JPH11116515A - Production of butanediol - Google Patents

Production of butanediol

Info

Publication number
JPH11116515A
JPH11116515A JP9272553A JP27255397A JPH11116515A JP H11116515 A JPH11116515 A JP H11116515A JP 9272553 A JP9272553 A JP 9272553A JP 27255397 A JP27255397 A JP 27255397A JP H11116515 A JPH11116515 A JP H11116515A
Authority
JP
Japan
Prior art keywords
butanediol
reactor
hydrolysis
water
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9272553A
Other languages
Japanese (ja)
Other versions
JP3956444B2 (en
Inventor
Takeshi Inami
武司 稲見
Kazuyuki Okubo
和行 大久保
Nobuyuki Murai
信行 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP27255397A priority Critical patent/JP3956444B2/en
Publication of JPH11116515A publication Critical patent/JPH11116515A/en
Application granted granted Critical
Publication of JP3956444B2 publication Critical patent/JP3956444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently carrying out a hydrolysis reaction in producing butanediol by hydrolyzing diacetoxybutane. SOLUTION: In this method for producing a high-purity butanediol by bringing diacetoxybutane into contact with water in the presence of a solid acid catalyst to hydrolyze it, separating the reaction mixture into water, acetic acid and crude butanediol and purifying the crude butanediol, the method has at least two combinations of a hydrolysis reaction process and a separation process into water, acetic acid and the crude butanediol following the hydrolysis process, a fraction consisting essentially of a monohydroxyacetic ester is recycled to a reactor behind the second-stage reactor of the hydrolysis process and at least a part of the outlet liquid of the first-stage reactor of the hydrolysis process is recycled to the inlet of the first-stage reactor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ブタンジオールの
製造方法に関する。詳しくは、ジアセトキシブタンの加
水分解によるブタンジオールの製造方法の改良に関す
る。1,4−ブタンジオールはPBT樹脂、γ−ブチロ
ラクトンの原料や、有機溶剤、ポリテトラメチレンエー
テルグリコール(PTMG)の原料として用いられるテ
トラヒドロフランの原料として有用な物質である。
TECHNICAL FIELD The present invention relates to a method for producing butanediol. More specifically, the present invention relates to an improvement in a method for producing butanediol by hydrolysis of diacetoxybutane. 1,4-Butanediol is a substance useful as a raw material of PBT resin and γ-butyrolactone, a raw material of an organic solvent, and tetrahydrofuran used as a raw material of polytetramethylene ether glycol (PTMG).

【0002】[0002]

【従来の技術】ジアセトキシブタンを加水分解すること
によってブタンジオールを製造する方法は、例えば特開
昭52−7909号公報等により開示されている。この
方法は、ブタンジオール及び/又はヒドロキシ酢酸エス
テルを原料ジ酢酸エステルに混合し、一段の加水分解で
ブタンジオールを製造する方法を提供している。加水分
解反応は、平衡反応であるから、一段で加水分解をさせ
ようとすると、大量の水を使用しなければならず、その
ため生成物を分離するのに大量のエネルギーが必要とな
り、経済的に有利ではない。
2. Description of the Related Art A method for producing butanediol by hydrolyzing diacetoxybutane is disclosed in, for example, JP-A-52-7909. This method provides a method for producing butanediol by mixing butanediol and / or hydroxyacetate with a raw material diacetate and performing one-stage hydrolysis. Since the hydrolysis reaction is an equilibrium reaction, a large amount of water must be used to perform the hydrolysis in a single step, and therefore a large amount of energy is required to separate the product, which is economical. Not advantageous.

【0003】これに対し、効率的に加水分解する方法と
して、向流二段反応が開示されている(特開昭52−6
5208号公報)。この方法によれば、前記公報記載の
一段法に比べ、少ない原料水量で、効率的に加水分解反
応が実施できるとされている。また、この方法では、第
2反応器から回収された水に酢酸が含まれており、第1
反応器の入口が均一組成になり、未反応物回収工程で回
収された未反応原料及びモノエステル等を、後段の反応
器へ戻すことにより反応が有利に進行するので、更に好
ましいと記載されている。
On the other hand, a countercurrent two-stage reaction has been disclosed as an efficient hydrolysis method (Japanese Patent Laid-Open No. 52-6 / 1982).
No. 5208). According to this method, the hydrolysis reaction can be carried out more efficiently with a smaller amount of raw water than the one-stage method described in the above publication. In this method, acetic acid is contained in the water recovered from the second reactor,
The inlet of the reactor has a uniform composition, and the unreacted raw materials and monoesters and the like recovered in the unreacted material recovery step are returned to the subsequent reactor, so that the reaction proceeds advantageously. I have.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
法では、第2反応器で更に加水分解反応を進めるべく、
水の供給量を増加させると、第1反応器の入口で分液が
起こり、加水分解反応が却って進まなくなることが判明
した。本発明は、以上の問題を解決し、有利にジアセト
キシブタンの加水分解反応を行い、ブタンジオールを得
る方法を提供することを目的とする。
However, in this method, in order to further promote the hydrolysis reaction in the second reactor,
It was found that when the supply amount of water was increased, liquid separation occurred at the inlet of the first reactor, and the hydrolysis reaction did not proceed. An object of the present invention is to solve the above problems and to provide a method for obtaining a butanediol by advantageously performing a hydrolysis reaction of diacetoxybutane.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記事情
に鑑み鋭意検討した結果、ジアセトキシブタンの加水分
解を、固体酸触媒を有する複数の反応器を使用して実施
するに当り、第1反応器の反応液の一部を、第一反応器
入口にリサイクルし、原料のジアセトキシブタン、第2
反応器から分離された酢酸を含む水と混合し、均一相と
した上で反応させることによりその目的が達成されるこ
とを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies in view of the above circumstances, the present inventors have found that, when carrying out hydrolysis of diacetoxybutane using a plurality of reactors having a solid acid catalyst, A part of the reaction solution in the first reactor is recycled to the inlet of the first reactor, and the starting material diacetoxybutane and the second
It has been found that the object is achieved by mixing with water containing acetic acid separated from the reactor to form a homogeneous phase and reacting the same, thereby completing the present invention.

【0006】即ち、本発明の要旨は、ジアセトキシブタ
ンを固体酸触媒の存在下、水と接触させて加水分解させ
た後、水、酢酸と粗ブタンジオールとを分離し、次いで
粗ブタンジオールを精製して高純度のブタンジオールを
製造する方法において、加水分解反応工程及びそれに引
き続く水、酢酸と粗ブタンジオールとの分離工程の組み
合わせを少なくとも二ケ有し、ブタンジオールの精製工
程で分離されるモノヒドロキシ酢酸エステルを主体とす
る留分を加水分解工程の第2段目の反応器より後の反応
器に循環し、且つ加水分解工程の第1段目の反応器出口
液の少なくとも一部を該第1段目の反応器入口に循環す
ることを特徴とするブタンジオールの製造方法、にあ
る。以下、本発明を詳細に説明する。
That is, the gist of the present invention is that diacetoxybutane is brought into contact with water in the presence of a solid acid catalyst to hydrolyze, then water, acetic acid and crude butanediol are separated, and then crude butanediol is separated. In a method for producing high-purity butanediol by purification, the method has at least two combinations of a hydrolysis reaction step and a subsequent separation step of water, acetic acid and crude butanediol, and is separated in the butanediol purification step. The fraction mainly composed of monohydroxyacetic acid ester is circulated to the reactor after the second stage reactor in the hydrolysis step, and at least a part of the outlet liquid of the first stage reactor in the hydrolysis step is removed. Circulating to the first stage reactor inlet. Hereinafter, the present invention will be described in detail.

【0007】[0007]

【発明の実施の形態】ブタジエンを原料とし、アセトキ
シ化反応、それに引き続く水素化、加水分解工程を経
て、1,4−ブタンジオールを製造する方法は、従来か
ら知られている。アセトキシ化反応は、パラジウム系触
媒の存在下、ブタジエン、酢酸及び分子状酸素を反応さ
せる公知の方法により行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing 1,4-butanediol from butadiene as a raw material through an acetoxylation reaction, followed by hydrogenation and hydrolysis steps has been conventionally known. The acetoxylation reaction is performed by a known method of reacting butadiene, acetic acid, and molecular oxygen in the presence of a palladium-based catalyst.

【0008】パラジウム系触媒としては、パラジウム金
属又はその塩を単独で、或いは助触媒としてビスマス、
セレン、アンチモン、テルル、銅等の金属又はその塩と
組み合わせて用いられる。触媒は、シリカ、アルミナ、
活性炭等の担体に担持させて用いることが好ましい。ア
セトキシ化反応は、通常、40〜180℃の温度範囲
で、常圧以上の圧力下で実施される。酢酸の使用量は溶
媒を兼ねて大過剰に用いることが望ましく、通常、共役
ジエン1モルに対して、5〜60モル、好ましくは10
〜40モルである。
As the palladium-based catalyst, palladium metal or a salt thereof is used alone, or bismuth,
It is used in combination with a metal such as selenium, antimony, tellurium, copper or a salt thereof. The catalyst is silica, alumina,
It is preferable to use the carrier supported on a carrier such as activated carbon. The acetoxylation reaction is usually performed in a temperature range of 40 to 180 ° C. under a pressure equal to or higher than normal pressure. The amount of acetic acid used is desirably used in a large excess also as a solvent, and is usually 5 to 60 mol, preferably 10 to 1 mol per conjugated diene.
4040 mol.

【0009】なお、アセトキシ化反応は公知の固定床方
式、流動床方式、触媒懸濁方式等任意の方法で実施され
る。反応物より、ジアセトキシブテンと水、酢酸及びモ
ノアセトキシブテンを含むその他の軽沸物とは蒸留によ
って分離される。モノアセトキシブテンを含む水、酢酸
を主成分とする留出物は、酢酸精製工程に送られる。
The acetoxylation reaction is carried out by any known method such as a fixed bed system, a fluidized bed system, and a catalyst suspension system. From the reactants, diacetoxybutene and other light boilers including water, acetic acid and monoacetoxybutene are separated by distillation. Water containing monoacetoxybutene and a distillate mainly containing acetic acid are sent to an acetic acid purification step.

【0010】ジアセトキシブテンは、高沸物を分離した
後、水素添加されジアセトキシブタンとなる。水素化反
応は、パラジウム、ルテニウム等の貴金属触媒の存在下
に、ジアセトキシブテンを水素と接触させ、通常40〜
180℃の温度範囲で、常圧以上の反応圧力で反応させ
ることによって実施される。なお、水素化反応は、公知
の固定床方式、流動床方式、触媒懸濁方式等の任意の方
式で実施される。
[0010] Diacetoxybutene is separated from high boiling substances and then hydrogenated to give diacetoxybutane. The hydrogenation reaction is carried out by bringing diacetoxybutene into contact with hydrogen in the presence of a noble metal catalyst such as palladium or ruthenium, usually at 40 to
The reaction is carried out in a temperature range of 180 ° C. at a reaction pressure of normal pressure or higher. The hydrogenation reaction is carried out by any known method such as a fixed bed system, a fluidized bed system, and a catalyst suspension system.

【0011】生成したジアセトキシブタンは、固体酸触
媒の存在下、水と接触させて加水分解されてブタンジオ
ールが得られる。本発明に用いられる原料のジアセトキ
シブタンとしては、1,4−ジアセトキシブタンを主体
とするものの外、その製造及び精製処理工程によって
は、1,4−ジアセトキシブタンと1,2−ジアセトキ
シブタン、1,3−ジアセトキシブタン等との異性体混
合物も含まれる。
The produced diacetoxybutane is contacted with water in the presence of a solid acid catalyst and hydrolyzed to obtain butanediol. The raw material diacetoxybutane used in the present invention is mainly composed of 1,4-diacetoxybutane, and depending on the production and purification process, 1,4-diacetoxybutane and 1,2-diacetoxybutane may be used. Also included are isomer mixtures with butane, 1,3-diacetoxybutane, and the like.

【0012】また、ある場合には、加水分解反応をある
程度進行させた後、水及び酢酸を除いた1,4−ジアセ
トキシブタン、1,4−モノヒドロキシアセトキシブタ
ン及び1,4−ブタンジオールの混合物も利用できる。
本発明に用いられる固体酸触媒としては、シリカ−アル
ミナ、活性土、シリカ、陽イオン交換樹脂等が挙げられ
るが、陽イオン交換樹脂が加水分解速度が大きく、しか
もテトラヒドロフラン等の副生物が少ないので好まし
い。
In some cases, the hydrolysis reaction is allowed to proceed to some extent, and then water and acetic acid are removed from 1,4-diacetoxybutane, 1,4-monohydroxyacetoxybutane and 1,4-butanediol. Mixtures are also available.
Examples of the solid acid catalyst used in the present invention include silica-alumina, activated earth, silica, and a cation exchange resin. However, since the cation exchange resin has a high hydrolysis rate and has few by-products such as tetrahydrofuran. preferable.

【0013】陽イオン交換樹脂としては、スチレンとジ
ビニルベンゼンとの共重合体を母体とするスルホン酸型
強酸性イオン交換樹脂が好適であり、ゲル型樹脂でもポ
ーラス型樹脂でもよい。その具体例としては、例えば三
菱化学(株)製SK1B、SK104、SK108、P
K208、PK216、PK228等が挙げられる。加
水分解反応は、通常、30〜120℃、好ましくは40
〜100℃で実施される。温度が低過ぎると反応速度が
著しく遅く、多量の触媒を必要とし、他方、温度が余り
高過ぎると、テトラヒドロフラン、ジヒドロフラン等へ
の副反応が増加する。
The cation exchange resin is preferably a sulfonic acid type strongly acidic ion exchange resin having a copolymer of styrene and divinylbenzene as a base, and may be a gel type resin or a porous type resin. Specific examples thereof include SK1B, SK104, SK108, P
K208, PK216, PK228 and the like. The hydrolysis reaction is usually carried out at 30 to 120 ° C, preferably at 40 ° C.
Carried out at 100100 ° C. If the temperature is too low, the reaction rate will be extremely slow, requiring a large amount of catalyst, while if the temperature is too high, side reactions to tetrahydrofuran, dihydrofuran, etc. will increase.

【0014】反応圧力については、特に限定はされない
が、反応中沸騰状態を生起したり或いは溶存ガス等によ
る著しい気泡の発生が生じたりするのを阻止する程度の
圧力が用いられ、通常は常圧〜10kg/cm2 Gの範
囲である。ジアセトキシブタンと水との比率は、水が反
応原料であると同時に溶媒でもあるので、化学量論量以
上用いられる。加水分解反応を円滑に進めるためには均
一液相で実施するのが望ましい。アセトキシブタンは大
量の水には溶解して均一液相を形成し、水の量が多けれ
ば反応の転換率は上昇するが、多量の水の回収にコスト
がかかり経済的でない。但し、水の使用量が余り少な過
ぎると反応の転換率が低下する。従って、ジアセトキシ
ブタンと水とのモル比は、通常2〜100、好ましくは
4〜50の範囲で用いられる。
The reaction pressure is not particularly limited, but a pressure is used to prevent a boiling state from occurring during the reaction or generation of remarkable gas bubbles due to dissolved gas or the like. The range is from 10 to 10 kg / cm 2 G. The ratio of diacetoxybutane to water is more than the stoichiometric amount, since water is both a raw material and a solvent. In order to smoothly carry out the hydrolysis reaction, it is desirable to carry out the reaction in a homogeneous liquid phase. Acetoxybutane dissolves in a large amount of water to form a homogeneous liquid phase, and the larger the amount of water, the higher the conversion of the reaction. However, the cost of recovering a large amount of water is expensive and not economical. However, if the amount of water used is too small, the conversion of the reaction decreases. Therefore, the molar ratio of diacetoxybutane to water is usually in the range of 2 to 100, preferably 4 to 50.

【0015】加水分解反応は、回分式、連続式等の任意
の方法で実施される。イオン交換樹脂を用いる場合、懸
濁状態で反応させる方式でも、イオン交換樹脂の充填層
に反応原料を通過させる方式でもよく、工業的には固定
床連続法が有利である。加水分解反応は、平衡反応であ
るので、多段の反応系式を採用するのが効率的であり好
ましい。
[0015] The hydrolysis reaction is carried out by any method such as a batch system or a continuous system. When an ion exchange resin is used, a method in which the reaction is carried out in a suspended state or a method in which the reaction raw material is passed through a packed bed of the ion exchange resin may be used, and the fixed bed continuous method is industrially advantageous. Since the hydrolysis reaction is an equilibrium reaction, it is efficient and preferable to employ a multistage reaction system.

【0016】加水分解物は、蒸留により、水、酢酸を主
成分とする留分と未反応物を含む粗ブタンジオールとに
分けられる。水、酢酸を主成分とする留分は、ジアセト
キシブテンの水添で発生する酢酸ブチル等の軽沸物を若
干含んでいるが、酢酸精製工程に送られ、先に述べた、
アセトキシ化反応から回収される酢酸と共に、精製され
る。
The hydrolyzate is separated by distillation into a fraction mainly composed of water and acetic acid and a crude butanediol containing unreacted substances. Water, the fraction containing acetic acid as a main component contains some light boilers such as butyl acetate generated by hydrogenation of diacetoxybutene, but is sent to the acetic acid refining step, as described above.
Purified with the acetic acid recovered from the acetoxylation reaction.

【0017】粗ブタンジオールは、精製工程に送られ、
未反応物と分離される。粗ブタンジオールは、1,2−
ジアセトキシブタン(1,2DAB)、1−ヒドロキシ
−2−アセトキシブタン(1,2HAB)、2−ヒドロ
キシ−1−アセトキシブタン(2,1HAB)、1,2
−ブタンジオール(1,2BG)、1,4−ジアセトキ
シブタン(1,4DAB)、1−ヒドロキシ−4−アセ
トキシブタン(1,4HAB)、1,4−ブタンジオー
ル(1,4BG)、及び構造が不明な高沸物と若干の軽
沸物を含んでいる。
The crude butanediol is sent to a purification step,
Separated from unreacted materials. Crude butanediol is 1,2-
Diacetoxybutane (1,2 DAB), 1-hydroxy-2-acetoxybutane (1,2HAB), 2-hydroxy-1-acetoxybutane (2,1HAB), 1,2
-Butanediol (1,2BG), 1,4-diacetoxybutane (1,4DAB), 1-hydroxy-4-acetoxybutane (1,4HAB), 1,4-butanediol (1,4BG), and structure Contains unknown high-boiling substances and some light-boiling substances.

【0018】粗ブタンジオールは、蒸留により、軽沸
物、1,2DAB、1,2HAB、2,1HAB及び
1,2BGを主体とする留分(留分)と、1,4DA
B、1,4HABを主体とする留分(留分)と、1,
4BG及び高沸を含む缶出液とに分けられる。この蒸留
は、複数の蒸留塔で実施しても良く、又1本の蒸留塔
で、サイドカットを取ることによって実施しても良い。
The crude butanediol is subjected to distillation to obtain a fraction mainly composed of a light boiler, 1,2 DAB, 1,2 HAB, 2,1 HAB and 1,2BG, and 1,4 DA
B, a fraction mainly composed of 1,4HAB (fraction),
4BG and bottoms containing high boiling point. This distillation may be carried out in a plurality of distillation columns, or may be carried out by taking a side cut in one distillation column.

【0019】この蒸留を行う未反応物回収塔は、通常、
理論段数80〜100段、塔頂圧力50〜400Tor
r(6.67〜53.3kPa)、塔底温度150〜2
50℃、還流比50〜120で操作される。留分は、
必要に応じて更に精製し、高純度の1,2BGとするこ
とが出来る。留分は加水分解反応に返送され未反応物
を加水分解し、1,4BGを製造する。特開昭52−7
909号公報では、加水分解反応を1基の反応器で実施
し、留分を加水分解反応器に戻すことによって、加水
分解原料である、ジアセトキシブタンと水が分離するこ
となく、均一相を形成するので、加水分解反応が効率よ
く進行することを開示している。しかしながら、加水分
解反応は平衡反応であるため、一段の反応でブタンジオ
ールをより多く得ようとすると、大量の水を使用し、平
衡をブタンジオール側にシフトする必要がある。しか
し、このような運転では、多量の水を蒸発させるため、
多大なエネルギーが必要となり、経済的ではない。
The unreacted material recovery column for performing this distillation is usually
80-100 theoretical plates, top pressure 50-400 Torr
r (6.67-53.3 kPa), tower bottom temperature 150-2
It is operated at 50 ° C. and a reflux ratio of 50 to 120. The fraction is
If necessary, it can be further purified to obtain high-purity 1,2BG. The fraction is returned to the hydrolysis reaction to hydrolyze unreacted substances to produce 1,4BG. JP-A-52-7
No. 909, the hydrolysis reaction is carried out in one reactor, and the distillate is returned to the hydrolysis reactor, so that the diacetoxybutane, which is a hydrolysis raw material, and water are not separated, and a homogeneous phase is formed. It discloses that the hydrolysis reaction proceeds efficiently because of the formation. However, since the hydrolysis reaction is an equilibrium reaction, it is necessary to use a large amount of water and shift the equilibrium toward butanediol in order to obtain more butanediol in a single-step reaction. However, such an operation evaporates a large amount of water,
It requires a lot of energy and is not economical.

【0020】一方、特開昭52−65208号公報で
は、二段の加水分解反応を実施することにより、水を少
なくでき、又、二段目の反応液から分離された酢酸を含
む水を第1反応器に供給することで、第1反応器入口液
を均一相に出来ることが開示されている。しかしなが
ら、この方法では、第2反応器から回収され、第1反応
器に供給される水、酢酸混合物中の酢酸濃度によって
は、第1反応器入口で均一相にならない場合があること
が分かった。第1反応器入口を均一相に保つためには、
第1反応器に供給するジエステルと、新たに供給される
水とのモル比が、次式を満足する場合に限られる。
On the other hand, in Japanese Patent Application Laid-Open No. 52-65208, water can be reduced by performing a two-stage hydrolysis reaction, and water containing acetic acid separated from the second-stage reaction solution is removed. It is disclosed that by supplying to one reactor, the liquid at the inlet of the first reactor can be made a uniform phase. However, according to this method, it was found that depending on the concentration of acetic acid in the water and acetic acid mixture recovered from the second reactor and supplied to the first reactor, a uniform phase might not be formed at the inlet of the first reactor. . To keep the first reactor inlet in a homogeneous phase,
The molar ratio between the diester supplied to the first reactor and the newly supplied water is limited to the case where the following formula is satisfied.

【0021】[0021]

【数2】 (Equation 2)

【0022】従って、実際に運転を行う際には、極めて
限定された条件の運転となり、生産量を上昇させようと
して、水の供給を増加すると、第1反応器の入口で分液
が起こり、却って反応が進行しなくなることが分かっ
た。加水分解反応での分液を防止するために、特開昭5
2−7909号公報では、加水分解反応物から回収した
モノエステルを含む成分を、加水分解反応器に循環させ
ることが開示されている。この方法を多段の加水分解反
応に採用すると、分液を回避することは出来るが、加水
分解反応系を循環する未反応物が増加するため、加水分
解反応の効率が低下すると共に、未反応物回収塔の負荷
が大きくなり生産性が上がらないことが分かった。
Therefore, when the operation is actually performed, the operation is performed under extremely limited conditions. If the supply of water is increased to increase the production, liquid separation occurs at the inlet of the first reactor, On the contrary, it turned out that the reaction did not proceed. In order to prevent liquid separation in the hydrolysis reaction, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 2-7909 discloses that a component containing a monoester recovered from a hydrolysis reaction product is circulated to a hydrolysis reactor. When this method is adopted in a multi-stage hydrolysis reaction, liquid separation can be avoided, but the number of unreacted substances circulating in the hydrolysis reaction system increases, so that the efficiency of the hydrolysis reaction decreases and unreacted substances are reduced. It was found that the load on the recovery tower increased and productivity did not increase.

【0023】これを防止し、運転を安定させ、効率的な
加水分解反応を行わせるために検討した結果、多段の加
水分解反応を行うに当たって、第1反応器の出口液の一
部を、次式を満足させるように、第1反応器にリサイク
ルすれば均一相を形成し、加水分解反応が効率よく進行
することが分かった。
As a result of studying to prevent this, stabilize the operation, and perform an efficient hydrolysis reaction, in performing the multi-stage hydrolysis reaction, a part of the outlet liquid of the first reactor was replaced with the following solution. In order to satisfy the formula, it was found that a uniform phase was formed by recycling to the first reactor, and the hydrolysis reaction proceeded efficiently.

【0024】[0024]

【数3】 (Equation 3)

【0025】このようにして第1反応器の反応液を循環
することにより、第1反応器での反応を、モノエステル
を供給せずに均一相で実施できるので、モノエステルは
加水分解の後段に供給して効率的な加水分解が実施でき
る。
By circulating the reaction solution of the first reactor in this way, the reaction in the first reactor can be carried out in a homogeneous phase without supplying the monoester, so that the monoester is obtained after the hydrolysis. For efficient hydrolysis.

【0026】[0026]

【実施例】以下に実施例を挙げて本発明を更に詳細に説
明するが、本発明は、その要旨を超えない限り、実施例
に限定されるものではない。なお、以下の「%」は「重
量%」を表わす。 実施例1 添付図面に従って反応を実施した。表−1の組成のジア
セトキシブタン含有液7480kg/hrを、第2水酢
酸分離塔の塔頂より留出した水、酢酸の混合物と共に第
1加水分解反応器に連続的に供給し、加水分解反応を行
った。この時、反応器の出口より得られる加水分解反応
液2500kg/hrを反応器入口に循環した。第1加
水分解反応器は、イオン交換樹脂(三菱化学(株)製、
SK1BH)30m3 を充填した反応器で、圧力0.2
MPa、温度50℃で運転した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention. The following “%” represents “% by weight”. Example 1 The reaction was carried out according to the attached drawings. 7,480 kg / hr of a diacetoxybutane-containing liquid having the composition shown in Table 1 was continuously supplied to the first hydrolysis reactor together with a mixture of water and acetic acid distilled from the top of the second water acetic acid separation column to carry out hydrolysis. The reaction was performed. At this time, 2500 kg / hr of the hydrolysis reaction solution obtained from the outlet of the reactor was circulated to the reactor inlet. The first hydrolysis reactor is an ion exchange resin (manufactured by Mitsubishi Chemical Corporation)
SK1BH) 30 m 3 filled reactor, pressure 0.2
The operation was carried out at 50 ° C. at a pressure of 50 MPa.

【0027】[0027]

【表1】 表 − 1 1,4−ジアセトキシブタン 84.9% 1,2−ジアセトキシブタン 7.6% 1−ヒドロキシ−4−アセトキシブタン 2.7%Table 1 1,4-diacetoxybutane 84.9% 1,2-diacetoxybutane 7.6% 1-hydroxy-4-acetoxybutane 2.7%

【0028】第1反応器底部から流出する加水分解反応
液は第1水酢酸分離塔に供給し水、酢酸を分離した。第
1水酢酸分離塔は、理論段5段の蒸留塔で、減圧下
(0.04MPa)で運転し、缶出液中の酢酸濃度は
0.5%以下になるように運転した。得られた水、酢酸
は、第3水酢酸分離塔の塔頂より流出した水、酢酸の混
合物と共に第2加水分解反応器に供給し、加水分解反応
を行った。第2加水分解反応器は、イオン交換樹脂(三
菱化学(株)製、SK−1BH)を30m3 充填した反
応器で、第1加水分解反応器と同じ条件で運転した。第
2加水分解反応器から流出した反応液は、第2水酢酸分
離塔に供給し、水、酢酸を分離した。第2水酢酸分離塔
は、理論段5段の蒸留塔で、減圧下(0.04MPa)
で運転し、缶出液中の酢酸濃度は0.5%以下になるよ
うに運転した。流出した水、酢酸の混合物は、全量を第
1加水分解反応器に供給した。缶出より得られた生成物
は、新たに供給される水6150kg/hr及び未反応
物回収塔で回収された、1,4−ジアセトキシブタンを
含む中部側流1580kg/hrと共に、第3加水分解
反応器に供給し、加水分解反応を行った。第3加水分解
反応器は、イオン交換樹脂(三菱化学(株)製、SK1
BH)を40m3 充填してあり、第1加水分解反応器と
同じ条件で運転した。第3加水分解反応器から流出した
反応液は、第3水酢酸分離塔に供給し、水、酢酸を分離
した。第3水酢酸分離塔は、理論段5段の蒸留塔で、減
圧下(0.04MPa)で運転し、缶出液中の酢酸濃度
は0.5%以下になるように運転した。流出した水、酢
酸の混合物は、全量を第2加水分解反応器に供給した。
缶出からは、表−2の組成の生成物が得られ、未反応物
回収塔に供給し、未反応物と、1,4−ブタンジオール
を分離した。
The hydrolysis reaction liquid flowing out from the bottom of the first reactor was supplied to a first water acetic acid separation column to separate water and acetic acid. The first water acetic acid separation column was a distillation column having five theoretical stages, operated under reduced pressure (0.04 MPa), and operated such that the acetic acid concentration in the bottoms became 0.5% or less. The obtained water and acetic acid were supplied to a second hydrolysis reactor together with a mixture of water and acetic acid flowing out from the top of a third water acetic acid separation tower, and a hydrolysis reaction was performed. The second hydrolysis reactor was a reactor filled with 30 m 3 of an ion exchange resin (manufactured by Mitsubishi Chemical Corporation, SK-1BH), and was operated under the same conditions as the first hydrolysis reactor. The reaction solution flowing out of the second hydrolysis reactor was supplied to a second aqueous acetic acid separation tower, where water and acetic acid were separated. The second water acetic acid separation column is a distillation column having five theoretical stages, and under reduced pressure (0.04 MPa).
And the acetic acid concentration in the bottom liquid was controlled to be 0.5% or less. The entire mixture of the effluent water and acetic acid was supplied to the first hydrolysis reactor. The product obtained from the bottom is mixed with fresh water 6150 kg / hr and the middle side stream containing 1, 4-diacetoxybutane 1580 kg / hr recovered in the unreacted material recovery tower, and the third water It was supplied to a decomposition reactor to perform a hydrolysis reaction. The third hydrolysis reactor is an ion exchange resin (manufactured by Mitsubishi Chemical Corporation, SK1
BH) was charged at 40 m 3 and operated under the same conditions as the first hydrolysis reactor. The reaction solution flowing out of the third hydrolysis reactor was supplied to a third water acetic acid separation column to separate water and acetic acid. The third water acetic acid separation column was a distillation column having five theoretical stages, operated under reduced pressure (0.04 MPa), and operated such that the acetic acid concentration in the bottoms became 0.5% or less. The entire mixture of the effluent water and acetic acid was supplied to the second hydrolysis reactor.
From the bottom, a product having the composition shown in Table 2 was obtained, supplied to the unreacted material recovery tower, and the unreacted material and 1,4-butanediol were separated.

【0029】[0029]

【表2】 表 − 2 1,4−ジアセトキシブタン 5.9% 1−ヒドロキシ−4−アセトキシブタン 29.9% 1,4−ブタンジオール 54.9% 1,2−ブタンジオール 6.5%TABLE 2 1,4-diacetoxybutane 5.9% 1-hydroxy-4-acetoxybutane 29.9% 1,4-butanediol 54.9% 1,2-butanediol 6.5%

【0030】未反応物回収塔は、理論段96段の充填物
を有する蒸留塔で、塔頂圧力0.01MPa、還流比8
0で操作し、塔頂より1,2−ブタンジオールを主成分
とする留分520kg/hrを留去し、塔頂から25段
目に相当する部分より1,4−ジアセトキシブタン1
2.9%、1−ヒドロキシ−4−アセトキシブタン6
4.9%、1,4−ブタンジオール19.1%を含有す
る側流留分2580kg/hrを留去し、塔底からは
1,4ブタンジオール(純度99.5%)を2687k
g/hrを抜き出した。側流の内、1000kg/hr
はTHFの原料として、THF化工程に供給し、残部は
第3加水分解反応器に供給した。
The unreacted material recovery column is a distillation column having a packing of 96 theoretical plates, and has a top pressure of 0.01 MPa and a reflux ratio of 8
0, the 520 kg / hr fraction containing 1,2-butanediol as the main component was distilled off from the top of the column, and 1,4-diacetoxybutane 1 was removed from the portion corresponding to the 25th stage from the top of the column.
2.9%, 1-hydroxy-4-acetoxybutane 6
2580 kg / hr of a side stream fraction containing 4.9% and 19.1% of 1,4-butanediol was distilled off, and 1,687 butanediol (purity: 99.5%) was removed from the bottom of the column at 2687 k.
g / hr was extracted. 1000kg / hr of side flow
Was supplied to the THF conversion step as a raw material for THF, and the remainder was supplied to the third hydrolysis reactor.

【0031】比較例1 第1加水分解反応器の反応液の循環をしなかった以外
は、実施例1と同じ条件で加水分解反応を実施した。そ
の結果、第3水酢酸分離塔の缶出液の組成は表−3の通
りになり、未反応物回収塔の側流の組成を実施例1と同
じにするように運転したところ、缶出より得られる1,
4−ブタンジオールが2500kg/hrに減少し、T
HF化工程に供給しなければならない側流留分が125
0kg/hrに増加した。
Comparative Example 1 A hydrolysis reaction was carried out under the same conditions as in Example 1 except that the reaction solution in the first hydrolysis reactor was not circulated. As a result, the composition of the bottoms of the third water acetic acid separation tower was as shown in Table 3, and the operation was performed so that the side stream composition of the unreacted material recovery tower was the same as in Example 1. 1,
4-butanediol is reduced to 2500 kg / hr and T
The side stream fraction that must be supplied to the HF process is 125
It increased to 0 kg / hr.

【0032】[0032]

【表3】 表 − 3 1,4−ジアセトキシブタン 6.2% 1−ヒドロキシ−4−アセトキシブタン 31.1% 1,4−ブタンジオール 51.8% 1,2−ブタンジオール 5.8%Table 3 1,3-diacetoxybutane 6.2% 1-hydroxy-4-acetoxybutane 31.1% 1,4-butanediol 51.8% 1,2-butanediol 5.8%

【0033】[0033]

【発明の効果】本発明によればジアセトキシブタンの加
水分解によるブタンジオールの製造において、加水分解
反応を効率よく、工業的に有利に実施することができ
る。
According to the present invention, in the production of butanediol by hydrolysis of diacetoxybutane, the hydrolysis reaction can be carried out efficiently and industrially advantageously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のフローシート。FIG. 1 is a flow sheet of Example 1.

【符号の説明】[Explanation of symbols]

I 第1加水分解反応器 I′ 第1水酢酸分離塔 II 第2加水分解反応器 II′ 第2水酢酸分離塔 III 第3加水分解反応器 III ′第3水酢酸分離塔 IV 未反応物回収塔 I First hydrolysis reactor I 'First water acetic acid separation tower II Second hydrolysis reactor II' Second water acetic acid separation tower III Third hydrolysis reactor III 'Third water acetic acid separation tower IV Unreacted material recovery Tower

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ジアセトキシブタンを固体酸触媒の存在
下、水と接触させて加水分解させた後、水、酢酸と粗ブ
タンジオールとを分離し、次いで粗ブタンジオールを精
製して高純度のブタンジオールを製造する方法におい
て、加水分解反応工程及びそれに引き続く水、酢酸と粗
ブタンジオールとの分離工程の組み合わせを少なくとも
二ケ有し、ブタンジオールの精製工程で分離されるモノ
ヒドロキシ酢酸エステルを主体とする留分を加水分解工
程の第2段目の反応器より後の反応器に循環し、且つ加
水分解工程の第1段目の反応器出口液の少なくとも一部
を該第1段目の反応器入口に循環することを特徴とする
ブタンジオールの製造方法。
Claims 1. A diacetoxybutane is hydrolyzed by contacting it with water in the presence of a solid acid catalyst, separating water, acetic acid and crude butanediol, and then purifying the crude butanediol to obtain a high-purity crude butanediol. The method for producing butanediol has at least two combinations of a hydrolysis reaction step and a subsequent separation step of water, acetic acid and crude butanediol, and mainly comprises a monohydroxyacetic acid ester separated in a purification step of butanediol. Is circulated to a reactor after the second stage reactor in the hydrolysis step, and at least a part of the reactor outlet liquid in the first stage in the hydrolysis step is removed from the first stage reactor. A method for producing butanediol, which is circulated to a reactor inlet.
【請求項2】 加水分解工程の第1段目の反応器出口液
の一部を次式を満足させるように該第1段目の反応器入
口に循環することを特徴とする請求項1に記載の方法。 【数1】
2. The method according to claim 1, wherein a part of the liquid at the outlet of the first stage in the hydrolysis step is circulated to the inlet of the first stage so as to satisfy the following equation. The described method. (Equation 1)
JP27255397A 1997-10-06 1997-10-06 Method for producing butanediol Expired - Fee Related JP3956444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27255397A JP3956444B2 (en) 1997-10-06 1997-10-06 Method for producing butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27255397A JP3956444B2 (en) 1997-10-06 1997-10-06 Method for producing butanediol

Publications (2)

Publication Number Publication Date
JPH11116515A true JPH11116515A (en) 1999-04-27
JP3956444B2 JP3956444B2 (en) 2007-08-08

Family

ID=17515517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27255397A Expired - Fee Related JP3956444B2 (en) 1997-10-06 1997-10-06 Method for producing butanediol

Country Status (1)

Country Link
JP (1) JP3956444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555720B1 (en) 2000-04-28 2003-04-29 Mitsubishi Chemical Corporation Method and system for producing 1,4-butanediol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555720B1 (en) 2000-04-28 2003-04-29 Mitsubishi Chemical Corporation Method and system for producing 1,4-butanediol

Also Published As

Publication number Publication date
JP3956444B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
EP0748309A1 (en) Process for the production of cyclohexyladipates and adipic acid
EP1129085B1 (en) Process to afford gamma butyrolactone and tetrahydrofuran
JP2557099B2 (en) Method for separating dimethyl carbonate
KR101659171B1 (en) Method of direct conversion to trans-1,4-cyclohexanedimethanol
JP3991513B2 (en) Method for producing butanediol
JP3956444B2 (en) Method for producing butanediol
JP3959993B2 (en) Method for producing 1,4-butanediol
JP3956442B2 (en) Method for producing butanediol
JPS61238745A (en) Production of allyl alcohol
JP3995313B2 (en) Process for producing 1,2-butanediol and 1,4-butanediol
JP3744097B2 (en) Method for producing 1,4-butanediol
JP3995312B2 (en) Process for simultaneous production of 1,2-butanediol and 1,4-butanediol
US4465853A (en) Method for isomerizing diacetoxybutenes
US4105679A (en) Process for producing a cylic ether from an acetic ester of a 1,4-glycol
JP3336644B2 (en) Method for hydrogenating diacetoxybutene
GB1560694A (en) Process for producing butanediol or butenediol
JP3959793B2 (en) Method for producing butanediol
JP3903513B2 (en) Method for producing diacetoxybutene
US4162268A (en) Process for preparing diacetylbenzene
JP3463326B2 (en) Method for producing 1,4-butanediol and tetrahydrofuran
JP2003089694A (en) Method for purifying tetrahydrofuran
JPS5845409B2 (en) Diol manufacturing method
JPH0140816B2 (en)
CN114436842A (en) Device for continuously producing ester compounds
JP2000001458A (en) Production of methyl methacrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees