JPH11108422A - Method of controlling multi-room air conditioner during change in number of operating room units - Google Patents

Method of controlling multi-room air conditioner during change in number of operating room units

Info

Publication number
JPH11108422A
JPH11108422A JP9267213A JP26721397A JPH11108422A JP H11108422 A JPH11108422 A JP H11108422A JP 9267213 A JP9267213 A JP 9267213A JP 26721397 A JP26721397 A JP 26721397A JP H11108422 A JPH11108422 A JP H11108422A
Authority
JP
Japan
Prior art keywords
indoor
refrigerant
room
amount
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9267213A
Other languages
Japanese (ja)
Other versions
JP3372199B2 (en
Inventor
Kuniyasu Uchiyama
邦泰 内山
Yoshikazu Nishihara
義和 西原
Shinichi Sato
新一 佐藤
Takahiko Ao
孝彦 青
Yoshimasa Ishikawa
宜正 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26721397A priority Critical patent/JP3372199B2/en
Publication of JPH11108422A publication Critical patent/JPH11108422A/en
Application granted granted Critical
Publication of JP3372199B2 publication Critical patent/JP3372199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling multi-room air conditioner during change in the number of operating room units which enables efficiently controlling of the degree of combustion and the circulation quantity of a refrigerant according to a demand load from a room even when the number of the operating room units decreases. SOLUTION: During the heating operation, when the total demand load decreases as caused by a decrease in the number of operating room units (S22), the degree of combustion of a refrigerant heater is initially lowered (S23 and S24). After a specified time passes (S25 and S26), an electric expansion valve corresponding to the room unit receiving a stop signal is controlled in the direction of closing (S27). After another specified time, (S31 and S32), the frequency of a compressor is lowered to bring down the circulation quantity of the refrigerant (S33).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は1台の室外機に複数
台の室内機を接続した多室形空気調和機に関し、さらに
詳しくは、室内機の運転台数減少により室内からの総合
要求負荷が減少した場合の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit, and more specifically, the total required load from indoors is reduced by reducing the number of operating indoor units. It relates to a control method in the case of a decrease.

【0002】[0002]

【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和機が、室外の省スペース性や美
観上の点で一般家庭の消費者にも受け入れられつつあ
る。また、1台の室外機に1台の室内機を接続した1室
形空気調和機を複数組設置するのに比べ、多室形空気調
和機はコストの点でも有利であることから、消費者の需
要も徐々に増大しつつある。
2. Description of the Related Art In recent years, a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit has been increasingly accepted by consumers of general households in terms of space saving and aesthetic appearance. is there. In addition, compared to installing a plurality of sets of one-room type air conditioner in which one indoor unit is connected to one outdoor unit, the multi-room type air conditioner is more advantageous in terms of cost. Demand is also increasing gradually.

【0003】この多室形空気調和機では、各室内機の要
求能力の総和に応じて圧縮機の能力を制御するととも
に、各室内機につながる液管に設けられた流量調整弁の
開度を対応する室内機の要求能力に応じて個別に制御し
ている。
In this multi-room air conditioner, the capacity of the compressor is controlled in accordance with the sum of the required capacity of each indoor unit, and the opening of a flow control valve provided in a liquid pipe connected to each indoor unit is controlled. It is controlled individually according to the required capacity of the corresponding indoor unit.

【0004】しかしながら、このような多室形空気調和
機では、各流量調整弁の開度制御が室内機ごとに分離し
ているため、暖房運転時、しかも各室内機の要求能力に
大きな差がある場合、種々の問題を生じていた。
However, in such a multi-room air conditioner, since the opening control of each flow control valve is separated for each indoor unit, there is a great difference in the required capacity of each indoor unit during the heating operation. In some cases, various problems have arisen.

【0005】例えば、流量調整弁による流量制御が各室
内機の下流側で行われるため、要求能力の小さい室内機
に多量の液冷媒が溜まりやすく、冷凍サイクル全体の冷
媒循環量が不足したり、冷媒循環量の不足により、各電
動膨張弁の開度を制御するだけでは冷媒加熱器における
冷媒過熱度を一定に制御することができないという事態
が生じていた。
For example, since flow control by a flow control valve is performed downstream of each indoor unit, a large amount of liquid refrigerant tends to accumulate in an indoor unit having a small required capacity, and the refrigerant circulation amount of the entire refrigeration cycle becomes insufficient. Due to the shortage of the amount of circulating refrigerant, a situation has arisen in which the degree of superheat of the refrigerant in the refrigerant heater cannot be controlled to a constant level by merely controlling the degree of opening of each electric expansion valve.

【0006】このような事態を解消するため、冷媒加熱
器の加熱量を減少して暖房能力を落としたり、流量調整
弁の最小限界開度を大きくして各室内機の暖房能力比を
大きく取れなくすると空気調和機の仕様が低下するとい
う問題があった。
In order to solve such a situation, the heating capacity of the refrigerant heater is reduced to decrease the heating capacity, or the minimum limit opening of the flow control valve is increased to increase the heating capacity ratio of each indoor unit. If it is eliminated, there is a problem that the specifications of the air conditioner are reduced.

【0007】このような問題点に鑑み、特開平5−26
530号公報は、室内機の暖房要求に大きな差があった
場合でも熱源側室外熱交換器の冷媒過熱度を所定値に保
つように制御して常に適正な暖房能力を確保することが
できる空気調和機を提供している。
In view of such problems, Japanese Patent Application Laid-Open No. Hei 5-26
No. 530 discloses air that can always maintain an appropriate heating capacity by controlling the superheat degree of the refrigerant of the heat source side outdoor heat exchanger to a predetermined value even when there is a large difference in the heating demand of the indoor unit. We provide harmony machines.

【0008】この空気調和機には、ガスバーナ、燃焼用
ファン、比例弁、点火器、火炎検知器等を有する冷媒加
熱器が設けられており、暖房運転時、ガスバーナの燃焼
火炎によって冷媒を加熱する。また、暖房運転時におい
て、要求能力の差が設定値より大きいときに室内機の要
求能力の大きい方に対応する二方弁を開き小さいほうに
対応する二方弁を閉じるとともに、各室内熱交換器に流
入する冷媒の温度が各室内機の要求能力に基づく所定の
関係となるように流量調整弁の開度を制御している。さ
らに、各室内熱交換器での過冷却度が等しくなるように
各電動膨張弁の合計開度を一定に保ちながら各電動膨張
弁の開度を制御している。
This air conditioner is provided with a refrigerant heater having a gas burner, a combustion fan, a proportional valve, an igniter, a flame detector, and the like. During a heating operation, the refrigerant is heated by the combustion flame of the gas burner. . Further, during the heating operation, when the difference in required capacity is larger than the set value, the two-way valve corresponding to the larger required capacity of the indoor unit is opened and the two-way valve corresponding to the smaller required capacity is closed, and each indoor heat exchange is performed. The opening of the flow control valve is controlled such that the temperature of the refrigerant flowing into the chamber has a predetermined relationship based on the required capacity of each indoor unit. Further, the opening degree of each electric expansion valve is controlled while keeping the total opening degree of each electric expansion valve constant so that the degree of supercooling in each indoor heat exchanger becomes equal.

【0009】[0009]

【発明が解決しようとする課題】最近では、経済性の面
で有利な石油冷媒加熱式多室形空気調和機も検討されて
いるが、複数台の室内機を1台の室外機に接続した多室
形空気調和機は使用冷媒量が多く、ガスバーナの燃焼火
炎による冷媒加熱に比べて石油冷媒加熱器の制御は容易
でないという問題がある。特に、加熱量と冷媒循環量の
バランス制御は重要で、多室形空気調和機においては、
冷媒循環量の変動が大きく、加熱量が冷媒循環量より大
きいと冷媒加熱器の温度異常や排熱温度上昇という問題
を惹起する一方、加熱量に比べて冷媒循環量が大きいと
圧縮機の信頼性が低下したり入力上昇という問題が発生
する。
Recently, a petroleum refrigerant heating type multi-room air conditioner which is economically advantageous has been studied, but a plurality of indoor units are connected to one outdoor unit. The multi-chamber air conditioner uses a large amount of refrigerant, and has a problem that it is not easy to control a petroleum refrigerant heater as compared with refrigerant heating by a combustion flame of a gas burner. In particular, balance control of the heating amount and the refrigerant circulation amount is important, and in a multi-room air conditioner,
If the amount of circulation of the refrigerant fluctuates greatly and the amount of heating is larger than the amount of circulation of the refrigerant, the temperature of the refrigerant heater becomes abnormal and the temperature of the exhaust heat increases. There is a problem that the power is reduced or the input is increased.

【0010】また、石油冷媒加熱器の燃焼器にはアルミ
ニウム等の熱容量が大きい材料が使用されており、燃焼
量を大きく変化させても冷媒加熱量の変動が少ないこと
から加熱量の制御が容易ではない。
Further, a material having a large heat capacity such as aluminum is used for a combustor of a petroleum refrigerant heater, and the amount of heating of the refrigerant is small even if the amount of combustion is largely changed, so that the amount of heating can be easily controlled. is not.

【0011】特に、室内機の運転台数が変化すると室内
からの総合要求負荷が大きく変動し、加熱量と冷媒循環
量のバランスが崩れやすいという問題がある。
In particular, when the number of operating indoor units changes, the total required load from indoors greatly fluctuates, and there is a problem that the balance between the amount of heating and the amount of circulating refrigerant is easily lost.

【0012】本発明は、従来技術の有するこのような問
題点に鑑みてなされたものであり、室内機の運転台数が
減少した場合でも室内からの要求負荷に応じた効率の良
い燃焼量及び冷媒循環量の制御が可能な多室形空気調和
機の室内機運転台数変化時の制御方法を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has an efficient combustion amount and refrigerant in accordance with a required load from the room even when the number of operating indoor units is reduced. An object of the present invention is to provide a control method when the number of operating indoor units of a multi-room air conditioner capable of controlling the amount of circulation changes.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1に記載の発明は、容量可変
形圧縮機と四方弁と室外熱交換器と冷媒加熱器とを有す
る1台の室外機と、室内熱交換器を有し並列に接続され
た複数台の室内機とを、上記室外機に設けられ主に冷媒
液が流れる液側主管から分岐した液側分岐管と上記室外
機に設けられ主に冷媒ガスが流れるガス側主管から分岐
したガス側分岐管を介して接続し、弁開度を電気的に制
御可能な電動膨張弁を上記液側分岐管に取り付けるとと
もに、各室内機が設置される室内の温度を任意に設定す
る室内温度設定手段と、室内温度を検出する室内温度検
出手段と、上記室内温度設定手段により設定された温度
と上記室内温度検出手段が検出した室内温度との差温を
算出する差温演算手段と、上記室内機の各々の定格容量
を記憶する定格容量記憶手段と、所定周期毎に上記圧縮
機の周波数と上記冷媒加熱器の目標燃焼量を算出する周
波数・燃焼量演算手段とを有する多室形空気調和機の室
内機運転台数変化時の制御方法であって、暖房運転中に
おける室内機運転台数の減少により室内からの総合要求
負荷が減少した場合、冷媒加熱器の燃焼量をまず低下さ
せ、所定時間経過後、停止信号を受けた室内機に対応す
る電動膨張弁を閉方向に制御し、さらに所定時間経過
後、圧縮機周波数を低下させて冷媒循環量を低下させる
ようにしたことを特徴とする多室形空気調和機の室内機
運転台数変化時の制御方法である。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention comprises a variable displacement compressor, a four-way valve, an outdoor heat exchanger, and a refrigerant heater. A liquid-side branch pipe, which is provided in the outdoor unit and branches from a liquid-side main pipe in which refrigerant liquid mainly flows, in which one outdoor unit and a plurality of indoor units having an indoor heat exchanger are connected in parallel. Connected to the outdoor unit via a gas-side branch pipe branched from a gas-side main pipe through which refrigerant gas mainly flows, and an electric expansion valve capable of electrically controlling the valve opening is attached to the liquid-side branch pipe. Indoor temperature setting means for arbitrarily setting the indoor temperature in which each indoor unit is installed; indoor temperature detecting means for detecting the indoor temperature; and the temperature set by the indoor temperature setting means and the indoor temperature detecting means. Temperature calculation to calculate the temperature difference from the room temperature detected by And a rated capacity storage means for storing the rated capacity of each of the indoor units, and a frequency / burning amount calculating means for calculating a frequency of the compressor and a target burning amount of the refrigerant heater at predetermined intervals. This is a control method when the number of indoor units operating in the multi-room air conditioner changes, and when the total required load from indoors decreases due to a decrease in the number of indoor units operating during the heating operation, the combustion amount of the refrigerant heater is first reduced. After the elapse of a predetermined time, the electric expansion valve corresponding to the indoor unit receiving the stop signal is controlled to close, and after the elapse of the predetermined time, the compressor frequency is lowered to reduce the refrigerant circulation amount. This is a control method when the number of operating indoor units of the multi-room air conditioner changes.

【0014】また、請求項2に記載の発明は、上記電動
膨張弁の閉方向への制御の後、停止信号を受けた室内機
の室内ファンを停止させるようにしたことを特徴とす
る。
The invention according to a second aspect is characterized in that, after the control of the electric expansion valve in the closing direction, the indoor fan of the indoor unit that has received the stop signal is stopped.

【0015】さらに、請求項3に記載の発明は、停止信
号を受けた室内機の室内ファンを停止させるタイミング
を上記冷媒加熱器の熱容量に基づいて決定するようにし
たことを特徴とする。
Further, the invention according to claim 3 is characterized in that the timing for stopping the indoor fan of the indoor unit that has received the stop signal is determined based on the heat capacity of the refrigerant heater.

【0016】また、請求項4に記載の発明は、上記圧縮
機周波数を室内の総合要求負荷に基づいて上記周波数・
燃焼量演算手段により算出した値までステップ状に低下
させて冷媒循環量を減少させるようにしたことを特徴と
する。
Further, according to the present invention, the compressor frequency is calculated based on the total required load in the room.
It is characterized in that the amount of refrigerant circulating is reduced by stepwise decreasing to a value calculated by the combustion amount calculating means.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。図1は、本発明にか
かる多室形空気調和機の冷凍サイクル図の1例であり、
1台の室外機2に複数台(例えば2台)の室内機4a,
4bを接続した場合を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an example of a refrigeration cycle diagram of a multi-room air conditioner according to the present invention,
A plurality of (for example, two) indoor units 4a,
4b is connected.

【0018】図1において、室外機2にはインバータ駆
動の容量(周波数)可変形圧縮機6(以下単に圧縮機と
称す)と、室外熱交換器8と、冷暖房切換用の四方弁1
0とが設けられる一方、室内機4a,4bには室内熱交
換器12a,12bがそれぞれ設けられている。また、
室外機2と室内機4a,4bとは、室外機2内に設けら
れた液側主管14より分岐した液側分岐管16a,16
b及び室外機2内に設けられたガス側主管18より分岐
したガス側分岐管20a,20bとで接続されており、
液側分岐管16a,16bには、例えばステッピングモ
ータ等により弁開度をパルス制御可能な電動膨張弁22
a,22bがそれぞれ介装されている。
In FIG. 1, an outdoor unit 2 includes an inverter-driven variable capacity (frequency) variable compressor 6 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 8, and a four-way valve 1 for switching between cooling and heating.
0, while the indoor units 4a and 4b are provided with indoor heat exchangers 12a and 12b, respectively. Also,
The outdoor unit 2 and the indoor units 4a, 4b are connected to liquid side branch pipes 16a, 16 branched from a liquid side main pipe 14 provided in the outdoor unit 2.
b and the gas-side branch pipes 20a and 20b branched from the gas-side main pipe 18 provided in the outdoor unit 2.
The liquid-side branch pipes 16a and 16b are provided with an electric expansion valve 22 that can pulse-control the valve opening degree by, for example, a stepping motor.
a and 22b are interposed respectively.

【0019】さらに、液側主管14より分岐し、二方弁
24が取り付けられた冷媒加熱用配管26が冷媒加熱器
28に巻回されており、この冷媒加熱用配管26は、圧
縮機6の吸入側に設けられたアキュムレータ30と吸入
管31を介して連通している。冷媒加熱器28近傍に
は、冷媒加熱器28に所定量の燃料油を送給する電磁ポ
ンプ32が設けられており、冷媒加熱器28に燃焼用空
気を送給するバーナモータ34が冷媒加熱器28に隣接
して設けられている。また、室内機4a,4bには各室
内機4a,4bが設置されている部屋の室温を検出する
室内温度センサ36a,36b、及び、居住者が希望す
る運転モード(冷房または暖房)と室温と運転あるいは
停止を設定できる運転設定回路38a,38bが設けら
れている。図中、42,44は逆止弁を、46は補助絞
りを示している。
Further, a refrigerant heating pipe 26 branched from the liquid-side main pipe 14 and having a two-way valve 24 attached thereto is wound around a refrigerant heater 28. It communicates with an accumulator 30 provided on the suction side via a suction pipe 31. An electromagnetic pump 32 for supplying a predetermined amount of fuel oil to the refrigerant heater 28 is provided near the refrigerant heater 28, and a burner motor 34 for supplying combustion air to the refrigerant heater 28 includes a burner motor 34. Are provided adjacent to each other. The indoor units 4a and 4b have room temperature sensors 36a and 36b for detecting the room temperature of the room where the indoor units 4a and 4b are installed, and an operation mode (cooling or heating) desired by the occupant and the room temperature. Operation setting circuits 38a and 38b capable of setting operation or stop are provided. In the figure, reference numerals 42 and 44 denote check valves, and reference numeral 46 denotes an auxiliary throttle.

【0020】上記構成の冷凍サイクルにおいて、冷房
時、圧縮機6から吐出された冷媒は、四方弁10より室
外熱交換器8へと流れて、ここで室外空気と熱交換して
凝縮液化し、次に補助絞り46を通過することにより減
圧されて冷媒は蒸発しやすい状態となり、液側主管14
より液側分岐管16a,16bへと分岐する。電動膨張
弁22a,22bの弁開度は、後述する制御方法でそれ
ぞれの部屋に見合った開度となるように制御されるた
め、冷媒もそれぞれの負荷に応じた流量で低圧となって
室内熱交換器12a,12bへと流れて蒸発した後、ガ
ス側分岐管20a,20bよりガス側主管18、四方弁
10を通過し、アキュムレータ30を介して再び圧縮機
6に吸入される。また、圧縮機周波数は、総合負荷レベ
ルに応じて後述する制御方法で決定される。
In the refrigeration cycle having the above configuration, during cooling, the refrigerant discharged from the compressor 6 flows from the four-way valve 10 to the outdoor heat exchanger 8, where it exchanges heat with outdoor air to condense and liquefy. Next, the refrigerant is reduced in pressure by passing through the auxiliary throttle 46, and the refrigerant is in a state of being easily evaporated, and the liquid side main pipe 14
It branches to the liquid side branch pipes 16a and 16b. The valve openings of the electric expansion valves 22a and 22b are controlled by a control method described later so as to have openings corresponding to the respective rooms, so that the refrigerant also has a low pressure at a flow rate corresponding to each load, and the indoor heat is reduced. After flowing to the exchangers 12a and 12b and evaporating, the gas passes through the gas-side main pipe 18 and the four-way valve 10 from the gas-side branch pipes 20a and 20b, and is sucked into the compressor 6 again through the accumulator 30. The compressor frequency is determined by a control method described later according to the total load level.

【0021】一方、暖房運転がスタートすると、当初二
方弁24は所定時間閉止しているので、逆止弁42から
室外熱交換器8を介して逆止弁44に至る冷媒は圧縮機
6により回収される(冷媒回収サイクル)。冷媒回収サ
イクルが終了すると、二方弁24が開き、圧縮機6から
吐出された高温高圧の冷媒は、四方弁10を通過してガ
ス側主管18よりガス側分岐管20a,20bへと分岐
し、室内熱交換器12a,12bへと流れて凝縮液化
し、液側分岐管16a,16b上の電動膨張弁22a,
22bで減圧されて中間圧となる。電動膨張弁22a,
22bの弁開度は、冷房時と同様に後述する制御方法で
それぞれの部屋の負荷に見合った開度となるように制御
されるため、冷媒もそれぞれの負荷に応じた流量で室内
熱交換器12a,12bを流れる。中間圧となった冷媒
は、液側主管14より冷媒加熱用配管26に導かれ、二
方弁24を介してさらに冷媒加熱器28に導かれる。冷
媒加熱器28は後述する加熱方法で制御されているの
で、冷媒加熱器28により所定の温度に加熱されること
によりガス化した冷媒はアキュムレータ30を介して再
び圧縮機6に吸入される。
On the other hand, when the heating operation is started, since the two-way valve 24 is initially closed for a predetermined time, the refrigerant flowing from the check valve 42 to the check valve 44 via the outdoor heat exchanger 8 is discharged by the compressor 6. Collected (refrigerant recovery cycle). When the refrigerant recovery cycle ends, the two-way valve 24 opens, and the high-temperature and high-pressure refrigerant discharged from the compressor 6 passes through the four-way valve 10 and branches off from the gas-side main pipe 18 to the gas-side branch pipes 20a and 20b. , Flows into the indoor heat exchangers 12a, 12b to condense and liquefy, and the electric expansion valves 22a, 22b on the liquid side branch pipes 16a, 16b.
The pressure is reduced to an intermediate pressure at 22b. Electric expansion valve 22a,
Since the valve opening of the valve 22b is controlled by a control method to be described later in a manner similar to that during cooling so as to be appropriate for the load of each room, the refrigerant is also supplied to the indoor heat exchanger at a flow rate corresponding to each load. It flows through 12a and 12b. The refrigerant having the intermediate pressure is guided from the liquid side main pipe 14 to the refrigerant heating pipe 26, and further guided to the refrigerant heater 28 via the two-way valve 24. Since the refrigerant heater 28 is controlled by a heating method described later, the refrigerant gasified by being heated to a predetermined temperature by the refrigerant heater 28 is sucked into the compressor 6 again through the accumulator 30.

【0022】次に、圧縮機周波数、燃焼量及び電動膨張
弁開度の制御法について説明する。図2は圧縮機周波
数、燃焼量及び電動膨張弁開度の制御の流れを示すブロ
ック図で、図3は室内温度Trと設定温度Tsとの差温
ΔTの温度ゾーン分割図である。
Next, a method for controlling the compressor frequency, the amount of combustion, and the degree of opening of the electric expansion valve will be described. FIG. 2 is a block diagram showing the flow of control of the compressor frequency, the amount of combustion, and the degree of opening of the electric expansion valve, and FIG. 3 is a temperature zone division diagram of the temperature difference ΔT between the room temperature Tr and the set temperature Ts.

【0023】まず、室内機4aにおいて、室内温度セン
サ36aの出力(室内温度)を室内温度検出回路48よ
り温度信号として差温演算回路50に送出し、また設定
判別回路52にて運転設定回路38aで設定された設定
温度及び運転モードを判別して差温演算回路50に送出
して、ここで差温△T(=Tr−Ts)を算出し、図3
に示す周波数No.に変換してこれを差温信号とする。
First, in the indoor unit 4a, the output (indoor temperature) of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 48 to the temperature difference calculating circuit 50 as a temperature signal. The set temperature and the operation mode set in are determined and sent to the differential temperature calculation circuit 50, where the differential temperature ΔT (= Tr−Ts) is calculated.
The frequency No. shown in FIG. Into a differential temperature signal.

【0024】また、ON−OFF判別回路54にて、運
転設定回路38aで設定された室内機4aの運転(O
N)または停止(OFF)を判別する。さらに、定格容
量記憶回路56に室内機4aの定格容量を記憶してお
き、これらの定格容量信号、差温信号、運転モード信
号、ON−OFF判別信号を信号送出回路58より室外
機2の信号受信回路60へ送出する。室内機4bからも
同様の信号が信号受信回路60へ送出される。信号受信
回路60で受信した信号は、圧縮機周波数・燃焼量演算
回路62と膨張弁開度演算回路64へ送出される。ただ
し、異なった運転モード信号が存在する場合、最初に運
転を開始した室内機の運転モードが優先され、異なった
運転モードの室内機は停止しているとみなしてON−O
FF判別信号はOFFを送出する。
In the ON / OFF discriminating circuit 54, the operation of the indoor unit 4a set by the operation setting circuit 38a (O
N) or stop (OFF) is determined. Furthermore, the rated capacity of the indoor unit 4a is stored in the rated capacity storage circuit 56, and the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal are transmitted from the signal transmission circuit 58 to the signal of the outdoor unit 2 The signal is transmitted to the receiving circuit 60. A similar signal is sent from the indoor unit 4b to the signal receiving circuit 60. The signal received by the signal receiving circuit 60 is sent to a compressor frequency / burning amount calculation circuit 62 and an expansion valve opening calculation circuit 64. However, when a different operation mode signal exists, the operation mode of the indoor unit that started operation first has priority, and the indoor unit in the different operation mode is regarded as being stopped and turned ON-O.
The FF discrimination signal sends off.

【0025】圧縮機周波数・燃焼量演算回路62にて室
内機4a,4bのそれぞれの定格容量信号、差温信号、
運転モード信号、ON−OFF判別信号より下記表1に
示す負荷係数テーブル66から負荷レベル係数を読み出
し、この負荷レベル係数の総和に定数を乗じ、さらに補
正値を加えることにより圧縮機6の周波数を決定する。
In the compressor frequency / combustion amount calculation circuit 62, the rated capacity signal, the differential temperature signal,
The load level coefficient is read from the load coefficient table 66 shown in Table 1 below from the operation mode signal and the ON-OFF discrimination signal, the sum of the load level coefficients is multiplied by a constant, and a correction value is further added to make the frequency of the compressor 6 higher. decide.

【表1】 [Table 1]

【0026】詳述すれば、冷房・ドライ運転において
は、2台の室内機4a,4bの差温信号である周波数N
o.からそれぞれの負荷レベル係数Ln1,Ln2を負
荷係数テーブル66から求め、室内側の総合負荷レベル
Lnφを計算で導きだし、その値を圧縮機6の運転周波
数に設定して室外機2に要求される初期設定を行う。
More specifically, in the cooling / dry operation, the frequency N, which is the temperature difference signal between the two indoor units 4a and 4b, is used.
o. , The respective load level coefficients Ln1 and Ln2 are obtained from the load coefficient table 66, the total load level Lnφ on the indoor side is derived by calculation, and the value is set as the operating frequency of the compressor 6 to be required for the outdoor unit 2. Perform initial settings.

【0027】一方、暖房運転においては、2台の室内機
4a,4bの周波数No.からそれぞれの負荷レベル係
数Ln1,Ln2を負荷係数テーブル66から求め、室
内側の総合負荷レベルLnφを計算で導きだし、その値
を室外機2の負荷レベルLnkに設定し、この室外運転
負荷レベルLnkの値を圧縮機6の運転周波数に設定し
て室外機2に要求される初期設定を行う。 A.冷房・ドライ運転の場合の制御計算式 1)1室運転の場合 Lnφ=a1×(Ln1あるいはLn2)+b1 2)2室運転の場合 (i)Ln1+Ln2<34の時 Lnφ=a1×(Ln1+Ln2)+b1 (ii)Ln1+Ln2≧34の時 Lnφ=a2×(Ln1+Ln2)+b2 ただし、a1>a2、b1<b2 上記制御計算式から求められたLnφを圧縮機6の運転
周波数に設定する。 Comp Hz=Lnφ B.暖房運転の場合の制御計算式 1)1室の場合 Lnφ=a3×(Ln1あるいはLn2)+b3 2)2室の場合 Lnφ=a4×(Ln1+Ln2)+b4 ただし、a3>a4、b3<b4
On the other hand, in the heating operation, the frequency Nos. Of the two indoor units 4a and 4b are changed. , The load level coefficients Ln1 and Ln2 are obtained from the load coefficient table 66, a total indoor load level Lnφ is derived by calculation, and the calculated value is set as the load level Lnk of the outdoor unit 2, and the outdoor operation load level Lnk Is set as the operating frequency of the compressor 6 and the initial setting required for the outdoor unit 2 is performed. A. Control calculation formula for cooling / dry operation 1) For one-room operation Lnφ = a1 × (Ln1 or Ln2) + b1 2) For two-room operation (i) When Ln1 + Ln2 <34 Lnφ = a1 × (Ln1 + Ln2) + b1 (Ii) When Ln1 + Ln2 ≧ 34 Lnφ = a2 × (Ln1 + Ln2) + b2 where a1> a2, b1 <b2 Lnφ obtained from the above control formula is set as the operating frequency of the compressor 6. Comp Hz = Lnφ Control calculation formula for heating operation 1) For one room Lnφ = a3 × (Ln1 or Ln2) + b3 2) For two rooms Lnφ = a4 × (Ln1 + Ln2) + b4 where a3> a4, b3 <b4

【0028】上記制御計算式から求められたLnφをL
nkに置き換え、Lnkの値を圧縮機6の運転周波数に
設定する。 Lnk=Lnφ、 Comp Hz=Lnk なお、上記a1〜a4及びb1〜b4は、圧縮機6の容
量、配管径等により決定される実験値である。
Lnφ obtained from the above control formula is expressed by L
nk, and the value of Lnk is set to the operating frequency of the compressor 6. Lnk = Lnφ, Comp Hz = Lnk Note that a1 to a4 and b1 to b4 are experimental values determined by the capacity of the compressor 6, the pipe diameter, and the like.

【0029】図4及び図5は、a1=30/12、b1
=−8、a2=13/12、b2=37、a3=15/
17、b3=0.5、a4=5/13、b4=25.2と
した場合の上記制御計算式をグラフにしたものである。
FIGS. 4 and 5 show that a1 = 30/12, b1
= -8, a2 = 13/12, b2 = 37, a3 = 15 /
17 is a graph showing the above control formula when b3 = 0.5, a4 = 5/13, and b4 = 25.2.

【0030】図4に示されるように、冷房・ドライ運転
時で1室運転の場合の圧縮機6の最小運転周波数は28
Hzに設定するとともに、2室運転の場合の圧縮機6の
最小運転周波数は低周波数保護が動作しない32Hzに
設定する一方、最大運転周波数は98Hzに設定してい
る。
As shown in FIG. 4, the minimum operating frequency of the compressor 6 in the case of the single-chamber operation in the cooling / dry operation is 28
Hz, the minimum operating frequency of the compressor 6 in the case of the two-room operation is set to 32 Hz at which the low frequency protection does not operate, while the maximum operating frequency is set to 98 Hz.

【0031】また、図5に示されるように、暖房運転時
で1室及び2室運転の場合の圧縮機6の最小運転周波数
はそれぞれ20Hz及び41Hzに設定する一方、最大
運転周波数はそれぞれ49Hz及び61Hzに設定して
いる。一例として、室内機4a,4bからの信号が下記
表2の場合について説明する。
As shown in FIG. 5, the minimum operation frequency of the compressor 6 in the one-room and two-room operation during the heating operation is set to 20 Hz and 41 Hz, respectively, while the maximum operation frequency is 49 Hz and 41 Hz, respectively. It is set to 61 Hz. As an example, a case where signals from the indoor units 4a and 4b are as shown in Table 2 below will be described.

【表2】 表1と表2より、室内機4a,4bの負荷レベル係数L
n1,Ln2はそれぞれ34及び31となり、圧縮機6
の周波数Hzは、 Hz=Lnφ=5/13×(34+31)+25.2≒
50 となる。この演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機6の周波数制御を行
う。以後、所定周期毎に室内機4a,4bのそれぞれの
定格容量信号、差温信号、運転モード信号、ON−OF
F判別信号より室外機2の圧縮機周波数・燃焼量演算回
路62で演算を行い、演算結果を必要に応じて補正し、
補正後の値を周波数信号として圧縮機駆動回路に送出し
て圧縮機6の周波数制御を行う。
[Table 2] From Tables 1 and 2, the load level coefficient L of the indoor units 4a and 4b is shown.
n1 and Ln2 become 34 and 31, respectively, and the compressor 6
Is Hz = Lnφ = 5/13 × (34 + 31) +25.2)
50. This calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 6. Thereafter, the rated capacity signal, the differential temperature signal, the operation mode signal, the ON-OF signal of each of the indoor units 4a and 4b at predetermined intervals.
The calculation is performed by the compressor frequency / burning amount calculation circuit 62 of the outdoor unit 2 based on the F determination signal, and the calculation result is corrected as necessary.
The corrected value is sent to the compressor drive circuit as a frequency signal to control the frequency of the compressor 6.

【0032】このように、運転台数に応じて所定の計算
式により圧縮機6の周波数を決定しており、1室運転時
の低周波数運転では、より低い運転周波数で圧縮機6を
運転することで低入力運転が可能となり、総合負荷レベ
ルの増大とともに高い運転周波数で圧縮機6を運転する
ことで配管による圧力損失を考慮してより高い冷媒循環
量を確保し、高効率運転を実現している。また、2室暖
房運転時は、室内要求負荷が1室運転と同じであって
も、冷媒を搬送する配管容積が大きいことから、より高
い周波数で運転する必要がある。ただし、ある点からは
1室運転の配管圧損が非常に大きくなることから、1室
運転の方が圧縮機周波数を大きくとる必要がある。
As described above, the frequency of the compressor 6 is determined by a predetermined formula according to the number of operating units. In low-frequency operation during single-room operation, the compressor 6 is operated at a lower operating frequency. By operating the compressor 6 at a high operating frequency with an increase in the total load level, a higher refrigerant circulation rate is secured in consideration of the pressure loss due to the piping, and high efficiency operation is realized. I have. Further, during the two-room heating operation, even if the required indoor load is the same as the one-room operation, it is necessary to operate at a higher frequency because the piping volume for transporting the refrigerant is large. However, from a certain point, the pipe pressure loss in the single-chamber operation becomes extremely large, so that it is necessary to increase the compressor frequency in the single-chamber operation.

【0033】膨張弁開度演算回路64においても同様
に、室内機4a,4bのそれぞれの定格容量信号、差温
信号、運転モード信号、ON−OFF判別信号より表3
に示される負荷係数テーブル66から負荷レベル係数を
選択し、さらに室内機4a,4bのそれぞれの定格容量
より下記表4に示される定格容量毎の弁初期開度テーブ
ル70から読み出す。なお、弁初期開度は、異なった定
格容量の室内機の組合せでも、各室内機が所定の能力制
御ができるように決定する。
Similarly, in the expansion valve opening calculating circuit 64, the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF discrimination signal of the indoor units 4a and 4b are used as shown in Table 3.
The load level coefficient is selected from the load coefficient table 66 shown in (1), and is read from the valve initial opening degree table 70 for each rated capacity shown in Table 4 below from the rated capacity of each of the indoor units 4a and 4b. Note that the valve initial opening is determined so that each indoor unit can perform predetermined capacity control even with a combination of indoor units having different rated capacities.

【表3】 [Table 3]

【表4】 [Table 4]

【0034】電動膨張弁22a,22bの弁開度は、そ
れぞれの負荷レベル係数に弁初期開度を乗じたものであ
る。 膨張弁開度=P0(負荷レベル係数)×初期パルス
The valve opening of the electric expansion valves 22a and 22b is obtained by multiplying each load level coefficient by the valve initial opening. Expansion valve opening = P0 (load level coefficient) x initial pulse

【0035】圧縮機周波数算出の場合と同様に、室内機
4a,4bからの信号が表2の場合について説明する。
室内機4a,4bの負荷レベル係数はそれぞれ0.95
及び0.85であり、また弁初期開度はそれぞれ180
及び230である。したがって、電動膨張弁22a,2
2bの弁開度は171、219となる(小数点以下第1
位を四捨五入)。この演算結果を膨張弁開度信号として
膨張弁駆動回路(図示せず)に送出する。
The case where the signals from the indoor units 4a and 4b are shown in Table 2 will be described in the same manner as in the case of calculating the compressor frequency.
The load level coefficients of the indoor units 4a and 4b are 0.95 respectively.
And 0.85, and the initial valve opening is 180
And 230. Therefore, the electric expansion valves 22a, 22
The valve opening of 2b is 171 and 219 (first decimal place).
Rounded). This calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal.

【0036】したがって、電動膨張弁22a,22bの
弁開度はそれぞれ171パルス及び219パルスとな
り、以後、所定周期毎に、差温信号、運転モード信号、
ON−OFF判別信号より電動膨張弁22a,22bの
弁開度を算出し、これらの演算結果を必要に応じて補正
した後、膨張弁開度信号として膨張弁駆動回路に送出す
る。
Accordingly, the valve openings of the electric expansion valves 22a and 22b are 171 pulses and 219 pulses, respectively, and thereafter, at predetermined intervals, a temperature difference signal, an operation mode signal,
The valve openings of the electric expansion valves 22a and 22b are calculated from the ON / OFF discrimination signals, and the results of these calculations are corrected as necessary, and then sent to the expansion valve drive circuit as expansion valve opening signals.

【0037】次に、暖房時における燃焼量制御について
多室形空気調和機特有の問題とともに説明する。暖房時
における冷媒加熱器28の冷媒出口温度は、冷媒加熱器
28の温度(燃焼量)と配管を流れる冷媒温度(冷媒循
環量)との関係により温度バランスし、冷媒循環量に比
べ燃焼量が大きいと冷媒出口温度が上昇する一方、冷媒
循環量に比べ燃焼量が小さいと冷媒出口温度が下降す
る。このような現象は、多室形空気調和機においては、
次のような理由により発生する。 ・接続される配管長の変化幅が大きく、配管長の変化に
対する冷媒循環量の変化が大きく、冷媒加熱器の冷媒出
口温度が大きく変化する。 ・封入される冷媒量が多いことから冷媒量の変化も大き
く、運転台数変化時等、特に冷媒循環量が大きく変化す
る。この冷媒循環量変化が冷媒加熱器の温度に微妙な影
響を与える。 ・1室形空気調和機に比べ、最大能力運転による冷凍サ
イクル変化が大きい。また、最小能力運転による微調整
制御を要求され、冷凍サイクル制御時に燃焼量と冷媒循
環量のバランスが崩れやすく、冷媒温度が大きく変化す
る。
Next, the control of the combustion amount during heating will be described together with the problems specific to the multi-room air conditioner. The refrigerant outlet temperature of the refrigerant heater 28 during heating is temperature-balanced by the relationship between the temperature of the refrigerant heater 28 (the amount of combustion) and the temperature of the refrigerant flowing through the pipe (the amount of refrigerant circulation), and the amount of combustion is smaller than the amount of refrigerant circulation. If it is larger, the refrigerant outlet temperature rises, while if the combustion amount is smaller than the refrigerant circulation amount, the refrigerant outlet temperature falls. Such a phenomenon occurs in a multi-room air conditioner.
It occurs for the following reasons. The change width of the connected pipe length is large, the change in the amount of circulating refrigerant with respect to the change in the pipe length is large, and the refrigerant outlet temperature of the refrigerant heater changes significantly. -Since the amount of the refrigerant to be charged is large, the amount of the refrigerant changes greatly, and when the number of operating units changes, the amount of the circulating refrigerant changes largely. This change in the amount of circulating refrigerant has a subtle effect on the temperature of the refrigerant heater.・ Refrigeration cycle changes due to maximum capacity operation are larger than single-room air conditioners. Further, fine adjustment control by minimum capacity operation is required, and the balance between the amount of combustion and the amount of circulating refrigerant is easily lost during refrigeration cycle control, and the temperature of the refrigerant greatly changes.

【0038】また、冷媒出口温度の上昇あるいは下降に
より次のような問題を惹起する可能性がある。 (i)冷媒出口温度が上昇した場合 ・能力の低下(熱交換器の効率低下)。 ・温度上昇が大きくなると、冷媒加熱器及び圧縮機の保
護のため冷媒加熱器及び圧縮機を停止する。その結果、
バーナのON−OFF制御の繰り返しによるヒータある
いはリレーの寿命が短縮したり快適性が悪化する。 ・温度が異常上昇すると、冷凍サイクルのオイルが炭化
し、圧縮機のオイル潤滑が不可能となり圧縮機が故障す
る。また、冷媒加熱器本体のアルミニウム及び加熱器に
巻回された銅管が変形する虞れがある。 ・排気ガスの温度が高くなる。 (ii)冷媒出口温度が低下した場合 ・過熱度の低下に起因する圧縮機の液圧縮(液バック)
による軸摩耗。 ・冷媒加熱器内部に結露が発生し、結露水が硫黄と混じ
り合うことにより硫酸が発生し、アルミ腐食を惹起する
虞れがある。 ・入力上昇。
The following problems may be caused by the rise or fall of the refrigerant outlet temperature. (I) When the outlet temperature of the refrigerant rises ・ The capacity decreases (the efficiency of the heat exchanger decreases). -When the temperature rise becomes large, the refrigerant heater and the compressor are stopped to protect the refrigerant heater and the compressor. as a result,
Repetition of the burner ON-OFF control shortens the life of the heater or the relay or deteriorates the comfort.・ If the temperature rises abnormally, the oil in the refrigeration cycle is carbonized, and oil lubrication of the compressor becomes impossible and the compressor breaks down. Further, there is a possibility that the aluminum of the refrigerant heater body and the copper tube wound around the heater are deformed.・ Exhaust gas temperature rises. (Ii) When the outlet temperature of the refrigerant drops ・ Liquid compression (liquid back) of the compressor due to a decrease in the degree of superheat
Due to shaft wear. -Condensation may occur inside the refrigerant heater, and sulfuric acid may be generated when the dew water mixes with sulfur, which may cause aluminum corrosion.・ Input rise.

【0039】上記問題を回避するため、本発明にかかる
多室形空気調和機においては燃焼量制御を以下のように
行っている。各室内機4a,4bでは、吸い込み温度と
設定温度の差から圧縮機6の周波数No.を設定し、室
外機2へ出力する。室外機2では、各室内機4a,4b
の周波数No.と能力ランクから負荷レベル係数Ln
1,Ln2を導き、総合負荷レベルLnφを算出する。
さらに、算出されたLnφをLnkに置き換え、室外運
転負荷レベルとして、Lnkから燃焼量の目標値(K
値)を次の計算式により算出する。 ・目標値の決定 1)1室運転時の燃焼量 K=−(256−K1max)/(Lnk1max−Lnk1
min)×(Lnk−Lnk1min)+256 2)2室運転時の燃焼量 K=−K2min/(Lnk2max−Lnk2min)×(L
nk−Lnk2min)+K2min
In order to avoid the above problem, in the multi-chamber air conditioner according to the present invention, the combustion amount is controlled as follows. In each of the indoor units 4a and 4b, the frequency No. of the compressor 6 is determined based on the difference between the suction temperature and the set temperature. Is set and output to the outdoor unit 2. In the outdoor unit 2, each indoor unit 4a, 4b
Frequency No. And load level coefficient Ln from ability rank
1 and Ln2 to calculate the total load level Lnφ.
Further, the calculated Lnφ is replaced with Lnk, and the outdoor operation load level is calculated from Lnk to the target value (K
Value) is calculated by the following formula. · Target combustion amount determined 1) 1 room during operation of the value K = - (256-K1 max ) / (Lnk1 max -Lnk1
min ) × (Lnk−Lnk1 min ) +256 2) Combustion amount during two-chamber operation K = −K2 min / (Lnk2 max− Lnk2 min ) × (L
nk−Lnk2 min ) + K2 min

【0040】ここで、K1max、K2min、Lnk
min、Lnk1max、Lnk2min、Lnk2maxは、例
えば次のように決定される。 K1max: 69 K2min: 145 Lnk1min:20 Lnk1max:42 Lnk2min:42 Lnk2max:61
Here, K1 max , K2 min , Lnk
1 min , Lnk1 max , Lnk2 min , Lnk2 max are determined, for example, as follows. K1 max : 69 K2 min : 145 Lnk1 min : 20 Lnk1 max : 42 Lnk2 min : 42 Lnk2 max : 61

【0041】図6は上記制御計算式をグラフにしたもの
であり、冷媒循環量に対応した燃焼量の目標値を、例え
ば図7に示されるように燃焼量となる灯油送油量を考慮
して決定する。すなわち、燃焼量の目標値が計算により
求められると、求められた燃焼量目標値に応じて電磁ポ
ンプ32の周波数及びバーナモータ34の回転数の初期
設定を行い、適切な灯油送油量及び空気量を設定する。
また、各室内機4a,4bの周波数No.から各室内機
4a,4bに連結されている電動膨張弁22a,22b
の初期設定を行うことから、圧縮機周波数の制御は冷房
と同じ制御方式となる。また、燃焼量の決定は、圧縮機
周波数の駆動範囲と同一で、かつ、圧縮機周波数と同一
の初期設定を行うことができる。
FIG. 6 is a graph showing the above-mentioned control formula. The target value of the amount of combustion corresponding to the amount of circulating refrigerant is taken into consideration, for example, as shown in FIG. To decide. That is, when the target value of the combustion amount is obtained by calculation, the frequency of the electromagnetic pump 32 and the rotation speed of the burner motor 34 are initialized according to the obtained target value of the combustion amount, and the appropriate kerosene oil supply amount and air amount are set. Set.
In addition, the frequency No. of each indoor unit 4a, 4b. From the electric expansion valves 22a, 22b connected to the indoor units 4a, 4b
, The compressor frequency is controlled in the same manner as the cooling. Further, the determination of the combustion amount can be made the same as the drive range of the compressor frequency and the same initial setting as the compressor frequency.

【0042】ここで、1室の最高燃焼量と2室の最小燃
焼量との関係は、同じ圧縮機周波数であれば、運転台数
が少ない方が高い燃焼量を出すように設定している。こ
れは、1室運転の方が冷媒循環量に対する配管圧損が大
きく、同一圧縮機周波数であれば、1室運転の方が燃焼
量を高くする必要があるからである。
Here, the relationship between the maximum combustion amount in one chamber and the minimum combustion amount in two chambers is set so that the smaller the number of operating units produces a higher combustion amount at the same compressor frequency. This is because the pipe pressure loss with respect to the refrigerant circulation amount is larger in the single-chamber operation, and if the compressor frequency is the same, the combustion quantity needs to be higher in the single-chamber operation.

【0043】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御するとともに、各部屋毎の負荷
に応じて各電動膨張弁22a,22bの開度を決定する
ため、必要な能力を必要な部屋に配分することができ
る。したがって、冷凍サイクルをきめ細かく最適に制御
しながら、快適性の向上及び省エネルギを図ることがで
きる。
As described above, the compressor frequency is controlled in accordance with the total required capacity of each room, and the opening of each of the electric expansion valves 22a and 22b is determined in accordance with the load in each room. The ability can be allocated to the required rooms. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle.

【0044】次に、室内機4a,4bのうち1台が当初
暖房運転されており、その後別の1台が暖房運転された
場合の運転台数変化制御について図8のフローチャート
及び図9のタイミングチャートを参照して説明する。
Next, the change control of the number of operating units in the case where one of the indoor units 4a and 4b is initially in the heating operation and then the other is in the heating operation will be described with reference to the flowchart of FIG. 8 and the timing chart of FIG. This will be described with reference to FIG.

【0045】室内機4a,4bが設置されている部屋を
A室及びB室とし、A室の室内機4aのみが暖房運転中
にB室の室内機4bの暖房運転をスタートし、スタート
直後にB室に対応する電動膨張弁22bを開制御する
と、A室の室内機4aのみならずB室の室内機4bにも
冷媒が流れだし、冷媒加熱器28を流れる冷媒量が減少
する。その結果、加熱量と冷媒循環量のバランスが崩れ
冷媒加熱器28の冷媒出口温度が異常上昇する可能性が
ある。
The rooms in which the indoor units 4a and 4b are installed are designated as room A and room B, and only the indoor unit 4a in room A starts the heating operation of the indoor unit 4b in room B during the heating operation. When the electric expansion valve 22b corresponding to the room B is controlled to open, the refrigerant starts to flow not only into the indoor unit 4a in the room A but also into the indoor unit 4b in the room B, and the amount of the refrigerant flowing through the refrigerant heater 28 decreases. As a result, the balance between the heating amount and the refrigerant circulation amount may be lost, and the refrigerant outlet temperature of the refrigerant heater 28 may abnormally increase.

【0046】このような冷媒温度の異常上昇を回避する
ため、A室の暖房運転時(ステップS1)、B室の室内
機4bの運転信号を受信すると(ステップS2)、室内
機4bの室内ファンを作動させる(ステップS3)とと
もに、圧縮機周波数を徐々に増加させることにより高周
波数61Hzかあるいは室内の要求負荷から決定される
値に制御して(ステップS4)冷媒循環量をまず増加さ
せる。また、運転信号受信時からの経過時間T1をカウ
ントしておき、T1が所定時間(例えば30秒)に達す
ると(ステップS5及びS6)、室内機4bに対応する
電動膨張弁22bを開制御する(ステップS7)ととも
に、電磁ポンプ32の周波数及びバーナモータ34の回
転数を徐々に増加させる(ステップS8及びS9)こと
により冷媒加熱器28の燃焼量を徐々に上昇させる。な
お、冷媒温度が異常上昇しないよう電磁ポンプ32の周
波数及びバーナモータ34の回転数の増加率は圧縮機6
の周波数の増加率より小さく設定している。また、燃焼
量は電動膨張弁22bの開制御と同時か、あるいは、多
少遅延して上昇させてもよいが、電動膨張弁22bの開
制御よりも前に上昇させると、やはり冷媒加熱器28の
冷媒出口温度が異常上昇する危険性がある。
In order to avoid such an abnormal rise in the refrigerant temperature, when the operation signal of the indoor unit 4b in the room B is received during the heating operation of the room A (step S1) (step S2), the indoor fan of the indoor unit 4b is (Step S3) and gradually increasing the compressor frequency to control the high frequency to 61 Hz or to a value determined from the required load in the room (Step S4) to increase the refrigerant circulation amount first. In addition, the elapsed time T1 from the reception of the operation signal is counted, and when T1 reaches a predetermined time (for example, 30 seconds) (steps S5 and S6), the electric expansion valve 22b corresponding to the indoor unit 4b is opened. At the same time (step S7), the combustion amount of the refrigerant heater 28 is gradually increased by gradually increasing the frequency of the electromagnetic pump 32 and the rotation speed of the burner motor 34 (steps S8 and S9). The frequency of the electromagnetic pump 32 and the rate of increase in the number of revolutions of the burner motor 34 are controlled so that the refrigerant temperature does not rise abnormally.
Is set smaller than the rate of increase of the frequency. The amount of combustion may be increased at the same time as or slightly after the opening control of the electric expansion valve 22b. However, if the amount of combustion is increased before the opening control of the electric expansion valve 22b, the amount of combustion of the refrigerant heater 28 is also increased. There is a risk that the refrigerant outlet temperature will rise abnormally.

【0047】さらに、運転信号受信時からの経過時間T
2が所定時間(例えば180秒)に達すると(ステップ
S10及びS11)、圧縮機周波数を室内の要求負荷か
ら決定される値までステップ状に減少させる。
Further, the elapsed time T from the reception of the operation signal is
When 2 reaches a predetermined time (for example, 180 seconds) (steps S10 and S11), the compressor frequency is reduced stepwise to a value determined from the required load in the room.

【0048】なお、図8のフローチャート及び図9のタ
イミングチャートにおいて、圧縮機周波数の上昇と室内
ファンの作動とを同時に行うようにしたが、圧縮機周波
数の上昇タイミングより所定時間経過後室内ファンを作
動させるようにすることもできる。また、冷媒加熱器2
8の燃焼量を徐々に上昇させるようにしたが、燃焼量を
ステップ状に上昇させてもよく、この場合、燃焼量の平
均上昇率(増加率)を圧縮機周波数の増加率より小さく
すればよい。
In the flowchart of FIG. 8 and the timing chart of FIG. 9, the compressor frequency is increased and the operation of the indoor fan is performed at the same time. It can also be activated. In addition, the refrigerant heater 2
Although the combustion amount is gradually increased, the combustion amount may be increased stepwise. In this case, if the average increase rate (increase rate) of the combustion amount is smaller than the increase rate of the compressor frequency, Good.

【0049】次に、A室とB室の室内機4a,4bが共
に暖房運転中に、B室の室内機4bが停止した場合の運
転台数変化制御について図10のフローチャート及び図
11のタイミングチャートを参照して説明する。
Next, the number of operating units change control when the indoor unit 4b in the room B is stopped while both the indoor units 4a and 4b in the room A and the room B are performing the heating operation is shown in the flowchart of FIG. 10 and the timing chart of FIG. This will be described with reference to FIG.

【0050】A室及びB室の2室暖房運転時(ステップ
S21)、室内機4bの停止信号を受信すると(ステッ
プS22)、電磁ポンプ32の周波数及びバーナモータ
34の回転数を徐々に低下させることにより冷媒加熱器
28の燃焼量が低下するよう制御する(ステップS23
及びS24)。また、室内機4bの停止信号受信時から
の経過時間T1をカウントしておき、T1が所定時間
(例えば60秒)に達すると(ステップS25及びS2
6)、室内機4bに対応する電動膨張弁22bの開度を
閉方向に制御する(ステップS27)。
During the heating operation of the two rooms A and B (step S21), when the stop signal of the indoor unit 4b is received (step S22), the frequency of the electromagnetic pump 32 and the rotation speed of the burner motor 34 are gradually reduced. Is controlled so that the combustion amount of the refrigerant heater 28 decreases (step S23).
And S24). The elapsed time T1 from the reception of the stop signal of the indoor unit 4b is counted, and when T1 reaches a predetermined time (for example, 60 seconds) (steps S25 and S2).
6) The opening degree of the electric expansion valve 22b corresponding to the indoor unit 4b is controlled in the closing direction (Step S27).

【0051】さらに、停止信号受信時からの経過時間T
2が所定時間(例えば90秒)に達すると(ステップS
28及びS29)、室内機4bの室内ファンを停止させ
(ステップS30)、停止信号受信時からの経過時間T
3が所定時間(例えば210秒)に達すると(ステップ
S31及びS32)、圧縮機周波数を室内の総合要求負
荷に基づいて圧縮機周波数・燃焼量演算回路62により
算出した値までステップ状に低下させて冷媒循環量を減
少させることにより加熱量と冷媒循環量とのバランスを
とり、冷媒加熱器28の冷媒出口温度の異常を回避す
る。
Further, an elapsed time T from when the stop signal is received
2 reaches a predetermined time (for example, 90 seconds) (step S
28 and S29), the indoor fan of the indoor unit 4b is stopped (step S30), and the elapsed time T from the reception of the stop signal is received.
3 reaches a predetermined time (for example, 210 seconds) (steps S31 and S32), the compressor frequency is reduced stepwise to a value calculated by the compressor frequency / burning amount calculation circuit 62 based on the total required load in the room. By reducing the amount of circulating refrigerant, the amount of heating and the amount of circulating refrigerant are balanced to avoid an abnormality in the refrigerant outlet temperature of the refrigerant heater 28.

【0052】なお、室内ファン停止の遅延時間は燃焼器
の熱容量に依存し、燃焼器の熱容量が大きければ遅延時
間を長くする必要がある。
The delay time of stopping the indoor fan depends on the heat capacity of the combustor. If the heat capacity of the combustor is large, it is necessary to lengthen the delay time.

【0053】図12乃至図15は、本発明にかかる多室
形空気調和機において、運転台数が変化した場合の種々
のデータを示すグラフであり、図12及び図13は1室
運転から2室運転に切り替わった場合を、図14及び図
15は2室運転から1室運転に切り替わった場合を示し
ている。
FIGS. 12 to 15 are graphs showing various data when the number of operating units changes in the multi-room air conditioner according to the present invention. FIGS. FIGS. 14 and 15 show a case where the operation is switched to the operation, and a case where the operation is switched from the two-room operation to the one-room operation.

【0054】さらに詳述すると、図12は、定格容量
3.2kwの室内機が作動中に定格容量2.2kwの別の
室内機が作動した場合を示しており、圧縮機周波数、燃
焼量の目標値(K値)等の諸元は次のように変化してい
る。 2.2kw:ON、3.2kw風量:Hi、圧縮機周波
数:36→61Hz 2.2kw弁開度:80→350、燃焼量(K値):
98→80 圧縮機周波数:61→54Hz
More specifically, FIG. 12 shows a case where another indoor unit having a rated capacity of 2.2 kW operates while an indoor unit having a rated capacity of 3.2 kW is operating. The specifications such as the target value (K value) change as follows. 2.2 kw: ON, 3.2 kw Air flow: Hi, Compressor frequency: 36 → 61 Hz 2.2 kW valve opening: 80 → 350, Combustion amount (K value):
98 → 80 Compressor frequency: 61 → 54Hz

【0055】図12に示されるように、1室運転から2
室運転に切り替わったことで、冷媒循環量に影響を与え
る圧縮機出口の高圧はからにかけて大きく変化(減
少)しているが、圧縮機周波数を61Hzまで増加させ
るとともに、多少遅延して新たに始動した室内機に対応
する電動膨張弁を開制御する一方、電磁ポンプの周波数
を徐々に増加して燃焼量を上昇させているので、冷媒循
環量と燃焼量とのバランスが大きく崩れることもなく、
圧縮機の吸入温度(冷媒加熱器の出口温度)及び吐出温
度は多少低下しているものの極端な低下は見られない。
As shown in FIG.
By switching to the indoor operation, the high pressure at the compressor outlet, which affects the amount of circulating refrigerant, has changed (decreased) significantly from now on. However, the compressor frequency is increased to 61 Hz, and a new start is performed with a slight delay. Open control of the electric expansion valve corresponding to the indoor unit was performed, while the frequency of the electromagnetic pump was gradually increased to increase the combustion amount, so that the balance between the refrigerant circulation amount and the combustion amount was not significantly disrupted,
Although the suction temperature (outlet temperature of the refrigerant heater) and the discharge temperature of the compressor are slightly reduced, no extreme reduction is observed.

【0056】また、図13は、定格容量2.2kwの室
内機が作動中に定格容量3.2kwの別の室内機が作動
した場合を示しており、圧縮機周波数、燃焼量の目標値
(K値)等の諸元は次のように変化している。 3.2kw:ON、圧縮機周波数:24→61Hz 3.2kw弁開度:80→480 〜燃焼量(K値):40までステップ状に減少
FIG. 13 shows a case where another indoor unit having a rated capacity of 3.2 kW operates while an indoor unit having a rated capacity of 2.2 kW is operating. The specifications such as K value) change as follows. 3.2kw: ON, compressor frequency: 24 → 61Hz 3.2kw valve opening: 80 → 480-Combustion amount (K value): stepwise reduced to 40

【0057】図13に示されるように、電磁ポンプの周
波数がステップ状に増加することにより燃焼量が大きく
変化しているが、電磁ポンプ周波数の増加の前に圧縮機
周波数を61Hzまで増加させた後、新たに始動した室
内機に対応する電動膨張弁を開制御しているので、高圧
は大きく変動せず、吸入温度及び吐出温度も極端には変
動していない。
As shown in FIG. 13, although the combustion amount greatly changes due to the stepwise increase in the frequency of the electromagnetic pump, the compressor frequency was increased to 61 Hz before the increase in the electromagnetic pump frequency. Thereafter, since the opening of the electric expansion valve corresponding to the newly started indoor unit is controlled, the high pressure does not fluctuate greatly, and the suction temperature and the discharge temperature do not fluctuate extremely.

【0058】図14は、定格容量2.2kwと3.2kw
の2台の室内機が作動中に定格容量2.2kwの室内機
が停止した場合を示しており、圧縮機周波数、燃焼量の
目標値(K値)等の諸元は次のように変化している。 燃焼量(K値):80→98 2.2kw弁開度:350→80 2.2kw:OFF、3.2kw風量:Lo 圧縮機周波数:48→42Hz
FIG. 14 shows the rated capacity of 2.2 kw and 3.2 kw.
Shows the case where the indoor unit with the rated capacity of 2.2 kW is stopped while the two indoor units are operating, and the specifications such as the compressor frequency and the target value (K value) of the combustion amount change as follows doing. Combustion amount (K value): 80 → 98 2.2 kw Valve opening: 350 → 80 2.2 kW: OFF, 3.2 kw Air flow: Lo Compressor frequency: 48 → 42 Hz

【0059】図14からわかるように、高圧の変動は大
きいが、図11のタイミングチャートに基づいて各機器
を制御することにより、吸入温度及び吐出温度の急激な
変動が抑制されている。
As can be seen from FIG. 14, the fluctuation of the high pressure is large, but by controlling each device based on the timing chart of FIG. 11, the rapid fluctuation of the suction temperature and the discharge temperature is suppressed.

【0060】図15は、定格容量2.2kwと3.2kw
の2台の室内機が作動中に定格容量3.2kwの室内機
が停止した場合を示しており、圧縮機周波数、燃焼量の
目標値(K値)等の諸元は次のように変化している。 燃焼量(K値):40→最大値 3.2kw弁開度:480→80 3.2kw:OFF 圧縮機周波数:58→52Hz
FIG. 15 shows the rated capacities of 2.2 kw and 3.2 kw.
Shows the case where an indoor unit with a rated capacity of 3.2 kW is stopped while the two indoor units are operating, and the specifications such as the compressor frequency and the target value (K value) of the combustion amount change as follows doing. Combustion amount (K value): 40 → maximum value 3.2 kw Valve opening: 480 → 80 3.2 kw: OFF Compressor frequency: 58 → 52 Hz

【0061】この場合は電磁ポンプの周波数が減少した
ことにより燃焼量の変動が大きいが、図11のタイミン
グチャートに基づいた制御を行うことにより、高圧、吸
入温度及び吐出温度の急激な変動が抑制されている。
In this case, the fluctuation of the combustion amount is large due to the decrease in the frequency of the electromagnetic pump, but the control based on the timing chart of FIG. 11 suppresses the rapid fluctuation of the high pressure, the suction temperature and the discharge temperature. Have been.

【0062】なお、上記実施形態は、1台の室外機に2
台の室内機を接続した場合を例にとり説明したが、本発
明の多室形空気調和機における室内機の台数は必ずしも
2台に限定されるものではなく、室内機が3台以上の場
合でも同様の考え方に基づいて略同じ制御方式によりシ
ステムを制御することができる。
In the above embodiment, two outdoor units are used.
Although the case where two indoor units are connected has been described as an example, the number of indoor units in the multi-room air conditioner of the present invention is not necessarily limited to two, and even when three or more indoor units are used. The system can be controlled by substantially the same control method based on the same concept.

【0063】[0063]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。本
発明のうちで請求項1に記載の発明によれば、暖房運転
中における室内機運転台数の減少により室内からの総合
要求負荷が減少した場合、冷媒加熱器の燃焼量をまず低
下させ、所定時間経過後、停止信号を受けた室内機に対
応する電動膨張弁を閉方向に制御し、さらに所定時間経
過後、圧縮機周波数を低下させて冷媒循環量を低下させ
るようにしたので、加熱量<冷媒循環による吸熱量(冷
却量)の関係を維持することができる。
Since the present invention is configured as described above, it has the following effects. According to the first aspect of the present invention, when the total required load from indoors decreases due to a decrease in the number of operating indoor units during the heating operation, the combustion amount of the refrigerant heater is first reduced, and After a lapse of time, the electric expansion valve corresponding to the indoor unit that received the stop signal is controlled to close, and after a lapse of a predetermined time, the compressor frequency is reduced to reduce the refrigerant circulation amount. <The relationship between the amount of heat absorbed by the refrigerant circulation (the amount of cooling) can be maintained.

【0064】また、電動膨張弁の閉制御に伴う冷媒循環
量の減少による冷媒加熱器の温度上昇を少なくするため
に、電動膨張弁の閉制御の冷凍サイクルへの影響が安定
してから圧縮機周波数を低下させるようにしたので、冷
媒加熱器の異常温度上昇を防止することができる。
Further, in order to reduce the rise in the temperature of the refrigerant heater due to a decrease in the amount of circulating refrigerant due to the closing control of the electric expansion valve, the effect of the closing control of the electric expansion valve on the refrigeration cycle must be stabilized before the compressor. Since the frequency is reduced, it is possible to prevent an abnormal temperature rise of the refrigerant heater.

【0065】さらに、燃焼量を低下させた後電動膨張弁
を閉方向に制御することで、燃焼量の低下による加熱量
と冷媒循環による吸熱量(冷却量)の熱量バランスが安
定してから電動膨張弁を閉制御することとなり、冷媒加
熱器の温度上昇を防止することができる。
Further, by controlling the electric expansion valve in the closing direction after reducing the amount of combustion, the electric amount is controlled after the balance between the amount of heat due to the decrease in the amount of combustion and the amount of heat absorbed (cooling) by the circulation of the refrigerant is stabilized. By controlling the expansion valve to be closed, it is possible to prevent the temperature of the refrigerant heater from rising.

【0066】また、請求項2に記載の発明によれば、電
動膨張弁の閉方向への制御の後、停止信号を受けた室内
機の室内ファンを停止させるようにしたので、燃焼量の
低下に起因する加熱量変化の冷凍サイクルへの影響及び
電動膨張弁の閉制御の冷凍サイクルへの影響を安定させ
た後に、室内ファンを停止させることで高圧上昇を抑制
することができる。これは、燃焼量を低下させても冷媒
加熱器の熱容量が大きいことから温度がすぐに低下せ
ず、冷凍サイクルは冷媒加熱器から熱量をもらうことに
なるから、放熱させる室内ファンを早く停止すると放熱
不足になり高圧が上昇する虞れがあるからである。
According to the second aspect of the invention, after the control of the electric expansion valve in the closing direction, the indoor fan of the indoor unit which has received the stop signal is stopped, so that the combustion amount is reduced. After stabilizing the effect of the change in the amount of heating caused by the change on the refrigeration cycle and the effect of the closing control of the electric expansion valve on the refrigeration cycle, the increase in the high pressure can be suppressed by stopping the indoor fan. This is because even if the amount of combustion is reduced, the temperature does not immediately decrease because the heat capacity of the refrigerant heater is large, and the refrigeration cycle receives heat from the refrigerant heater. This is because heat radiation may be insufficient and the high pressure may increase.

【0067】さらに、請求項3に記載の発明によれば、
停止信号を受けた室内機の室内ファンを停止させるタイ
ミングを冷媒加熱器の熱容量に基づいて決定するように
したので、放熱不足による高圧の上昇を防止することが
できる。
Further, according to the third aspect of the present invention,
Since the timing for stopping the indoor fan of the indoor unit that has received the stop signal is determined based on the heat capacity of the refrigerant heater, it is possible to prevent an increase in high pressure due to insufficient heat radiation.

【0068】また、請求項4に記載の発明によれば、圧
縮機周波数を室内の総合要求負荷に基づいて周波数・燃
焼量演算手段により算出した値までステップ状に低下さ
せて冷媒循環量を減少させるようにしたので、加熱量と
冷媒循環による吸熱量(冷却量)の熱量バランスが崩れ
ることがない。
According to the fourth aspect of the present invention, the compressor frequency is reduced stepwise to a value calculated by the frequency / combustion amount calculation means based on the total required load in the room, thereby reducing the refrigerant circulation amount. As a result, the heat quantity balance between the heat quantity and the heat absorption quantity (cooling quantity) due to the circulation of the refrigerant is not broken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる多室形空気調和機の冷凍サイ
クルの構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle of a multi-room air conditioner according to the present invention.

【図2】 図1の多室形空気調和機における圧縮機周波
数、燃焼量及び電動膨張弁開度の制御ブロック図であ
る。
FIG. 2 is a control block diagram of a compressor frequency, a combustion amount, and an electric expansion valve opening degree in the multi-chamber air conditioner of FIG.

【図3】 室内温度と設定温度との差温の温度ゾーン分
割図である。
FIG. 3 is a temperature zone division diagram of a temperature difference between a room temperature and a set temperature.

【図4】 冷房・ドライ運転時の圧縮機周波数の決定に
使用される制御計算式の1例を示すグラフである。
FIG. 4 is a graph showing one example of a control calculation formula used for determining a compressor frequency during a cooling / dry operation.

【図5】 暖房運転時の圧縮機周波数の決定に使用され
る制御計算式の1例を示すグラフである。
FIG. 5 is a graph showing an example of a control calculation formula used for determining a compressor frequency during a heating operation.

【図6】 暖房運転時の燃焼量の目標値の決定に使用さ
れる制御計算式の1例を示すグラフである。
FIG. 6 is a graph showing an example of a control calculation formula used for determining a target value of a combustion amount during a heating operation.

【図7】 図6のグラフより決定された燃焼量の目標値
と灯油送油量との関係を示すグラフである。
7 is a graph showing a relationship between a target value of the amount of combustion determined from the graph of FIG. 6 and an amount of kerosene supplied.

【図8】 暖房運転時、1室運転より2室運転に運転台
数が変化した場合の制御を示すフローチャートである。
FIG. 8 is a flowchart showing control when the number of operating units changes from one-room operation to two-room operation during the heating operation.

【図9】 暖房運転時、1室運転より2室運転に運転台
数が変化した場合の制御を示すタイミングチャートであ
る。
FIG. 9 is a timing chart showing control when the number of operating units changes from one-room operation to two-room operation during the heating operation.

【図10】 暖房運転時、2室運転より1室運転に運転
台数が変化した場合の制御を示すフローチャートであ
る。
FIG. 10 is a flowchart illustrating control when the number of operating units changes from the two-room operation to the one-room operation during the heating operation.

【図11】 暖房運転時、2室運転より1室運転に運転
台数が変化した場合の制御を示すタイミングチャートで
ある。
FIG. 11 is a timing chart showing control when the number of operating units changes from two-room operation to one-room operation during the heating operation.

【図12】 1室運転から2室運転に切り替わり高圧変
化が大きい場合の種々のデータを示すグラフである。
FIG. 12 is a graph showing various data when switching from single-chamber operation to double-chamber operation and a high pressure change is large.

【図13】 1室運転から2室運転に切り替わり燃焼量
変化が大きい場合の種々のデータを示すグラフである。
FIG. 13 is a graph showing various data when switching from single-chamber operation to double-chamber operation and a large change in the amount of combustion.

【図14】 2室運転から1室運転に切り替わり高圧変
化が大きい場合の種々のデータを示すグラフである。
FIG. 14 is a graph showing various data when switching from two-chamber operation to single-chamber operation and a high pressure change is large.

【図15】 2室運転から1室運転に切り替わり燃焼量
変化が大きい場合の種々のデータを示すグラフである。
FIG. 15 is a graph showing various data when switching from two-chamber operation to single-chamber operation and a large change in the amount of combustion.

【符号の説明】[Explanation of symbols]

2 室外機 4a,4b 室内機 6 圧縮機 8 室外熱交換器 10 四方弁 12a,12b 室内熱交換器 14 液側主管 16a,16b 液側分岐管 18 ガス側主管 20a,20b ガス側分岐管 22a,22b 電動膨張弁 28 冷媒加熱器 32 電磁ポンプ 34 バーナモータ 36a,36b 室内温度センサ 38a,38b 運転設定回路 48 室内温度検出回路 50 差温演算回路 52 設定判別回路 54 ON−OFF判別回路 56 定格容量記憶回路 62 圧縮機周波数・燃焼量演算回路 64 膨張弁開度演算回路 66 負荷係数テーブル 70 弁初期開度テーブル 2 outdoor unit 4a, 4b indoor unit 6 compressor 8 outdoor heat exchanger 10 four-way valve 12a, 12b indoor heat exchanger 14 liquid side main pipe 16a, 16b liquid side branch pipe 18 gas side main pipe 20a, 20b gas side branch pipe 22a, 22b Electric expansion valve 28 Refrigerant heater 32 Electromagnetic pump 34 Burner motor 36a, 36b Indoor temperature sensor 38a, 38b Operation setting circuit 48 Indoor temperature detecting circuit 50 Differential temperature calculating circuit 52 Setting determining circuit 54 ON-OFF determining circuit 56 Rated capacity storage circuit 62 Compressor frequency / combustion amount calculation circuit 64 Expansion valve opening calculation circuit 66 Load coefficient table 70 Valve initial opening table

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青 孝彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石川 宜正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takahiko Ao 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 容量可変形圧縮機と四方弁と室外熱交換
器と冷媒加熱器とを有する1台の室外機と、室内熱交換
器を有し並列に接続された複数台の室内機とを、上記室
外機に設けられ主に冷媒液が流れる液側主管から分岐し
た液側分岐管と上記室外機に設けられ主に冷媒ガスが流
れるガス側主管から分岐したガス側分岐管を介して接続
し、弁開度を電気的に制御可能な電動膨張弁を上記液側
分岐管に取り付けるとともに、各室内機が設置される室
内の温度を任意に設定する室内温度設定手段と、室内温
度を検出する室内温度検出手段と、上記室内温度設定手
段により設定された温度と上記室内温度検出手段が検出
した室内温度との差温を算出する差温演算手段と、上記
室内機の各々の定格容量を記憶する定格容量記憶手段
と、所定周期毎に上記圧縮機の周波数と上記冷媒加熱器
の目標燃焼量を算出する周波数・燃焼量演算手段とを有
する多室形空気調和機の室内機運転台数変化時の制御方
法であって、 暖房運転中における室内機運転台数の減少により室内か
らの総合要求負荷が減少した場合、冷媒加熱器の燃焼量
をまず低下させ、所定時間経過後、停止信号を受けた室
内機に対応する電動膨張弁を閉方向に制御し、さらに所
定時間経過後、圧縮機周波数を低下させて冷媒循環量を
低下させるようにしたことを特徴とする多室形空気調和
機の室内機運転台数変化時の制御方法。
1. An outdoor unit having a variable displacement compressor, a four-way valve, an outdoor heat exchanger and a refrigerant heater, and a plurality of indoor units having an indoor heat exchanger and connected in parallel. Through a liquid-side branch pipe provided in the outdoor unit and branching off from a liquid-side main pipe through which refrigerant liquid mainly flows and a gas-side branch pipe provided in the outdoor unit and branching off from a gas-side main pipe through which refrigerant gas mainly flows. Attached to the liquid-side branch pipe is an electrically-operated expansion valve that can be electrically connected to and controlled the valve opening degree, and an indoor temperature setting means for arbitrarily setting the temperature of the room in which each indoor unit is installed; Indoor temperature detecting means for detecting, a temperature difference calculating means for calculating a temperature difference between the temperature set by the indoor temperature setting means and the indoor temperature detected by the indoor temperature detecting means, and a rated capacity of each of the indoor units Rated capacity storage means for storing A control method when the number of operating indoor units of a multi-room air conditioner has a frequency of a compressor and a frequency / burning amount calculating means for calculating a target burning amount of the refrigerant heater, wherein the indoor unit during a heating operation is changed. When the total required load from the room decreases due to the decrease in the number of operating units, the combustion amount of the refrigerant heater is first reduced, and after a predetermined time has elapsed, the electric expansion valve corresponding to the indoor unit that received the stop signal is closed. A method of controlling the number of operating indoor units of the multi-room air conditioner, wherein, after a predetermined time has passed, the compressor frequency is reduced to reduce the refrigerant circulation amount.
【請求項2】 上記電動膨張弁の閉方向への制御の後、
停止信号を受けた室内機の室内ファンを停止させるよう
にした請求項1に記載の多室形空気調和機の室内機運転
台数変化時の制御方法。
2. After the control of the electric expansion valve in the closing direction,
The control method according to claim 1, wherein the indoor fan of the indoor unit that has received the stop signal is stopped when the number of operating indoor units of the multi-room air conditioner changes.
【請求項3】 停止信号を受けた室内機の室内ファンを
停止させるタイミングを上記冷媒加熱器の熱容量に基づ
いて決定するようにした請求項1あるいは2に記載の多
室形空気調和機の室内機運転台数変化時の制御方法。
3. The indoor of a multi-room air conditioner according to claim 1, wherein a timing for stopping the indoor fan of the indoor unit that has received the stop signal is determined based on a heat capacity of the refrigerant heater. Control method when the number of operating machines changes.
【請求項4】 上記圧縮機周波数を室内の総合要求負荷
に基づいて上記周波数・燃焼量演算手段により算出した
値までステップ状に低下させて冷媒循環量を減少させる
ようにした請求項1乃至3のいずれか1項に記載の多室
形空気調和機の室内機運転台数変化時の制御方法。
4. The refrigerant circulation amount is reduced by stepwise decreasing the compressor frequency to a value calculated by the frequency / burning amount calculation means based on the total required load in the room. The control method when the number of operating indoor units of the multi-room air conditioner according to any one of the above, changes.
JP26721397A 1997-09-30 1997-09-30 Control method when the number of indoor units operating changes in multi-room air conditioner Expired - Fee Related JP3372199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26721397A JP3372199B2 (en) 1997-09-30 1997-09-30 Control method when the number of indoor units operating changes in multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26721397A JP3372199B2 (en) 1997-09-30 1997-09-30 Control method when the number of indoor units operating changes in multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH11108422A true JPH11108422A (en) 1999-04-23
JP3372199B2 JP3372199B2 (en) 2003-01-27

Family

ID=17441718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26721397A Expired - Fee Related JP3372199B2 (en) 1997-09-30 1997-09-30 Control method when the number of indoor units operating changes in multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP3372199B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277097A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
WO2010076847A1 (en) * 2008-12-29 2010-07-08 ダイキン工業株式会社 Air-conditioning device and control method therefor
CN107449078A (en) * 2017-07-26 2017-12-08 美的集团武汉制冷设备有限公司 Air-conditioning system, the control device of air-conditioning system and method
CN110542192A (en) * 2019-09-12 2019-12-06 广东美的制冷设备有限公司 Operation control method, operation control device, air conditioner, and storage medium
CN115264670A (en) * 2022-09-27 2022-11-01 新医建(江苏)智能环境科技有限公司 Clean room intelligent energy-saving system based on carbon neutralization
WO2022252667A1 (en) * 2021-06-04 2022-12-08 重庆海尔空调器有限公司 Method and apparatus for controlling air conditioner, and intelligent air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142358A (en) * 1987-11-30 1989-06-05 Toshiba Corp Refrigerant heating type cooling and heating machine
JPH04124544A (en) * 1990-09-14 1992-04-24 Toshiba Corp Air conditioner
JPH04359764A (en) * 1991-06-06 1992-12-14 Toshiba Corp Refrigerant heating type multi freezing cycle
JPH04359763A (en) * 1991-06-06 1992-12-14 Toshiba Corp Refrigerant heating type multi-freezing cycle
JPH04363555A (en) * 1991-03-29 1992-12-16 Toshiba Corp Air conditioner
JPH0510624A (en) * 1991-07-05 1993-01-19 Toshiba Corp Air conditioner
JPH0526530A (en) * 1991-07-15 1993-02-02 Toshiba Corp Air-conditioner
JPH06257827A (en) * 1993-03-02 1994-09-16 Matsushita Electric Ind Co Ltd Multi chamber type air conditioning system
JPH0763433A (en) * 1993-08-27 1995-03-10 Toshiba Corp Refrigerant-heating multi-room air conditioning system
JPH07310945A (en) * 1994-05-18 1995-11-28 Rinnai Corp Refrigerant heating type cooler/heater

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142358A (en) * 1987-11-30 1989-06-05 Toshiba Corp Refrigerant heating type cooling and heating machine
JPH04124544A (en) * 1990-09-14 1992-04-24 Toshiba Corp Air conditioner
JPH04363555A (en) * 1991-03-29 1992-12-16 Toshiba Corp Air conditioner
JPH04359764A (en) * 1991-06-06 1992-12-14 Toshiba Corp Refrigerant heating type multi freezing cycle
JPH04359763A (en) * 1991-06-06 1992-12-14 Toshiba Corp Refrigerant heating type multi-freezing cycle
JPH0510624A (en) * 1991-07-05 1993-01-19 Toshiba Corp Air conditioner
JPH0526530A (en) * 1991-07-15 1993-02-02 Toshiba Corp Air-conditioner
JPH06257827A (en) * 1993-03-02 1994-09-16 Matsushita Electric Ind Co Ltd Multi chamber type air conditioning system
JPH0763433A (en) * 1993-08-27 1995-03-10 Toshiba Corp Refrigerant-heating multi-room air conditioning system
JPH07310945A (en) * 1994-05-18 1995-11-28 Rinnai Corp Refrigerant heating type cooler/heater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277097A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
WO2010076847A1 (en) * 2008-12-29 2010-07-08 ダイキン工業株式会社 Air-conditioning device and control method therefor
JP2010156514A (en) * 2008-12-29 2010-07-15 Daikin Ind Ltd Air conditioner and control method of the same
AU2009334249B2 (en) * 2008-12-29 2013-01-17 Daikin Industries, Ltd. Air conditioning apparatus and method of controlling the air conditioning apparatus
CN107449078A (en) * 2017-07-26 2017-12-08 美的集团武汉制冷设备有限公司 Air-conditioning system, the control device of air-conditioning system and method
CN110542192A (en) * 2019-09-12 2019-12-06 广东美的制冷设备有限公司 Operation control method, operation control device, air conditioner, and storage medium
WO2022252667A1 (en) * 2021-06-04 2022-12-08 重庆海尔空调器有限公司 Method and apparatus for controlling air conditioner, and intelligent air conditioner
CN115264670A (en) * 2022-09-27 2022-11-01 新医建(江苏)智能环境科技有限公司 Clean room intelligent energy-saving system based on carbon neutralization

Also Published As

Publication number Publication date
JP3372199B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
EP0692683B1 (en) Air conditioning apparatus having an outdoor unit to which a plurality of indoor units are connected
US6102114A (en) Multi-room air conditioning system
EP2407735B1 (en) Heat pump system
CN112797587B (en) Air conditioner control method and air conditioner system
KR20190016261A (en) Heat pump and Method for controlling the same
JP3372199B2 (en) Control method when the number of indoor units operating changes in multi-room air conditioner
JP3386700B2 (en) Control method when the number of indoor units operating changes in multi-room air conditioner
JPH11248282A (en) Multi-room air conditioner
JP2955278B2 (en) Multi-room air conditioning system
JP2912604B1 (en) Compressor control method in air conditioning system
JP2011027314A (en) Air conditioner
JP2950805B2 (en) Compressor control method in air conditioning system
JP2888817B1 (en) Refrigerant recovery control method in air conditioning system
JP2002147819A (en) Refrigeration unit
JP2912605B1 (en) Refrigerant circulation check method in air conditioning system
KR100395920B1 (en) Control system for starting of air conditioner and control method thereof
JPH01203855A (en) Air conditioner
KR100964369B1 (en) Air conditioner&#39;s control method
JP2002098434A (en) Refrigerant heating type air-conditioning system
JP6747226B2 (en) Refrigeration equipment
JP2947254B1 (en) Multi-room air conditioner
JP2504424B2 (en) Refrigeration cycle
KR100535676B1 (en) Control method of cooling cycling apparatus
JPH10170085A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees