JPH11118678A - Method and apparatus for adjusting angle of microtome sample - Google Patents

Method and apparatus for adjusting angle of microtome sample

Info

Publication number
JPH11118678A
JPH11118678A JP28242097A JP28242097A JPH11118678A JP H11118678 A JPH11118678 A JP H11118678A JP 28242097 A JP28242097 A JP 28242097A JP 28242097 A JP28242097 A JP 28242097A JP H11118678 A JPH11118678 A JP H11118678A
Authority
JP
Japan
Prior art keywords
angle
sample
angle adjusting
adjusting member
solid sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28242097A
Other languages
Japanese (ja)
Other versions
JP3865896B2 (en
Inventor
Toshiro Higuchi
俊郎 樋口
Mitsunori Kokubo
光典 小久保
Hiroshi Nanto
寛 南都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Shibaura Machine Co Ltd
Original Assignee
Kanagawa Academy of Science and Technology
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Toshiba Machine Co Ltd filed Critical Kanagawa Academy of Science and Technology
Priority to JP28242097A priority Critical patent/JP3865896B2/en
Publication of JPH11118678A publication Critical patent/JPH11118678A/en
Application granted granted Critical
Publication of JP3865896B2 publication Critical patent/JP3865896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To adjust the angle of a solid sample quickly and surely by providing an angle adjusting means having center of rotation at the center of a slicing face. SOLUTION: Under a state where a shaft 20 regulated in the direction of Z axis is shifted in Z direction by means of a cylinder and angle adjusting members X11, Y14 are clamped, central coordinates of all spherical and tubular faces (spherical face 21 of the shaft 20, recessed spherical face 13 and protruding tubular face 12 of the angle adjusting member X11, recessed tubular face 15 of the angle adjusting member Y14, protruding tubular face 16 of the angle adjusting member Y14, and recessed tubular face 18 of the body 17) are located at the center of a solid slicing face in a plane constituting the forward end of a cutter at the time of slicing process. Since displacement of a solid sample is reduced after adjustment of angle, adjusting time required before re-slicing can be shortened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、理科学試験分析や
生体試料の顕微鏡観察などの医療分析において固形試料
に包埋された検体を最適角度で薄切するために用いるミ
クロトーム用試料角度調整装置及びその試料角度調整方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample angle adjusting device for a microtome used for slicing a sample embedded in a solid sample at an optimum angle in medical analysis such as scientific test analysis or microscopic observation of a biological sample. And a method for adjusting the sample angle.

【0002】[0002]

【従来の技術】従来、薄切片の作製(切り出し)作業
は、ミクロトームを用いて作業者(人間)が行ってい
る。固形試料には、主として生体試料をパラフィン包埋
したものが用いられ、これを切断し、薄切片を作製す
る。図12は従来の一般的なミクロトームの概略構成斜
視図である。
2. Description of the Related Art Conventionally, a thin section is cut (cut) by a worker (human) using a microtome. As the solid sample, a biological sample in which a biological sample is embedded in paraffin is mainly used, and this is cut to produce a thin section. FIG. 12 is a perspective view schematically showing the configuration of a conventional general microtome.

【0003】従来のミクロトームの基本的な構造には、
送り工程のための移動軸及び切断工程のための移動軸を
固形試料側に取り付けるか、または切断刃側に取り付け
るかという相違点はあるが、送り工程及び切断工程時の
切断刃と固形試料の相対的な動きはどちらを移動させて
も同じなので、今回は送り工程では固形試料2を、切断
工程では切断刃1を移動させることにしている。
The basic structure of a conventional microtome is as follows:
There is a difference between attaching the moving shaft for the feed process and the moving shaft for the cutting process to the solid sample side or to the cutting blade side. Since the relative movement is the same regardless of which one is moved, the solid sample 2 is moved in the feeding step and the cutting blade 1 is moved in the cutting step.

【0004】まず、固形試料2をZ+の方向へ送り(送
り工程:ここでは、図示していないがZの方向のみに動
作可能な案内面とアクチュエータを具備する)その後、
切断刃をX+の方向へ送る(切断工程:送り工程と同
様、Xの方向のみに動作可能な案内面を具備しており、
専用のアクチュエータを具備するものと手動で動作させ
るものがある。)ことにより、固形試料2を切断し、薄
切片を取り出すことができる。
[0004] First, the solid sample 2 is fed in the Z + direction (feeding step: a guide surface and an actuator, not shown here, which are operable only in the Z direction) are provided.
Send the cutting blade in the X + direction (Cutting step: similar to the feeding step, the guide blade is provided with a guide surface operable only in the X direction.
Some are equipped with a dedicated actuator and others are operated manually. ), The solid sample 2 can be cut and a thin section can be taken out.

【0005】固形試料2内には前述のように生体試料等
の検体3が包埋されているが、包埋時に前記検体3の姿
勢を完全に制御することは困難であり、加えて包埋材が
非透明である場合、包埋材に包まれた検体3の姿勢を観
察し、包埋状況を把握することも困難である。なお、図
12において、10は試料用ベースである。前記包埋状
況について、図13(a),図14(a)を用いて説明
する。
As described above, the specimen 3 such as a biological sample is embedded in the solid sample 2. However, it is difficult to completely control the posture of the specimen 3 at the time of embedding. When the material is non-transparent, it is also difficult to observe the posture of the specimen 3 wrapped in the embedding material and to grasp the embedding state. In FIG. 12, reference numeral 10 denotes a sample base. The embedding status will be described with reference to FIGS. 13 (a) and 14 (a).

【0006】図13(a)は前記固形試料2内に包埋さ
れた検体3を図1のC方向から観察したものであり、図
14(a)は同様にD方向から観察したものである。検
体3が図12、図13(a)及び図14(a)に示すよ
うな姿勢で包埋されている場合、図13(a)に示す固
形試料2の左エッジ4の点が右エッジ5の点よりもZ+
の方向に位置するように、また、図14(a)に示す固
形試料2の右エッジ7の点が左エッジ6の点よりも同様
に、Z+の方向に位置するように角度をそれぞれ、図1
3(b)、図14(b)に示すように修正する必要があ
る。
FIG. 13 (a) shows the specimen 3 embedded in the solid sample 2 observed from the direction C in FIG. 1, and FIG. 14 (a) shows the specimen 3 observed similarly from the direction D. . When the specimen 3 is embedded in the posture as shown in FIGS. 12, 13A and 14A, the point of the left edge 4 of the solid sample 2 shown in FIG. Z + than point
14 (a), and so that the point of the right edge 7 of the solid sample 2 shown in FIG. 1
3 (b) and need to be modified as shown in FIG. 14 (b).

【0007】このように、包埋材の中から現れた検体の
姿勢等の包埋状況が良好でない場合、前記検体の姿勢等
の包埋状況に応じての試料の角度調整が必要となる。従
来、前述のような試料の角度調整は、図15に示すよう
に、薄切工程時に切断刃の先端が構成する平面からEの
距離がある直交する2本の旋回中心軸(図15ではX
軸、Y軸としている)を旋回中心として前記X,Y軸回
りに各々F及びGの方向に回転可能な案内面及びクラン
プを有する装置を利用し、作業者が手作業で行ってい
る。
As described above, when the embedding state such as the posture of the specimen that emerges from the embedding material is not good, it is necessary to adjust the angle of the sample according to the embedding state such as the posture of the specimen. Conventionally, as described above with reference to FIG. 15, the angle adjustment of a sample is performed by two orthogonal pivot axes (X in FIG. 15) having a distance of E from a plane formed by the tip of the cutting blade during the slicing step.
An axis and a Y axis) are used as the center of rotation, and the operator manually performs the operation by using a device having a guide surface and a clamp rotatable in the directions of F and G around the X and Y axes.

【0008】なお、図15に示すX軸及びY軸は点8に
おいてZ軸と交差しているが、このことは前記案内面が
球状であることを意味する。しかし、実際は図16に示
すようにX軸とY軸はZ方向において交差しないことが
多く(図16にHで示す)、このような場合の案内面は
円筒状のものを2段に重ねたものが用いられる。
The X axis and the Y axis shown in FIG. 15 intersect the Z axis at the point 8, which means that the guide surface is spherical. However, in practice, as shown in FIG. 16, the X axis and the Y axis often do not intersect in the Z direction (indicated by H in FIG. 16), and the guide surface in such a case is formed by stacking two cylindrical guide surfaces. Things are used.

【0009】[0009]

【発明が解決しようとする課題】上記した従来の薄切片
の作製工程において、図15、図16、図17に示す従
来の装置を用いての固形試料の角度調整における問題点
を以下に示す。 固形試料の角度調整の際に、図17(a),17
(b)に示すように(図17は図12のD方向からの矢
視図であり、Y軸回りの(G方向)の角度調整に関して
の説明図である)Y軸を旋回中心にして回転させると、
旋回中心が薄切工程時に切断刃の先端が構成する平面内
の固形試料薄切面の中心9に位置している場合に比べ、
角度調整後に固形試料2がZ方向変位する量が大きくな
り、角度調整後のZ方向に関する固形試料2の位置を把
握し難く、再薄切までの調整に時間を要する。
Problems to be solved by the conventional thin section preparation process described above in adjusting the angle of the solid sample using the conventional apparatus shown in FIGS. 15, 16 and 17 will be described below. When adjusting the angle of the solid sample, FIGS.
As shown in (b), FIG. 17 is a view from the direction D in FIG. 12 and is an explanatory view regarding the angle adjustment (G direction) around the Y axis. When you do
Compared to the case where the center of rotation is located at the center 9 of the solid sample thin section in the plane formed by the tip of the cutting blade during the thin section process,
The amount by which the solid sample 2 is displaced in the Z direction after the angle adjustment becomes large, it is difficult to grasp the position of the solid sample 2 in the Z direction after the angle adjustment, and it takes time to adjust until the thinning again.

【0010】 固形試料の角度調整の際に、図17
(a),17(b)に示すように、Y軸を旋回中心にし
て回転させると、旋回中心が薄切工程時に切断刃の先端
が構成する平面内の固形試料薄切面の中心9に位置して
いる場合に比べ、角度調整後に固形試料2がX軸方向に
変位してしまうため、薄切のためのカッタナイフの移動
量が大きくなり、結果として装置が大きくなってしま
う。
When adjusting the angle of the solid sample, FIG.
As shown in FIGS. 17 (a) and 17 (b), when the rotation is performed with the Y axis as the center of rotation, the center of rotation is positioned at the center 9 of the solid sample thin section in the plane formed by the tip of the cutting blade during the thin section process. Since the solid sample 2 is displaced in the X-axis direction after the angle adjustment as compared with the case where the angle is adjusted, the amount of movement of the cutter knife for slicing becomes large, and as a result, the apparatus becomes large.

【0011】 角度調整は図17(a),17(b)
に示すG方向のみに回転可能な案内面を有するのみであ
り、微小な角度の調整を行うことが困難であるため、希
望する角度に調整するのに時間を要する。 角度調整後のクランプは手動でクランプ用ねじを回
転させ、移動体の固定体に対する自由度を無くすること
により行うが、前記のようにねじ方式のクランプでは折
角調整した角度が再度ずれてしまう。(実際はX軸回り
の角度調整も行わなければならない。) 本発明は、上記問題点を除去し、固形試料の角度調整
を、迅速、かつ的確に実施することができるミクロトー
ム用試料角度調整装置及びその試料角度調整方法を提供
することを目的とする。
The angle adjustment is shown in FIGS. 17A and 17B.
Has only a guide surface rotatable only in the G direction shown in FIG. 1 and it is difficult to adjust a minute angle, and it takes time to adjust the angle to a desired angle. Clamping after angle adjustment is performed by manually rotating the clamping screw to eliminate the degree of freedom of the moving body with respect to the fixed body. However, in the case of the screw-type clamp as described above, the angle whose bending angle has been adjusted is shifted again. (Actually, the angle adjustment about the X-axis must also be performed.) The present invention eliminates the above-mentioned problems, and a microtome sample angle adjustment device capable of quickly and accurately adjusting the angle of a solid sample. An object of the present invention is to provide a method for adjusting the sample angle.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕固形試料または切断刃を所望の切片の厚さに対応
する量だけ移動させた後、前記切断刃によって固形試料
を薄切にし、薄切片を作製するミクロトーム用試料角度
調整装置において、固形試料の薄切面の中心を回転中心
とした角度調整が可能な角度調整手段を具備する。
In order to achieve the above object, the present invention provides: [1] After moving a solid sample or a cutting blade by an amount corresponding to a desired thickness of a section, the cutting sample is moved by the cutting blade. A sample angle adjusting device for a microtome for thinly cutting a solid sample to produce a thin section is provided with an angle adjusting means capable of adjusting an angle about a center of a thin section of the solid sample as a rotation center.

【0013】〔2〕上記〔1〕記載のミクロトーム用試
料角度調整装置において、前記角度調整手段は、Z軸方
向に保持される軸にクランプされ、Y軸回りの回転を行
うY軸方向角度調整部材と、このY軸方向角度調整部材
にクランプされ、X軸回りの回転を行うX軸方向角度調
整部材とを備え、前記軸を中心として前記X軸方向角度
調整部材を駆動するアクチュエータと前記Y軸方向角度
調整部材を駆動するアクチュエータとを具備する。
[2] In the sample angle adjusting device for a microtome according to the above [1], the angle adjusting means is clamped on a shaft held in the Z-axis direction and adjusts the angle in the Y-axis direction for rotation about the Y-axis. An actuator for driving the X-axis direction angle adjustment member about the axis, the actuator including an X-axis direction angle adjustment member clamped to the Y-axis direction angle adjustment member and rotating about the X axis; An actuator for driving the axial angle adjustment member.

【0014】〔3〕上記〔2〕記載のミクロトーム用試
料角度調整装置において、前記アクチュエータは、エピ
ゾインパクトドライブ装置である。 〔4〕固形試料または切断刃を所望の切片の厚さに対応
する量だけ移動させた後、前記切断刃によって固形試料
を薄切にし、薄切片を作製するミクロトーム用試料角度
調整方法において、前記切断刃の先端が構成する平面
に、前記固形試料に包埋された検体の傾きを対応させる
ように固形試料の薄切面の中心を回転中心とし、前記固
形試料の角度調整を行うようにしたものである。
[3] In the sample angle adjusting device for a microtome according to the above [2], the actuator is an epizo impact drive device. [4] After moving the solid sample or the cutting blade by an amount corresponding to the thickness of a desired section, the cutting sample is sliced into a solid sample, and the method for adjusting a sample angle for a microtome for producing a thin section, The center of the thin section of the solid sample is set as the rotation center so that the inclination of the sample embedded in the solid sample corresponds to the plane formed by the tip of the cutting blade, and the angle of the solid sample is adjusted. It is.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。図1は本発明の
実施例を示すミクロトーム用試料角度調整装置の正面
図、図2はそのミクロトーム用試料角度調整装置の右側
面図、図3はそのミクロトーム用試料角度調整装置の左
側面図、図4はそのミクロトーム用試料角度調整装置の
上面図、図5はそのミクロトーム用試料角度調整装置の
底面図、図6は図1のB−B線断面図、図7は図2のA
−A線断面図、図8はそのミクロトーム用試料角度調整
装置の要部構成図(図2のA−A線をずらして角度調整
部材(X)のアクチュエータを示した断面図)、図9は
図1のC−C線断面図、図10はそのミクロトーム用試
料角度調整装置の制御盤の平面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is a front view of a sample angle adjusting device for a microtome showing an embodiment of the present invention, FIG. 2 is a right side view of the sample angle adjusting device for a microtome, FIG. 3 is a left side view of the sample angle adjusting device for a microtome, 4 is a top view of the sample angle adjusting device for a microtome, FIG. 5 is a bottom view of the sample angle adjusting device for a microtome, FIG. 6 is a sectional view taken along the line BB of FIG. 1, and FIG.
FIG. 8 is a cross-sectional view of a main part of the sample angle adjusting device for a microtome (a cross-sectional view showing the actuator of the angle adjusting member (X) by shifting the line AA in FIG. 2), and FIG. 1 and FIG. 10 is a plan view of a control panel of the microtome sample angle adjusting device.

【0016】これらの図に示すように、試料用ベース1
0に載置され、生体試料等の検体(図示なし)を包埋し
た固形試料2は、角度調整部材(X)11(図6参照)
に取り付けられる。この角度調整部材(X)11は、外
周に凸状の円筒面12(図7参照)と凹状の球面13
(図7参照)を有する。凸状の円筒面12は角度調整部
材(Y)14(図7参照)の凹状の円筒面15と同じ曲
率半径であり、角度調整部材(X)11は角度調整部材
(Y)14の凹状の円筒面15をガイド面としてX軸回
りに旋回可能となっている。
As shown in these figures, the sample base 1
The solid sample 2 placed on the solid sample 2 and embedding a specimen (not shown) such as a biological sample is provided with an angle adjusting member (X) 11 (see FIG. 6).
Attached to. This angle adjusting member (X) 11 has a cylindrical surface 12 (see FIG. 7) convex on the outer periphery and a concave spherical surface 13.
(See FIG. 7). The convex cylindrical surface 12 has the same radius of curvature as the concave cylindrical surface 15 of the angle adjusting member (Y) 14 (see FIG. 7), and the angle adjusting member (X) 11 has a concave radius of the angle adjusting member (Y) 14. The cylindrical surface 15 can be turned around the X axis using the guide surface as a guide surface.

【0017】また、角度調整部材(Y)14は前述した
ように、外周に凹状の円筒面15と凸状の円筒面16を
有する。同様に、前記凸状の円筒面16は本体17の凹
状の円筒面18と同じ曲率半径であり、角度調整部材
(Y)14は本体17の凹状の円筒面18をガイド面と
してY軸回りに旋回可能となっている。角度調整部材
(X)11と角度調整部材(Y)14は、本体17に設
けられ、Z方向のみに動作可能なガイド19によって拘
束される軸20の凸球面21(極率半径は角度調整部材
(X)11の凹状の球面13と同一である)により、本
体17と一体となるようにクランプされる。つまり、軸
20はエアシリンダ22の駆動により生じるZ方向への
力により、角度調整部材(X)11と角度調整部材
(Y)14及び本体17をクランプする。
As described above, the angle adjusting member (Y) 14 has a concave cylindrical surface 15 and a convex cylindrical surface 16 on its outer periphery. Similarly, the convex cylindrical surface 16 has the same radius of curvature as the concave cylindrical surface 18 of the main body 17, and the angle adjusting member (Y) 14 rotates around the Y axis using the concave cylindrical surface 18 of the main body 17 as a guide surface. It is possible to turn. The angle adjusting member (X) 11 and the angle adjusting member (Y) 14 are provided on the main body 17, and have a convex spherical surface 21 (the radius of curvature is an angle adjusting member) of a shaft 20 that is constrained by a guide 19 operable only in the Z direction. (The same as the concave spherical surface 13 of (X) 11). That is, the shaft 20 clamps the angle adjusting member (X) 11, the angle adjusting member (Y) 14, and the main body 17 by the force in the Z direction generated by driving the air cylinder 22.

【0018】また、23(1),23(2)は角度調整
部材(X)11のストロークエンドを検出するための近
接センサであり、24(1),24(2)は、角度調整
部材(Y)14のストロークエンドを検出するための近
接センサである。角度調整部材(X)11には、角度調
整部材(X)11を角度調整部材(Y)14に対して相
対的に旋回させるためのアクチュエータとしてのピエゾ
アクチュエータ(積層型圧電素子)25(1),25
(2)と、錘26(1),26(2)を具備する。
Reference numerals 23 (1) and 23 (2) denote proximity sensors for detecting the stroke end of the angle adjusting member (X) 11, and 24 (1) and 24 (2) denote angle adjusting members (X). Y) A proximity sensor for detecting the 14 stroke ends. The angle adjusting member (X) 11 includes a piezo actuator (laminated piezoelectric element) 25 (1) as an actuator for rotating the angle adjusting member (X) 11 relatively to the angle adjusting member (Y) 14. , 25
(2) and weights 26 (1) and 26 (2).

【0019】図8に示すように、後述するインパクトド
ライブにより発生する力を効率良く角度調整部材(X)
11の旋回に用いるために、前記した旋回力が角度調整
部材(X)11の旋回のガイド面(凸状の円筒面12)
の接線方向(K1,K2で示す方向)に作用するよう
に、前記ピエゾアクチュエータ25(1),25(2)
と、錘26(1),26(2)が配置されている。
As shown in FIG. 8, a force generated by an impact drive described later can be efficiently converted to an angle adjusting member (X).
In order to use the turning force of the angle adjusting member (X) 11, the turning force is used for the turning of the angle adjusting member (X) 11 (the convex cylindrical surface 12).
Piezo actuators 25 (1) and 25 (2) so as to act in tangential directions (directions indicated by K1 and K2)
And weights 26 (1) and 26 (2).

【0020】また、同様に、角度調整部材(Y)14に
は、図6に示すように、角度調整部材(Y)14を本体
17に対して相対的に旋回させるためのアクチュエータ
としての積層型圧電素子(ピエゾアクチュエータ)27
(1),27(2)と、錘28(1),28(2)を具
備する。同様に、図6では、後述するインパクトドライ
ブにより発生する力を効率良く角度調整部材(Y)14
の旋回に用いるために、前記した旋回力が角度調整部材
(Y)14の旋回のガイド面(凸状の円筒面)16の接
線方向(L1,L2で示す方向)に作用するように、前
記ピエゾアクチュエータ27(1),27(2)と、錘
28(1),28(2)が配置されている。
Similarly, the angle adjusting member (Y) 14 has a laminated type as an actuator for rotating the angle adjusting member (Y) 14 relatively to the main body 17 as shown in FIG. Piezoelectric element (piezo actuator) 27
(1), 27 (2) and weights 28 (1), 28 (2). Similarly, in FIG. 6, a force generated by an impact drive, which will be described later, is efficiently applied to the angle adjusting member (Y) 14.
In order to use the turning force, the turning force acts on the tangential direction (direction indicated by L1 and L2) of the turning guide surface (convex cylindrical surface) 16 of the angle adjusting member (Y) 14. Piezo actuators 27 (1) and 27 (2) and weights 28 (1) and 28 (2) are arranged.

【0021】なお、軸20をエアシリンダ22によりZ
−方向に移動させ、角度調整部材(X)11と角度調整
部材(Y)14をクランプした状態(それぞれ曲率半径
が同一の球面及び円筒面が接触している状態)におい
て、全ての球面及び円筒面(軸20の凸球面21、角度
調整部材(X)11の凹状の球面13、角度調整部材
(X)11の凸状の円筒面12、角度調整部材(Y)1
4の凹状の円筒面15、角度調整部材(Y)14の凸状
の円筒面16、本体17の凹状の円筒面18)の中心座
標は、薄切工程時に切断刃の先端が構成する平面内の固
形試料薄切面の中心9に位置するようになっている。
The shaft 20 is moved by the air cylinder 22 to Z
In the state where the angle adjusting member (X) 11 and the angle adjusting member (Y) 14 are clamped (the spherical surface and the cylindrical surface having the same radius of curvature are in contact with each other), all the spherical surface and the cylindrical surface are moved. Surface (convex spherical surface 21 of axis 20, concave spherical surface 13 of angle adjusting member (X) 11, convex cylindrical surface 12 of angle adjusting member (X) 11, angle adjusting member (Y) 1
4, the concave cylindrical surface 15, the convex cylindrical surface 16 of the angle adjusting member (Y) 14, and the concave cylindrical surface 18 of the main body 17 have the center coordinates within the plane defined by the tip of the cutting blade during the thinning process. At the center 9 of the thin section of the solid sample.

【0022】次に、本発明の実施例を示すミクロトーム
用試料角度調整装置の動作を図8を参照しながら説明す
る。本発明に係る試料角度調整装置は、試料用ベース1
0を載置するような位置にセットされる。生体試料等の
検体3(図13又は図14の従来例参照)を包埋した固
形試料2をセットした試料用ベース10が、角度調整部
材(X)11に取り付けられる。
Next, the operation of the sample angle adjusting device for a microtome according to the embodiment of the present invention will be described with reference to FIG. The sample angle adjusting device according to the present invention includes a sample base 1.
It is set at a position where 0 is placed. A sample base 10 in which a solid sample 2 in which a sample 3 such as a biological sample (see a conventional example in FIG. 13 or 14) is embedded is attached to an angle adjusting member (X) 11.

【0023】まず、従来技術で示したように、固形試料
2をZ+の方向へ送り(送り工程)、その後、切断刃9
をX+方向へ送ることにより、固形試料2を切断する
(切断工程)。この際、角度調整部材(X)11及び角
度調整部材(Y)14は軸20によって本体17と一体
となるようにクランプされている。このときのクランプ
力の値をIとする。なお、このクランプ力は、エアシリ
ンダ22の空気圧力により決定される。
First, as shown in the prior art, the solid sample 2 is fed in the Z + direction (feeding step).
To the X + direction to cut the solid sample 2 (cutting step). At this time, the angle adjusting member (X) 11 and the angle adjusting member (Y) 14 are clamped by the shaft 20 so as to be integrated with the main body 17. The value of the clamping force at this time is defined as I. This clamping force is determined by the air pressure of the air cylinder 22.

【0024】ここで、固形試料2内に包埋された検体3
(図13又は図14の従来例参照)が切断面に現れるま
で、前記動作、つまり、送り工程と切断工程を繰り返
す。そして、検体が現れた際に検体3の包埋状況によっ
て、X軸回りの角度(F方向)調整(図7参照)及びY
軸回りの角度(G方向)調整(図3参照)が必要である
か否かを判断する。
Here, the specimen 3 embedded in the solid sample 2
The above operation, that is, the feeding step and the cutting step are repeated until (see the conventional example of FIG. 13 or FIG. 14) appears on the cut surface. Then, when the specimen appears, the angle (F direction) adjustment around the X axis (see FIG. 7) and Y
It is determined whether or not it is necessary to adjust the angle (G direction) around the axis (see FIG. 3).

【0025】今、例えば、検体3が図13(a)に示す
ように包埋されており、前記角度調整が必要であるする
と、 最初にX軸回りの角度(F方向)調整を行う。作業
者は、試料角度調整装置の制御盤29(図10参照)内
の角度調整準備ボタン30を押し、角度調整に備える。
そこで、この角度調整準備ボタン30を押すことによ
り、このクランプ力Iの値がピエゾアクチュエータ25
(1),25(2)と、錘26(1),26(2)を利
用したインパクトドライブ制御に適したクランプ力に変
化する。
Now, for example, when the specimen 3 is embedded as shown in FIG. 13 (a) and the angle adjustment is required, the angle around the X axis (F direction) is adjusted first. The operator presses an angle adjustment preparation button 30 in the control panel 29 (see FIG. 10) of the sample angle adjustment device to prepare for the angle adjustment.
Then, by pressing the angle adjustment preparation button 30, the value of the clamping force I is changed to the piezo actuator 25.
(1), 25 (2) and a clamping force suitable for impact drive control using the weights 26 (1), 26 (2).

【0026】今、この角度調整時のクランプ力をJとす
る。一般的に、切断時のクランプ力Iは切断工程におい
て、固形試料2に作用する力によって角度調整部材
(X)11及び角度調整部材(Y)14が変位しないよ
うな、つまり、動かないような値であり、角度調整部材
(X)11及び角度調整部材(Y)14を調整する必要
がある場合のクランプ力Jより大きくなるが、前記切断
工程時に発生する力よりも後述するインパクトドライブ
の際に発生する方の力がはるかに大きい場合は、前記ク
ランプ力IをJに変更する必要はない。
Now, let J be the clamping force at the time of this angle adjustment. Generally, the clamping force I at the time of cutting is such that the angle adjusting member (X) 11 and the angle adjusting member (Y) 14 are not displaced by the force acting on the solid sample 2 in the cutting step, ie, do not move. This value is larger than the clamping force J when the angle adjusting member (X) 11 and the angle adjusting member (Y) 14 need to be adjusted, but is smaller than the force generated during the cutting step during the impact drive described later. In the case where the force generated in the clamping force is much larger, it is not necessary to change the clamping force I to J.

【0027】 上記したF方向に関しては、F−の方
向へ角度を調整する必要があるため、前記試料角度調整
装置の制御盤29内のボタン31を押し、角度調整部材
(X)11をF−の方向に旋回させることにより、固形
試料2をF−の方向に旋回させることができる。ここ
で、前記インパクトドライブの制御に関して説明する。
なお、ここで、インパクトドライブ自体の具体的構成と
しては、本願発明者によって既に提案された特公平4−
52070号公報を挙げることができる。
With respect to the above-mentioned F direction, since it is necessary to adjust the angle in the direction of F−, the button 31 in the control panel 29 of the sample angle adjusting device is pressed, and the angle adjusting member (X) 11 is moved to F−. The solid sample 2 can be turned in the direction of F- by turning in the direction of. Here, the control of the impact drive will be described.
Here, a specific configuration of the impact drive itself is disclosed in Japanese Patent Publication No.
No. 52070 can be mentioned.

【0028】そこで、角度調整部材(X)11をF−の
方向に旋回させる場合、つまり、図13(a)に示すよ
うに、検体3が包埋された固形試料2をF−の方向に旋
回させる場合には、まず、図11(a)に示す積層型圧
電素子25(2)と錘26(2)を駆動して旋回させ
る。すなわち、図11(a)では積層型圧電素子25
(2)は縮んだ状態にある。
Therefore, when the angle adjusting member (X) 11 is turned in the direction of F-, that is, as shown in FIG. 13A, the solid sample 2 in which the specimen 3 is embedded is moved in the direction of F-. When turning, first, the multilayer piezoelectric element 25 (2) and the weight 26 (2) shown in FIG. 11A are driven to turn. That is, in FIG.
(2) is in a contracted state.

【0029】そこで、図11(b)に示すように、積層
型圧電素子25(2)を急激に伸長させると、角度調整
部材(X)11に衝撃的な慣性力がK2−方向に作用す
る。つまり、角度調整部材(X)11は、F−の方向に
微小角度だけ旋回する。次に、図11(c)に示すよう
に、積層型圧電素子25(2)を元の長さに戻す際には
ゆっくりと縮める。
Therefore, as shown in FIG. 11 (b), when the multilayer piezoelectric element 25 (2) is rapidly extended, an impulsive inertial force acts on the angle adjusting member (X) 11 in the K2-direction. . That is, the angle adjusting member (X) 11 turns by a small angle in the direction of F-. Next, as shown in FIG. 11 (c), when returning the multilayer piezoelectric element 25 (2) to its original length, it is contracted slowly.

【0030】この慣性力は小さいため、角度調整部材
(X)11は、クランプ力Jにより生じる静止摩擦力に
よって変位することなく、積層型圧電素子25(2)の
長さを戻すことができる。しかし、引き戻しの過程で積
層型圧電素子25(2)の動きを急に止めることで、衝
撃的な慣性力を再度角度調整部材(X)11にK2−方
向に作用させ、角度調整部材(X)11をF−の方向に
微小角度だけ旋回させることができる。
Since this inertial force is small, the angle adjusting member (X) 11 can return the length of the multilayer piezoelectric element 25 (2) without being displaced by the static friction force generated by the clamping force J. However, by suddenly stopping the movement of the multilayer piezoelectric element 25 (2) in the process of pulling back, an impulsive inertial force is again applied to the angle adjusting member (X) 11 in the K2-direction, and the angle adjusting member (X ) 11 can be turned by a small angle in the direction of F-.

【0031】このようにして、前記試料角度調整装置の
制御盤29内のボタン31を押し続けている間、角度調
整部材(X)11をF−の方向に微小角度ずつ旋回させ
ることができる。前記微小角度の値は、積層型圧電素子
25(2)の伸縮時の加速度〔積層型圧電素子25
(2)に印加する電圧の大きさと印加波形によって決
定)、錘26(2)の質量等で設定することができるの
で、使用者の希望により調整する必要がある。
In this manner, the angle adjusting member (X) 11 can be turned by a small angle in the direction of F- while the button 31 in the control panel 29 of the sample angle adjusting device is kept pressed. The value of the minute angle is the acceleration at the time of expansion and contraction of the multilayer piezoelectric element 25 (2) [the multilayer piezoelectric element 25
(Determined by the magnitude of the voltage applied to (2) and the applied waveform), and the mass of the weight 26 (2), etc., so that it is necessary to adjust according to the user's request.

【0032】また、角度調整部材(X)11をF−の方
向に旋回させるには、前述のような方法を採れば良い
が、積層型圧電素子25(2)の反対側に配置される積
層型圧電素子25(1)と、錘26(1)を、以下に示
すように使用しても良い。図11(a)では積層型圧電
素子25(1)は伸長した状態にある。そこで、図11
(b)に示すように、積層型圧電素子25(1)を急激
に短縮させると、角度調整部材(X)11に衝撃的な慣
性力がK1−方向に作用し、角度調整部材(X)11は
F−の方向に微小角度だけ旋回する。
In order to rotate the angle adjusting member (X) 11 in the direction of F-, the above-mentioned method may be adopted. However, the angle adjusting member (X) 11 is disposed on the opposite side of the laminated piezoelectric element 25 (2). The piezoelectric element 25 (1) and the weight 26 (1) may be used as shown below. In FIG. 11A, the multilayer piezoelectric element 25 (1) is in an extended state. Therefore, FIG.
As shown in (b), when the laminated piezoelectric element 25 (1) is rapidly shortened, a shocking inertial force acts on the angle adjusting member (X) 11 in the K1-direction, and the angle adjusting member (X) 11 turns by a small angle in the direction of F-.

【0033】次に、図11(c)に示すように、積層型
圧電素子25(1)を元の長さに戻す際にはゆっくりと
伸ばす。この時の慣性力は小さいため、角度調整部材
(X)11はクランプ力Jにより生じる静止摩擦力によ
って変位することなく、積層型圧電素子25(1)の長
さを戻すことができる。しかし、引き伸ばしの過程で積
層型圧電素子25(1)の動きを急に止めることによ
り、衝撃的な慣性力を再度角度調整部材(X)11にK
1−方向に作用させ、角度調整部材(X)11をF−の
方向に微小角度だけ旋回させることができる。
Next, as shown in FIG. 11C, when returning the multilayer piezoelectric element 25 (1) to its original length, it is slowly extended. Since the inertial force at this time is small, the angle adjusting member (X) 11 can return the length of the multilayer piezoelectric element 25 (1) without being displaced by the static friction force generated by the clamping force J. However, by suddenly stopping the movement of the multi-layer piezoelectric element 25 (1) in the process of stretching, the impulsive inertial force is again applied to the angle adjusting member (X) 11 by the K.
Acting in one direction, the angle adjusting member (X) 11 can be turned by a small angle in the direction of F-.

【0034】このようにして、前記試料角度調整装置の
制御盤29内のボタン31を押し続けている間、角度調
整部材(X)11をF−の方向に微小角度ずつ旋回させ
ることができる。このように、角度調整部材(X)11
をF−の方向に旋回させるには、積層型圧電素子25
(2)と錘26(2)を使用しても、また積層型圧電素
子25(1)と錘26(1)を使用しても良いが、図1
1(b)及び図11(c)に示すように、両方を同時に
使用することも可能であり、角度調整に関する自由度を
向上させることができる。
In this manner, the angle adjusting member (X) 11 can be turned by a small angle in the direction of F- while the button 31 in the control panel 29 of the sample angle adjusting device is kept pressed. Thus, the angle adjusting member (X) 11
Is rotated in the direction of F-, the multilayer piezoelectric element 25
(2) and the weight 26 (2) or the laminated piezoelectric element 25 (1) and the weight 26 (1) may be used.
As shown in FIG. 1 (b) and FIG. 11 (c), both can be used simultaneously, and the degree of freedom regarding angle adjustment can be improved.

【0035】 次に、上記と同様に、前記試料角度調
整装置の制御盤29内のボタン33を押し、図3に示す
ように、積層型圧電素子27(1)と錘28(1)、2
7(2)と錘28(2)により、角度調整部材(Y)1
4をG+の方向に旋回させることにより、固形試料2を
G+の方向に旋回させ、Y軸回りの角度(G方向)調整
を行う。なお、構造上、角度調整部材(X)11はG方
向に関しては角度調整部材(Y)14と一体で動く。
Next, in the same manner as described above, a button 33 in the control panel 29 of the sample angle adjusting device is pressed, and as shown in FIG. 3, the stacked piezoelectric element 27 (1) and the weights 28 (1), 2
7 (2) and the weight 28 (2), the angle adjusting member (Y) 1
By rotating the solid sample 2 in the direction of G +, the solid sample 2 is rotated in the direction of G +, and the angle around the Y axis (G direction) is adjusted. Note that, in terms of structure, the angle adjusting member (X) 11 moves integrally with the angle adjusting member (Y) 14 in the G direction.

【0036】 前記、及びに示す角度調整が終
了した時点で、試料角度調整装置の制御盤29内の角度
調整終了ボタン35を押し、角度調整を終了する。この
角度調整終了ボタン35を押すことにより、クランプ力
Jの値が前記クランプ力Iの値に再セットされる。この
ように、試料角度調整後、前述の切断工程を行い、更
に、角度の調整が必要な場合は、前述のからを繰り
返す。もちろん、の工程に示すF−の方向への旋回が
オーバしてしまった場合は、試料角度調整装置の制御盤
29内のボタン32を押し、角度調整部材(X)11を
F+の方向に旋回させる。また、の工程に示すG+の
方向への旋回がオーバしてしまった場合も、試料角度調
整装置の制御盤29内のボタン34を押し、角度調整部
材(Y)14をG−の方向に旋回させる。
At the time when the angle adjustment described above is completed, the angle adjustment end button 35 in the control panel 29 of the sample angle adjustment device is pressed to end the angle adjustment. By pressing the angle adjustment end button 35, the value of the clamping force J is reset to the value of the clamping force I. As described above, after the sample angle is adjusted, the above-described cutting step is performed, and when the angle needs to be adjusted, the above steps are repeated. Of course, if the turning in the direction of F− shown in the step is over, the button 32 in the control panel 29 of the sample angle adjusting device is pressed, and the angle adjusting member (X) 11 is turned in the direction of F +. Let it. Also, when the turning in the direction of G + shown in the step is over, the button 34 in the control panel 29 of the sample angle adjusting device is pressed, and the angle adjusting member (Y) 14 is turned in the direction of G-. Let it.

【0037】このように、この実施例によれば、 (1)Z軸方向に規制された軸20をエアシリンダ22
により、Z−方向に移動させ、角度調整部材(X)11
と角度調整部材(Y)14をクランプした状態(それぞ
れ曲率半径が同一の球面及び円筒面が接触している状
態)において、全ての球面及び円筒面(軸20の凸球面
21、角度調整部材(X)11の凹状の球面13、角度
調整部材(X)11の凸状の円筒面12、角度調整部材
(Y)14の凹状の円筒面15、角度調整部材(Y)1
4の凸状の円筒面16、本体17の凹状の円筒面18)
の中心座標は、薄切工程時に切断刃の先端が構成する平
面内の固形薄切面の中心9に位置するようになっている
ため、角度調整後に固形試料2がZ方向に変位する量が
従来よりも小さくなり、結果として、再薄切までの要す
る調整時間を短縮することができる。
As described above, according to this embodiment, (1) the shaft 20 restricted in the Z-axis direction is
To move in the Z-direction, and the angle adjusting member (X) 11
And all the spherical and cylindrical surfaces (the convex spherical surface 21 of the shaft 20, the angle adjusting member (Y)) are clamped (the spherical surface and the cylindrical surface having the same radius of curvature are in contact with each other) while the angle adjusting member (Y) 14 is clamped. X) 11 concave spherical surface 13, angle adjusting member (X) 11 convex cylindrical surface 12, angle adjusting member (Y) 14 concave cylindrical surface 15, angle adjusting member (Y) 1
4, the convex cylindrical surface 16 and the concave cylindrical surface 18 of the main body 17)
Is located at the center 9 of the solid thin section in the plane defined by the tip of the cutting blade during the thin section process, so that the amount by which the solid sample 2 is displaced in the Z direction after the angle adjustment is conventionally As a result, the adjustment time required until re-slicing can be shortened.

【0038】(2)角度調整後に固形試料2がX軸方向
に変位する量が従来よりも小さくなり、結果として装置
のコンパクト化を図ることができる。 (3)角度調整部材(X)11及び角度調整部材(Y)
14の角度調整にピエゾアクチュエータ(積層型圧電素
子)と錘を利用したインパクトドライブ制御を用いるこ
とにより、作業者がマニュアルで行う角度調整よりも高
精度の最小調整を高能率に行うことができる。
(2) The amount by which the solid sample 2 is displaced in the X-axis direction after the angle adjustment becomes smaller than before, and as a result, the apparatus can be made more compact. (3) Angle adjusting member (X) 11 and angle adjusting member (Y)
By using the impact drive control using a piezo actuator (laminated piezoelectric element) and a weight for the angle adjustment of 14, it is possible to perform the minimum adjustment with higher accuracy and higher efficiency than the angle adjustment manually performed by the operator.

【0039】(4)相対的に摺動運動をするそれぞれの
対となる球面及び円筒面は曲率半径であり、実施例に示
す角度調整時においてもクランプ力Jでクランプされて
いるため、試料角度調整後に、再度クランプ力をIに変
更しても、調整した角度がずれることはない。なお、本
発明は上記実施例に限定されるものではなく、本発明の
趣旨に基づいて種々の変形が可能であり、これらを本発
明の範囲から排除するものではない。
(4) The spherical and cylindrical surfaces forming a pair that relatively slide each other have a radius of curvature, and are clamped by the clamping force J during the angle adjustment shown in the embodiment. Even if the clamping force is changed to I again after the adjustment, the adjusted angle does not shift. It should be noted that the present invention is not limited to the above embodiment, and various modifications can be made based on the gist of the present invention, and these are not excluded from the scope of the present invention.

【0040】[0040]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (A)Z軸方向に規制された軸を駆動装置により、Z−
方向に移動させ、角度調整部材(X)と角度調整部材
(Y)をクランプした状態において、全ての球面及び円
筒面の中心座標は、薄切工程時に切断刃の先端が構成す
る平面内の固形薄切面の中心に位置するようになってい
るため、角度調整後に試料がZ方向に変位する量が従来
よりも小さくなり、結果として、再薄切までに要する調
整時間を短縮することができる。
As described above, according to the present invention, the following effects can be obtained. (A) An axis regulated in the Z-axis direction is
In the state where the angle adjusting member (X) and the angle adjusting member (Y) are clamped, the center coordinates of all the spherical surfaces and the cylindrical surfaces are determined by the solid coordinates in the plane defined by the tip of the cutting blade during the slicing process. Since the sample is located at the center of the thin section, the amount of displacement of the sample in the Z direction after the angle adjustment becomes smaller than before, and as a result, the adjustment time required for re-slicing can be reduced.

【0041】(B)角度調整後に試料がX軸方向に変位
する量が従来よりも小さくなり、結果として、装置のコ
ンパクト化を図ることができる。 (C)角度調整部材(X)及び角度調整部材(Y)の角
度調整にピエゾアクチュエータ(積層型圧電素子)と錘
を利用したインパクトドライブ制御を用いることによ
り、作業者がマニュアルで行う角度調整よりも高精度の
微細な調整(最小調整)を高能率に行うことができる。
(B) The amount by which the sample is displaced in the X-axis direction after the angle adjustment becomes smaller than before, and as a result, the apparatus can be made more compact. (C) The angle adjustment of the angle adjusting member (X) and the angle adjusting member (Y) is performed by using an impact drive control using a piezo actuator (stacked piezoelectric element) and a weight, so that the angle can be adjusted manually by an operator. In addition, fine adjustment (minimum adjustment) with high accuracy can be performed with high efficiency.

【0042】(D)相対的に摺動運動をするそれぞれの
対となる球面及び円筒面は同じ曲率半径であり、角度調
整時においてもクランプ力Jでクランプされているた
め、試料角度調整後に、再度クランプ力をIに変更して
も、調整した角度がずれることはない。
(D) Each pair of the spherical surface and the cylindrical surface which make a relative sliding motion have the same radius of curvature, and are clamped by the clamping force J during the angle adjustment. Even if the clamping force is changed to I again, the adjusted angle does not shift.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すミクロトーム用試料角度
調整装置の正面図である。
FIG. 1 is a front view of a sample angle adjusting device for a microtome showing an embodiment of the present invention.

【図2】本発明の実施例を示すミクロトーム用試料角度
調整装置の右側面図である。
FIG. 2 is a right side view of a sample angle adjusting device for a microtome showing an embodiment of the present invention.

【図3】本発明の実施例を示すミクロトーム用試料角度
調整装置の左側面図である。
FIG. 3 is a left side view of the sample angle adjusting device for a microtome according to the embodiment of the present invention.

【図4】本発明の実施例を示すミクロトーム用試料角度
調整装置の上面図である。
FIG. 4 is a top view of a sample angle adjusting device for a microtome showing an embodiment of the present invention.

【図5】本発明の実施例を示すミクロトーム用試料角度
調整装置の底面図である。
FIG. 5 is a bottom view of a sample angle adjusting device for a microtome showing an embodiment of the present invention.

【図6】図1のB−B線断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 1;

【図7】図2のA−A線断面図である。FIG. 7 is a sectional view taken along line AA of FIG. 2;

【図8】本発明の実施例を示すミクロトーム用試料角度
調整装置の要部構成図である。
FIG. 8 is a main part configuration diagram of a sample angle adjusting device for a microtome showing an embodiment of the present invention.

【図9】図1のC−C線断面図である。FIG. 9 is a sectional view taken along line CC of FIG. 1;

【図10】本発明の実施例を示すミクロトーム用試料角
度調整装置の制御盤の平面図である。
FIG. 10 is a plan view of a control panel of the microtome sample angle adjusting device according to the embodiment of the present invention.

【図11】本発明の実施例を示すミクロトーム用試料角
度調整装置のX軸方向角度調整の説明図である。
FIG. 11 is an explanatory diagram of an X-axis direction angle adjustment of the sample angle adjusting device for a microtome according to the embodiment of the present invention.

【図12】従来の一般的なミクロトームの概略構成斜視
図である。
FIG. 12 is a schematic configuration perspective view of a conventional general microtome.

【図13】従来の一般的なミクロトームの固形試料への
検体の包埋状況とその固形試料の角度調整の説明図(そ
の1)である。
FIG. 13 is an explanatory view (part 1) of the embedding state of a sample in a solid sample of a conventional general microtome and the angle adjustment of the solid sample.

【図14】従来の一般的なミクロトームの固形試料への
検体の包埋状況とその固形試料の角度調整の説明図(そ
の2)である。
FIG. 14 is an explanatory diagram (part 2) of the embedding state of a sample in a solid sample of a conventional general microtome and the angle adjustment of the solid sample.

【図15】従来の試料の角度調整のための座標の説明図
(その1)である。
FIG. 15 is an explanatory diagram (part 1) of coordinates for adjusting the angle of a conventional sample.

【図16】従来の試料の角度調整のための座標の説明図
(その2)である。
FIG. 16 is an explanatory view (part 2) of conventional coordinates for adjusting the angle of a sample.

【図17】従来の固形試料の角度調整における問題点の
説明図である。
FIG. 17 is an explanatory diagram of a problem in conventional angle adjustment of a solid sample.

【符号の説明】[Explanation of symbols]

1 切断刃 2 固形試料 3 検体 4,6 固形試料の左エッジ 5,7 固形試料の右エッジ 9 平面内の固形試料薄切面の中心 10 試料用ベース 11 角度調整部材(X) 12 角度調整部材(X)の凸状の円筒面 13 角度調整部材(X)の凹状の球面 14 角度調整部材(Y) 15 角度調整部材(Y)の凹状の円筒面 16 凸状の円筒面 17 本体 18 本体の凹状の円筒面 19 ガイド 20 軸 21 凸球面 22 エアシリンダ 23(1),23(2) 角度調整部材(X)のスト
ロークエンドを検出するための近接センサ 24(1),24(2) 角度調整部材(Y)のスト
ロークエンドを検出するための近接センサ 25(1),25(2) 角度調整部材(X)のピエ
ゾアクチュエータ(積層型圧電素子) 26(1),26(2) 錘 27(1),27(2) 角度調整部材(Y)のピエ
ゾアクチュエータ(積層型圧電素子) 28(1),28(2) 錘 29 試料角度調整装置の制御盤 30 角度調整準備ボタン 31,32,33,34 ボタン 35 角度調整終了ボタン
DESCRIPTION OF SYMBOLS 1 Cutting blade 2 Solid sample 3 Sample 4,6 Left edge of solid sample 5,7 Right edge of solid sample 9 Center of thin section of solid sample in plane 10 Sample base 11 Angle adjusting member (X) 12 Angle adjusting member ( X) convex cylindrical surface 13 concave spherical surface of angle adjusting member (X) 14 angle adjusting member (Y) 15 concave cylindrical surface of angle adjusting member (Y) 16 convex cylindrical surface 17 body 18 concave body Cylindrical surface 19 Guide 20 Axis 21 Convex spherical surface 22 Air cylinder 23 (1), 23 (2) Proximity sensor 24 (1), 24 (2) for detecting stroke end of angle adjusting member (X) Proximity sensor 25 (1), 25 (2) for detecting stroke end of (Y) Piezo actuator (laminated piezoelectric element) of angle adjusting member (X) 26 (1), 26 (2) Weight 27 (1) ), 27 (2) Piezo actuator (laminated piezoelectric element) of angle adjustment member (Y) 28 (1), 28 (2) Weight 29 Control panel of sample angle adjustment device 30 Angle adjustment preparation buttons 31, 32, 33, 34 button 35 Angle adjustment end button

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南都 寛 静岡県沼津市大岡2068−3 東芝機械株式 会社沼津事業所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroshi Minato 2068-3 Ooka, Numazu-shi, Shizuoka Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固形試料または切断刃を所望の切片の厚
さに対応する量だけ移動させた後、前記切断刃によって
固形試料を薄切にし、薄切片を作製するミクロトーム用
試料角度調整装置において、 固形試料の薄切面の中心を回転中心とした角度調整が可
能な角度調整手段を具備するミクロトーム用試料角度調
整装置。
In a sample angle adjusting apparatus for a microtome, a solid sample or a cutting blade is moved by an amount corresponding to a thickness of a desired section, and then the solid sample is sliced by the cutting blade to produce a thin section. A sample angle adjusting device for a microtome, comprising an angle adjusting means capable of adjusting an angle about a center of a thin section of a solid sample as a rotation center.
【請求項2】 請求項1記載のミクロトーム用試料角度
調整装置において、前記角度調整手段は、Z軸方向に保
持される軸にクランプされ、Y軸回りの回転を行うY軸
方向角度調整部材と、該Y軸方向角度調整部材にクラン
プされ、X軸回りの回転を行うX軸方向角度調整部材と
を備え、前記軸を中心として前記X軸方向角度調整部材
を駆動するアクチュエータと前記Y軸方向角度調整部材
を駆動するアクチュエータとを具備することを特徴とす
るミクロトーム用試料角度調整装置。
2. The sample angle adjusting device for a microtome according to claim 1, wherein the angle adjusting means is clamped on a shaft held in a Z-axis direction, and rotates in a Y-axis direction. An X-axis direction angle adjustment member that is clamped to the Y-axis direction angle adjustment member and rotates about the X-axis; an actuator that drives the X-axis direction angle adjustment member about the axis; and the Y-axis direction. A microtome sample angle adjustment device, comprising: an actuator that drives an angle adjustment member.
【請求項3】 請求項2記載のミクロトーム用試料角度
調整装置において、前記アクチュエータは、エピゾイン
パクトドライブ装置であることを特徴とするミクロトー
ム用試料角度調整装置。
3. The sample angle adjusting device for a microtome according to claim 2, wherein the actuator is an epizo impact drive device.
【請求項4】 固形試料または切断刃を所望の切片の厚
さに対応する量だけ移動させた後、前記切断刃によって
固形試料を薄切にし、薄切片を作製するミクロトーム用
試料角度調整方法において、 前記切断刃の先端が構成する平面に、前記固形試料に包
埋された検体の傾きを対応させるように固形試料の薄切
面の中心を回転中心とし、前記固形試料の角度調整を行
うことを特徴とするミクロトーム用試料角度調整方法
4. A method for adjusting a sample angle for a microtome, wherein a solid sample or a cutting blade is moved by an amount corresponding to a thickness of a desired section, and then the solid sample is sliced by the cutting blade to produce a thin section. The plane of the tip of the cutting blade, the center of the thin section of the solid sample as the center of rotation so as to correspond to the inclination of the sample embedded in the solid sample, to adjust the angle of the solid sample. Characteristic method of adjusting sample angle for microtome
JP28242097A 1997-10-15 1997-10-15 Sample angle adjustment device for microtome Expired - Fee Related JP3865896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28242097A JP3865896B2 (en) 1997-10-15 1997-10-15 Sample angle adjustment device for microtome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28242097A JP3865896B2 (en) 1997-10-15 1997-10-15 Sample angle adjustment device for microtome

Publications (2)

Publication Number Publication Date
JPH11118678A true JPH11118678A (en) 1999-04-30
JP3865896B2 JP3865896B2 (en) 2007-01-10

Family

ID=17652185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28242097A Expired - Fee Related JP3865896B2 (en) 1997-10-15 1997-10-15 Sample angle adjustment device for microtome

Country Status (1)

Country Link
JP (1) JP3865896B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212387A (en) * 2006-02-13 2007-08-23 Seiko Instruments Inc Device and method for producing thin section
JP2007218616A (en) * 2006-02-14 2007-08-30 Seiko Instruments Inc Automatic slicing apparatus, automatic slice specimen manufacturing apparatus and automatic slicing method
JP2007218618A (en) * 2006-02-14 2007-08-30 Seiko Instruments Inc Automatic slicing apparatus and automatic slicing method
JP2008076251A (en) * 2006-09-21 2008-04-03 Kurabo Ind Ltd Surface developing method for sample block
JP2008134127A (en) * 2006-11-28 2008-06-12 Seiko Instruments Inc Automatic slicing apparatus and method
JP2009271049A (en) * 2004-01-22 2009-11-19 Sakura Finetex Usa Inc Multi-axis workpiece chuck
CN111774665A (en) * 2020-07-13 2020-10-16 安徽奔腾五金制造有限公司 Multi-angle steering cutting device for refrigerator bottom plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271049A (en) * 2004-01-22 2009-11-19 Sakura Finetex Usa Inc Multi-axis workpiece chuck
JP2007212387A (en) * 2006-02-13 2007-08-23 Seiko Instruments Inc Device and method for producing thin section
JP2007218616A (en) * 2006-02-14 2007-08-30 Seiko Instruments Inc Automatic slicing apparatus, automatic slice specimen manufacturing apparatus and automatic slicing method
JP2007218618A (en) * 2006-02-14 2007-08-30 Seiko Instruments Inc Automatic slicing apparatus and automatic slicing method
JP2008076251A (en) * 2006-09-21 2008-04-03 Kurabo Ind Ltd Surface developing method for sample block
JP2008134127A (en) * 2006-11-28 2008-06-12 Seiko Instruments Inc Automatic slicing apparatus and method
CN111774665A (en) * 2020-07-13 2020-10-16 安徽奔腾五金制造有限公司 Multi-angle steering cutting device for refrigerator bottom plate

Also Published As

Publication number Publication date
JP3865896B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US5994820A (en) Electromechanical positioning unit
JP4998928B2 (en) Cutting method and cutting apparatus
JP6078201B1 (en) Sheet processing method and sheet processing apparatus
US7837461B2 (en) Microlens transcription molding roller and manufacturing method thereof
US4909108A (en) Mechanical hand for processing edges of a curved plate and an apparatus for processing the edges of the curved plate
JPH11118678A (en) Method and apparatus for adjusting angle of microtome sample
EP2425941A1 (en) Cutting apparatus and cutting method
JP3656005B2 (en) Sample preparation method by microtome and microtome
JP2004344916A (en) Surface processing machine and surface processing method
JP3604593B2 (en) Thin sample preparation equipment
JPH05237124A (en) Thread guide for caulking device and structure for fitting thread guide
JP3145468B2 (en) Lower die mounting structure in caulking device
JP2001328043A (en) Table positioning device
JPH0236335A (en) Microtome
JP2007160422A (en) Working device
JP2004140946A (en) Actuator
JPS61182112A (en) Accurate displacement driver
JP4073060B2 (en) Small precision positioning device using impact force accompanying rapid deformation of piezoelectric element
JP2003326407A (en) Inner surface machining device
WO2022239874A1 (en) Cutting system and cutting device
JPH09236522A (en) Microtome
JPH01146697A (en) Plotter
WO2022259641A1 (en) Deburring device and deburring unit
JPH06160555A (en) Tilt angle adjusting device
JP4585343B2 (en) Driving method of ultrasonic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees