JP2947254B1 - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JP2947254B1
JP2947254B1 JP10044955A JP4495598A JP2947254B1 JP 2947254 B1 JP2947254 B1 JP 2947254B1 JP 10044955 A JP10044955 A JP 10044955A JP 4495598 A JP4495598 A JP 4495598A JP 2947254 B1 JP2947254 B1 JP 2947254B1
Authority
JP
Japan
Prior art keywords
frequency
compressor
indoor
outdoor unit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10044955A
Other languages
Japanese (ja)
Other versions
JPH11248226A (en
Inventor
孝彦 青
義和 西原
宜正 石川
邦泰 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10044955A priority Critical patent/JP2947254B1/en
Application granted granted Critical
Publication of JP2947254B1 publication Critical patent/JP2947254B1/en
Publication of JPH11248226A publication Critical patent/JPH11248226A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【要約】 【課題】 圧縮機周波数が室外機の配管や熱交換器等の
構造部品との固有振動数と共振し、室外機の本体振動大
や配管振動による配管亀裂などの信頼性上の問題が発生
していた。 【解決手段】 容量可変形圧縮機と四方弁と室外熱交換
器と冷媒加熱器とを有する1台の室外機と、室内熱交換
器を有する少なくとも1台以上の室内機を、冷媒配管を
介して接続し、計算値に基づいて設定された圧縮機周波
数が室外機の配管や熱交換器等の構造部品との固有振動
数と同一となったとき、固有振動数を外し配管振動や室
外本体振動を抑制するように圧縮機周波数を間引き制御
する。
A compressor frequency resonates with a natural frequency of a structural part such as a pipe or a heat exchanger of an outdoor unit, and a reliability problem such as a large body vibration of the outdoor unit or a pipe crack due to a pipe vibration. Had occurred. SOLUTION: One outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger and a refrigerant heater, and at least one indoor unit having an indoor heat exchanger are connected via a refrigerant pipe. When the compressor frequency set based on the calculated value becomes the same as the natural frequency of the piping and heat exchanger and other structural parts of the outdoor unit, the natural frequency is removed and the piping vibration and outdoor body are removed. The compressor frequency is thinned out to suppress the vibration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は1台の室外機に少な
くとも1台以上の室内機を接続した空気調和装置に関
し、さらに詳しくは、電動膨張弁にて冷媒流量を制御す
る多室形空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which at least one indoor unit is connected to one outdoor unit, and more particularly, to a multi-room air conditioner in which the flow rate of a refrigerant is controlled by an electric expansion valve. Related to the device.

【0002】[0002]

【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和装置が、室外の省スペース性や
美観上の点で一般家庭の消費者にも受け入れられつつあ
る。また、1台の室外機に1台の室内機を接続した一室
形空気調和システムを複数組設置するのに比べ、多室形
空気調和システムはコストの点でも有利であることか
ら、消費者の需要も徐々に増大しつつある。
2. Description of the Related Art In recent years, a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit has been increasingly accepted by consumers of ordinary households in terms of space saving and aesthetic appearance. is there. Also, compared to installing a plurality of sets of a single-room air conditioning system in which one indoor unit is connected to one outdoor unit, the multi-room air conditioning system is more advantageous in terms of cost. Demand is also increasing gradually.

【0003】この多室形空気調和システムでは、各室内
機の要求能力の総和に応じて圧縮機の能力を制御すると
ともに、各室内機につながる液管に設けられた流量調整
弁の開度を対応する室内機の要求能力に応じて個別に制
御している。
In this multi-room air conditioning system, the capacity of the compressor is controlled in accordance with the total required capacity of each indoor unit, and the opening of a flow control valve provided in a liquid pipe connected to each indoor unit is controlled. It is controlled individually according to the required capacity of the corresponding indoor unit.

【0004】しかしながら、このような多室形空気調和
装置では、色々な室内機の組み合わせにより一室形空気
調和機より各室内機の要求能力の総和に応じた圧縮機周
波数のデータ数が増え圧縮機周波数が室外機の配管や熱
交換器等の構造部品との固有振動数と共振し、室外機の
本体振動大や配管振動による配管亀裂といった信頼性上
の問題が発生しやすい状態となっていた。
However, in such a multi-room air conditioner, the number of data of the compressor frequency increases in accordance with the sum of the required capacity of each indoor unit compared to the single-room air conditioner due to the combination of various indoor units, and compression is performed. The unit frequency resonates with the natural frequency of the outdoor unit's piping and structural components such as heat exchangers, and it is in a state where reliability problems such as large body vibration of the outdoor unit and pipe cracking due to piping vibration are likely to occur. Was.

【0005】このような事態を解消するため、室外機の
配管におもりをつけたり配管を固定したりしていたが、
材料コスト・組立コストといったコストアップやおもり
や固定治具では完全には固有振動数を回避できないため
効率のよい圧縮機周波数を制御することができないと言
う問題があった。
[0005] In order to solve such a situation, the pipes of the outdoor unit are weighted or fixed.
There is a problem that the compressor frequency cannot be controlled efficiently because the natural frequency cannot be completely avoided with the cost increase such as the material cost and the assembly cost, and with the weight and the fixing jig.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術の
有するこのような問題点に鑑みてなされたものであり、
室内機の負荷に応じた効率の良くかつ材料コスト・組立
コストを低減することが可能な圧縮機周波数を制御する
多室形空気調和装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art.
It is an object of the present invention to provide a multi-room air conditioner that controls a compressor frequency that can efficiently reduce the material cost and the assembly cost according to the load of an indoor unit.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1に記載の発明は、容量可変
形圧縮機と四方弁と室外熱交換器を有する1台の室外機
と、室内熱交換器を有する少なくとも1台以上の室内機
とを、冷媒配管を介して接続し、上記室外機に設けられ
主に冷媒液が流れる液側主管から分岐した液側分岐管と
上記室外機に設けられ主に冷媒ガスが流れるガス側主管
から分岐したガス側分岐管を介して接続し、弁開度を電
気的に制御可能な電動膨張弁を上記液側分岐管に取り付
けるとともに、各室内機が設置される室内の温度を任意
に設定する室内温度設定手段と、室内温度を検出する室
内温度検出手段と、上記室内温度設定手段により設定さ
れた温度と上記室内温度検出手段が検出した室内温度と
の差温を算出する差温演算手段と、上記室内機の各々の
定格容量を記憶する定格容量記憶手段と、所定周期毎に
上記圧縮機の周波数を算出する周波数演算手段を設け、
上記差温演算手段が算出した差温と上記定格容量記憶手
段に記憶された定格容量に基づいて第1の負荷係数テー
ブルから負荷レベルを読み出し、該負荷レベルの総和に
所定の係数を乗じた積を補正することにより得られた計
算値を圧縮機周波数に設定して上記圧縮機を制御する空
気調和機において、上記計算値に基づいて設定された圧
縮機周波数が室外機の配管や熱交換器等の構造部品との
固有振動数と同一となる周波数となった時、固有振動数
を外し配管振動や室外本体振動を抑制するように圧縮機
を間引き制御するようにした。
In order to achieve the above object, the present invention as defined in claim 1 of the present invention provides an outdoor unit having a variable displacement compressor, a four-way valve and an outdoor heat exchanger. Unit and at least one or more indoor units having an indoor heat exchanger, connected via a refrigerant pipe, and a liquid-side branch pipe provided in the outdoor unit and branched from a liquid-side main pipe through which refrigerant liquid mainly flows. Connected via a gas-side branch pipe branched from a gas-side main pipe mainly provided in the outdoor unit and through which a refrigerant gas flows, and an electric expansion valve capable of electrically controlling the valve opening is attached to the liquid-side branch pipe. Indoor temperature setting means for arbitrarily setting the indoor temperature in which each indoor unit is installed; indoor temperature detecting means for detecting the indoor temperature; and the temperature set by the indoor temperature setting means and the indoor temperature detecting means. Calculate the temperature difference from the detected room temperature And temperature calculating means, and the rated capacity memory means for storing the rated capacity of each of the indoor unit, the frequency computing means for calculating the frequency of the compressor at predetermined intervals is provided,
A load level is read from the first load coefficient table based on the differential temperature calculated by the differential temperature calculating means and the rated capacity stored in the rated capacity storage means, and a product obtained by multiplying the sum of the load levels by a predetermined coefficient. In the air conditioner that controls the compressor by setting the calculated value obtained by correcting the compressor frequency to the compressor frequency, the compressor frequency set based on the calculated value is a pipe or a heat exchanger of the outdoor unit. When the frequency becomes the same as the natural frequency of the structural components such as the above, the natural frequency is removed and the compressor is thinned out so as to suppress the piping vibration and the outdoor body vibration.

【0008】また、請求項2に記載の発明は、上記電動
膨張弁の初期開度を示す初期開度テーブルから上記定格
容量記憶手段に記憶された定格容量に基づいて上記電動
膨張弁の初期開度を読み出すとともに、上記差温演算手
段が算出した差温と上記定格容量に基づいて第2の負荷
係数テーブルから負荷レベルを読み出し、読み出された
初期開度に上記第2の負荷係数テーブルの負荷レベルを
乗じた積を弁開度として上記電動膨張弁を制御するよう
にしたことを特徴とする。
According to a second aspect of the present invention, there is provided an electric motor control apparatus according to the first aspect, wherein an initial opening of the electric expansion valve is based on a rated capacity stored in the rated capacity storage means from an initial opening table indicating an initial opening of the electric expansion valve. And the load level is read from the second load coefficient table based on the differential temperature calculated by the differential temperature calculating means and the rated capacity, and the read initial opening is stored in the second load coefficient table. The electric expansion valve is controlled by using a product multiplied by the load level as a valve opening.

【0009】さらに、請求項3記載の発明は、冷房・ド
ライ運転時の圧縮機周波数Hzを 1室運転の場合:Hz1=a1×(負荷レベル)+b1 2室運転で負荷レベルの総和が所定値よりも小さい場
合: Hz1=a1×(負荷レベルの総和)+b1 2室運転で負荷レベルの総和が所定値以上の場合: Hz=a2×(負荷レベルの総和)+b2 ただし、a1>a2、b1<b2 のように仮設定し、この周波数が室外機の構造部品等に
よる固有振動数と同じ場合は Comp Hz=Hz1+1 のように設定した。
Further, according to the third aspect of the present invention, when the compressor frequency Hz in the cooling / dry operation is one-room operation: Hz1 = a1 × (load level) + b1 The sum of the load levels in the two-room operation is a predetermined value. If less than: Hz1 = a1 × (sum of load levels) + b1 If the sum of load levels is equal to or greater than a predetermined value in two-room operation: Hz = a2 × (sum of load levels) + b2 where a1> a2, b1 < The frequency was provisionally set as b2, and when this frequency was the same as the natural frequency due to the structural parts of the outdoor unit, etc., it was set as Comp Hz = Hz1 + 1.

【0010】また、請求項4に記載の発明は、暖房運転
時の圧縮機周波数Hzを、 1室運転の場合:Hz1=a3×(負荷レベル)+b3 2室運転の場合:Hz1=a4×(負荷レベルの総和)
+b4 ただし、a3>a4、b3<b4 のように仮設定し、この周波数が室外機の構造部品等に
よる固有振動数と同じ場合は、 Comp Hz=Hz1+1 のように設定した。
Further, in the invention according to claim 4, the compressor frequency Hz during the heating operation is set as follows: in the case of one-room operation: Hz1 = a3 × (load level) + b3 In the case of two-room operation: Hz1 = a4 × ( Sum of load levels)
+ B4 However, tentatively set as a3> a4, b3 <b4, and when this frequency is the same as the natural frequency due to the structural parts of the outdoor unit, etc., it is set as Comp Hz = Hz1 + 1.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明にかかる多室形空気調和装
置の冷凍サイクル図の1例であり、1台の室外機2に複
数台(例えば2台)の室内機4a,4bを接続した場合
を示している。
FIG. 1 is an example of a refrigeration cycle diagram of a multi-room air conditioner according to the present invention. A plurality of (for example, two) indoor units 4a and 4b are connected to one outdoor unit 2. Shows the case.

