JP2007026776A - Conductive fine particle and adhesive using the same - Google Patents

Conductive fine particle and adhesive using the same Download PDF

Info

Publication number
JP2007026776A
JP2007026776A JP2005204674A JP2005204674A JP2007026776A JP 2007026776 A JP2007026776 A JP 2007026776A JP 2005204674 A JP2005204674 A JP 2005204674A JP 2005204674 A JP2005204674 A JP 2005204674A JP 2007026776 A JP2007026776 A JP 2007026776A
Authority
JP
Japan
Prior art keywords
fine particles
metal
adhesive
conductive fine
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204674A
Other languages
Japanese (ja)
Inventor
Hideaki Toshioka
英昭 年岡
Tetsuya Kuwabara
鉄也 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005204674A priority Critical patent/JP2007026776A/en
Publication of JP2007026776A publication Critical patent/JP2007026776A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive fine particles capable of improving reliability of connection when electrodes of a semiconductor element and a circuit board are connected to each other and maintaining a low contact resistance to the electrodes, and to provide an adhesive using the same. <P>SOLUTION: The conductive fine particles 4 each comprise a metallic fine particle 8, and a metallic layer 9 formed on the surface of the metallic fine particle 8 and having a melting point of 350°C or lower. Accordingly, adhesiveness of the metallic fine particle 8 and the metallic layer 9 formed on the surface thereof to each other is improved, and furthermore, pressure resistance and heat resistance are also improved. Consequently, it is possible to effectively prevent peeling-off of the metallic layer 9 formed on the surface of the metallic fine particle 8, and therefore the reliability of connection between electrodes 6 and 7 is improved and the contact resistance of the conductive fine particles 4 to the electrodes 6 and 7 is kept low. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ICチップ等の半導体素子と回路基板との接続に使用される導電性微粒子およびこれを用いた接着剤に関する。   The present invention relates to conductive fine particles used for connecting a semiconductor element such as an IC chip and a circuit board, and an adhesive using the same.

従来、ICチップ等の半導体素子と回路基板との電極間の接続においては、当該半導体素子を、導電性微粒子を有する接着剤を介して、回路基板上に接続する方法が採用されている。   Conventionally, in connection between electrodes of a semiconductor element such as an IC chip and a circuit board, a method of connecting the semiconductor element onto the circuit board via an adhesive having conductive fine particles has been adopted.

このような導電性微粒子としては、例えば、プラスチック類等の樹脂からなる基材微粒子の表面に、第1の金属層を設けるとともに、当該第1の金属層の表面に第2の金属層を設けた導電性微粒子が提案されている。この従来技術では、電極間において、当該第1、第2の金属層を溶融させることにより、一体化した合金層を形成し、電極間を接続する方法が採用されている。このような構成により、電極間の接続信頼性が向上すると記載されている(例えば、特許文献1参照)。   As such conductive fine particles, for example, a first metal layer is provided on the surface of a substrate fine particle made of a resin such as plastics, and a second metal layer is provided on the surface of the first metal layer. Conductive fine particles have been proposed. In this prior art, a method of forming an integrated alloy layer by melting the first and second metal layers between the electrodes and connecting the electrodes is employed. It is described that the connection reliability between the electrodes is improved by such a configuration (see, for example, Patent Document 1).

また、各種プラスチック類の樹脂からなる基材微粒子の表面に、融点が900℃以上の内側金属層を形成するとともに、当該内側金属層の外側に融点が350℃以下の外側金属層を形成した導電性微粒子が提案されている。このような構成により、導電性微粒子と電極の接触部分に、外側金属層の溶融部分が固着して導電性微粒子が電極に強固に接着するため、導電性微粒子と電極との接続信頼性が向上すると記載されている(例えば、特許文献2参照)。
特開昭63−231889号公報 特開平5−36306号公報
In addition, an inner metal layer having a melting point of 900 ° C. or higher is formed on the surface of the substrate fine particles made of various plastic resins, and an outer metal layer having a melting point of 350 ° C. or lower is formed outside the inner metal layer. Have been proposed. With such a configuration, the melted portion of the outer metal layer adheres to the contact portion between the conductive fine particles and the electrode, and the conductive fine particles adhere firmly to the electrode, thereby improving the connection reliability between the conductive fine particles and the electrode. Then, it is described (for example, refer to Patent Document 2).
JP-A-63-231889 JP-A-5-36306

しかし、上記従来の導電性微粒子においては、基材微粒子が樹脂により形成されているため、基材微粒子と、当該基材微粒子の表面に形成された金属層の密着性が乏しくなる。その結果、導電性微粒子間の接触時や、導電性微粒子と電極の接触時に、基材微粒子の表面に形成された金属層が剥がれやすくなり、電極間の接続信頼性が低下するとともに、導電性微粒子と電極との接触抵抗値を低く保つことが困難になるという問題があった。特に、接着剤の加熱加圧時に、圧力や熱により基材微粒子が変形しやすくなるため、当該基材微粒子の変形に伴って、金属層も変形し、この場合も、金属層が剥がれやすくなり、電極間の接続信頼性が低下するとともに、導電性微粒子と電極との接触抵抗値を低く保つことが困難になるという問題があった。   However, in the above-mentioned conventional conductive fine particles, since the substrate fine particles are formed of resin, the adhesion between the substrate fine particles and the metal layer formed on the surface of the substrate fine particles becomes poor. As a result, the metal layer formed on the surface of the substrate fine particles is easily peeled off when contacting between the conductive fine particles or when contacting the conductive fine particles with the electrodes, and the connection reliability between the electrodes is reduced and the conductivity is reduced. There is a problem that it is difficult to keep the contact resistance value between the fine particles and the electrode low. In particular, when the adhesive is heated and pressurized, the base material particles are easily deformed by pressure and heat, so that the metal layer is also deformed along with the deformation of the base material particles, and in this case, the metal layer is easily peeled off. In addition, the connection reliability between the electrodes is lowered, and it is difficult to keep the contact resistance value between the conductive fine particles and the electrodes low.

そこで、本発明は、上述の問題に鑑みてなされたものであり、半導体素子と回路基板の電極間を接続する際に、接続信頼性を向上させるとともに、電極との接触抵抗値を低く保つことができる導電性微粒子およびそれを用いた接着剤を提供することを目的とする。   Therefore, the present invention has been made in view of the above-mentioned problems, and when connecting between a semiconductor element and an electrode of a circuit board, the connection reliability is improved and the contact resistance value with the electrode is kept low. It is an object to provide conductive fine particles that can be used and an adhesive using the same.

上記目的を達成するために、請求項1に記載の発明では、導電性微粒子において、金属微粒子の表面に、融点が350℃以下の金属層が形成されていることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is characterized in that, in the conductive fine particles, a metal layer having a melting point of 350 ° C. or less is formed on the surface of the metal fine particles.

請求項1に記載の構成によれば、金属微粒子の表面に、融点が350℃以下の金属層が形成されているため、金属微粒子と、金属微粒子の表面に形成された金属層との密着性が向上する。従って、導電性微粒子を用いて電極間の電気的接続を行う際に、導電性微粒子間の接触時や、導電性微粒子と電極との接触時に、金属微粒子の表面に形成された金属層が剥がれるのを効果的に防止することができる。その結果、電極間の接続信頼性が向上するとともに、導電性微粒子と電極との接触抵抗値を低く保つことが可能になる。   According to the configuration of the first aspect, since the metal layer having a melting point of 350 ° C. or less is formed on the surface of the metal fine particle, the adhesion between the metal fine particle and the metal layer formed on the surface of the metal fine particle. Will improve. Therefore, when the electrical connection between the electrodes is performed using the conductive fine particles, the metal layer formed on the surface of the metal fine particles is peeled off at the time of contact between the conductive fine particles or at the time of contact between the conductive fine particles and the electrode. Can be effectively prevented. As a result, the connection reliability between the electrodes is improved, and the contact resistance value between the conductive fine particles and the electrodes can be kept low.

また、基材となる微粒子に、金属微粒子を使用することにより、樹脂製の基材微粒子に比し、耐圧性、および耐熱性が向上する。従って、接着剤の加熱加圧時に、圧力や熱により基材微粒子が変形するのを防止することができるため、金属層の変形も防止することが可能になる。従って、接着剤の加熱加圧時に、金属微粒子の表面に形成された金属層が剥がれるのを効果的に防止することができるため、結果として、電極間の接続信頼性が向上するとともに、導電性微粒子と電極との接触抵抗値を低く保つことが可能になる。   Further, by using metal fine particles as the fine particles serving as the base material, pressure resistance and heat resistance are improved as compared with the resin-made base fine particles. Therefore, when the adhesive is heated and pressed, it is possible to prevent the base material fine particles from being deformed by pressure or heat, and it is also possible to prevent deformation of the metal layer. Accordingly, it is possible to effectively prevent the metal layer formed on the surface of the metal fine particles from being peeled off when the adhesive is heated and pressed. As a result, the connection reliability between the electrodes is improved and the conductivity is improved. The contact resistance value between the fine particles and the electrode can be kept low.

また、金属層の融点を350℃以下としているため、半導体素子を、導電性微粒子を有する接着剤を介して、回路基板上に接続する場合に、接着剤の加熱により、金属層が部分的に融解あるいは軟化するため、半導体素子を回路基板上に強固に接続することが可能になる。   In addition, since the melting point of the metal layer is 350 ° C. or lower, when the semiconductor element is connected to the circuit board via the adhesive having conductive fine particles, the metal layer is partially formed by heating the adhesive. Since it is melted or softened, the semiconductor element can be firmly connected on the circuit board.

請求項2に記載の発明は、請求項1に記載の導電性微粒子であって、前記金属微粒子が、微細な一次粒子が、多数、直鎖状に繋がった形状あるいは針形状を有しており、金属微粒子のアスペクト比が10以上であることを特徴とする。   The invention according to claim 2 is the conductive fine particle according to claim 1, wherein the metal fine particle has a shape in which a number of fine primary particles are connected in a straight chain or a needle shape. The aspect ratio of the metal fine particles is 10 or more.

請求項2に記載の構成によれば、例えば、接着剤として、導電性接着剤を使用する場合に、導電性微粒子間の接触確率が高くなるため、導電性微粒子の配合量を増やすことなく、体積抵抗を下げることができる。また、導電性微粒子を、接着剤の厚み方向に配向させて、異方導電性の接着剤として使用する場合に、対向電極の導通抵抗を低くすることができ、良好な電気的接続を達成できる。   According to the configuration of claim 2, for example, when using a conductive adhesive as an adhesive, the contact probability between the conductive fine particles is increased, without increasing the blending amount of the conductive fine particles, Volume resistance can be lowered. Also, when the conductive fine particles are oriented in the thickness direction of the adhesive and used as an anisotropic conductive adhesive, the conduction resistance of the counter electrode can be lowered, and good electrical connection can be achieved. .

また、金属微粒子が、微細な一次粒子が、多数、直鎖状に繋がった形状あるいは針形状を有しており、優れたクッション性を有するため、半導体素子を、導電性微粒子を有する接着剤を介して、回路基板上に接続する場合に、半導体素子に損傷を与えることなく、接続することが可能になる。   In addition, since the metal fine particles have a shape in which a large number of fine primary particles are connected in a straight chain or have a needle shape and have excellent cushioning properties, the semiconductor element is made of an adhesive having conductive fine particles. Thus, when connecting on the circuit board, the connection can be made without damaging the semiconductor element.

請求項3に記載の発明は、請求項2に記載の導電性微粒子であって、金属微粒子の短径が1μm以下であることを特徴とする。   A third aspect of the present invention is the conductive fine particle according to the second aspect, wherein the metal fine particle has a minor axis of 1 μm or less.

請求項3に記載の構成によれば、例えば、接着剤として、導電性接着剤を使用する場合に、導電性微粒子間の接触確率が更に高くなるため、更に少ない導電性微粒子の配合量で、導通抵抗を低くすることができ、良好な電気的接続を達成できる。なお、ここでいう「短径」とは、金属微粒子の断面の長さのことをいう。   According to the configuration of claim 3, for example, when a conductive adhesive is used as an adhesive, the contact probability between the conductive fine particles is further increased. The conduction resistance can be lowered and good electrical connection can be achieved. Here, the “short diameter” refers to the length of the cross section of the metal fine particles.

請求項4に記載の発明は、請求項1乃至請求項3のいずれかに記載の導電性微粒子であって、金属微粒子が、強磁性を有する金属単体、強磁性を有する2種類以上の合金、強磁性を有する金属と他の金属との合金、および強磁性を有する金属を含む複合体のいずれかであることを特徴とする。   Invention of Claim 4 is electroconductive fine particles in any one of Claim 1 thru | or 3, Comprising: A metal fine particle is a metal simple substance which has ferromagnetism, 2 or more types of alloys which have ferromagnetism, It is one of an alloy of a metal having ferromagnetism and another metal, and a composite containing a metal having ferromagnetism.

請求項4に記載の構成によれば、金属自体が有する磁性により、磁場を用いて導電性微粒子を所望の方向に配向させることが可能になる。   According to the structure of Claim 4, it becomes possible to orientate electroconductive fine particles in a desired direction using a magnetic field with the magnetism which metal itself has.

請求項5に記載の発明は、請求項1乃至請求項4のいずれかに記載の導電性微粒子であって、金属層が、インジウム、錫、鉛および錫と鉛の合金のいずれかであることを特徴とする。   The invention according to claim 5 is the conductive fine particle according to any one of claims 1 to 4, wherein the metal layer is any one of indium, tin, lead, and an alloy of tin and lead. It is characterized by.

請求項5に記載の構成によれば、安価で入手が容易な材料を金属層として用いることが可能となる。   According to the structure of Claim 5, it becomes possible to use an inexpensive and easily available material as a metal layer.

請求項6に記載の発明は、請求項1乃至請求項5のいずれかに記載の導電性微粒子とエポキシ樹脂とを備え、導電性微粒子がエポキシ樹脂中に分散されていることを特徴とする。   The invention described in claim 6 is characterized by comprising the conductive fine particles according to any one of claims 1 to 5 and an epoxy resin, wherein the conductive fine particles are dispersed in the epoxy resin.

請求項6に記載の構成によれば、フィルム形成性、耐熱性、および接着力に優れた接着剤を作製することが可能になる。   According to the structure of Claim 6, it becomes possible to produce the adhesive agent excellent in film formation property, heat resistance, and adhesive force.

請求項7に記載の発明は、請求項1乃至請求項5のいずれかに記載の導電性微粒子を備える接着剤であって、導電性微粒子を接着剤の厚み方向に配向させたことを特徴とする異方導電性の接着剤である。   The invention according to claim 7 is an adhesive comprising the conductive fine particles according to any one of claims 1 to 5, wherein the conductive fine particles are oriented in the thickness direction of the adhesive. An anisotropic conductive adhesive.

請求項7に記載の構成によれば、異方導電性の接着剤の面方向における高い導電抵抗によって隣り合う電極間の絶縁を維持して短絡を防止しつつ、異方導電性の接着剤の厚み方向における低い導電抵抗によって多数の電極−電極間を一度に、かつ各々を独立して導電接続することが可能になる。   According to the structure of Claim 7, while maintaining the insulation between adjacent electrodes by the high conductive resistance in the surface direction of the anisotropic conductive adhesive and preventing a short circuit, the anisotropic conductive adhesive The low conductive resistance in the thickness direction makes it possible to electrically connect a large number of electrodes to each other at once and independently.

本発明によれば、導電性微粒子を用いて電極間の電気的接続を行う際の、接続信頼性を向上させることが可能になる。また、導電性微粒子と電極との接触抵抗値を低く保つこと可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to improve the connection reliability at the time of making the electrical connection between electrodes using electroconductive fine particles. Further, the contact resistance value between the conductive fine particles and the electrode can be kept low.

以下に、本発明の好適な実施形態について説明する。図1は、半導体素子と回路基板間を本発明の導電性微粒子で接続した状態を示す断面図である。また、図2は、本発明の導電性微粒子の概略構成を示す模式図である。   Hereinafter, a preferred embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a state where a semiconductor element and a circuit board are connected by the conductive fine particles of the present invention. FIG. 2 is a schematic diagram showing a schematic configuration of the conductive fine particles of the present invention.

図1に示すように、ICチップ等の半導体素子1と回路基板2の間には、絶縁性の樹脂3を主成分とし、当該樹脂3中に導電性微粒子4が分散された接着剤5が介在している。そして、当該接着剤5の加熱加圧を行うことにより、半導体素子1を回路基板2上に接続させるとともに、導電性微粒子4と、半導体素子1の電極6、および回路基板2の電極7を融着させ、当該電極6、7間を電気的に接続させる構成となっている。   As shown in FIG. 1, an adhesive 5 having an insulating resin 3 as a main component and conductive fine particles 4 dispersed in the resin 3 is provided between a semiconductor element 1 such as an IC chip and a circuit board 2. Intervene. Then, by heating and pressing the adhesive 5, the semiconductor element 1 is connected to the circuit board 2, and the conductive fine particles 4, the electrode 6 of the semiconductor element 1, and the electrode 7 of the circuit board 2 are melted. The electrodes 6 and 7 are electrically connected to each other.

ここで、本発明においては、図2に示すように、金属製の基材微粒子(以下、「金属微粒子」という。)8の表面に、融点が350℃以下の金属層9が形成されている導電性微粒子4を使用する点に特徴がある。このような構成により、金属微粒子8と、当該金属微粒子8の表面に形成された金属層9との密着性が向上する。従って、導電性微粒子4間の接触時や、導電性微粒子4と電極6、7との接触時に、金属微粒子8の表面に形成された金属層9が剥がれるのを効果的に防止することができるため、電極6、7間の接続信頼性が向上するとともに、導電性微粒子4と電極6、7との接触抵抗値を低く保つことが可能になる。また、金属微粒子8を使用することにより、樹脂製の基材微粒子に比し、耐圧性、および耐熱性が向上する。従って、接着剤5の加熱加圧時に、圧力や熱により基材微粒子が変形するのを防止することができるため、金属層9の変形も防止することが可能になる。従って、接着剤5の加熱加圧時に、金属微粒子8の表面に形成された金属層9が剥がれるのを効果的に防止することができるため、結果として、電極6、7間の接続信頼性が向上するとともに、導電性微粒子4と電極6、7との接触抵抗値を低く保つことが可能になる。   Here, in the present invention, as shown in FIG. 2, a metal layer 9 having a melting point of 350 ° C. or less is formed on the surface of metal substrate fine particles (hereinafter referred to as “metal fine particles”) 8. It is characterized in that the conductive fine particles 4 are used. With such a configuration, the adhesion between the metal fine particles 8 and the metal layer 9 formed on the surface of the metal fine particles 8 is improved. Accordingly, it is possible to effectively prevent the metal layer 9 formed on the surface of the metal fine particles 8 from being peeled off when the conductive fine particles 4 are in contact with each other or when the conductive fine particles 4 are in contact with the electrodes 6 and 7. Therefore, the connection reliability between the electrodes 6 and 7 is improved, and the contact resistance value between the conductive fine particles 4 and the electrodes 6 and 7 can be kept low. Moreover, by using the metal fine particles 8, pressure resistance and heat resistance are improved as compared with resin-made base particles. Therefore, when the adhesive 5 is heated and pressurized, it is possible to prevent deformation of the base material particles due to pressure and heat, and thus it is possible to prevent deformation of the metal layer 9. Therefore, it is possible to effectively prevent the metal layer 9 formed on the surface of the metal fine particles 8 from being peeled off when the adhesive 5 is heated and pressurized. As a result, the connection reliability between the electrodes 6 and 7 is improved. As well as improving, the contact resistance value between the conductive fine particles 4 and the electrodes 6 and 7 can be kept low.

なお、金属層9の融点が350℃より高い場合では、接着剤5の加熱加圧を行うことにより、半導体素子1を回路基板2上に接続させる際に、接着剤5の加熱により、金属層9が十分に融解せず、導電性微粒子4と回路基板2とが確実に融着しない。しかし、本発明においては、金属層9の融点を350℃以下としているため、接着剤5の加熱により、金属層9が、部分的に融解あるいは軟化するため、半導体素子1を回路基板2上に強固に接続することが可能になる。   When the melting point of the metal layer 9 is higher than 350 ° C., the adhesive 5 is heated and pressurized so that the metal layer 9 is heated by the adhesive 5 when the semiconductor element 1 is connected to the circuit board 2. 9 is not sufficiently melted, and the conductive fine particles 4 and the circuit board 2 are not reliably fused. However, in the present invention, since the melting point of the metal layer 9 is 350 ° C. or less, the metal layer 9 is partially melted or softened by heating the adhesive 5, so that the semiconductor element 1 is placed on the circuit board 2. It becomes possible to connect firmly.

また、本発明に使用される接着剤5としては、従来、半導体素子1と回路基板2の接続に使用されてきた、エポキシ樹脂等の絶縁性の熱硬化性樹脂を主成分とし、当該樹脂中に導電性微粒子4が分散された接着剤5が使用できる。特に、熱硬化性樹脂としてエポキシ樹脂を使用することにより、フィルム形成性、耐熱性、および接着力に優れた接着剤5を作製することが可能になる。   In addition, as the adhesive 5 used in the present invention, an insulating thermosetting resin such as an epoxy resin, which has been conventionally used for connecting the semiconductor element 1 and the circuit board 2, is used as a main component. An adhesive 5 in which conductive fine particles 4 are dispersed can be used. In particular, by using an epoxy resin as the thermosetting resin, it is possible to produce an adhesive 5 having excellent film formability, heat resistance, and adhesive strength.

また、使用するエポキシ樹脂は、特に制限はないが、例えば、ビスフェノールA型、F型、S型、またはAD型のエポキシ樹脂や、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等を使用することができる。また、高分子量エポキシ樹脂であるフェノキシ樹脂を用いることもできる。   The epoxy resin to be used is not particularly limited. For example, bisphenol A type, F type, S type, or AD type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, diphenyl type epoxy resin, A cyclopentadiene type epoxy resin or the like can be used. A phenoxy resin that is a high molecular weight epoxy resin can also be used.

エポキシ樹脂の分子量は、半導体素子接続用の接着剤5に要求される性能を考慮して、適宜選択することができる。高分子量のエポキシ樹脂を使用すると、フィルム形成性が高く、また、接続温度における樹脂の溶解粘度を高くでき、後述の導電性粒子の配向を乱すことなく接続できる効果がある。一方、低分子量のエポキシ樹脂を使用すると、架橋密度が高まって耐熱性が向上するとともに、樹脂の凝集力が高まるため、接着力が高くなるという効果が得られる。従って、分子量が15000以上の高分子量エポキシ樹脂と分子量が2000以下の低分子量エポキシ樹脂とを組み合わせて使用することにより、性能のバランスが取れるため、好ましい。なお、高分子量エポキシ樹脂と低分子量エポキシ樹脂の配合量は、適宜、選択することができる。   The molecular weight of the epoxy resin can be appropriately selected in consideration of the performance required for the adhesive 5 for connecting a semiconductor element. When a high molecular weight epoxy resin is used, the film-forming property is high, the melt viscosity of the resin at the connection temperature can be increased, and there is an effect that the connection can be made without disturbing the orientation of conductive particles described later. On the other hand, when a low molecular weight epoxy resin is used, the crosslink density is increased and the heat resistance is improved, and the cohesive force of the resin is increased. Therefore, it is preferable to use a combination of a high molecular weight epoxy resin having a molecular weight of 15000 or more and a low molecular weight epoxy resin having a molecular weight of 2000 or less in order to balance performance. In addition, the compounding quantity of a high molecular weight epoxy resin and a low molecular weight epoxy resin can be selected suitably.

また、潜在性硬化剤を含有する接着剤5も使用できる。本発明に使用される潜在性硬化剤は、低温での貯蔵安定性に優れ、室温では殆ど硬化反応を起こさないが、熱や光等により、速やかに硬化反応を行う硬化剤である。この潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、アミンイミド、ポリアミン系、第3級アミン、アルキル尿素系等のアミン系、ジシアンジアミド系、および、これらの変性物が例示され、これらは単独または2種以上の混合物として使用できる。   An adhesive 5 containing a latent curing agent can also be used. The latent curing agent used in the present invention is a curing agent that is excellent in storage stability at low temperatures and hardly undergoes a curing reaction at room temperature, but rapidly undergoes a curing reaction by heat or light. Examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, amine imide, polyamine series, tertiary amine, alkyl urea series and other amine series, dicyandiamide series, and modified products thereof. These can be used alone or as a mixture of two or more.

また、本発明に使用される金属微粒子8は、その一部に強磁性体が含まれるものが良く、強磁性を有する金属単体、強磁性を有する2種類以上の合金、強磁性を有する金属と他の金属との合金、および強磁性を有する金属を含む複合体のいずれかであることが好ましい。これは、強磁性を有する金属を使用することにより、金属自体が有する磁性により、磁場を用いて導電性微粒子4を配向させることが可能になるからである。例えば、ニッケル、鉄、コバルトおよびこれらのうち2種類以上の合金等を挙げることができる。   In addition, the metal fine particles 8 used in the present invention preferably include a ferromagnetic material in a part thereof, a single metal having ferromagnetism, two or more kinds of alloys having ferromagnetism, a metal having ferromagnetism, and It is preferably any one of an alloy with another metal and a composite containing a metal having ferromagnetism. This is because by using a metal having ferromagnetism, the conductive fine particles 4 can be oriented using a magnetic field due to the magnetism of the metal itself. For example, nickel, iron, cobalt, and two or more kinds of alloys thereof can be used.

また、導電性微粒子4を含む異方導電性の接着剤も使用することができる。ここで、異方導電性の接着剤に使用される導電性微粒子4としては、例えば、球状の金属微粒子8の表面に、上述の金属層9が形成されたものや、金属微粒子8が、微細な一次粒子が、多数、直鎖状に繋がった形状あるいは針形状を有する、所謂アスペクト比が大きい金属微粒子8の表面に金属層9が形成されたものを使用することもできる。なお、ここで言うアスペクト比とは、金属微粒子8の短径(金属微粒子8の断面の長さ)と長径(金属微粒子8の長さ)の比のことを言う。   An anisotropic conductive adhesive containing the conductive fine particles 4 can also be used. Here, as the conductive fine particles 4 used for the anisotropic conductive adhesive, for example, the above-described metal layer 9 is formed on the surface of the spherical metal fine particles 8, or the fine metal particles 8 are fine. A large number of primary particles having a linearly connected shape or a needle shape, in which a metal layer 9 is formed on the surface of a so-called metal fine particle 8 having a large aspect ratio, can also be used. The aspect ratio here refers to the ratio of the short diameter of the metal fine particles 8 (the length of the cross section of the metal fine particles 8) to the long diameter (the length of the metal fine particles 8).

特に、上述の、金属微粒子8が、微細な一次粒子が、多数、直鎖状に繋がった形状あるいは針形状を有する導電性微粒子4を使用する場合、導電性微粒子4を、異方導電性の接着剤を形成する時点で異方導電性の接着剤の厚み方向にかけた磁場の中を通過させることにより、厚み方向(磁場方向であって、図1の矢印Xの方向)に配向させて用いるのが好ましい。このような配向にすることにより、異方導電性の接着剤の面方向における高い導電抵抗によって隣り合う電極間の絶縁を維持して短絡を防止しつつ、異方導電性の接着剤の厚み方向における低い導電抵抗によって多数の電極−電極間を一度に、かつ各々を独立して導電接続することが可能になる。   In particular, when the conductive fine particles 4 having a shape in which a large number of fine primary particles are connected in a straight chain or a needle shape are used, the conductive fine particles 4 are anisotropically conductive. By passing through a magnetic field applied in the thickness direction of the anisotropic conductive adhesive at the time of forming the adhesive, it is used by being oriented in the thickness direction (the magnetic field direction and the direction of arrow X in FIG. 1). Is preferred. By adopting such an orientation, the thickness direction of the anisotropic conductive adhesive is maintained while maintaining insulation between adjacent electrodes by a high conductive resistance in the surface direction of the anisotropic conductive adhesive and preventing a short circuit. The low conductive resistance in can make it possible to electrically connect a large number of electrodes to each other at once and independently.

また、金属微粒子8が、微細な一次粒子が、多数、直鎖状に繋がった形状あるいは針形状を有する導電性微粒子4を使用する場合、金属微粒子8のアスペクト比が10以上であることが好ましい。このような金属微粒子8を使用することにより、例えば、接着剤5として、導電性接着剤を使用する場合に、導電性微粒子4間の接触確率が高くなる。従って、導電性微粒子4の配合量を増やすことなく、体積抵抗を下げることができる。また、導電性微粒子4を、接着剤5の厚み方向に配向させて、異方導電性の接着剤として使用する場合に、対向電極の導通抵抗を低くすることができ、良好な電気的接続を達成できる。   In addition, when the conductive fine particles 4 having a shape in which a large number of fine primary particles are connected in a straight chain or a needle shape are used as the metal fine particles 8, the aspect ratio of the metal fine particles 8 is preferably 10 or more. . By using such metal fine particles 8, for example, when a conductive adhesive is used as the adhesive 5, the contact probability between the conductive fine particles 4 is increased. Therefore, the volume resistance can be lowered without increasing the blending amount of the conductive fine particles 4. In addition, when the conductive fine particles 4 are oriented in the thickness direction of the adhesive 5 and used as an anisotropic conductive adhesive, the conduction resistance of the counter electrode can be lowered, and a good electrical connection can be achieved. Can be achieved.

また、金属微粒子8が、微細な一次粒子が、多数、直鎖状に繋がった形状あるいは針形状を有しており、優れたクッション性を有するため、半導体素子1を、導電性微粒子4を有する接着剤を介して、回路基板2上に接続する場合に、半導体素子1に損傷を与えることなく、接続することが可能になる。   Further, since the metal fine particles 8 have a shape in which a large number of fine primary particles are connected in a straight chain or a needle shape and have an excellent cushioning property, the semiconductor element 1 has the conductive fine particles 4. When connecting on the circuit board 2 via an adhesive, the connection can be made without damaging the semiconductor element 1.

なお、金属微粒子8のアスペクト比は、CCD顕微鏡観察等の方法により直接測定するが、断面が円でない金属微粒子8の場合は、断面の最大長さを短径としてアスペクト比を求める。また、金属微粒子8は、必ずしもまっすぐな形状を有している必要はなく、多少の曲がりや枝分かれがあっても、問題なく使用できる。この場合、金属微粒子8の最大長さを長径としてアスペクト比を求める。   The aspect ratio of the metal fine particles 8 is directly measured by a method such as observation with a CCD microscope. In the case of the metal fine particles 8 whose cross section is not a circle, the aspect ratio is obtained by setting the maximum length of the cross section as the short diameter. Further, the metal fine particles 8 do not necessarily have a straight shape, and can be used without any problems even if they are slightly bent or branched. In this case, the aspect ratio is obtained with the maximum length of the metal fine particles 8 as the major axis.

また、金属微粒子8の短径が1μm以下であることが望ましい。このような金属微粒子8を使用することにより、例えば、接着剤5として、導電性接着剤を使用する場合に、導電性微粒子4間の接触確率が更に高くなるため、更に少ない導電性微粒子4の配合量で、導通抵抗を低くすることができ、良好な電気的接続を達成できる。   Further, it is desirable that the minor diameter of the metal fine particles 8 is 1 μm or less. By using such metal fine particles 8, for example, when a conductive adhesive is used as the adhesive 5, the contact probability between the conductive fine particles 4 is further increased. With the blending amount, the conduction resistance can be lowered and a good electrical connection can be achieved.

また、金属微粒子8の表面に形成される、融点が350℃以下の金属層9の材料としては、例えば、インジウム(融点:157℃)、錫(融点:232℃)、鉛(融点:327℃)、錫と鉛の合金のいずれかであることが好ましい。このような構成により、安価で入手が容易な材料を金属層9として用いることが可能となる。   Examples of the material of the metal layer 9 formed on the surface of the metal fine particles 8 and having a melting point of 350 ° C. or lower include indium (melting point: 157 ° C.), tin (melting point: 232 ° C.), lead (melting point: 327 ° C.). ) Or an alloy of tin and lead. With such a configuration, an inexpensive and easily available material can be used as the metal layer 9.

なお、金属層9の形成方法としては、特に限定されることなく、例えば、無電解メッキ、や真空蒸着、スパッタリング等の物理的蒸着方法が挙げられ、これらの方法を単独で、または組み合わせることにより、金属層9を形成することができる。   The method for forming the metal layer 9 is not particularly limited, and examples thereof include physical vapor deposition methods such as electroless plating, vacuum vapor deposition, and sputtering. These methods can be used alone or in combination. The metal layer 9 can be formed.

以下に、本発明を実施例、比較例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。   Below, this invention is demonstrated based on an Example and a comparative example. In addition, this invention is not limited to these Examples, These Examples can be changed and changed based on the meaning of this invention, and they are excluded from the scope of the present invention. is not.

(実施例1)
(接着剤の作製)
基材となる金属微粒子として、短径が0.3μmであって、3μmから11μmまでの鎖長分布を有する、直鎖状に繋がったニッケル微粒子を用意し、当該ニッケル微粒子の表面に、金属層として厚さ50nmのインジウム層を形成し、導電性微粒子を得た。また、当該導電性微粒子が分散される絶縁性の樹脂としては、ビスフェノールA型の固形エポキシ樹脂〔ジャパンエポキシレジン(株)製、商品名エピコート1010〕、ビスフェノールA型の液状エポキシ樹脂〔大日本インキ化学工業(株)製、商品名エピクロン850〕を使用し、潜在性硬化剤としては、マイクロカプセル型イミダゾール系硬化剤〔旭化成エポキシ(株)製、商品名ノバキュアHX3941〕を使用し、これらを重量比で50/50/40の割合で用いた。
Example 1
(Production of adhesive)
As the fine metal particles serving as a base material, nickel fine particles connected in a straight chain having a short axis of 0.3 μm and a chain length distribution of 3 μm to 11 μm are prepared, and a metal layer is formed on the surface of the nickel fine particles. As a result, an indium layer having a thickness of 50 nm was formed to obtain conductive fine particles. Insulating resin in which the conductive fine particles are dispersed includes bisphenol A type solid epoxy resin (trade name Epicoat 1010, manufactured by Japan Epoxy Resin Co., Ltd.), bisphenol A type liquid epoxy resin [Dainippon Ink Co., Ltd. Chemical Industry Co., Ltd., trade name Epicron 850] is used, and as the latent curing agent, a microcapsule type imidazole-based curing agent [Asahi Kasei Epoxy Co., Ltd., trade name Novacure HX3941] is used. The ratio was 50/50/40.

これらの樹脂および潜在性硬化剤を酢酸ブチルに溶解後、三本ロールによる混練を行い、樹脂濃度が35重量%である溶液を作製した。この溶液に、固形分の総量(導電性微粒子+樹脂+硬化剤)に占める割合で表される金属充填率が、1体積%となるように上記導電性微粒子を添加した後、遠心攪拌ミキサーを用いて攪拌することにより導電性微粒子を均一に分散し、接着剤用の複合材料を作製した。次いで、この複合材料を離型処理したPETフィルム上にドクターナイフを用いて塗布した後、磁束密度100mTの磁場中、60℃で30分間、乾燥、固化させることにより、膜中の直鎖状に繋がったニッケル微粒子を磁場方向に配向させ、導電性微粒子を接着剤の厚み方向に配向させた厚さ22μmの異方導電性接着剤を作製した。   These resins and the latent curing agent were dissolved in butyl acetate and then kneaded with three rolls to prepare a solution having a resin concentration of 35% by weight. After adding the above-mentioned conductive fine particles to this solution so that the metal filling ratio represented by the ratio to the total amount of solid content (conductive fine particles + resin + curing agent) is 1% by volume, a centrifugal stirring mixer is used. By using and stirring, the conductive fine particles were uniformly dispersed to prepare a composite material for an adhesive. Next, this composite material was applied onto a PET film subjected to a release treatment using a doctor knife, and then dried and solidified at 60 ° C. for 30 minutes in a magnetic field with a magnetic flux density of 100 mT to form a linear shape in the film. An anisotropic conductive adhesive having a thickness of 22 μm was produced in which the connected nickel fine particles were oriented in the magnetic field direction and the conductive fine particles were oriented in the thickness direction of the adhesive.

(抵抗評価)
幅15μm、長さ100μm、高さ16μmのAuメッキバンプが15μm間隔で726個配列されたICチップと、アルミニウムとチタンの合金であって、幅20μm、長さ100μm、高さ0.3μmの電極が、10μm間隔で726個形成された回路基板とを用意した。次いで、このICチップと回路基板の間に作製した接着剤を挟み、200℃に加熱しながら、1バンプあたり20gfの圧力で20秒間加圧して接着させ、ICチップと回路基板の接合体を得た。次いで、この接合体の726個の電極のうち、電極、接着剤、およびAuバンプを介して接続された連続する480個の電極の抵抗値を四端子法により求め、求めた値を480で除することにより、1電極あたりの接触抵抗を求めた。そして、この評価を10回繰り返し、接触抵抗の平均値を求めた。
(Resistance evaluation)
An IC chip in which 726 Au plated bumps having a width of 15 μm, a length of 100 μm, and a height of 16 μm are arranged at an interval of 15 μm, and an alloy of aluminum and titanium, having a width of 20 μm, a length of 100 μm, and a height of 0.3 μm Prepared 726 circuit boards formed at intervals of 10 μm. Next, the adhesive prepared between the IC chip and the circuit board is sandwiched and heated for 20 seconds at a pressure of 20 gf per bump while being heated to 200 ° C. to obtain a bonded body of the IC chip and the circuit board. It was. Next, among the 726 electrodes of this joined body, the resistance value of 480 consecutive electrodes connected via the electrode, adhesive, and Au bump is obtained by the four-terminal method, and the obtained value is divided by 480. As a result, the contact resistance per electrode was obtained. And this evaluation was repeated 10 times and the average value of contact resistance was calculated | required.

また、環境試験として、上記のICチップと回路基板の接合体を、高温側を125℃、30分、低温度を−65℃、30分、湿度を90%に設定した冷熱衝撃試験器(エスペック(株)製、TSE−11−A)内にセットして、200サイクルまで試験した。その後、接合体を冷熱衝撃試験器から取り出して、再び抵抗値を測定し、1電極あたりの接触抵抗を求めた。その結果を表1に示す。   In addition, as an environmental test, the above-mentioned IC chip / circuit board assembly was subjected to a thermal shock tester (ESPEC) in which the high temperature side was set to 125 ° C. for 30 minutes, the low temperature was set to −65 ° C., 30 minutes, and the humidity was set to 90%. The product was set in TSE-11-A) and manufactured up to 200 cycles. Thereafter, the joined body was taken out from the thermal shock tester, the resistance value was measured again, and the contact resistance per electrode was obtained. The results are shown in Table 1.

(実施例2)
上述のニッケル微粒子の表面に、金属層として厚さ100nmのはんだ層(鉛が37wt%、錫が63w%のもの)を形成し、導電性微粒子を得たこと以外は、上述の実施例1と同様にして、ICチップと回路基板の接合体を得た。その後、上述の実施例1と同一条件により、抵抗評価を行った。以上の結果を表1に示す。
(Example 2)
Example 1 is the same as Example 1 except that a 100 nm thick solder layer (with 37 wt% lead and 63 w% tin) is formed on the surface of the above nickel fine particles to obtain conductive fine particles. Similarly, a joined body of an IC chip and a circuit board was obtained. Then, resistance evaluation was performed on the same conditions as the above-mentioned Example 1. The results are shown in Table 1.

(比較例1)
導電性微粒子の基材微粒子として、アクリル樹脂製の基材微粒子を使用したこと以外は、上述の実施例1と同様にして、ICチップと回路基板の接合体を得た。その後、上述の実施例1と同一条件により、抵抗評価を行った。以上の結果を表1に示す。
(Comparative Example 1)
An IC chip / circuit board assembly was obtained in the same manner as in Example 1 except that acrylic resin base particles were used as the conductive fine particles. Then, resistance evaluation was performed on the same conditions as the above-mentioned Example 1. The results are shown in Table 1.

Figure 2007026776
Figure 2007026776

表1に示すように、実施例1、2においては、比較例1に比し、初期接触抵抗が小さいことが判る。特に、冷熱衝撃試験器による200サイクル経過後は、実施例1、2においては、比較例1に比し、接触抵抗の上昇が小さく、電極と導電性微粒子との接続信頼性が向上していることが判る。これは、実施例1、2においては、導電性微粒子の基材となる微粒子に金属微粒子を使用するとともに、当該金属微粒子であるニッケル微粒子の表面に、融点が350℃以下の金属層を形成したため、樹脂製の基材微粒子を使用した比較例1に比し、金属微粒子と、当該金属微粒子の表面に形成された金属層との密着性が向上するとともに、耐圧性、および耐熱性が向上し、金属微粒子の表面に形成された金属層が剥がれるのを効果的に防止することができたためであるものと考えられる。   As shown in Table 1, it can be seen that in Examples 1 and 2, the initial contact resistance is smaller than that in Comparative Example 1. In particular, after 200 cycles from the thermal shock tester, in Examples 1 and 2, the increase in contact resistance is small compared to Comparative Example 1, and the connection reliability between the electrode and the conductive fine particles is improved. I understand that. This is because in Examples 1 and 2, metal fine particles were used as the fine particles serving as the base material of the conductive fine particles, and a metal layer having a melting point of 350 ° C. or lower was formed on the surfaces of the nickel fine particles as the metal fine particles. Compared with Comparative Example 1 using resin-made substrate fine particles, adhesion between the metal fine particles and the metal layer formed on the surface of the metal fine particles is improved, and pressure resistance and heat resistance are improved. This is considered to be because the metal layer formed on the surface of the metal fine particles could be effectively prevented from peeling off.

本発明の活用例としては、ICチップ等の半導体素子と回路基板との接続に使用される導電性微粒子およびこれを用いた接着剤が挙げられる。   Examples of utilization of the present invention include conductive fine particles used for connection between a semiconductor element such as an IC chip and a circuit board, and an adhesive using the same.

半導体素子と回路基板間を本発明の導電性微粒子で接続した状態を示す断面図である。It is sectional drawing which shows the state which connected between the semiconductor element and the circuit board with the electroconductive fine particles of this invention. は、本発明の導電性微粒子の概略構成を示す模式図である。These are the schematic diagrams which show schematic structure of the electroconductive fine particles of this invention.

符号の説明Explanation of symbols

1…半導体素子、2…回路基板、3…樹脂、4…導電性微粒子、5…接着剤、6…電極、7…電極、8…金属微粒子、9…金属層 DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2 ... Circuit board, 3 ... Resin, 4 ... Conductive fine particle, 5 ... Adhesive, 6 ... Electrode, 7 ... Electrode, 8 ... Metal fine particle, 9 ... Metal layer

Claims (7)

金属微粒子の表面に、融点が350℃以下の金属層が形成されていることを特徴とする導電性微粒子。   A conductive fine particle, wherein a metal layer having a melting point of 350 ° C. or lower is formed on the surface of the metal fine particle. 前記金属微粒子が、微細な一次粒子が、多数、直鎖状に繋がった形状あるいは針形状を有しており、前記金属微粒子のアスペクト比が10以上であることを特徴とする請求項1に記載の導電性微粒子。   The metal fine particles have a shape in which a number of fine primary particles are connected in a straight chain or a needle shape, and the aspect ratio of the metal fine particles is 10 or more. Conductive fine particles. 前記金属微粒子の短径が1μm以下であることを特徴とする請求項2に記載の導電性微粒子。   The conductive fine particles according to claim 2, wherein the metal fine particles have a minor axis of 1 μm or less. 前記金属微粒子が、強磁性を有する金属単体、強磁性を有する2種類以上の合金、強磁性を有する金属と他の金属との合金、および強磁性を有する金属を含む複合体のいずれかであることを特徴とする請求項1乃至請求項3のいずれかに記載の導電性微粒子。   The metal fine particles are any of a single metal having ferromagnetism, two or more kinds of alloys having ferromagnetism, an alloy of a metal having ferromagnetism with another metal, and a composite containing a metal having ferromagnetism. The conductive fine particles according to any one of claims 1 to 3, wherein 前記金属層が、インジウム、錫、鉛および錫と鉛の合金のいずれかであることを特徴とする請求項1乃至請求項4のいずれかに記載の導電性微粒子。   5. The conductive fine particle according to claim 1, wherein the metal layer is any one of indium, tin, lead, and an alloy of tin and lead. 請求項1乃至請求項5のいずれかに記載の導電性微粒子とエポキシ樹脂とを備え、前記導電性微粒子が前記エポキシ樹脂中に分散されていることを特徴とする接着剤。   An adhesive comprising the conductive fine particles according to any one of claims 1 to 5 and an epoxy resin, wherein the conductive fine particles are dispersed in the epoxy resin. 請求項1乃至請求項5のいずれかに記載の導電性微粒子を備え、前記導電性微粒子を接着剤の厚み方向に配向させたことを特徴とする異方導電性の接着剤。   An anisotropic conductive adhesive comprising the conductive fine particles according to any one of claims 1 to 5, wherein the conductive fine particles are oriented in a thickness direction of the adhesive.
JP2005204674A 2005-07-13 2005-07-13 Conductive fine particle and adhesive using the same Pending JP2007026776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204674A JP2007026776A (en) 2005-07-13 2005-07-13 Conductive fine particle and adhesive using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204674A JP2007026776A (en) 2005-07-13 2005-07-13 Conductive fine particle and adhesive using the same

Publications (1)

Publication Number Publication Date
JP2007026776A true JP2007026776A (en) 2007-02-01

Family

ID=37787309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204674A Pending JP2007026776A (en) 2005-07-13 2005-07-13 Conductive fine particle and adhesive using the same

Country Status (1)

Country Link
JP (1) JP2007026776A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038002A (en) * 2007-08-03 2009-02-19 Kanhin Kagaku Kofun Yugenkoshi Anisotropic conductive material
JP2009108158A (en) * 2007-10-29 2009-05-21 Sumitomo Electric Ind Ltd Anisotropically conductive film
JP2009132798A (en) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd Adhesive for connecting electrode and method for producing the same
JP2011150838A (en) * 2010-01-20 2011-08-04 Jsr Corp Circuit connection member, conductive particles, and manufacturing method of conductive particles
JP2013125649A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material
JP2013151706A (en) * 2013-05-16 2013-08-08 Sumitomo Electric Ind Ltd Adhesive for connecting electrode
JP2015537115A (en) * 2012-10-03 2015-12-24 アエムセ ホールディングAmc Holding Electrical connection powder and paste to improve conductivity
JP2017095687A (en) * 2011-10-13 2017-06-01 フレクスコン カンパニー インク Electrically conductive material formed by electrophoresis
CN110085558A (en) * 2018-01-26 2019-08-02 力成科技股份有限公司 Encapulant composition, semiconductor packages and its manufacturing method
WO2020031144A1 (en) * 2018-08-09 2020-02-13 3M Innovative Properties Company Electrically conductive adhesive film and producing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPH10279902A (en) * 1997-04-01 1998-10-20 Asahi Chem Ind Co Ltd Electroconductive adhesive
JP2001185261A (en) * 1996-05-22 2001-07-06 Jsr Corp Anisotropic electrical conductive sheet
JP2001294844A (en) * 2000-04-13 2001-10-23 Asahi Kasei Corp Electrically conductive adhesive
JP2003346556A (en) * 2002-05-24 2003-12-05 Sumitomo Electric Ind Ltd Anisotropic conductive material
JP2004119063A (en) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd Anisotropic conductive membrane
JP2004165066A (en) * 2002-11-14 2004-06-10 Ricoh Co Ltd Conductive paste, manufacturing method of the same, and binding/separating method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JP2001185261A (en) * 1996-05-22 2001-07-06 Jsr Corp Anisotropic electrical conductive sheet
JPH10279902A (en) * 1997-04-01 1998-10-20 Asahi Chem Ind Co Ltd Electroconductive adhesive
JP2001294844A (en) * 2000-04-13 2001-10-23 Asahi Kasei Corp Electrically conductive adhesive
JP2003346556A (en) * 2002-05-24 2003-12-05 Sumitomo Electric Ind Ltd Anisotropic conductive material
JP2004119063A (en) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd Anisotropic conductive membrane
JP2004165066A (en) * 2002-11-14 2004-06-10 Ricoh Co Ltd Conductive paste, manufacturing method of the same, and binding/separating method using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038002A (en) * 2007-08-03 2009-02-19 Kanhin Kagaku Kofun Yugenkoshi Anisotropic conductive material
JP2009108158A (en) * 2007-10-29 2009-05-21 Sumitomo Electric Ind Ltd Anisotropically conductive film
JP2009132798A (en) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd Adhesive for connecting electrode and method for producing the same
JP2011150838A (en) * 2010-01-20 2011-08-04 Jsr Corp Circuit connection member, conductive particles, and manufacturing method of conductive particles
JP2017095687A (en) * 2011-10-13 2017-06-01 フレクスコン カンパニー インク Electrically conductive material formed by electrophoresis
JP2013125649A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material
JP2015537115A (en) * 2012-10-03 2015-12-24 アエムセ ホールディングAmc Holding Electrical connection powder and paste to improve conductivity
JP2013151706A (en) * 2013-05-16 2013-08-08 Sumitomo Electric Ind Ltd Adhesive for connecting electrode
CN110085558A (en) * 2018-01-26 2019-08-02 力成科技股份有限公司 Encapulant composition, semiconductor packages and its manufacturing method
WO2020031144A1 (en) * 2018-08-09 2020-02-13 3M Innovative Properties Company Electrically conductive adhesive film and producing method thereof
CN110828026A (en) * 2018-08-09 2020-02-21 3M创新有限公司 Conductive adhesive film and method for producing same
US11242473B2 (en) 2018-08-09 2022-02-08 3M Innovative Properties Company Electrically conductive adhesive film and producing method thereof
US11932788B2 (en) 2018-08-09 2024-03-19 3M Innovative Properties Company Electrically conductive adhesive film and producing method thereof

Similar Documents

Publication Publication Date Title
JP2007026776A (en) Conductive fine particle and adhesive using the same
TWI383405B (en) Anisotropic conductive adhesive
EP1850351B1 (en) Adhesive for circuit connection
JP5151902B2 (en) Anisotropic conductive film
JP4556936B2 (en) Adhesive for electrode connection
JP2008094908A (en) Adhesive for electrode connection
WO2011067969A1 (en) Printed wiring board connection structure, method for manufacturing the same, and anisotropic conductive adhesive
JP5200744B2 (en) Adhesive and electrode connection method using the same
JP2007317563A (en) Circuit connecting adhesive
JP2007056209A (en) Adhesive for circuit connection
JP4572562B2 (en) Film adhesive
WO2015178482A1 (en) Adhesive agent and connection structure
JP2010024416A (en) Adhesive for connecting electrodes
JP4867805B2 (en) Adhesive for electrode connection
JP2005146043A (en) Anisotropic conductive adhesive
JP2005146044A (en) Anisotropic conductive adhesive
TW201807054A (en) Resin composition comprising conductive particle and electronic apparatus comprising the same
JP2009037928A (en) Adhesive for electrode connection
JP4918908B2 (en) Anisotropic conductive film
JP5273514B2 (en) Electrode connecting adhesive and method for producing the same
JP2680412B2 (en) Anisotropic conductive film
TW201831589A (en) Resin composition containing conductive particles capable of being cured even at low temperature and forming an adhesive portion with sufficient conductivity and connection reliability
JP2009001661A (en) Adhesive and bonded body
JP2009004603A (en) Method of manufacturing substrate
JP2009024149A (en) Adhesive and bonded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080710

RD02 Notification of acceptance of power of attorney

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100707

A02 Decision of refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A02