JPH11121293A - Electric double-layer capacitor, electrode and manufacture thereof - Google Patents

Electric double-layer capacitor, electrode and manufacture thereof

Info

Publication number
JPH11121293A
JPH11121293A JP9280516A JP28051697A JPH11121293A JP H11121293 A JPH11121293 A JP H11121293A JP 9280516 A JP9280516 A JP 9280516A JP 28051697 A JP28051697 A JP 28051697A JP H11121293 A JPH11121293 A JP H11121293A
Authority
JP
Japan
Prior art keywords
electrode
phenol resin
electric double
layer capacitor
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9280516A
Other languages
Japanese (ja)
Inventor
Hideki Shibuya
秀樹 渋谷
Toshikazu Takeda
敏和 竹田
Yosuke Ushio
洋介 牛尾
Tatsuya Inada
達也 稲田
Tsutomu Masuko
努 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Isuzu Advanced Engineering Center Ltd filed Critical Showa Denko KK
Priority to JP9280516A priority Critical patent/JPH11121293A/en
Publication of JPH11121293A publication Critical patent/JPH11121293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To facilitate molding, to lower electrical resistance and to increase capacitance by providing a phenol resin carbide in the electrode for an electric double-layer capacitor. SOLUTION: Polyvinylidene chloride resin is carbonized at 180 to 450 deg.C and pulverized, and carbonized powder is obtained. Then, the carbonized powder is dripped into a phenol resin aqueous solution in such a manner that phenol resin becomes 3.0 to 12.5 wt.% with respect to the carbonized powder when converted into solid component, the obtained material is mixed, brought into slurry state and dried up. Subsequently, the material is pulverized, filled in a carbon mold, and after molding under pressure, it is sintered at 600 to 950 deg.C in a sintering furnace, and an electrode 2 is obtained. Accordingly, phenol resin becomes a binder, the resistance value after sintering is decreased, the intensity of electrode is increased, the loss in high current density is reduced, and capacitance can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサ、電気二重層コンデンサ用電極及びその製造方法に
関する。
The present invention relates to an electric double layer capacitor, an electrode for an electric double layer capacitor, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液をしみこませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の分解電圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
の静電容量が容易に得られることから、電池の代わりに
半導体メモリ(D−RAM)のバックアップ用等の低電
流密度の用途に多く用いられるようになっており、最近
では、もっと電流密度の高い用途、例えば車載鉛蓄電池
の代わり、にも使用することが研究されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electrostatic solution of an activated carbon powder and an electrolytic solution impregnated in an activated carbon powder. The withstand voltage and the maximum operating temperature depend on the decomposition voltage and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, since the capacitance in the farad order can be easily obtained, a semiconductor memory is used instead of a battery. It has been widely used for low current density applications such as backup of (D-RAM), and has recently been studied for use in applications having higher current densities, for example, in place of in-vehicle lead-acid batteries. ing.

【0003】従来、電気二重層コンデンサ用電極とし
て、活性炭にバインダーを混入させ焼結したものや焼結
後に腑活処理(酸化による不純物除去処理)したものを
用いていた。しかし、これらの電極を使用すると、次の
ような問題点が生じていた。 a)活性炭はマクロポアが多く細孔体積比率が高いた
め、密度が低い。 b)比表面積は大きいが細孔径の分布が広いため、電気
二重層コンデンサ用電極として働く実効的な細孔は少な
い。 c)焼結を促進する目的で比較的高温で焼結するため、
電気二重層コンデンサ用電極として働く実効的な細孔は
少ない。 d)低温(850℃以下)で焼結すると、グラファイト
化が進まないため、粒子間焼結強度がなく、そして、抵
抗値が高い。
Hitherto, as an electrode for an electric double layer capacitor, a material obtained by mixing a binder with activated carbon and sintering or a material subjected to an activation treatment (impurity removal treatment by oxidation) after sintering has been used. However, the use of these electrodes has caused the following problems. a) Activated carbon has a low density because it has many macropores and a high pore volume ratio. b) Although the specific surface area is large, the distribution of the pore diameter is wide, so that there are few effective pores acting as electrodes for electric double layer capacitors. c) sintering at a relatively high temperature to promote sintering,
There are few effective pores acting as electrodes for electric double layer capacitors. d) When sintering at a low temperature (850 ° C. or lower), graphitization does not proceed, so there is no intergranular sintering strength and the resistance value is high.

【0004】活性炭や炭素繊維にフェノール樹脂を担持
させた後繰返し賦活する方法が、特開昭63−3148
21号公報により知られているが、工程が複雑であり、
コストがかかっていた。フェノール樹脂を添加して炭化
した電極が特開昭63−226019号公報に記載され
ているが、フェノール樹脂炭化物は電気二重層コンデン
サ用電極に最適な細孔が少なく、容量が小さい。
Japanese Patent Application Laid-Open No. 63-3148 discloses a method in which a phenol resin is supported on activated carbon or carbon fiber and then activated repeatedly.
No. 21, the process is complicated,
It was costly. An electrode carbonized by adding a phenolic resin is described in JP-A-63-226019, but a phenolic resin carbide has a small number of pores and a small capacity that are optimal for an electrode for an electric double layer capacitor.

【0005】これらの問題点を解決するため、PVDC
(ポリ塩化ビニリデン)樹脂の炭化物を使用することが
提案されている(特開平7−249551号公報参
照)。PVDC樹脂(あるいは塩化ビニリデン系共重合
体)炭化物を使用すると、他の活性炭と比較して長所を
有しており、その理由として、次のことによるといわれ
ている。PVDC樹脂は、2つの脱塩酸反応温度を有し
ている。第一点は180℃から250℃で自己分子鎖内
での脱塩酸反応であり、第二点は450℃から550℃
での分子鎖間の脱塩酸反応で、その際分子間結合が生じ
ている。第一点の温度範囲で加熱すると脱塩酸反応によ
り細孔が形成され、その細孔は、36Å以下のマイクロ
ポアとよばれるものであって、これが電気二重層コンデ
ンサ用電極として使用されると電解液との界面として有
効に働く。このため、電極としての腑活処理は不必要で
ある。また、第二点の温度範囲以上で加熱すると、脱塩
酸反応により有効マイクロポアを保持しつつ比較的低温
でも焼結を進行させることができる。このため、電気二
重層コンデンサ用電極には不要である大きな径のメソポ
アやマクロポアの発生を抑えることができる。このた
め、PVDC樹脂炭化物は、比表面積は活性炭に比べて
少ないが、焼結密度が活性炭に比べて高くなり、体積あ
たりの容量は大きくなる。
In order to solve these problems, PVDC
It has been proposed to use a carbide of (polyvinylidene chloride) resin (see JP-A-7-249551). The use of PVDC resin (or vinylidene chloride-based copolymer) carbide has advantages over other activated carbons because of the following. PVDC resins have two dehydrochlorination reaction temperatures. The first point is a dehydrochlorination reaction within its own molecular chain at 180 ° C to 250 ° C, and the second point is 450 ° C to 550 ° C.
In this case, an intermolecular bond is generated in the dehydrochlorination reaction between the molecular chains. When heated in the temperature range of the first point, pores are formed by the dehydrochlorination reaction, and the pores are called micropores having a diameter of 36 ° or less. It works effectively as an interface with the liquid. For this reason, activation treatment as an electrode is unnecessary. Further, when the heating is performed at a temperature not lower than the temperature range of the second point, sintering can be advanced even at a relatively low temperature while maintaining effective micropores by the dehydrochlorination reaction. For this reason, generation of mesopores or macropores having a large diameter, which is unnecessary for the electrode for an electric double layer capacitor, can be suppressed. For this reason, the PVDC resin carbide has a smaller specific surface area than activated carbon, but has a higher sintering density than activated carbon and a larger capacity per volume.

【0006】しかし、PVDC樹脂炭化物は、次のよう
な問題点を有している。 a)バインダーレスであるため、成形しにくい。 b)低温(850℃以下)での焼結ではグラファイトが
進まないため、オーミックな抵抗が高い。そのため高電
流密度においてはIRドロップが大きく容量が取り出せ
ない。 c)PVDC樹脂炭化物は高密度に焼結できるが、粒子
間の空隙やマクロポアが少ないため拡散抵抗が高い。
[0006] However, PVDC resin carbide has the following problems. a) It is difficult to mold because it is binderless. b) Ohmic resistance is high because graphite does not advance during sintering at low temperature (850 ° C. or lower). Therefore, at a high current density, the IR drop is large and the capacity cannot be taken out. c) The PVDC resin carbide can be sintered at a high density, but has a high diffusion resistance due to few voids and macropores between particles.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
PVDC樹脂炭化物が有する問題点をなくすために研究
して見出されたものであり、成形しやすく、そして、電
極抵抗を低減し、容量を増大した電気二重層コンデンサ
及び電極を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been found by research to eliminate such problems of the PVDC resin carbide, and has been found to be easy to mold and to reduce electrode resistance. An object of the present invention is to provide an electric double layer capacitor and an electrode having an increased capacity.

【0008】[0008]

【課題を解決するための手段】本発明は、PVDC樹脂
炭化物からなる電気二重層コンデンサ用電極において、
フェノール樹脂炭化物を有する電気二重層コンデンサ用
電極である。
SUMMARY OF THE INVENTION The present invention relates to an electrode for an electric double layer capacitor comprising a PVDC resin carbide.
It is an electrode for an electric double layer capacitor having a phenolic resin carbide.

【0009】また、本発明は、PVDC樹脂炭化物から
なる電極を具備する電気二重層コンデンサにおいて、前
記電極は、フェノール樹脂炭化物を有する電気二重層コ
ンデンサである。
Further, the present invention relates to an electric double layer capacitor having an electrode made of a PVDC resin carbide, wherein the electrode is an electric double layer capacitor having a phenol resin carbide.

【0010】そして、本発明は、PVDC樹脂を180
〜450℃で炭化させ、得られた炭化物にフェノール樹
脂を混合し、成形した後、600〜950℃で焼結する
電気二重層コンデンサ用電極の製造方法である。
[0010] The present invention provides a PVDC resin of 180
This is a method for producing an electrode for an electric double layer capacitor in which carbonization is performed at ~ 450 ° C, a phenol resin is mixed with the obtained carbide, molded, and then sintered at 600 to 950 ° C.

【0011】更に、本発明は、フェノール樹脂添加量
は、3.0〜12.5wt%である電気二重層コンデン
サ用電極の製造方法である。
Further, the present invention is a method for producing an electrode for an electric double layer capacitor, wherein the amount of phenol resin added is 3.0 to 12.5 wt%.

【0012】[0012]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサ、電極及びその製
造方法の実施例と比較例を説明する。電気二重層コンデ
ンサ用電極の製造方法について、実施例1〜4及び比較
例1を説明する。PVDC樹脂を300℃で炭化させ、
振動ミリング機で粉砕して炭化粉を得る。レゾールタイ
プのフェノール樹脂が固形分換算で炭化粉に対して3.
0〜16.0wt%になるようにフェノール樹脂水溶液
に浸漬し、混合してスラリ化し、60℃で4〜24時間
乾燥した後、振動ミリング機で更に粉砕し、25mm□
のカーボン製型につめて20〜400kg/cm2の圧
力を加え、温度180℃で成形し、焼結炉で850℃で
焼結して電極を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. Examples and comparative examples of the electric double layer capacitor, the electrode, and the method of manufacturing the same according to the present invention will be described. Examples 1 to 4 and Comparative Example 1 will be described with respect to a method for manufacturing an electrode for an electric double layer capacitor. PVDC resin is carbonized at 300 ° C.
Pulverized by a vibration milling machine to obtain carbonized powder. 2. Resole-type phenol resin is equivalent to carbonized powder in terms of solid content.
It is immersed in a phenol resin aqueous solution so as to have a concentration of 0 to 16.0 wt%, mixed and slurried, dried at 60 ° C. for 4 to 24 hours, and further pulverized by a vibration milling machine to obtain 25 mm
And pressurized at a pressure of 20 to 400 kg / cm 2 , molded at a temperature of 180 ° C., and sintered at 850 ° C. in a sintering furnace to obtain an electrode.

【0013】一方、比較例2として、PVDC樹脂を6
00℃で炭化させたものを振動ミリング機で粉砕して炭
化粉を得る。レゾールタイプのフェノール樹脂が固形分
換算で炭化粉に対して9.0wt%になるようにフェノ
ール樹脂水溶液に浸漬し、混合してスラリ化し、60℃
で4〜24時間乾燥した後、振動ミリング機で更に粉砕
し、25mm□のカーボン製型につめて20〜400k
g/cm2の圧力を加え、温度180℃で成形し、焼結
炉で850℃で焼結して電極を得た。
On the other hand, as Comparative Example 2, 6
The carbonized powder at 00 ° C is pulverized by a vibration milling machine to obtain a carbonized powder. The resol type phenol resin is immersed in an aqueous solution of phenol resin so as to be 9.0 wt% in terms of solid content with respect to the carbonized powder, mixed, and slurried.
After drying for 4 to 24 hours, the mixture is further pulverized by a vibration milling machine, packed in a 25 mm square carbon mold, and then 20 to 400 k
An electrode was obtained by applying a pressure of g / cm 2 , molding at a temperature of 180 ° C., and sintering at 850 ° C. in a sintering furnace.

【0014】次に、比較例3として、PVDC樹脂を3
00℃で炭化させたものを振動ミリング機で粉砕して炭
化粉を得る。25mm□のカーボン製型につめて20〜
400kg/cm2の圧力で成形しながら温度が850
℃になるまで通電焼結して電極を得た。
Next, as Comparative Example 3, PVDC resin was
The carbonized powder at 00 ° C is pulverized by a vibration milling machine to obtain a carbonized powder. 20mm in a 25mm square carbon mold
The temperature is 850 while molding at a pressure of 400 kg / cm 2.
The electrode was obtained by current sintering until the temperature reached ° C.

【0015】以上の実施例1〜4及び比較例1〜3で得
られた電極を1mmの厚さに研磨し、4端子4深針法で
シート抵抗を測定した。次に、電極を35wt%硫酸に
浸漬し、減圧含浸を24時間行い、200μm厚のガラ
ス不織繊維のセパレータ1を挾んで電極2を対向させ、
その外側にPt板を配して集電板3とし、更にその外側
からテフロンからなる固定板4で挾み込んで固定してセ
ルを作製した(図1参照)。このセルを35wt%硫酸
に浸漬して、電極投影面積に対する電流密度0.02A
/cm2及び0.5A/cm2のときの電極体積容量を測
定した。測定結果を表1に示す。
The electrodes obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were polished to a thickness of 1 mm, and the sheet resistance was measured by a four-terminal four-needle method. Next, the electrode was immersed in 35 wt% sulfuric acid, and impregnated under reduced pressure for 24 hours. The electrode 2 was opposed to the non-woven glass separator 1 having a thickness of 200 μm.
A Pt plate was disposed outside the collector plate 3 to form a current collector plate 3. From the outside, a cell was produced by sandwiching and fixing with a fixing plate 4 made of Teflon (see FIG. 1). This cell was immersed in 35 wt% sulfuric acid to obtain a current density of 0.02 A with respect to the projected area of the electrode.
/ Cm 2 and 0.5 A / cm 2 were measured. Table 1 shows the measurement results.

【表1】 [Table 1]

【0016】表1に示すように、実施例1〜4の300
℃で炭化したPVDC樹脂にフェノール樹脂を添加した
電極は、無添加である比較例3の電極と比べて、0.0
2A/□の低電流密度では著しい容量の増加はみられな
いが、0.5A/□の高電流密度側では2倍以上の増加
がみられる。これは、添加したフェノール樹脂が粒子間
のバインダとして働いたためシート抵抗値が下がり、高
電流密度における抵抗による損失が減少したためであ
る。なお、実施例1〜4で得られた電極は、電極の強度
も強くなった。
As shown in Table 1, 300 to 300 of Examples 1 to 4
The electrode obtained by adding the phenol resin to the PVDC resin carbonized at a temperature of 0 ° C. was 0.0
At a low current density of 2 A / □, no remarkable increase in capacity is observed, but at a high current density of 0.5 A / □, an increase of more than twice is observed. This is because the added phenol resin worked as a binder between the particles, so that the sheet resistance value was reduced and the loss due to resistance at high current density was reduced. Note that the electrodes obtained in Examples 1 to 4 also had higher electrode strength.

【0017】また、比較例2の電極は、低電流密度にお
ける容量が小さく、高電流密度側の容量も実施例1〜4
に比べると小さい。これは、600℃で炭化したPVD
C樹脂にフェノール樹脂を添加したため、第一点での脱
塩酸反応が起こらないので、容量増大に寄与する細孔が
生成されず、そして、フェノール樹脂がPVDC樹脂炭
化物の細孔に吸着したまま炭化し、容量発生に寄与する
細孔が有効に活用されないためである。一方、実施例1
〜4の電極は、300℃で炭化するため第一点での脱塩
酸反応が起こって細孔が生成される。そして細孔内にあ
るフェノール樹脂は、焼結時にガス透過の孔や亀裂が発
生して、表面積を増大させ、容量を増大させるのであ
る。しかし、比較例1の16.0wt%添加したもの
は、フェノール樹脂の吸着量が多すぎて、ガス発生によ
るフェノール樹脂への効果が少なくなり、シート抵抗が
低いにもかかわらず、容量は増大しない。
Further, the electrode of Comparative Example 2 has a small capacity at a low current density, and also has a small capacity at a high current density.
Smaller than. This is PVD carbonized at 600 ° C.
Since the phenol resin was added to the C resin, the dehydrochlorination reaction at the first point did not occur, so that pores contributing to an increase in capacity were not generated, and the phenol resin was carbonized while being adsorbed on the pores of the PVDC resin carbide. However, this is because pores that contribute to capacity generation are not effectively utilized. On the other hand, Example 1
The electrodes Nos. 4 to 4 are carbonized at 300 ° C., so that a dehydrochlorination reaction occurs at the first point to generate pores. The phenolic resin in the pores causes gas-permeable pores and cracks during sintering, increasing the surface area and increasing the capacity. However, in the case of 16.0 wt% added in Comparative Example 1, the adsorption amount of the phenol resin was too large, and the effect of the gas generation on the phenol resin was reduced, and the capacity did not increase despite the low sheet resistance. .

【0018】なお、フェノール樹脂炭化物は、低抵抗で
あるため、高充放電電流密度の電極が得られる。そし
て、フェノール樹脂炭化物の含有量は、PVDC樹脂の
初期炭化温度によって異なる。初期炭化温度が低いと、
初期のPVDC樹脂の脱塩酸量は少なくなるため、焼結
段階での脱塩酸量が多くなって、フェノール樹脂炭化物
の含有比率は高くなる。逆に、初期炭化温度が高いと、
初期のPVDC樹脂の脱塩酸量は多くなるため、焼結段
階での脱塩酸量が少なくなって、フェノール樹脂炭化物
は少なくなる。フェノール樹脂を3.0〜12.5wt
%添加した場合、電極中のフェノール樹脂炭化物の含有
量は、2〜18wt%になる。
Since the phenolic carbide has low resistance, an electrode having a high charge / discharge current density can be obtained. The content of the phenolic carbide varies depending on the initial carbonization temperature of the PVDC resin. If the initial carbonization temperature is low,
Since the amount of dehydrochlorination of the initial PVDC resin decreases, the amount of dehydrochlorination in the sintering step increases, and the content ratio of the phenolic resin carbide increases. Conversely, if the initial carbonization temperature is high,
Since the amount of dehydrochlorination of the initial PVDC resin increases, the amount of dehydrochlorination in the sintering step decreases, and the amount of phenol resin carbide decreases. 3.0-12.5 wt% phenolic resin
%, The content of the phenolic carbide in the electrode is 2 to 18 wt%.

【0019】フェノール樹脂の添加方法として、レゾー
ルタイプのフェノール樹脂を水やアルコールのような溶
媒に溶かすかエマルジョン状態にして添加するのが好ま
しい。
As a method of adding the phenol resin, it is preferable to add a resol type phenol resin dissolved in a solvent such as water or alcohol or in an emulsion state.

【0020】フェノール樹脂の添加量は、3.0〜1
2.5wt%が好ましい。3.0wt%未満とすると、
電極の抵抗値を下げることができず、また、12.5w
t%を超過すると添加量が多すぎて、電極の容量を向上
させることはできない。
The amount of the phenol resin added is 3.0 to 1
2.5 wt% is preferred. If less than 3.0 wt%,
The resistance of the electrode cannot be reduced, and 12.5 w
If it exceeds t%, the amount of addition is too large and the capacity of the electrode cannot be improved.

【0021】[0021]

【発明の効果】本発明によれば、フェノール樹脂がバイ
ンダとなり、焼結後の抵抗値が減少し、電極の強度を上
げることができる。電極の抵抗値を減少させ、特に、高
電流密度における損失を減少させ、容量を向上させるこ
とができるので、高出力密度の電気二重層コンデンサと
することができる。
According to the present invention, the phenol resin serves as a binder, the resistance value after sintering decreases, and the strength of the electrode can be increased. Since the resistance value of the electrode can be reduced, and particularly the loss at a high current density can be reduced and the capacity can be improved, an electric double layer capacitor having a high output density can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の製造方法で作製した電極の特性の測
定方法の説明図。
FIG. 1 is an explanatory diagram of a method for measuring characteristics of an electrode manufactured by a manufacturing method according to an embodiment.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 電極 3 集電板 4 固定板 DESCRIPTION OF SYMBOLS 1 Separator 2 Electrode 3 Current collector 4 Fixing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牛尾 洋介 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 稲田 達也 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 (72)発明者 増子 努 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yosuke Ushio 8 Tsuchiya, Fujisawa, Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd. (72) Inventor Tsutomu Masuko 6850 Omachi, Omachi City, Nagano Prefecture Showa Denko Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 PVDC樹脂炭化物からなる電気二重層
コンデンサ用電極において、 フェノール樹脂炭化物を有することを特徴とする電気二
重層コンデンサ用電極。
1. An electrode for an electric double layer capacitor comprising a PVDC resin carbide, wherein the electrode comprises a phenolic resin carbide.
【請求項2】 PVDC樹脂炭化物からなる電極を具備
する電気二重層コンデンサにおいて、 前記電極は、フェノール樹脂炭化物を有することを特徴
とする電気二重層コンデンサ。
2. An electric double layer capacitor comprising an electrode made of a PVDC resin carbide, wherein the electrode has a phenol resin carbide.
【請求項3】 PVDC樹脂を180〜450℃で炭化
させ、得られた炭化物にフェノール樹脂を混合し、成形
した後、600〜950℃で焼結することを特徴とする
電気二重層コンデンサ用電極の製造方法。
3. An electrode for an electric double layer capacitor, wherein a PVDC resin is carbonized at 180 to 450 ° C., a phenol resin is mixed with the obtained carbide, molded, and then sintered at 600 to 950 ° C. Manufacturing method.
【請求項4】 請求項3記載の電気二重層コンデンサ用
電極の製造方法において、 フェノール樹脂添加量は、3.0〜12.5wt%であ
ることを特徴とする電気二重層コンデンサ用電極の製造
方法。
4. The method for manufacturing an electrode for an electric double layer capacitor according to claim 3, wherein the amount of the phenol resin added is 3.0 to 12.5 wt%. Method.
JP9280516A 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode and manufacture thereof Pending JPH11121293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9280516A JPH11121293A (en) 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280516A JPH11121293A (en) 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11121293A true JPH11121293A (en) 1999-04-30

Family

ID=17626198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280516A Pending JPH11121293A (en) 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11121293A (en)

Similar Documents

Publication Publication Date Title
KR0143178B1 (en) Polarizanble electrode
JP3446339B2 (en) Activated carbon production method
JPH11121293A (en) Electric double-layer capacitor, electrode and manufacture thereof
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP4394208B2 (en) Polyvinylidene chloride resin powder and activated carbon
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11121292A (en) Electric double-layer capacitor, electrode, and manufacture thereof
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JPH11251197A (en) Method for manufacturing carbon electrode for electric double layer capacitor
JPH1197305A (en) Electric double layer capacitor, electrode and its manufacture
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JPH11121288A (en) Electric double-layer capacitor
JPH11121291A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH1197312A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1197317A (en) Electric double layer capacitor, electrode and manufacturing method thereof
JPH1197315A (en) Electric double layer capacitor, electrode, and manufacture therefor
JPH11121294A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH1197316A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH11121287A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11121290A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH1197314A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH11121296A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH1197310A (en) Manufacture of electrode of electric double layer capacitor
JP2000068161A (en) Manufacture of electrode for electric double layer capacitor
JPH1197313A (en) Double electric layer capacitor and electrode and manufacture therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619