JPH11120820A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH11120820A
JPH11120820A JP28682997A JP28682997A JPH11120820A JP H11120820 A JPH11120820 A JP H11120820A JP 28682997 A JP28682997 A JP 28682997A JP 28682997 A JP28682997 A JP 28682997A JP H11120820 A JPH11120820 A JP H11120820A
Authority
JP
Japan
Prior art keywords
conductive particles
anisotropic conductive
conductive film
particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28682997A
Other languages
Japanese (ja)
Inventor
Hiroshi Takemasa
洋 竹政
Akinori Yokoyama
明典 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP28682997A priority Critical patent/JPH11120820A/en
Publication of JPH11120820A publication Critical patent/JPH11120820A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electrical conductivity after a long-term preservation by constituting an average diameter of monodisperse time and an average maximum length containing a flock of conductive particles in an anisotropic conductive film having a specific film thickness which is composed of an organic binder and the conductive particles of a specific rate so as to become a specific ratio. SOLUTION: Conductive particles are contained by 0.1 to 10 volume % in an organic binder, and an average maximum length containing a flock of conductive particles in an anisotropic conductive film having a film thickness of 10 to 60 μm, is set to 1.05 to 6 times an average diameter at monodisperse time. Therefore, the deterioration of a resistance value and a short circuit in the electrical connection are prevented, and the particles rub against each other by proper agglutinability, and an oxide film easily peels off. A metallic particle is desirably formed of spherical powder of metal such as gold, silver, copper, nickel or a silver copper alloy, and the surface oxide film formed at preserving time easily becomes loose at monodisperse condition time of pressure contact time, and easily peels off by mutual rubbing. Normally, the organic binder contains one or more kinds of thermoplastic resins or resins which is heat cured, light, or electron beam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、端子間の接着と共
にその端子間を電気的に接合する異方導電フィルムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive film for bonding terminals and electrically connecting the terminals together.

【0002】[0002]

【従来の技術】異方導電フィルムは、液晶パネルのガラ
ス基板上に形成されたITO端子とフレキシブルプリン
ト基板(FPC)やTABとを接続する場合をはじめ、
ベアチップ等様々な端子間を接着すると共に電気的に接
続する場合に使用する。異方導電フィルムは、一般的に
絶縁性のエポキシ系熱硬化樹脂、硬化剤及び導電粒子か
らなるシート状のものである。
2. Description of the Related Art Anisotropic conductive films are used to connect an ITO terminal formed on a glass substrate of a liquid crystal panel to a flexible printed circuit (FPC) or TAB.
It is used when bonding various terminals such as a bare chip and electrically connecting them. The anisotropic conductive film is generally in the form of a sheet made of an insulating epoxy-based thermosetting resin, a curing agent and conductive particles.

【0003】異方導電フィルムの使用方法としては、例
えば、液晶パネルのITO電極とTABとを接続する場
合、通常、液晶パネルのITO電極上に異方導電フィル
ムを貼り、加熱加圧(仮圧着)を行った後、仮圧着した
異方導電フィルム上にTABを加熱加圧して(本圧
着)、液晶パネルのITO電極とTABとを確実に接合
すると共に、端子間に確率的に存在する導電粒子を介し
て電気的な接続を行う。
[0003] As a method of using an anisotropic conductive film, for example, when connecting an ITO electrode of a liquid crystal panel to TAB, usually, an anisotropic conductive film is stuck on the ITO electrode of the liquid crystal panel, and heated and pressed (temporarily pressed). ), The TAB is heated and pressed on the anisotropically conductive film that has been temporarily pressed (final pressure bonding), so that the ITO electrode of the liquid crystal panel and the TAB are securely joined together, and the conductive material that is stochastically present between the terminals. Make an electrical connection through the particles.

【0004】この場合、電気的接続に関与する端子間に
存在する導電粒子は、一つの基板上の隣り合う端子間
(ピッチ)の絶縁性を保ちつつ、相対する端子間に電気
的な接続を行う。このような異方導電フィルムとして、
特開平6−223633号公報に銀銅合金からなる導電
金属粒子を用いた異方導電フィルムが開示されている
が、該異方導電フィルムは室温での長期の保存において
導電金属粒子の周りに酸化被膜を形成し、圧接時に電気
的接続を悪化させるという問題があった。
[0004] In this case, the conductive particles existing between the terminals involved in the electrical connection maintain electrical insulation between the adjacent terminals (pitch) on one substrate while maintaining the electrical connection between the opposing terminals. Do. As such an anisotropic conductive film,
JP-A-6-223633 discloses an anisotropic conductive film using conductive metal particles made of a silver-copper alloy. The anisotropic conductive film oxidizes around the conductive metal particles during long-term storage at room temperature. There was a problem that a coating was formed and electrical connection was deteriorated during pressure welding.

【0005】[0005]

【発明が解決しようとする課題】本発明は、長期保存後
においても良好な導電性能を有する異方導電フィルムを
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an anisotropic conductive film having good conductive performance even after long-term storage.

【0006】[0006]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明者らは、鋭意研究し、凝集した導電粒子
を含む導電粒子の平均最大長が、導電粒子の単分散時の
平均径の1.05〜6倍であれば、長期保存後において
も良好な導電性能を有する異方導電フィルムが得られる
ことを見出し、本発明に至った。
Means for Solving the Problems In order to solve the above problems, the inventors of the present invention have made intensive studies and found that the average maximum length of conductive particles including agglomerated conductive particles can be reduced when the conductive particles are monodispersed. It has been found that when the average diameter is 1.05 to 6 times, an anisotropic conductive film having good conductive performance can be obtained even after long-term storage, and the present invention has been achieved.

【0007】すなわち、本発明は、 (1) 有機バインダーと0.1〜10体積%の導電粒
子からなり、膜厚が10〜60μmの異方導電フィルム
であって、該異方導電フィルム中の凝集した導電粒子を
含む導電粒子の平均最大長が、前記導電粒子の単分散時
の平均径の1.05〜6倍であることを特徴とする異方
導電フィルム、 (2) 導電粒子が球状粉であることを特徴とする上記
(1)の異方導電フィルム、 (3) 導電粒子が金属粉であることを特徴とする上記
(1)又は(2)の異方導電フィルム、を提供するもの
である。
That is, the present invention relates to (1) an anisotropic conductive film having an organic binder and 0.1 to 10% by volume of conductive particles and having a film thickness of 10 to 60 μm; An anisotropic conductive film, wherein the average maximum length of the conductive particles including the aggregated conductive particles is 1.05 to 6 times the average diameter of the conductive particles when monodispersed, (2) the conductive particles are spherical (3) The anisotropic conductive film according to (1) or (2), wherein the conductive particles are metal powder. Things.

【0008】本発明の有機バインダーとしては、熱可塑
性樹脂、熱硬化性樹脂、光硬化性樹脂および電子線硬化
性樹脂より選ばれた少なくとも1種の樹脂を含有する有
機バインダーを用いることができる。中でも熱硬化性樹
脂を有機バインダー100重量部中1重量部以上含む有
機バインダーが好ましい。熱硬化性樹脂としては、例え
ば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、
メラミン樹脂などが挙げられ、中でもエポキシ樹脂を含
むものが好ましい。エポキシ樹脂としては、例えば、ビ
スフェノールA型、ビスフェノールF型、フェノールノ
ボラック型、クレゾールノボラック型、脂環式、ナフタ
レン型、アルキル多価フェノール型、ウレタン変性型、
脂肪酸変性型、ゴム変性型が挙げられ、中でもビスフェ
ノールA型エポキシ樹脂が好ましい。エポキシ樹脂を用
いる場合には、潜在性硬化剤、例えば、マイクロカプセ
ル硬化剤等を用いても良いことは言うまでもない。
[0008] As the organic binder of the present invention, an organic binder containing at least one resin selected from a thermoplastic resin, a thermosetting resin, a photocurable resin and an electron beam curable resin can be used. Among them, an organic binder containing a thermosetting resin in an amount of 1 part by weight or more based on 100 parts by weight of the organic binder is preferable. As the thermosetting resin, for example, epoxy resin, phenol resin, silicone resin,
Melamine resins and the like are included, and among them, those containing an epoxy resin are preferable. As the epoxy resin, for example, bisphenol A type, bisphenol F type, phenol novolak type, cresol novolak type, alicyclic, naphthalene type, alkyl polyhydric phenol type, urethane modified type,
Fatty acid-modified type and rubber-modified type are listed, and bisphenol A type epoxy resin is particularly preferable. When an epoxy resin is used, a latent curing agent such as a microcapsule curing agent may be used.

【0009】本発明の異方導電フィルムにおいては、
0.1〜10体積%の導電粒子を含有することが必要で
ある。0.1体積%未満では、電気的接続において抵抗
値が悪くなり、10体積%より多い場合は、隣接端子間
での短絡の問題が生じる。好ましくは0.1〜9体積%
である。また、本発明の異方導電フィルムに用いられる
導電粒子の平均径は2〜15μmが好ましく、より好ま
しくは2〜13μmである。2μm未満であると加圧時
に電極間に挟まる導電粒子が電極面の粗さレベルにな
り、導電性が不良になる。15μmを超える場合には、
ファインピッチでの電極間の導電粒子数が不十分になり
接続抵抗が不安定になる。
In the anisotropic conductive film of the present invention,
It is necessary to contain 0.1 to 10% by volume of conductive particles. If it is less than 0.1% by volume, the resistance in electrical connection will be poor, and if it is more than 10% by volume, there will be a short circuit problem between adjacent terminals. Preferably 0.1 to 9% by volume
It is. Further, the average diameter of the conductive particles used in the anisotropic conductive film of the present invention is preferably 2 to 15 μm, more preferably 2 to 13 μm. When the thickness is less than 2 μm, the conductive particles sandwiched between the electrodes at the time of pressurization have the roughness level of the electrode surface, and the conductivity becomes poor. If it exceeds 15 μm,
At a fine pitch, the number of conductive particles between the electrodes becomes insufficient and the connection resistance becomes unstable.

【0010】導電粒子としては、導電性の粒子であれば
全て用いることができるが、金属粒子が好ましい。本発
明の異方導電フィルムにおいては、導電粒子はある程度
凝集した状態にあるため、圧接時において端子あるいは
バンプにより単分散状態に分散され、その際に凝集粒子
同士が擦れ会うために、保存中に導電粒子の表面に酸化
皮膜が形成されても、該酸化皮膜を擦れ合うことで取る
ことができ、圧接時に金属表面が出るため良好な導電性
が得られやすいことになる。金属粒子としては、金、
銀、銅、ニッケル及び銀銅合金等の合金が好ましく用い
られ、中でも銀銅合金がより好ましい。
As the conductive particles, any conductive particles can be used, but metal particles are preferred. In the anisotropic conductive film of the present invention, since the conductive particles are in a state of agglomeration to a certain extent, they are dispersed in a monodispersed state by the terminal or the bump at the time of pressing, and the aggregated particles rub against each other at that time, during storage. Even if an oxide film is formed on the surface of the conductive particles, it can be removed by rubbing the oxide film, and the metal surface is exposed during pressure welding, so that good conductivity is easily obtained. As metal particles, gold,
Alloys such as silver, copper, nickel and a silver-copper alloy are preferably used, and among them, a silver-copper alloy is more preferable.

【0011】また、導電粒子としては、単分散時におい
ては、球状であるものが好ましい。それは、ある程度の
凝集状態から圧接時に単分散状態にほぐれる際に導電粒
子が球状であることで容易にほぐれやすいためである。
本発明においては、異方導電フィルム中の凝集した導電
粒子を含む導電粒子の平均最大長が、該導電粒子の単分
散時の平均径の1.05〜6倍であることが必要であ
る。
The conductive particles are preferably spherical when monodispersed. This is because, when the conductive particles are loosened from a certain agglomerated state to a monodispersed state at the time of pressing, the conductive particles are easily loosened due to the spherical shape.
In the present invention, it is necessary that the average maximum length of the conductive particles including the aggregated conductive particles in the anisotropic conductive film is 1.05 to 6 times the average diameter of the conductive particles when monodispersed.

【0012】ここで言う凝集した導電粒子(以下、導電
粒子塊という。)とは、380〜1000nmの波長の
光を透過して得られる投影像を約500倍の光学顕微鏡
を用いて見るときに、導電粒子と導電粒子が少なくとも
1ヶ所以上の接点を持つか、又は重なり合っている導電
粒子からなるかたまりを意味している。透過とは、異方
導電フィルムを光学顕微鏡を用いて約500倍で投影像
を見るときに、像を映し出す為の光を異方導電フィルム
の裏から当て、導電粒子を見ることである。
The term “aggregated conductive particles” (hereinafter referred to as “conductive particle mass”) as used herein refers to a case where a projected image obtained by transmitting light having a wavelength of 380 to 1000 nm is viewed using an optical microscope of about 500 times. Means that the conductive particles have at least one or more contact points or a cluster of conductive particles overlapping each other. The term “transmission” means that when a projected image of the anisotropic conductive film is viewed at about 500 times using an optical microscope, light for projecting an image is applied from the back of the anisotropic conductive film to view conductive particles.

【0013】また、凝集した導電粒子を含む導電粒子の
平均最大長とは、下記式で示すように、光学顕微鏡の視
野(半径約150μmの円)の中に存在する、380〜
1000nmの波長の光透過時に投影された、導電粒子
塊の最大長径と凝集していない導電粒子の最大長径の総
和を導電粒子塊数および凝集していない導電粒子数の和
で割って得られた平均値を意味する(但し、光学顕微鏡
による測定においては粒径1μm以上の導電粒子を測定
する)。
The average maximum length of the conductive particles including the agglomerated conductive particles is 380 to 380, which is present in a visual field (a circle having a radius of about 150 μm) of an optical microscope as shown by the following equation.
It was obtained by dividing the sum of the maximum length of the conductive particle mass and the maximum length of the non-agglomerated conductive particles by the sum of the maximum number of the conductive particle masses and the maximum number of the non-agglomerated conductive particles, projected at the time of transmission of light having a wavelength of 1000 nm. It means the average value (however, conductive particles having a particle size of 1 μm or more are measured in an optical microscope).

【0014】平均最大長={(導電粒子塊の最大長径の
総和)+(凝集していない導電粒子の最大長径の総
和)}/(導電粒子塊数+凝集していない導電粒子数) また、本発明において、導電粒子の単分散時の平均径と
は、単分散状態の導電粒子の平均径であり、異方導電フ
ィルム作成前では投入前の粉体を充分乾燥させた状態、
すなわち有機物の付着や水分がない状態の粒子を単分散
状態という。異方導電フィルム作成後は、有機バインダ
ーを溶剤で溶かした後、導電粒子を充分乾燥させた状態
を単分散状態という。この粒子をレーザー回折式粒度分
布測定装置で測定した値の体積平均で表される値であ
る。
Average maximum length = {(sum of the maximum major diameters of the conductive particle lump) + (sum of the maximum major diameters of the non-aggregated conductive particles)} / (number of conductive particle lump + number of non-aggregated conductive particles) In the present invention, the average diameter of the conductive particles in the monodispersed state is the average diameter of the conductive particles in a monodispersed state, and before the anisotropic conductive film is prepared, the powder before the addition is sufficiently dried,
That is, particles in a state where there is no organic matter attached and no water is referred to as a monodispersed state. After the formation of the anisotropic conductive film, a state in which the organic binder is dissolved in a solvent and then the conductive particles are sufficiently dried is referred to as a monodispersed state. It is a value represented by a volume average of the values measured for these particles by a laser diffraction type particle size distribution analyzer.

【0015】本発明の異方導電フィルムは粒子塊の平均
最大長が単分散時の平均径の1.05〜6倍であるが、
1.05未満であると凝集性が悪く圧接時の個々の各粒
子同士のこすれによる酸化被膜の剥ぎ取り性が悪くな
る。6を越える場合には、かえって凝集が残り、端子間
の短絡を引き起こす。好ましくは、1.05〜4倍であ
り、更に好ましくは、1.05〜3倍である。
In the anisotropic conductive film of the present invention, the average maximum length of the particle mass is 1.05 to 6 times the average diameter at the time of monodispersion.
If it is less than 1.05, the cohesiveness is poor, and the peeling property of the oxide film due to the rubbing between the individual particles at the time of pressing is deteriorated. If it exceeds 6, cohesion will remain, causing a short circuit between the terminals. Preferably it is 1.05 to 4 times, more preferably 1.05 to 3 times.

【0016】本発明の異方導電フィルムにおいては、異
方導電フィルム中の導電粒子がある程度凝集した状態の
導電粒子であるため、たとえ酸化被膜が形成されていて
も、圧接時に於いて端子あるいはバンプにより導電粒子
塊が単分散状態に分散されるときに、凝集粒子同士が擦
れ会うことで酸化被膜を取ることができ、良好な導電性
が得られるものと推測される。
In the anisotropic conductive film of the present invention, the conductive particles in the anisotropic conductive film are agglomerated to a certain extent, so that even if an oxide film is formed, the terminals or bumps may be formed during pressure welding. It is presumed that when the conductive particle mass is dispersed in a monodispersed state, the aggregated particles rub against each other, so that an oxide film can be removed and good conductivity can be obtained.

【0017】本発明の異方導電フィルムの作成方法とし
ては、例えば、以下の方法等が挙げられる。エポキシ樹
脂を含む有機バインダー中に導電粒子を特定量入れ攪拌
を行う。この時、攪拌時間を30秒〜15分、回転数を
50rpm〜10000rpmの間で調整することで異
方導電フィルム中の平均最大長を変更させる。好ましく
は、2分〜10分、500rpm〜5000rpmであ
る。攪拌を行った後、潜在性硬化剤を入れ泡立たないよ
うに内容物が均一になるまで混合し、スリットを用いて
塗布した後乾燥し、厚みが均一なフィルムを作成する。
The method for producing the anisotropic conductive film of the present invention includes, for example, the following methods. A specific amount of conductive particles is placed in an organic binder containing an epoxy resin, followed by stirring. At this time, the average maximum length in the anisotropic conductive film is changed by adjusting the stirring time from 30 seconds to 15 minutes and the number of rotations from 50 rpm to 10,000 rpm. Preferably, it is 2 minutes to 10 minutes and 500 rpm to 5000 rpm. After stirring, a latent curing agent is added and mixed until the contents are uniform so as not to cause foaming, applied using a slit, and then dried to form a film having a uniform thickness.

【0018】本発明の異方導電フィルムを用いる場合に
は、接続基板に所定の幅、厚さでカットした異方導電フ
ィルムを張り付けて用いるのが好ましい。該異方導電フ
ィルムの厚みとしては、10〜60μmのものが用いら
れる。10μm未満であると凝集粒子が得られにくく、
60μmを越える場合には、圧接時に凝集がほぐれにく
くなる。好ましくは10〜55μmである。
When the anisotropic conductive film of the present invention is used, it is preferable to use the anisotropic conductive film cut at a predetermined width and thickness on a connection substrate. The thickness of the anisotropic conductive film is 10 to 60 μm. If it is less than 10 μm, it is difficult to obtain aggregated particles,
If it exceeds 60 μm, the cohesion is less likely to be loosened during pressure welding. Preferably it is 10 to 55 μm.

【0019】[0019]

【発明の実施の形態】以下、この発明を実施例に基づい
て具体的に説明する。 <異方導電フィルムの作成法>異方導電フィルムの作成
は、導電粒子として平均径3.80μm(レーザー回折
式粒度分布測定装置RODOS SR型(SYMPAT
EC HEROS&RODOS))の球状もしくは球状
に近い形状の銅または銀銅合金の粉末を使用し、ビスフ
ェノールA型エポキシ樹脂とフェノキシ樹脂を1:1の
割合で混合して得られた有機バインダー中に、上記導電
粒子を指定量入れ攪拌を行う。この時、実施例1、2で
は攪拌時間を7分、回転数を4000rpm、実施例3
では攪拌時間を3分、回転数を1000rpmに調整し
て攪拌を行った後、マイクロカプセル型潜在性硬化剤を
6体積%の濃度になるように入れ、泡立たないように内
容物が均一になるまで混合し、スリットを用いて厚みが
均一なフィルムを作成する。 <粒子投影方法および凝集した導電粒子を含む導電粒子
の平均最大長>測定視野内の像を光学顕微鏡(オリンパ
ス BH2 倍率500倍)を用いて、異方導電フィル
ムの厚み方向の中間点に焦点を合わせ像を観察し、下記
式から凝集した導電粒子を含む導電粒子の平均最大長を
求める。光源としてハロゲン球(波長400〜900n
m)を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described based on embodiments. <Preparation method of anisotropic conductive film> Anisotropic conductive film was prepared by using conductive particles having an average diameter of 3.80 μm (a laser diffraction particle size distribution analyzer RODOS SR type (SYMPAT).
EC HEROS & RODOS)), using a copper or silver-copper alloy powder having a spherical or nearly spherical shape and mixing a bisphenol A-type epoxy resin and a phenoxy resin at a ratio of 1: 1 in the organic binder obtained above. A specified amount of conductive particles is added and stirred. At this time, in Examples 1 and 2, the stirring time was 7 minutes, and the number of rotations was 4000 rpm.
Then, after stirring with adjusting the stirring time to 3 minutes and the rotation speed to 1000 rpm, the microcapsule-type latent curing agent was added to a concentration of 6% by volume, and the contents became uniform without foaming. And a slit is used to form a film having a uniform thickness. <Particle projection method and average maximum length of conductive particles including agglomerated conductive particles> Using an optical microscope (Olympus BH2, magnification: 500 times), focus the image in the measurement visual field at an intermediate point in the thickness direction of the anisotropic conductive film. The combined image is observed, and the average maximum length of the conductive particles including the aggregated conductive particles is determined from the following formula. Halogen bulb (wavelength 400 to 900n) as light source
m) was used.

【0020】平均最大長={(導電粒子塊の最大長径の
総和)+(凝集していない導電粒子の最大長径の総
和)}/(導電粒子塊数+凝集していない導電粒子数) 光学顕微鏡で観察された測定視野内の導電粒子の像を、
異方導電フィルム内の焦点の合っている導電粒子と焦点
の合わない導電粒子を区別し、測定視野内に存在する焦
点の合っている導電粒子の平均最大長等の測定を行う。 <接続抵抗値の測定>異方導電フィルムの接続抵抗値の
測定は、異方導電フィルムを室温で6ヶ月放置した後1
8μm厚の銅箔付きの基板に異方導電フィルムを仮圧着
し、その後18μm厚の銅箔付きの500μmピッチの
フレキシブルプリント基盤(以下、FPCという。)を
本圧着し、基板とFPC双方の端子間の抵抗値を測定す
ることで接続抵抗値を求める。この時、接続抵抗値が≦
200mΩの時を接続良好として○、接続抵抗値が>2
00mΩの時は、接続不良として×として示す。<絶縁
性の測定>異方導電フィルムの絶縁性の確認は、18μ
m厚の銅箔付きの基板に異方導電フィルムを仮圧着後、
18μm厚の銅箔付きのFPCを本圧着し、隣り合った
端子間の絶縁性を4端子の抵抗測定器で測定することで
求める。結果は、抵抗値が≧1012Ωのとき絶縁性と判
断し○、抵抗値が<1012Ωのときは短絡と判断し×で
示す。
Average maximum length = {(sum of maximum major diameters of conductive particle mass) + (sum of maximum major diameters of non-aggregated conductive particles)} / (number of conductive particle mass + number of non-aggregated conductive particles) Optical microscope The image of the conductive particles in the measurement field of view observed in
The in-focus conductive particles in the anisotropic conductive film are distinguished from the out-of-focus conductive particles, and the average maximum length of the in-focus conductive particles existing in the measurement visual field is measured. <Measurement of connection resistance> The connection resistance of the anisotropic conductive film was measured after leaving the anisotropic conductive film at room temperature for 6 months.
An anisotropic conductive film is preliminarily pressure-bonded to an 8 μm-thick copper foil substrate, and then a 500 μm-pitch flexible printed board (hereinafter referred to as FPC) with an 18 μm-thick copper foil is fully pressure-bonded, and terminals of both the substrate and the FPC are provided. The connection resistance is determined by measuring the resistance between them. At this time, the connection resistance value is ≤
When the connection was 200 mΩ, the connection was determined to be good, and the connection resistance was> 2.
When the value is 00 mΩ, the connection is indicated as poor by X. <Measurement of insulation> The insulation of the anisotropic conductive film was confirmed to be 18μ.
After temporarily compressing an anisotropic conductive film on a board with copper foil of m thickness,
An FPC with a copper foil having a thickness of 18 μm is fully press-bonded, and the insulation between adjacent terminals is measured by a four-terminal resistance measuring instrument. The results are indicated by ○ when the resistance value is ≧ 10 12 Ω and judged as short circuit when the resistance value is <10 12 Ω.

【0021】[0021]

【実施例1、2及び3】実施例1では、導電粒子として
銀銅合金粉を用い、実施例2及び3では銅粉を用いた。
なお、実施例1で用いた銀銅合金粉は特開平6−223
633号公報の実施例に記載の方法に準じて製造した。
平均銀濃度は0.5(原子比)であった。有機バインダ
ーと導電粒子を混合し、調製した異方導電フィルムは厚
み15μmのフィルム状にし、凝集した導電粒子を含む
導電粒子の平均最大長を測定した。結果を表1に示す。
また、使用した導電粒子の単分散時における平均径の結
果も表1に示す。実施例1、実施例2および実施例3の
異方導電フィルムを500μmピッチの基板に圧着し、
接続抵抗値を測定した。その結果も表2に示す。また、
隣り合う端子間の絶縁性も測定した。この結果も表1に
示す。
Examples 1, 2 and 3 In Example 1, silver-copper alloy powder was used as the conductive particles, and in Examples 2 and 3, copper powder was used.
The silver-copper alloy powder used in Example 1 was disclosed in JP-A-6-223.
633 was prepared according to the method described in Examples.
The average silver concentration was 0.5 (atomic ratio). The anisotropic conductive film prepared by mixing the organic binder and the conductive particles was formed into a film having a thickness of 15 μm, and the average maximum length of the conductive particles including the aggregated conductive particles was measured. Table 1 shows the results.
Table 1 also shows the results of the average diameter of the used conductive particles at the time of monodispersion. The anisotropic conductive films of Examples 1, 2 and 3 were pressure-bonded to a substrate having a pitch of 500 μm,
The connection resistance was measured. Table 2 also shows the results. Also,
The insulation between adjacent terminals was also measured. The results are also shown in Table 1.

【0022】[0022]

【比較例1及び2】比較例1では、導電粒子0.05体
積%用い、攪拌を10000rpm、20分間行い、比
較例2では、導電粒子12.0体積%用い、300rp
m、20秒間攪拌を行い異方導電フィルムを作成した。
比較例1および比較例2の凝集した導電粒子を含む導電
粒子の平均最大長を測定した。結果は表1に示す。ま
た、使用した導電粒子の単分散時における平均径の結果
も表1に示す。この比較例1および比較例2の異方導電
フィルムの接続抵抗及び絶縁性を測定し、結果を表1に
示す。
Comparative Examples 1 and 2 In Comparative Example 1, 0.05% by volume of conductive particles were used, and stirring was performed at 10,000 rpm for 20 minutes. In Comparative Example 2, 12.0% by volume of conductive particles were used, and 300 rpm.
After stirring for 20 seconds for 20 seconds, an anisotropic conductive film was prepared.
The average maximum length of the conductive particles including the aggregated conductive particles of Comparative Example 1 and Comparative Example 2 was measured. The results are shown in Table 1. Table 1 also shows the results of the average diameter of the used conductive particles at the time of monodispersion. The connection resistance and insulation properties of the anisotropic conductive films of Comparative Examples 1 and 2 were measured, and the results are shown in Table 1.

【0023】このように実施例は、比較例に較べ接続抵
抗値、絶縁性において良好なものであることが示され
た。
As described above, it was shown that the example had better connection resistance value and better insulation than the comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】長期保存後においても良好な導電性能を
有する異方導電フィルムを提供することが可能である。
According to the present invention, it is possible to provide an anisotropic conductive film having good conductivity even after long-term storage.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機バインダーと0.1〜10体積%の
導電粒子からなり、膜厚が10〜60μmの異方導電フ
ィルムであって、該異方導電フィルム中の凝集した導電
粒子を含む導電粒子の平均最大長が、前記導電粒子の単
分散時の平均径の1.05〜6倍であることを特徴とす
る異方導電フィルム。
1. An anisotropic conductive film comprising an organic binder and 0.1 to 10% by volume of conductive particles and having a film thickness of 10 to 60 μm, wherein the conductive film contains aggregated conductive particles in the anisotropic conductive film. An anisotropic conductive film, wherein the average maximum length of the particles is 1.05 to 6 times the average diameter of the conductive particles when monodispersed.
【請求項2】 導電粒子が球状粉であることを特徴とす
る請求項1の異方導電フィルム。
2. The anisotropic conductive film according to claim 1, wherein the conductive particles are spherical powder.
【請求項3】 導電粒子が金属粉であることを特徴とす
る請求項1又は2の異方導電フィルム。
3. The anisotropic conductive film according to claim 1, wherein the conductive particles are metal powder.
JP28682997A 1997-10-20 1997-10-20 Anisotropic conductive film Withdrawn JPH11120820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28682997A JPH11120820A (en) 1997-10-20 1997-10-20 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28682997A JPH11120820A (en) 1997-10-20 1997-10-20 Anisotropic conductive film

Publications (1)

Publication Number Publication Date
JPH11120820A true JPH11120820A (en) 1999-04-30

Family

ID=17709585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28682997A Withdrawn JPH11120820A (en) 1997-10-20 1997-10-20 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JPH11120820A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339613A (en) * 2005-06-06 2006-12-14 Alps Electric Co Ltd Wiring connection structure and liquid crystal display device
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
JP2009283606A (en) * 2008-05-21 2009-12-03 Hitachi Chem Co Ltd Connection structure of wiring member, and connection method of wiring member
JP2010177676A (en) * 2010-03-08 2010-08-12 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
US9173302B2 (en) 2006-08-29 2015-10-27 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339613A (en) * 2005-06-06 2006-12-14 Alps Electric Co Ltd Wiring connection structure and liquid crystal display device
JP4575845B2 (en) * 2005-06-06 2010-11-04 アルプス電気株式会社 Wiring connection structure and liquid crystal display device
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
US9173302B2 (en) 2006-08-29 2015-10-27 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
JP2009283606A (en) * 2008-05-21 2009-12-03 Hitachi Chem Co Ltd Connection structure of wiring member, and connection method of wiring member
JP2010177676A (en) * 2010-03-08 2010-08-12 Semiconductor Energy Lab Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
KR101748454B1 (en) Conductive particles, anisotropic conductive film, assembly, and connection method
KR950000710B1 (en) Anisotropic conductive adhesive compositions
JP5841319B2 (en) Polymer fine particles and conductive fine particles
JP2009032657A (en) Anisotropic conductive material, connection structure, and its manufacturing method
TW200949396A (en) Connected structure and manufacturing method for the same, and anisotropic conductive film used for the same
JP3516379B2 (en) Anisotropic conductive film
JP2007026776A (en) Conductive fine particle and adhesive using the same
JPH11120820A (en) Anisotropic conductive film
US7799408B2 (en) Conductive powder, conductive composition, and producing method of the same
JP2002124128A (en) Adhesives and adhesive film
TWI509638B (en) Conductive particles, anisotropic conductive materials and connecting structures
US20030201427A1 (en) Conductiv powder and conductive composition
JP5609492B2 (en) Electronic component and manufacturing method thereof
JPH07118617A (en) Adhesive for fine pitch having anisotropic electrical conductivity
JP3150054B2 (en) Anisotropic conductive film
JP3828787B2 (en) Method for producing conductive powder and method for producing conductive composition
JP2905121B2 (en) Anisotropic conductive adhesive film
JP2970720B2 (en) Microcapsule type conductive adhesive and method for producing the same
JP3449889B2 (en) Anisotropic conductive adhesive
JP5010417B2 (en) Conductive particles and anisotropic conductive material using the same
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JP2000133043A (en) Conductive composition for improving contact resistance
JP2003249287A (en) Anisotropically conductive adhesive, heat seal connector and connection structure
JP2004238483A (en) Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same
WO2016052130A1 (en) Anisotropic conductive film and bonding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104