JPH11103184A - High efficiency heat sink - Google Patents

High efficiency heat sink

Info

Publication number
JPH11103184A
JPH11103184A JP26339597A JP26339597A JPH11103184A JP H11103184 A JPH11103184 A JP H11103184A JP 26339597 A JP26339597 A JP 26339597A JP 26339597 A JP26339597 A JP 26339597A JP H11103184 A JPH11103184 A JP H11103184A
Authority
JP
Japan
Prior art keywords
radiator
heat sink
thermal conductivity
substance
higher thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26339597A
Other languages
Japanese (ja)
Inventor
Masayuki Adachi
眞幸 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26339597A priority Critical patent/JPH11103184A/en
Publication of JPH11103184A publication Critical patent/JPH11103184A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance cooling capacity while suppressing weight increase and price up as compared with a method for composing the entire heat sink of a material having higher thermal conductivity by bonding a material having higher thermal conductivity than the material composing the heat sink through plating, or the like, to the surface of a molded heat sink. SOLUTION: The heat sink 1 comprises a material 2 composing the heat sink 1, and a material 3 having higher thermal conductivity than the material 2 and bonded to the surface thereof. Since the material 2 determines the shape of the heat sink 1, an aluminum alloy is employed in view point of machinability and high thermal conductivity. When the material 3 having higher thermal conductivity than the material 2 is bonded to the surface of the heat sink 1 composed of the material 2, an optimal method is selected depending on the combination of the materials 2, 3, and plating may be employed when both materials 2, 3 are metallic. According to the arrangement, cooling performance is enhanced by minimizing weight increase of the heat sink 1 without varying the size thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高効率放熱器に関
し、特に電子装置の冷却構造で電子回路部品の冷却に使
用する放熱器の構造に係わる高効率放熱器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency radiator, and more particularly to a high-efficiency radiator related to a structure of a radiator used for cooling electronic circuit components in a cooling structure of an electronic device.

【0002】[0002]

【従来の技術】従来の技術では、電子部品の冷却に使用
する放熱器は単一の材質で成型され、材質は加工性や熱
伝導率の大きさから、アルミニウムや銅などが使用され
ている。また材質として熱伝導率の大きな樹脂や、樹脂
に熱伝導率を大きくするための部材を混入したものも存
在する。
2. Description of the Related Art In the prior art, a radiator used for cooling an electronic component is formed of a single material, and aluminum or copper is used as the material due to its workability and thermal conductivity. . In addition, there is a resin having a large thermal conductivity or a resin mixed with a member for increasing the thermal conductivity.

【0003】これら前述の放熱器では能力が足りないと
きには、図4は従来の放熱器を示す構成図であるが図4
のように必要な能力を持たせた大型の放熱器(1)を被
冷却部品である電子回路部品(4)から離れた場所に設
置して放熱器(1)と電子回路部品(4)との間をヒー
トパイプ(5)で結ぶことにより放熱器(1)と電子回
路部品(4)の間が離れても冷却の効率が低下しない工
夫をしている。
When the above-mentioned radiator has insufficient capacity, FIG. 4 is a structural view showing a conventional radiator.
The large-sized radiator (1) having the required capability as described in (1) is installed at a place remote from the electronic circuit component (4) to be cooled, and the radiator (1) and the electronic circuit component (4) are provided. Are connected by a heat pipe (5) so that the cooling efficiency is not reduced even if the radiator (1) and the electronic circuit component (4) are separated.

【0004】また図5は従来の放熱器を示す構成図であ
るが図5のように放熱フィン(6)で構成される放熱器
(1)の一部にヒートパイプ(5)を組み込んで放熱器
(1)内部の熱伝導を改善したものも存在する。
FIG. 5 is a structural view showing a conventional radiator. As shown in FIG. 5, a heat pipe (5) is incorporated in a part of a radiator (1) composed of radiating fins (6) to radiate heat. Some have improved heat conduction inside the vessel (1).

【0005】[0005]

【発明が解決しようとする課題】上述した従来の放熱器
は、第1の問題点は、放熱器が大型になるにつれて放熱
面積あたりの冷却能力が低下することである。
The first problem with the above-described conventional radiator is that the cooling capacity per heat radiation area decreases as the radiator becomes larger.

【0006】その理由は、これは放熱器の温度が均一に
ならないため、発熱源である電子回路部品から遠方での
冷却能力が低下しているためである。放熱器から外部に
放出される熱量は放熱器と放熱器外部の温度差に比例す
るので放熱器内部の温度を均一化すれば電子回路部品か
ら遠い部分の冷却能力が向上するので放熱器全体の冷却
能力が向上する。
The reason for this is that the temperature of the radiator is not uniform, so that the cooling capability far from the electronic circuit component which is the heat source is reduced. The amount of heat released from the radiator to the outside is proportional to the temperature difference between the radiator and the outside of the radiator, so if the temperature inside the radiator is made uniform, the cooling capacity of the part far from the electronic circuit components will improve, so the overall radiator Cooling capacity is improved.

【0007】第2の問題点は、放熱器内部の温度を均一
化するためには放熱器の材料に熱伝導率の大きな物質
(たとえば銅や銀)を使用しなければならなく重量が大
きくなり価格も高い、また、温度の均一化はヒートパイ
プの使用により実現できるが放熱器内部にヒートパイプ
を埋め込むか放熱器表面にヒートパイプを熱的に接合す
る必要があり放熱器の構造が複雑になることや価格が上
昇することである。
A second problem is that in order to equalize the temperature inside the radiator, a material having a high thermal conductivity (for example, copper or silver) must be used as the material of the radiator, which increases the weight. Price is high, and temperature uniformity can be achieved by using a heat pipe, but it is necessary to embed the heat pipe inside the radiator or to thermally connect the heat pipe to the radiator surface, which complicates the structure of the radiator That's what happens and prices rise.

【0008】その理由は、熱伝導率の大きな物質(たと
えば銅や銀)は比重が大きく重量が大きくなり価格も高
くなる。また、放熱器内部にヒートパイプを埋め込むか
放熱器表面にヒートパイプを熱的に接合する必要がある
からである。
The reason is that a substance having a large thermal conductivity (eg, copper or silver) has a large specific gravity, a large weight, and a high price. In addition, it is necessary to embed the heat pipe inside the radiator or to thermally join the heat pipe to the surface of the radiator.

【0009】本発明の目的は、従来の技術で問題となっ
ている「放熱器内の温度差に起因する放熱器の冷却能力
低下」について、放熱器内の温度を均一化する構造にし
て放熱器の冷却能力を向上させた高効率放熱器を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a structure for equalizing the temperature in a radiator, which is a problem in the prior art, for "decrease in cooling capability of the radiator due to a temperature difference in the radiator". It is an object of the present invention to provide a high-efficiency radiator having improved cooling capacity of the vessel.

【0010】[0010]

【課題を解決するための手段】本発明の高効率放熱器
は、第1の発明の高効率放熱器は、成型された放熱器の
表面に、放熱器を構成する材質より熱伝導率の大きな物
質をメッキ等により固着させ、放熱器と表面に固着させ
た物質の2つによって放熱器全体に熱を行き渡らせるこ
とにより、放熱器全体をより熱伝導率の大きな物質で構
成する方法より重量増加と価格上昇と抑制して冷却能力
を向上させる。
The high-efficiency radiator according to the present invention is characterized in that the high-efficiency radiator according to the first aspect of the present invention has a higher heat conductivity on the surface of the molded radiator than the material constituting the radiator. The substance is fixed by plating, etc., and the heat is distributed to the entire radiator by the radiator and the substance fixed to the surface. And increase the cooling capacity by suppressing the price increase.

【0011】また、第2の発明の高効率放熱器は、成型
された放熱器の外周に放熱器を構成する材質より熱伝導
率の大きな物質の薄板を巻いて放熱器と当該薄板が接す
る部分で両者を熱的に結合することにより、放熱器全体
をより熱伝導率の大きな物質で構成する方法より重量増
加と価格上昇と抑制して冷却能力を向上させる。
A high-efficiency radiator according to a second aspect of the present invention is a part in which a thin plate made of a material having a higher thermal conductivity than the material constituting the radiator is wound around the outer periphery of the molded radiator, and the radiator contacts the thin plate. By thermally coupling the two, the weight of the radiator as a whole and the increase in the price are suppressed as compared with the method in which the entire radiator is made of a substance having a higher thermal conductivity, thereby improving the cooling capacity.

【0012】[作用]電子回路部品で発生した熱は放熱
器に伝わり、放熱器に伝わった熱は、放熱器を構成する
物質と放熱器表面に固着させた物質の両方を伝わってい
くことにより放熱器表面に固着させた物質の熱伝導率が
放熱器のものより大きいため放熱器内部の熱抵抗が小さ
くなり放熱器内の温度差が減少し、放熱器内の発熱源か
ら遠い場所の冷却能力が向上して放熱器全体の冷却能力
も向上する。
[Action] The heat generated by the electronic circuit components is transmitted to the radiator, and the heat transmitted to the radiator is transmitted by both the material constituting the radiator and the substance fixed to the radiator surface. Since the thermal conductivity of the substance adhered to the surface of the radiator is larger than that of the radiator, the thermal resistance inside the radiator decreases, the temperature difference inside the radiator decreases, and cooling of a place far from the heat source inside the radiator The capacity is improved, and the cooling capacity of the entire radiator is also improved.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0014】図1は本発明の高効率放熱器の第1の実施
の形態を示す構成図である。
FIG. 1 is a block diagram showing a first embodiment of the high-efficiency radiator of the present invention.

【0015】図1を参照すると、放熱器(1)は放熱器
(1)の形状を構成する物質(2)と物質(2)の
表面に固着して熱伝導率が物質(2)より大きな物質
(3)から構成される。物質(2)は放熱器(1)
の形状を決定するので加工性や熱伝導率の大きさからア
ルミニウム合金を使用することが多い。
Referring to FIG. 1, the radiator (1) is fixed to the surface of the material (2) and the material (2) constituting the shape of the radiator (1) and has a higher thermal conductivity than the material (2). It is composed of substance (3). Material (2) is a radiator (1)
Since the shape of the alloy is determined, an aluminum alloy is often used in view of workability and thermal conductivity.

【0016】物質(2)からなる放熱器(1)の表面
に物質(2)より熱伝導率の大きな物質(3)を固
着させる。固着の方法については物質(2)と物質
(3)の組み合わせにより最適な方法を選択するが物質
(2)、物質(3)ともに金属である場合にはメッ
キで固着させる方法が考えられる。
A substance (3) having a higher thermal conductivity than the substance (2) is fixed to the surface of the radiator (1) composed of the substance (2). For the fixing method, an optimum method is selected depending on the combination of the substance (2) and the substance (3). However, when both the substance (2) and the substance (3) are metal, a method of fixing by plating is considered.

【0017】次に、本発明の第1の実施の形態の動作に
ついて、図2を参照して詳細に説明する。
Next, the operation of the first embodiment of the present invention will be described in detail with reference to FIG.

【0018】図2は本発明の高効率放熱器の第1の実施
の形態の動作を示す図である。
FIG. 2 is a diagram showing the operation of the first embodiment of the high-efficiency radiator of the present invention.

【0019】放熱器(1)に熱的に結合された電子回路
部品(4)が発熱し、発生した熱は物質(3)を介し
て物質(2)に伝わる。電子回路部品(4)で発生し
た熱は物質(2)と物質(3)の双方を伝わり放熱
器(1)全体に伝わる。
The electronic circuit component (4) thermally coupled to the radiator (1) generates heat, and the generated heat is transmitted to the substance (2) via the substance (3). The heat generated in the electronic circuit component (4) is transmitted through both the substance (2) and the substance (3), and is transmitted to the entire radiator (1).

【0020】この時、物質(2)より物質(3)の
熱伝導率が大きいため物質(2)のみで構成された放
熱器(1)より放熱器(1)内部の熱抵抗が減少するた
め放熱器(1)内部の温度差が小さくなる。
At this time, since the thermal conductivity of the substance (3) is higher than that of the substance (2), the thermal resistance inside the radiator (1) is smaller than that of the radiator (1) composed only of the substance (2). The temperature difference inside the radiator (1) is reduced.

【0021】放熱器(1)内部の温度差が小さくなるた
め、放熱器(1)内部の電子回路部品(4)から遠い部
分の冷却能力が向上するので放熱器(1)全体の冷却能
力も向上する。この為、同一形状の場合でも本発明の構
造を採用した放熱器(1)の方が放熱性能が大きくな
る。
Since the temperature difference inside the radiator (1) is reduced, the cooling capacity of the portion inside the radiator (1) far from the electronic circuit components (4) is improved, so that the cooling capacity of the entire radiator (1) is also improved. improves. Therefore, even in the case of the same shape, the heat radiator (1) employing the structure of the present invention has higher heat radiation performance.

【0022】次に、本発明の第2の実施の形態につい
て、図3を参照して詳細に説明する。
Next, a second embodiment of the present invention will be described in detail with reference to FIG.

【0023】図3は本発明の高効率放熱器の第2の実施
の形態を示す構成図である。
FIG. 3 is a block diagram showing a second embodiment of the high-efficiency radiator of the present invention.

【0024】図3を参照すると、放熱器(1)は放熱器
(1)全体の形状を形成する物質(2)で作られた部
分と、物質(2)より高い熱伝導率を有する物質
(3)の薄板から構成される。
Referring to FIG. 3, the radiator (1) includes a portion made of the substance (2) forming the overall shape of the radiator (1) and a substance (2) having a higher thermal conductivity than the substance (2). 3) It is composed of a thin plate.

【0025】物質(3)で構成される薄板を物質
(2)で作られた放熱器(1)の周囲に放熱器(1)を
有効に使用するために決めた風向を遮らないように放熱
器(1)の周囲に巻き付ける。この為本構成の放熱器
(1)は風向について指向性を有する。物質(2)と
物質(3)が接する部分は熱的に結合してあり熱が自
由に行き来できる。
The thin plate composed of the substance (3) is radiated around the radiator (1) made of the substance (2) so as not to block the wind direction determined for the effective use of the radiator (1). Wrap around container (1). For this reason, the radiator (1) having this configuration has directivity in the wind direction. A portion where the substance (2) and the substance (3) are in contact with each other is thermally bonded and heat can freely flow.

【0026】次に、本発明の第2の実施の形態の動作に
ついて、詳細に説明する。
Next, the operation of the second embodiment of the present invention will be described in detail.

【0027】放熱器(1)に熱的に結合された電子回路
部品(4)が発熱し、熱的に結合された物質(3)の
薄板に伝わる。物質(3)に伝わった熱は熱的に結合
されている物質(2)に伝わると同時に物質(3)
の薄板内部を伝わり放熱器(1)の上部にも伝えられ
る。放熱器(1)の上部への伝熱経路が物質(2)で
構成された部分と物質(3)で構成された部分の2つ
があることと、物質(3)の熱伝導率を物質(2)
の熱伝導率より大きくすることから放熱器(1)上部へ
の伝熱が促進される。
The electronic circuit component (4) thermally coupled to the radiator (1) generates heat and is transmitted to the thin plate of the thermally coupled material (3). The heat transferred to the substance (3) is transferred to the thermally coupled substance (2) and at the same time the substance (3)
And transmitted to the upper part of the radiator (1). The heat transfer path to the upper part of the radiator (1) has two parts, a part composed of the substance (2) and a part composed of the substance (3), and the thermal conductivity of the substance (3) is determined by the substance ( 2)
, The heat transfer to the upper part of the radiator (1) is promoted.

【0028】このようにして放熱器(1)内の温度差が
小さくなり、放熱器(1)上部の冷却能力が向上して放
熱器(1)全体の冷却能力が向上する。
In this way, the temperature difference in the radiator (1) is reduced, the cooling capacity of the upper part of the radiator (1) is improved, and the cooling capacity of the entire radiator (1) is improved.

【0029】[0029]

【発明の効果】以上説明したように、本発明の高効率放
熱器は、第1の効果は、放熱器の大きさを変えず、放熱
器の重量増加を極力小さくした上で冷却性能を向上させ
ることであり、大きさを変えずに放熱性能を向上させる
ことにより電子回路部品をより高密度に実装することが
可能となる。
As described above, the first advantage of the high-efficiency radiator of the present invention is that the size of the radiator is not changed and the increase in the weight of the radiator is minimized to improve the cooling performance. By improving the heat radiation performance without changing the size, it becomes possible to mount electronic circuit components at a higher density.

【0030】その理由は、放熱器は放熱器の形状を構成
する物質と物質の表面に固着して熱伝導率が物質
より大きな物質から構成することにより、物質より
物質の熱伝導率が大きいため物質のみで構成された
放熱器より放熱器内部の熱抵抗が減少するため放熱器内
部の温度差が小さくなり、放熱器内部の温度差が小さく
なるため、放熱器内部の電子回路部品から遠い部分の冷
却能力が向上するので放熱器全体の冷却能力が向上する
からである。
The reason is that the radiator is made of a material having a larger thermal conductivity than the material by being fixed to the surface of the material and the material constituting the shape of the radiator. Since the thermal resistance inside the radiator is smaller than that of a radiator composed of only substances, the temperature difference inside the radiator is smaller, and the temperature difference inside the radiator is smaller, so the part farther from the electronic circuit components inside the radiator This is because the cooling capacity of the radiator is improved because the cooling capacity of the radiator is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高効率放熱器の第1の実施の形態を示
す構成図である。
FIG. 1 is a configuration diagram showing a high-efficiency radiator according to a first embodiment of the present invention.

【図2】本発明の高効率放熱器の第1の実施の形態の動
作を示す図である。
FIG. 2 is a diagram showing an operation of the first embodiment of the high efficiency radiator of the present invention.

【図3】本発明の高効率放熱器の第2の実施の形態を示
す構成図である。
FIG. 3 is a configuration diagram showing a second embodiment of the high efficiency radiator of the present invention.

【図4】従来の放熱器を示す構成図である。FIG. 4 is a configuration diagram showing a conventional radiator.

【図5】従来の放熱器を示す構成図である。FIG. 5 is a configuration diagram showing a conventional radiator.

【符号の説明】[Explanation of symbols]

1 放熱器 2 物質 3 物質 4 電子回路部品 Reference Signs List 1 radiator 2 substance 3 substance 4 electronic circuit parts

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子回路部品の冷却に使用する放熱器に
おいて、放熱器の表面に放熱器を構成する物質より熱伝
導率の大きな物質を固着したことを特徴とする高効率放
熱器。
1. A high-efficiency radiator for cooling electronic circuit components, wherein a material having a higher thermal conductivity than a material constituting the radiator is fixed to a surface of the radiator.
【請求項2】 放熱器の表面に放熱器を構成する物質よ
り熱伝導率の大きな物質を固着させる方法としてメッキ
で固着させる方法を取ったことを特徴とする請求項1記
載の高効率放熱器。
2. A high-efficiency radiator according to claim 1, wherein a material having a higher thermal conductivity than the material constituting the radiator is fixed to the surface of the radiator by plating. .
【請求項3】 電子回路部品の冷却に使用する放熱器に
おいて、放熱器の外周に放熱器を構成する材質より熱伝
導率の高い材質の薄板を被覆し、放熱器と前記薄板を熱
的に結合したことを特徴とする高効率放熱器。
3. A radiator used for cooling an electronic circuit component, wherein an outer periphery of the radiator is covered with a thin plate having a higher thermal conductivity than a material forming the radiator, and the radiator and the thin plate are thermally connected. A high-efficiency radiator characterized by being combined.
JP26339597A 1997-09-29 1997-09-29 High efficiency heat sink Pending JPH11103184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26339597A JPH11103184A (en) 1997-09-29 1997-09-29 High efficiency heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26339597A JPH11103184A (en) 1997-09-29 1997-09-29 High efficiency heat sink

Publications (1)

Publication Number Publication Date
JPH11103184A true JPH11103184A (en) 1999-04-13

Family

ID=17388910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26339597A Pending JPH11103184A (en) 1997-09-29 1997-09-29 High efficiency heat sink

Country Status (1)

Country Link
JP (1) JPH11103184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731482B1 (en) 2005-05-31 2007-06-21 삼성에스디아이 주식회사 Drive circuit board and flat display apparatus including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731482B1 (en) 2005-05-31 2007-06-21 삼성에스디아이 주식회사 Drive circuit board and flat display apparatus including the same

Similar Documents

Publication Publication Date Title
US6439299B1 (en) Heatsink apparatus
JP2006074853A (en) Vehicle-mounted power converter
US7868450B2 (en) Semiconductor package
JP2001110956A (en) Cooling equipment for electronic component
WO2003043397A1 (en) Electronic apparatus
US20200135615A1 (en) Chip package structure
US6215661B1 (en) Heat spreader
JP2009147041A (en) Reactor
JP2004295718A (en) Liquid cooling system for information processor
EP3579674B1 (en) Cladded metal structures for dissipation of heat in a portable electronic device
JP2001230578A (en) Heat radiating structure of portable communication terminal
CN214477410U (en) Heat dissipation module and terminal
JP3449604B2 (en) Cooling fins
US20140182818A1 (en) Heat sink
JP3927689B2 (en) Microwave communication equipment
JPH11103184A (en) High efficiency heat sink
JP2006005081A (en) Power component cooling device
JP2004214429A (en) Heat radiation structure of laminated printed circuit board
WO2005015111A1 (en) Radiation member and apparatus, cage and computer support including the radiation member
JP2003309238A (en) Tower-type heat sink
JP2003152368A (en) Electronic equipment
JPH02244748A (en) Heat pipe type cooler
CN110191623A (en) Housing unit and electronic equipment
JP2021034394A (en) Substrate case
JPH0471257A (en) Electronic device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000118