【0013】図1において、室外機2にはインバータ駆
動の容量(周波数)可変形圧縮機6(以下単に圧縮機と
称す)と、室外熱交換器8と、冷暖房切換用の四方弁1
0とが設けられる一方、室内機4a,4bには室内熱交
換器12a,12bがそれぞれ設けられている。また、
室外機2と室内機4a,4bとは、室外機2内に設けら
れた液側主管14より分岐した液側分岐管16a,16
b及び室外機2内に設けられたガス側主管18より分岐
したガス側分岐管20a,20bとで接続されており、
液側分岐管16a,16bには、例えばステッピングモ
ータ等により弁開度をパルス制御可能な電動膨張弁22
a,22bがそれぞれ介装されている。
In FIG. 1, an outdoor unit 2 includes an inverter-driven variable capacity (frequency) compressor 6 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 8, and a four-way valve 1 for switching between cooling and heating.
0, while the indoor units 4a and 4b are provided with indoor heat exchangers 12a and 12b, respectively. Also,
The outdoor unit 2 and the indoor units 4a, 4b are connected to liquid side branch pipes 16a, 16 branched from a liquid side main pipe 14 provided in the outdoor unit 2.
b and the gas-side branch pipes 20a and 20b branched from the gas-side main pipe 18 provided in the outdoor unit 2.
The liquid-side branch pipes 16a and 16b are provided with an electric expansion valve 22 that can pulse-control the valve opening degree by, for example, a stepping motor.
a and 22b are interposed respectively.

【0014】室内機4a,4bには各室内機4a,4b
が設置されている部屋の室温を検出する室内温度センサ
36a,36b、及び、居住者が希望する運転モード
(冷房または暖房)と室温と運転あるいは停止を設定で
きる運転設定回路38a,38bが設けられている。
Each of the indoor units 4a, 4b has an indoor unit 4a, 4b.
There are provided room temperature sensors 36a and 36b for detecting the room temperature of the room where the is installed, and operation setting circuits 38a and 38b which can set the operation mode (cooling or heating) desired by the occupant and the room temperature and operation or stop. ing.

【0015】上記構成の冷凍サイクルにおいて、冷房
時、圧縮機6から吐出された冷媒は、四方弁10より室
外熱交換器8へと流れて、ここで室外空気と熱交換して
凝縮液化し、次に補助絞り46を通過することにより減
圧されて冷媒は蒸発しやすい状態となり、液側主管14
より液側分岐管16a,16bへと分岐する。電動膨張
弁22a,22bの弁開度は、後述する制御方法でそれ
ぞれの部屋に見合った開度となるように制御されるた
め、冷媒もそれぞれの負荷に応じた流量で低圧となって
室内熱交換器12a,12bへと流れて蒸発した後、ガ
ス側分岐管20a,20bよりガス側主管18、四方弁
10を通過し、アキュムレータ30を介して再び圧縮機
6に吸入される。また、圧縮機周波数は、総合負荷レベ
ルに応じて後述する制御方法で決定される。
In the refrigeration cycle having the above structure, during cooling, the refrigerant discharged from the compressor 6 flows from the four-way valve 10 to the outdoor heat exchanger 8, where it exchanges heat with outdoor air to condense and liquefy. Next, the refrigerant is reduced in pressure by passing through the auxiliary throttle 46, and the refrigerant is in a state of being easily evaporated, and the liquid side main pipe 14
It branches to the liquid side branch pipes 16a and 16b. The valve openings of the electric expansion valves 22a and 22b are controlled by a control method described later so as to have openings corresponding to the respective rooms, so that the refrigerant also has a low pressure at a flow rate corresponding to each load, and the indoor heat is reduced. After flowing to the exchangers 12a and 12b and evaporating, the gas passes through the gas-side main pipe 18 and the four-way valve 10 from the gas-side branch pipes 20a and 20b, and is sucked into the compressor 6 again through the accumulator 30. The compressor frequency is determined by a control method described later according to the total load level.

【0016】一方、暖房運転時、圧縮機6から吐出され
た冷媒は、四方弁10より室内熱交換器12a,12b
へと流れて、ここで室内空気と熱交換して凝縮液化し、
次に電動膨張弁22a,22bと通り減圧されて冷媒は
蒸発しやすい状態となる。電動膨張弁22a,22bの
弁開度は、後述する制御方法でそれぞれの部屋に見合っ
た開度となるように制御されるため、冷媒もそれぞれの
負荷に応じた流量で中間圧となって補助絞り46へと流
れて絞り膨張を行い、室外熱交換器8で蒸発した後、四
方弁10を通過し、アキュムレータ30を介して再び圧
縮機6に吸入される。また、圧縮機周波数は、総合負荷
レベルに応じて後述する制御方法で決定される。
On the other hand, during the heating operation, the refrigerant discharged from the compressor 6 is supplied from the four-way valve 10 to the indoor heat exchangers 12a, 12b.
And then exchanges heat with indoor air to condense and liquefy,
Next, the pressure is reduced through the electric expansion valves 22a and 22b, so that the refrigerant is easily evaporated. Since the valve openings of the electric expansion valves 22a and 22b are controlled by control methods described later so as to have openings corresponding to the respective rooms, the refrigerant also becomes an intermediate pressure at a flow rate corresponding to each load and is assisted. After flowing to the throttle 46 to expand the throttle and evaporate in the outdoor heat exchanger 8, it passes through the four-way valve 10 and is sucked into the compressor 6 again through the accumulator 30. The compressor frequency is determined by a control method described later according to the total load level.

【0017】次に、圧縮機周波数,電動膨張弁開度の制
御法について説明する。図2は圧縮機周波数,電動膨張
弁開度の制御の流れを示すブロック図で、図3は室内温
度Trと設定温度Tsとの差温ΔTの温度ゾーン分割図
である。
Next, a method for controlling the compressor frequency and the electric expansion valve opening will be described. FIG. 2 is a block diagram showing a flow of control of the compressor frequency and the electric expansion valve opening, and FIG. 3 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts.

【0018】まず、室内機4aにおいて、室内温度セン
サ36aの出力(室内温度)を室内温度検出回路48よ
り温度信号として差温演算回路50に送出し、また設定
判別回路52にて運転設定回路38aで設定された設定
温度及び運転モードを判別して差温演算回路50に送出
して、ここで差温ΔT(=Tr−Ts)を算出し、図3
に示す周波数No.に変換してこれを差温信号とする。
First, in the indoor unit 4a, the output (indoor temperature) of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 48 to the temperature difference calculating circuit 50 as a temperature signal. The set temperature and the operation mode set in are determined and sent to the differential temperature calculating circuit 50, where the differential temperature ΔT (= Tr−Ts) is calculated.
The frequency No. shown in FIG. Into a differential temperature signal.

【0019】また、ON−OFF判別回路54にて、運
転設定回路38aで設定された室内機4aの運転(O
N)または停止(OFF)を判別する。さらに、定格容
量記憶回路56に室内機4aの定格容量を記憶してお
き、これらの定格容量信号,差温信号,運転モード信
号,ON−OFF判別信号を信号送出回路58より室外
機2の信号受信回路60へ送出する。室内機4bからも
同様の信号が信号受信回路60へ送出される。信号受信
回路60で受信した信号は、圧縮機周波数演算回路62
と膨張弁開度演算回路64へ送出される。ただし、異な
った運転モード信号が存在する場合、最初に運転を開始
した室内機の運転モードが優先され、異なった運転モー
ドの室内機は停止しているとみなしてON−OFF判別
信号はOFFを送出する。
In the ON / OFF discriminating circuit 54, the operation of the indoor unit 4a set by the operation setting circuit 38a (O
N) or stop (OFF) is determined. Further, the rated capacity of the indoor unit 4a is stored in the rated capacity storage circuit 56, and the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF determination signal are transmitted from the signal transmission circuit 58 to the signal of the outdoor unit 2 The signal is transmitted to the receiving circuit 60. A similar signal is sent from the indoor unit 4b to the signal receiving circuit 60. The signal received by the signal receiving circuit 60 is transmitted to a compressor frequency calculating circuit 62.
Is sent to the expansion valve opening calculation circuit 64. However, if a different operation mode signal exists, the operation mode of the indoor unit that started operation first has priority, and the indoor unit in the different operation mode is regarded as stopped, and the ON-OFF determination signal is set to OFF. Send out.

【0020】圧縮機周波数演算回路62にて室内機4
a,4bのそれぞれの定格容量信号,差温信号,運転モ
ード信号,ON−OFF判別信号より下記(表1)に示
す負荷係数テーブル66から負荷レベル係数を読み出
し、この負荷レベル係数の総和に定数を乗じ、さらに補
正値を加えることにより圧縮機6の周波数を仮決定し、
その仮決定された周波数が予め設定された固有振動数と
同じであれば、仮決定された周波数に1Hzを加算して
圧縮機6の運転周波数として決定する。
In the compressor frequency calculation circuit 62, the indoor unit 4
The load level coefficient is read from the load coefficient table 66 shown in the following (Table 1) from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal of each of a and 4b, and a constant is added to the sum of the load level coefficients. And tentatively determines the frequency of the compressor 6 by adding a correction value,
If the provisionally determined frequency is the same as the preset natural frequency, 1 Hz is added to the provisionally determined frequency to determine the operating frequency of the compressor 6.

【0021】[0021]

【表1】 [Table 1]

【0022】詳述すれば、2台の室内機4a,4bの差
温信号である周波数No.からそれぞれの負荷レベル係
数Ln1,Ln2を負荷係数テーブル66から求め、室
内側の総合負荷レベルLnφを計算で導きだし、その値
を圧縮機6の運転周波数に仮設定し、室外機の構造部品
等による固有振動数と比較を行い室外機2に要求される
初期設定を行う。
More specifically, the frequency No., which is the temperature difference signal between the two indoor units 4a and 4b, is used. From the load coefficient table 66, the load level coefficients Ln1 and Ln2 are obtained from the load coefficient table 66, the total load level Lnφ on the indoor side is derived by calculation, and the value is temporarily set to the operating frequency of the compressor 6, and the structural parts of the outdoor unit And the initial frequency required for the outdoor unit 2 is set.

【0023】A.冷房・ドライ運転の場合の制御計算式 1)1室運転の場合 Lnφ=a1×(Ln1あるいはLn2)+b1 2)2室運転の場合 (i)Ln1+Ln2<34の時 Lnφ=a1×(Ln1+Ln2)+b1 (ii)Ln1+Ln2≧34の時 Lnφ=a2×(Ln1+Ln2)+b2 ただし、a1>a2、b1<b2 上記制御計算式から求められたLnφを圧縮機6の運転
周波数に仮設定し、この周波数が室外機の構造部品等に
よる固有振動数と同じ場合は、 Comp Hz=Lnφ+1 B.暖房運転の場合の制御計算式 1)1室の場合 Lnφ=a3×(Ln1あるいはLn2)+b3 2)2室の場合 Lnφ=a4×(Ln1+Ln2)+b4 だだし、a3>a4、b3<b4 上記制御計算式から求められたLnφを圧縮機6の運転
周波数に仮設定し、この周波数が室外機の構造部品等に
よる固有振動数と同じ場合は、 Comp Hz=Lnφ+1 なお、上記a1〜a4及びb1〜b4は、圧縮機6の容
量、配管径等により決定される実数値である。
A. Control calculation formula for cooling / dry operation 1) For one-room operation Lnφ = a1 × (Ln1 or Ln2) + b1 2) For two-room operation (i) When Ln1 + Ln2 <34 Lnφ = a1 × (Ln1 + Ln2) + b1 (Ii) When Ln1 + Ln2 ≧ 34 Lnφ = a2 × (Ln1 + Ln2) + b2 where a1> a2, b1 <b2 Lnφ obtained from the above control formula is temporarily set to the operating frequency of the compressor 6, and this frequency is set to the outdoor If the natural frequency is the same as that of the structural components of the machine, Comp Hz = Lnφ + 1 B. Control calculation formula for heating operation 1) In the case of one room Lnφ = a3 × (Ln1 or Ln2) + b3 2) In the case of two rooms Lnφ = a4 × (Ln1 + Ln2) + b4 where a3> a4, b3 <b4 Lnφ obtained from the calculation formula is provisionally set as the operating frequency of the compressor 6, and when this frequency is the same as the natural frequency of the structural unit of the outdoor unit, etc., Comp Hz = Lnφ + 1 Note that a1 to a4 and b1 to b4 is a real value determined by the capacity of the compressor 6, the pipe diameter, and the like.

【0024】図4及び図5は、a1=30/12、b1
=−8、a2=13/12、b2=37、a3=15/
17、b3=0.5、a4=5/13、b4=25.2
とした場合の上記制御計算式をグラフにしたものであ
る。
FIGS. 4 and 5 show that a1 = 30/12 and b1
= -8, a2 = 13/12, b2 = 37, a3 = 15 /
17, b3 = 0.5, a4 = 5/13, b4 = 25.2
Is a graph of the above-described control calculation formula.

【0025】図4に示されるように、冷房・ドライ運転
時で1室運転の場合の圧縮機6の最小運転周波数は28
Hzに設定するとともに、2室運転の場合の圧縮機6の
最小運転周波数は低周波数保護が動作しない32Hzに
設定する一方、最大運転周波数は98Hzに設定してい
る。
As shown in FIG. 4, the minimum operating frequency of the compressor 6 in the case of the single-room operation during the cooling / dry operation is 28
Hz, the minimum operating frequency of the compressor 6 in the case of the two-room operation is set to 32 Hz at which the low frequency protection does not operate, while the maximum operating frequency is set to 98 Hz.

【0026】また、図5に示されるように、暖房運転時
で1室及び2室運転の場合の圧縮機6の最小運転周波数
はそれぞれ20Hz及び41Hzに設定する一方、最大
運転周波数はそれぞれ49Hz及び61Hzに設定して
いる。
As shown in FIG. 5, the minimum operating frequency of the compressor 6 in the one-room and two-room operation during the heating operation is set to 20 Hz and 41 Hz, respectively, while the maximum operating frequency is 49 Hz and 41 Hz, respectively. It is set to 61 Hz.

【0027】一例として、室内機4a,4bからの信号
が下記(表2)の場合について説明する。
As an example, a case where the signals from the indoor units 4a and 4b are as shown in the following (Table 2) will be described.

【0028】[0028]

【表2】 [Table 2]

【0029】(表1)と(表2)より、室内機4a,4
bの負荷レベル係数Ln1,Ln2はそれぞれ34及び
31となり、圧縮機6の周波数Hzは、 Hz=Lnφ=5/13×(34+31)+25.2≒
50 となる。この演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機6の周波数制御を行
う。以後、所定周期毎に室内機4a,4bのそれぞれの
定格容量信号,差温信号,運転モード信号,ON−OF
F判別信号より室外機2の圧縮機周波数62で演算を行
い、演算結果を必要に応じて補正し、補正後の値を周波
数信号として圧縮機駆動回路に送出して圧縮機6の周波
数制御を行う。
From (Table 1) and (Table 2), the indoor units 4a, 4
The load level coefficients Ln1 and Ln2 of b are 34 and 31, respectively, and the frequency Hz of the compressor 6 is as follows: Hz = Lnφ = 5/13 × (34 + 31) + 25.2 ≒
50. This calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 6. Thereafter, the rated capacity signal, the differential temperature signal, the operation mode signal, the ON-OF
The calculation is performed at the compressor frequency 62 of the outdoor unit 2 from the F determination signal, the calculation result is corrected as necessary, and the corrected value is sent to the compressor drive circuit as a frequency signal to control the frequency of the compressor 6. Do.

【0030】このように、運転台数に応じて所定の計算
式により圧縮機6の周波数を決定しており、1室運転時
の低周波数運転では、より低い運転周波数で圧縮機6を
運転することで低入力運転が可能となり、総合負荷レベ
ルの増大とともに高い運転周波数で圧縮機6を運転する
ことで配管による圧力損失を考慮してより高い冷媒循環
量を確保し、高効率運転を実現している。
As described above, the frequency of the compressor 6 is determined by a predetermined formula according to the number of operating units. In low-frequency operation during single-room operation, the compressor 6 is operated at a lower operating frequency. By operating the compressor 6 at a high operating frequency with an increase in the total load level, a higher refrigerant circulation rate is secured in consideration of the pressure loss due to the piping, and high efficiency operation is realized. I have.

【0031】膨張弁開度演算回路64においても同様
に、室内機4a,4bのそれぞれの定格容量信号,差温
信号,運転モード信号,ON−OFF判別信号より(表
3)に示される負荷係数テーブル66から負荷レベル係
数を選択し、さらに室内機4a,4bのそれぞれの定格
容量より下記(表4)に示される定格容量毎の弁初期開
度テーブル70から読み出す。なお、弁初期開度は、異
なった定格容量の室内機組合せでも、各室内機が所定の
能力制御ができるように決定する。
Similarly, in the expansion valve opening calculation circuit 64, the load coefficients shown in (Table 3) are obtained from the rated capacity signals, the differential temperature signals, the operation mode signals, and the ON / OFF discrimination signals of the indoor units 4a and 4b. The load level coefficient is selected from the table 66, and is read from the valve initial opening table 70 for each rated capacity shown in the following (Table 4) from the rated capacity of each of the indoor units 4a and 4b. Note that the valve initial opening is determined so that each indoor unit can perform a predetermined capacity control even with a combination of indoor units having different rated capacities.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】電動膨張弁22a,22bの弁開度は、そ
れぞれの負荷レベル係数に弁初期開度を乗じたものであ
る。
The valve opening of the electric expansion valves 22a and 22b is obtained by multiplying each load level coefficient by the valve initial opening.

【0035】 膨張弁開度=P0(負荷レベル係数)×初期パルス 圧縮機周波数算出の場合と同様に、室内機4a,4bか
らの信号が(表2)の場合について説明する。
Expansion valve opening = P0 (load level coefficient) × initial pulse The case where the signals from the indoor units 4a and 4b are (Table 2) will be described as in the case of the compressor frequency calculation.

【0036】室内機4a,4bの負荷レベル係数はそれ
ぞれ0.95及び0.85であり、また弁初期開度はそ
れぞれ180及び230である。したがって、電動膨張
弁22a,22bの弁開度は171,219となる(小
数点以下第1位を四捨五入)。この演算結果を膨張弁開
度信号として膨張弁駆動回路(図示せず)に送出する。
The load level coefficients of the indoor units 4a and 4b are 0.95 and 0.85, respectively, and the initial valve openings are 180 and 230, respectively. Therefore, the valve openings of the electric expansion valves 22a and 22b are 171 and 219 (the first decimal place is rounded off). This calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal.

【0037】したがって、電動膨張弁22a,22bの
弁開度はそれぞれ171パルス及び219パルスとな
り、以後、所定周期毎に、差温信号,運転モード信号,
ON−OFF判別信号より電動膨張弁22a,22bの
弁開度を算出し、これらの演算結果を必要に応じて補正
した後、膨張弁開度信号として膨張弁駆動回路に送出す
る。
Therefore, the valve opening degrees of the electric expansion valves 22a and 22b are 171 pulses and 219 pulses, respectively, and thereafter, at predetermined intervals, a temperature difference signal, an operation mode signal,
The valve openings of the electric expansion valves 22a and 22b are calculated from the ON / OFF discrimination signals, and the results of these calculations are corrected as necessary, and then sent to the expansion valve drive circuit as expansion valve opening signals.

【0038】このように、各部屋毎の負荷に応じて各電
動膨張弁22a,22bの開度を決定するため、必要な
能力を必要な部屋に配分することができる。したがっ
て、冷凍サイクルをきめ細かく最適に制御しながら、快
適性の向上及び省エネルギを図ることができる。
As described above, since the degree of opening of each of the electric expansion valves 22a and 22b is determined according to the load of each room, necessary capacity can be allocated to necessary rooms. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle.

【0039】なお、上記実施形態は、1台の室外機に2
台の室内機を接続した場合を例にとり説明したが、本発
明の多室形空気調和システムにおける室内機の台数は必
ずしも2台に限定されるものではなく、室内機が3台以
上の場合でももしくは室内機が1台の場合でも同様の考
え方に基づいて略同じ制御方式によりシステムを制御す
ることができる。また、上記実施形態は、室外機に冷媒
加熱器を有する冷媒加熱式空気調和機においても、同様
の考え方に基づいて略同じ制御方式によりシステムを制
御することができる。
In the above embodiment, two outdoor units are used.
Although the case where two indoor units are connected has been described as an example, the number of indoor units in the multi-room air conditioning system of the present invention is not necessarily limited to two, and even when three or more indoor units are used. Alternatively, even when the number of indoor units is one, the system can be controlled by substantially the same control method based on the same concept. Further, in the above-described embodiment, the system can be controlled by substantially the same control method based on the same concept also in the refrigerant-heated air conditioner having the refrigerant heater in the outdoor unit.

【0040】[0040]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0041】本発明のうちで請求項1に記載の発明によ
れば、差温演算手段が算出した差温と定格容量記憶手段
に記憶された定格容量に基づいて第1の負荷係数テーブ
ルから負荷レベルを読み出し、該負荷レベルの総和に所
定の係数を乗じた積を補正することにより得られた計算
値を圧縮機周波数に仮設定して、その仮周波数が室外機
の構造部品等による固有振動数と共振しないように上記
圧縮機を制御することにより、配管振動による配管亀裂
や室外機本体振動による家屋への振動を抑制することが
でき、常に最適運転を行うことができる。
According to the first aspect of the present invention, the load is stored in the first load coefficient table based on the differential temperature calculated by the differential temperature calculating means and the rated capacity stored in the rated capacity storage means. The calculated value obtained by reading the level and correcting the product obtained by multiplying the sum of the load levels by a predetermined coefficient is temporarily set to the compressor frequency, and the temporary frequency is set to the natural vibration due to the structural parts of the outdoor unit. By controlling the compressor so that it does not resonate with the number, it is possible to suppress a crack in the pipe due to the vibration of the pipe and a vibration to the house due to the vibration of the outdoor unit main body, and it is possible to always perform an optimal operation.

【0042】また、請求項2に記載の発明によれば、第
2の負荷係数テーブルから負荷レベルを読み出し、初期
開度テーブルから読み出された電動膨張弁の初期開度に
第2の負荷係数テーブルの負荷レベルを乗じた積を弁開
度として電動膨張弁を制御するようにしたので、制御が
容易で制御に必要なマイコン容量を小さくすることがで
きる。
According to the present invention, the load level is read from the second load coefficient table, and the second load coefficient is added to the initial opening of the electric expansion valve read from the initial opening table. Since the electric expansion valve is controlled by using the product multiplied by the load level of the table as the valve opening, the control is easy and the microcomputer capacity required for the control can be reduced.

【0043】さらに、請求項3あるいは4に記載の発明
によれば、冷房・ドライ運転時及び暖房運転時のいずれ
においても、圧縮機周波数を運転台数に応じて所定の計
算式により決定するようにしたので、1室運転時の低周
波数運転では、より低い運転周波数で圧縮機を運転する
ことにより低入力運転ができる一方、高周波数運転では
配管による圧力損失を考慮した計算式となっているの
で、所望の冷媒循環量を確保することができる。すなわ
ち、運転台数に見合った最適運転周波数を設定でき、高
効率運転が可能となる。
Further, according to the third or fourth aspect of the present invention, in any of the cooling / drying operation and the heating operation, the compressor frequency is determined by a predetermined formula according to the number of operating units. Therefore, in low-frequency operation in single-room operation, low-input operation can be performed by operating the compressor at a lower operation frequency, whereas in high-frequency operation, the calculation formula takes into account the pressure loss due to piping. Thus, a desired refrigerant circulation amount can be secured. That is, the optimum operation frequency can be set according to the number of operating units, and high-efficiency operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる多室形空気調和装置の冷凍サイ
クルの構成図
FIG. 1 is a configuration diagram of a refrigeration cycle of a multi-room air conditioner according to the present invention.

【図2】図1の多室形空気調和システムにおける圧縮機
周波数,燃焼量及び電動膨張弁開度の制御ブロック図
FIG. 2 is a control block diagram of a compressor frequency, a combustion amount, and an electric expansion valve opening degree in the multi-chamber air conditioning system of FIG.

【図3】室内温度と設定温度との差温の温度ゾーン分割
FIG. 3 is a temperature zone division diagram of a temperature difference between a room temperature and a set temperature.

【図4】冷房・ドライ運転時の圧縮機周波数の決定に使
用される制御計算式の1例を示すグラフ
FIG. 4 is a graph showing an example of a control calculation formula used for determining a compressor frequency during a cooling / dry operation.

【図5】暖房運転時の圧縮機周波数の決定に使用される
制御計算式の1例を示すグラフ
FIG. 5 is a graph showing an example of a control calculation formula used for determining a compressor frequency during a heating operation.

【符号の説明】[Explanation of symbols]

2 室外機 4a,4b 室内機 6 圧縮機 8 室外熱交換器 10 四方弁 12a,12b 室内熱交換器 14 液側主管 16a,16b 液側分岐管 18 ガス側主管 20a,20b ガス側分岐管 22a,22b 電動膨張弁 36a,36b 室内温度センサ 38a,38b 運転設定回路 48 室内温度検出回路 50 差温演算回路 52 設定判別回路 54 ON−OFF判別回路 56 定格容量記憶回路 62 圧縮機周波数演算回路 64 膨張弁開度演算回路 66 負荷係数テーブル 70 弁初期開度テーブル 2 outdoor unit 4a, 4b indoor unit 6 compressor 8 outdoor heat exchanger 10 four-way valve 12a, 12b indoor heat exchanger 14 liquid side main pipe 16a, 16b liquid side branch pipe 18 gas side main pipe 20a, 20b gas side branch pipe 22a, 22b Electric expansion valve 36a, 36b Indoor temperature sensor 38a, 38b Operation setting circuit 48 Indoor temperature detection circuit 50 Difference temperature calculation circuit 52 Setting determination circuit 54 ON-OFF determination circuit 56 Rated capacity storage circuit 62 Compressor frequency calculation circuit 64 Expansion valve Opening degree calculation circuit 66 Load coefficient table 70 Valve initial opening degree table

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 邦泰 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−68264(JP,A) 特開 平1−224484(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24F 11/02 102 F25B 13/00 104 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniyasu Uchiyama 1006 Odakadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-68264 (JP, A) JP-A-1- 224484 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) F24F 11/02 102 F25B 13/00 104

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容量可変形圧縮機と四方弁と室外熱交換器
を有する1台の室外機と、室内熱交換器を有する少なく
とも1台以上の室内機とを、冷媒配管を介して接続し、
上記室外機に設けられ主に冷媒液が流れる液側主管から
分岐した液側分岐管と上記室外機に設けられ主に冷媒ガ
スが流れるガス側主管から分岐したガス側分岐管を介し
て接続し、弁開度を電気的に制御可能な電動膨張弁を上
記液側分岐管に取り付けるとともに、各室内機が設置さ
れる室内の温度を任意に設定する室内温度設定手段と、
室内温度を検出する室内温度検出手段と、上記室内温度
設定手段により設定された温度と上記室内温度検出手段
が検出した室内温度との差温を算出する差温演算手段
と、上記室内機の各々の定格容量を記憶する定格容量記
憶手段と、所定周期毎に上記圧縮機の周波数を算出する
周波数演算手段を設け、上記差温演算手段が算出した差
温と上記定格容量記憶手段に記憶された定格容量に基づ
いて第1の負荷係数テーブルから負荷レベルを読み出
し、該負荷レベルの総和に所定の係数を乗じた積を補正
することにより得られた計算値を圧縮機周波数に設定し
て上記圧縮機を制御する空気調和機において、 冷房・ドライ運転時の圧縮機周波数Hzを、 1室運転の場合:Hz1=a1×(負荷レベル)+b1 2室運転で負荷レベルの総和が所定値よりも小さい場合: Hz1=a1×(負荷レベルの総和)+b1 2室運転で負荷レベルの総和が所定値以上の場合: Hz1=a2×(負荷レベルの総和)+b2 ただし、a1>a2、b1<b2 のように仮設定し、この周波数が室外機の構造部品等に
よる固有振動数と同じ場合は、 Comp Hz=Hz1+1 のように設定した多室形空気調和装置。
1. An outdoor unit having a variable capacity compressor, a four-way valve and an outdoor heat exchanger, and at least one indoor unit having an indoor heat exchanger are connected via a refrigerant pipe. ,
A liquid-side branch pipe provided in the outdoor unit and branched from a liquid-side main pipe through which refrigerant liquid mainly flows and a gas-side branch pipe provided in the outdoor unit and branched from a gas-side main pipe through which refrigerant gas mainly flows are connected. Attaching an electric expansion valve capable of electrically controlling the valve opening to the liquid side branch pipe, and an indoor temperature setting means for arbitrarily setting the temperature of the room in which each indoor unit is installed,
An indoor temperature detecting means for detecting an indoor temperature, a differential temperature calculating means for calculating a temperature difference between a temperature set by the indoor temperature setting means and an indoor temperature detected by the indoor temperature detecting means, and each of the indoor units A rated capacity storage means for storing the rated capacity of the compressor, and a frequency calculation means for calculating the frequency of the compressor at predetermined intervals, and the differential temperature calculated by the differential temperature calculation means and stored in the rated capacity storage means. A load value is read from the first load coefficient table based on the rated capacity, and a calculated value obtained by correcting a product obtained by multiplying a sum of the load levels by a predetermined coefficient is set as a compressor frequency, and the above-described compression is set. In the air conditioner that controls the air conditioner, the compressor frequency Hz during cooling / dry operation is set as follows: In the case of single-room operation: Hz1 = a1 × (load level) + b1 Is also smaller: Hz1 = a1 × (total of load levels) + b1 When the total of load levels is equal to or greater than a predetermined value in two-room operation: Hz1 = a2 × (total of load levels) + b2, where a1> a2, b1 <b2 When the frequency is the same as the natural frequency due to the structural components of the outdoor unit, the multi-room air conditioner is set as Comp Hz = Hz1 + 1.
【請求項2】 暖房運転時の圧縮機周波数Hzを、 1室運転の場合:Hz1=a3×(負荷レベル)+b3 2室運転の場合:Hz1=a4×(負荷レベルの総和)+b4 ただし、a3>a4、b3<b4 のように仮設定し、この周波数が室外機の構造部品等に
よる固有振動数と同じ場合は、 Comp Hz=Hz1+1 のように設定した請求項1に記載の多室形空気調和装
置。
2. The compressor frequency Hz during the heating operation is as follows: In the case of single-room operation: Hz1 = a3 × (load level) + b3 In the case of two-room operation: Hz1 = a4 × (sum of load levels) + b4 where a3 2. The multi-room air according to claim 1 , wherein tentative settings are made as:> a4, b3 <b4, and when this frequency is the same as the natural frequency of the structural components of the outdoor unit, etc., Comp Hz = Hz1 + 1. Harmony equipment.
JP10044955A 1998-02-26 1998-02-26 Multi-room air conditioner Expired - Fee Related JP2947254B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10044955A JP2947254B1 (en) 1998-02-26 1998-02-26 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10044955A JP2947254B1 (en) 1998-02-26 1998-02-26 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JP2947254B1 true JP2947254B1 (en) 1999-09-13
JPH11248226A JPH11248226A (en) 1999-09-14

Family

ID=12705920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10044955A Expired - Fee Related JP2947254B1 (en) 1998-02-26 1998-02-26 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2947254B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847689A (en) * 2021-09-23 2021-12-28 佛山市顺德区美的电子科技有限公司 Air conditioner resonance control method and device, air conditioner and storage medium
CN116235749A (en) * 2023-01-05 2023-06-09 浙江青风环境股份有限公司 Control method of magnetic suspension water chilling unit special for factory-like cultivation type mushroom house
CN118242713A (en) * 2024-05-20 2024-06-25 海信家电集团股份有限公司 Air conditioner and noise reduction control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094117A1 (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Air-conditioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847689A (en) * 2021-09-23 2021-12-28 佛山市顺德区美的电子科技有限公司 Air conditioner resonance control method and device, air conditioner and storage medium
CN116235749A (en) * 2023-01-05 2023-06-09 浙江青风环境股份有限公司 Control method of magnetic suspension water chilling unit special for factory-like cultivation type mushroom house
CN118242713A (en) * 2024-05-20 2024-06-25 海信家电集团股份有限公司 Air conditioner and noise reduction control method thereof

Also Published As

Publication number Publication date
JPH11248226A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP3137114B1 (en) Multi-room air conditioner
JP3290306B2 (en) Air conditioner
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JP2823297B2 (en) Air conditioner
JPH06201176A (en) Air-conditioner
JP2006145204A (en) Air conditioner
JPH11248282A (en) Multi-room air conditioner
AU2010253372A1 (en) Heating dedicated air conditioner
KR101151321B1 (en) Multi system air conditioner and control method thereof
JP2947254B1 (en) Multi-room air conditioner
JP2006234295A (en) Multiple air conditioner
JP3223918B2 (en) Multi-room air conditioning system
JP2002147819A (en) Refrigeration unit
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP3372199B2 (en) Control method when the number of indoor units operating changes in multi-room air conditioner
JP3386700B2 (en) Control method when the number of indoor units operating changes in multi-room air conditioner
JP2974381B2 (en) Air conditioner
JP2955278B2 (en) Multi-room air conditioning system
JP3097350B2 (en) Multi-room air conditioner
JP2914783B2 (en) Air conditioner
JP2970358B2 (en) Air conditioner
JP2536313B2 (en) Operation control device for air conditioner
JPH10170085A (en) Air conditioner
JP2719456B2 (en) Air conditioner
JP2003120988A (en) Multichamber-shaped air conditioner of refrigerant heating type

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees