JP5626382B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP4848384B2 (en) High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same
CN101229928B (en) Method for preparing spherical nickel-cobalt lithium manganate material
JP3644186B2 (en) Metal hydroxide production equipment for battery components
CN107640792A (en) A kind of high compact small particle nickel cobalt manganese hydroxide and preparation method thereof
JP3884796B2 (en) Method for producing Ni-Co composite hydroxide
JP2015227263A (en) Nickel-cobalt-manganese composite hydroxide and production method of the same
CN110808369B (en) Preparation method of low-sodium-sulfur nickel-cobalt-aluminum ternary precursor
JP2023078253A (en) Method for precipitating carbonate or (oxy)hydroxide
CN113571694B (en) Multi-ion modified ternary material precursor and preparation method of anode material
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP7255386B2 (en) Method for producing transition metal composite hydroxide
JP2015038878A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPH11130441A (en) Production of nickel-containing hydroxide
JP2000077070A (en) Nickel hydroxide powder and its manufacture
JPH1167200A (en) Manufacture of high-density nickel hydroxide active material
JP3395254B2 (en) Method for producing nickel hydroxide for non-sintered alkaline storage batteries
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
JP3579545B2 (en) Nickel hydroxide for alkaline storage batteries and method for producing the same
JP5568849B2 (en) Plate-like nickel-containing hydroxide, method for producing the same, plate-like nickel-containing oxyhydroxide using the same, and method for producing the same
JP5943051B2 (en) Method for producing nickel cobalt composite hydroxide
CN116354409A (en) Ultrahigh BET high-nickel ternary precursor and continuous preparation method thereof
RU2749604C1 (en) Method for production of precursor particles, precursor particle produced by this method, and method for production of active cathode particles
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JPH07133115A (en) Production of nickel hydroxide powder coated with cobalt hydroxide