JP2004295718A - Liquid cooling system for information processor - Google Patents

Liquid cooling system for information processor Download PDF

Info

Publication number
JP2004295718A
JP2004295718A JP2003089679A JP2003089679A JP2004295718A JP 2004295718 A JP2004295718 A JP 2004295718A JP 2003089679 A JP2003089679 A JP 2003089679A JP 2003089679 A JP2003089679 A JP 2003089679A JP 2004295718 A JP2004295718 A JP 2004295718A
Authority
JP
Japan
Prior art keywords
heat
liquid cooling
cooling system
information processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089679A
Other languages
Japanese (ja)
Inventor
Katsuhiro Arakawa
勝広 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003089679A priority Critical patent/JP2004295718A/en
Publication of JP2004295718A publication Critical patent/JP2004295718A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid cooling technique usefully applicable to a local heating part of a CPU of information processor or the like to obtain a special heat receiving effect not possessed by a related art. <P>SOLUTION: This liquid cooling system for information processor comprises a flow control means provided in each coolant passage of a heat receiving head having a plurality of pipes. The flow control means has a resistor for changing the respective passage area or disturbing the flow in the passage. The thermosensitive flow control means is formed of a material (e.g., bimetal) the shape of which is largely changed depending on the temperature of the resistor of the passage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、デスクトップ型もしくはノート型パーソナルコンピュータやサーバ等の小型情報処理装置の液体冷却システムに関する。
【0002】
【従来の技術】
電子機器の冷却装置についての従来技術は、電子機器内の発熱部材と金属筐体壁との間に金属板又はヒートパイプを介在させて発熱部材を熱的に金属筐体壁と接続することによって、発熱部材で発熱する熱を金属筐体壁で放熱するものであった。
【0003】
また、特許文献1には電子機器の発熱部材を液冷する技術が開示されており、これによると、電子機器内の半導体素子発熱部材で発生した熱を受熱ヘッドで受け取り、受熱ヘッド内の冷却液がフレキシブルチューブを通って表示装置の金属製筐体に設けられた放熱ヘッドに輸送されて、半導体素子発熱部材で発生した熱を冷却液を介して放熱ヘッドを通し金属筐体から効率的に放熱する構造となっている。更に、放熱面である金属製筐体の壁面に直接取り付けられたヒートパイプに伝達され、更に、放熱面である金属製筐体の壁面に直接取り付けられたヒートパイプの他端に熱接続されて放熱される構造が開示されている。
【0004】
特許文献2や特許文献3には蛇行した流路を形成した受熱ヘッドについて開示されている。
【0005】
また、特許文献4には同一な流路断面積の複数配管を持った受熱ヘッドについて開示されている。
【0006】
【特許文献1】
特開平7−142886号公報
【特許文献2】
特開平6−266474号公報
【特許文献3】
特開2001−133174号公報
【特許文献4】
特開2001−102835号公報
【0007】
【発明が解決しようとする課題】
パソコンやサーバは、本体部に内臓されたCPU、MPU等(以下、CPUと云う)から熱を発生するが、発生熱によって回路動作が不安定になったり、機構類の熱変形を引き起こす虞がある。特に、最近ではCPUの動作周波数が一層高くなるのに伴って発熱量の増大を来しており、更なる冷却機能の向上が望まれている。
【0008】
従来技術では、蛇行配管や複数配管による液冷システムの受熱方式により受熱面の全領域でほぼ一定の冷却機能を得る技術が開示されている。しかしながら、一般にCPU等は発熱する10mm角程度の半導体素子が有機(もしくはセラミック)の中継基板に実装されている構造になっており、それがマザーボードにはんだ付けもしくはマザーボードに実装されたソケットに装着される。受熱ヘッドは流路を形成するため半導体素子より大きな構造となる。また、受熱ヘッドをCPUに取り付けた状態での受熱ヘッドの温度分布はCPUの中心部から同心円状に遠くなるほど低くなる。すなわちCPU等を効率よく冷却するシステムには受熱ヘッドの均一化を図る必要は無く熱いところをより冷やすという分布を持たせた冷却のほうが効果的である。
【0009】
また、冷却には受熱ヘッドの中を流れる冷媒との接水面積を多くする、冷媒の流量を多くする、冷媒と受熱ヘッドの温度差を大きくすることが効果的であることが知られている。流量を多くするには冷媒の輸送手段(一般にポンプ)の性能を上げる必要がある。性能を上げるにはポンプを大きくするかパワーをあげることになるが、近年の電子機器の高密度化や省電力化に伴い実装するエリアを確保できないのでポンプを大きくできないし消費電力もあげられない。また、騒音の面からもポンプの能力は極力抑えたい要求がある。
【0010】
蛇行配管で接水面積を多くするには受熱ヘッド全面に流路を形成することが考えられるが、その場合冷媒が流路を通る過程で受熱ヘッドから熱を受取るため肝心のCPU中心部に到達するころには冷媒の温度は上昇しCPU中心部と冷媒の温度差が大きくとれず効果的な冷却が行えない。
【0011】
同一な流路断面積を持った複数配管を受熱ヘッドに配置した場合、各配管の流量は同一であるためCPU中心部を冷却する能力の流量が受熱ヘッド周辺に位置した配管にも流れることになり冷やさなくても良いところを一生懸命冷やしている無駄な冷却を行うことになることと総流量が各配管の本数倍になるのでポンプ性能を大きくする必要がある。
【0012】
本発明の目的は、情報処理装置のCPU等の局所発熱部品に適用して有用な液冷技術を提供し、従来技術にない特有な受熱効果が得られる構成を提案することにある。
【0013】
【課題を解決するための手段】
前記目的を達成するための第1の手段は、複数配管を有する受熱ヘッドのそれぞれの冷媒流路に流量制御手段を備えることによって達成される。流量制御手段はそれぞれの流路断面積を変えることや流路に流れを妨げる抵抗体を設けることで達成できる。前記目的を達成するための第2の手段は、流れを妨げる抵抗体を温度によって大きく形状が変化する物質(例えばバイメタル)で構成し冷媒の温度が高い場合は抵抗体に流路を開放させ流路抵抗を小さくし流量を増やし、冷媒の温度が低い場合には抵抗体に流路を遮断させ流路抵抗を大きくし流量を制限し、高温度部に冷媒を集中して流すことで達成できる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照して説明する。
本発明の実施形態に係るノート型パソコンの液冷技術について、図面を用いて以下説明する。図1は、本発明の実施形態に係るノート型パソコンの液冷に関する全体構成を示すものである。図1によると、ノート型パソコンは、操作釦群を有するパソコン本体部1と、前記本体部1に回動支持される液晶表示部を有する表示部2と、から構成され、パソコン本体部1は、メインシャーシに支持されたマザーボード(制御回路基板)3が配置され、マザーボード3にはコンピュータを動作させるのに必要な各種電気・電子素子、集積回路、電子回路群等が搭載され、コンピュータの動作時に発熱源となるCPU4等もこのマザーボード3上に配置されている。図1において、CPU4はW/J(受熱ヘッドとしてのウォータージャケット)の下に配されていて、CPU4から発生する熱を受熱ヘッドに熱伝達している。
【0015】
本発明の実施形態に関する液冷の基本的な構成は、パソコン本体部内に収容された最大の発熱源であるCPU4上に受熱ヘッド(W/J)9を固定して、CPU発生熱を受熱ヘッド9内の冷却熱で回収し、受熱ヘッド9に接続され且つ冷却液を充填したチューブ10が液晶表示板と表面カバー間に持ち来されて表面カバー又は筐体を通して熱放散されるものである。
【0016】
上記構成による冷却液循環方式の冷却システムにおいて以下に本発明の特徴となる受熱ヘッドの詳細について説明する。
図2は本発明の一実施例の上断面図で矢印は各流路21に流れる冷媒の流量の大きさと向き22を示している。図3(b)は図2のAA線上の横断面図である。図3(a)は(b)における受熱ヘッドのベース23の温度分布24を実線で各流路の流量特性25を棒グラフで示している。
【0017】
図2に示すように受熱ヘッドは冷媒が流れる流路とその流路を形成する仕切り板26と外枠27と発熱体に接するベース23と天板28と感温流量制限手段の一実施例であるバイメタル29で構成されている。ベースと外枠と仕切り板は一体整形されたものでもかまわないしそれぞれ独立に形成し後に接着等で構成してもかまわない。また、それらは熱伝導の良い金属で構成するのが好ましい。さらに受熱ヘッドには冷媒が受熱ヘッドに流れこむ流入口30とその反対側に受熱ヘッドから熱を奪った冷媒が流れ出る流出口31を備える。バイメタルは温度差による膨張収縮の量が大きい高膨張金属の板32と温度差による膨張収縮の量が小さい低膨張金属の板33を貼り合わせて構成されている。温度上昇することで高膨張金属側の延び量が大きくなるので高膨張金属側に凸の状態に曲がる。
バイメタルは各流路の流出口側に高膨張金属側を各流路の流入口側に向け外枠もしくは仕切り板に取り付ける。バイメタルはベースもしくは天板に取付けても良い。
【0018】
以下に本発明の受熱ヘッドの動作について説明する。CPUが起動するとCPUに熱的に接続されたベースの温度上昇が始まる。温度分布は図2(a)に示したようにCPUの真上をピークとし周辺に行くにしたがって低くなる。受熱ヘッドや受熱ヘッド内の冷媒の温度上昇にしたがって取付けられたバイメタルが温度上昇し流出口側に変形をはじめる。CPU真上の温度の高い流路に取付けられたバイメタルの変形が大きく周囲に行くほど変形は小さくなる。それに伴い変形の大きなバイメタルを有する流路の流路抵抗は小さくなるため温度の高くなるCPUに近い流路ほど流量を多くする制御が可能になる。それにより各流路の流量を図2(a)の棒グラフのように制御可能になり、制御しない場合よりもハッチング部34の流量分を削減可能となる。これにより必要以上の流量を流す必要が無くなるのでポンプの能力を低く抑えることができる。以上によりポンプの小型化や省電力化が可能になる。
【0019】
あらかじめ必要流量がわかっている場合には感温流量制限手段を使わずとも図4のように等しい厚さの仕切り板を不等ピッチで各流路に必要流量が流れるように配置することで可能である。また、厚さの異なる仕切り板を等ピッチに配置する図5の形態でも実現可能である。
【0020】
流路断面積の異なる受熱ヘッドの別の製造方法として図6乃至図8に示すように、円形又は楕円形又は四角形のそれぞれ異なる太さのパイプ35をベース上に横一列に配置し熱伝導接着剤もしくははんだ付け36により形成する方法もある。この製造方法によれば流路がパイプの内径になり流路として閉じているので天板は不要とすることが可能。また、四角形のパイプを使って形成する場合はCPUとの接触面をフラットに形成することが可能となるのでベースも不要とすることが可能である。なお、図6乃至図8は本実施形態における図2でのAA部断面を示している。
【0021】
図9はモジュール化された発熱体37へ適用した場合の実施例である。このように各流路にバイメタルを備えた受熱ヘッドを用いることで、発熱体38が受熱ヘッド中心に存在しない場合やモジュール内で発熱に分布がある場合でも必要最低限の流量で冷却が可能になる。またモジュールなどは使う機能により発熱する部品が異なる場合がある。ある機能を使っている場合にはAの部品が発熱し、また、別の機能を使った場合にはBの部品が発熱するような場合でも、その時々で選択的に自動で流量を集中できるので、発熱に柔軟に対応できる。
【0022】
【発明の効果】
以上のように本発明によれば、パソコンやサーバのようにCPU等の局所発熱体を配置する情報処理装置の液体冷却システムに用いられ、前記局所発熱体から効率的に熱を奪い放熱部へ輸送することが可能になる。必要最小限の流量での冷却が可能となるためポンプの能力を低く抑えることができる。これにより、ポンプの小型化や省電力化が期待でき、より小型の情報処理装置への適用が期待できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るノート型パソコンの液冷システムに関する全体構成を示す図である。
【図2】本発明の第一の実施形態をしめす図である。
【図3】本発明の第一の実施形態における流量制御動作をしめす図である。
【図4】本発明の第二の実施形態をしめす図である。
【図5】本発明の第三の実施形態しめす図である。
【図6】本発明の第四の実施形態しめす図である。
【図7】本発明の第五の実施形態しめす図である。
【図8】本発明の第六の実施形態しめす図である。
【図9】本発明の第七の実施形態しめす図である。
【符号の説明】
1:本体部、2:表示部、3:マザーボード、4:CPU、9:受熱ヘッド、10:チューブ、21:流路、22:流量の大きさと向き、23:ベース、24:温度分布、25:各流路の流量特性、26:仕切り板、27:外枠、28:天板、29:バイメタル、30:流入口、31:流出口、32:高膨張金属の板、33:低膨張金属の板、34:削減可能な流量、35:パイプ、36:熱伝導接着剤もしくははんだ付け、37:モジュール、38:発熱体、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid cooling system for a small information processing device such as a desktop or notebook personal computer or server.
[0002]
[Prior art]
The related art of a cooling device for an electronic device includes a metal plate or a heat pipe interposed between a heat generating member in the electronic device and a metal housing wall to thermally connect the heat generating member to the metal housing wall. The heat generated by the heat generating member is radiated by the metal housing wall.
[0003]
Patent Document 1 discloses a technique for liquid-cooling a heat-generating member of an electronic device. According to this technology, heat generated by a semiconductor-element heat-generating member in the electronic device is received by a heat-receiving head, and cooling inside the heat-receiving head is performed. The liquid is transported through the flexible tube to the heat radiating head provided on the metal casing of the display device, and the heat generated by the semiconductor element heating member is efficiently passed from the metal casing through the heat radiating head through the cooling liquid. It has a structure to radiate heat. Furthermore, the heat is transmitted to a heat pipe directly attached to the wall surface of the metal casing that is a heat dissipation surface, and further thermally connected to the other end of the heat pipe that is directly attached to the wall surface of the metal casing that is a heat dissipation surface. A structure for dissipating heat is disclosed.
[0004]
Patent Documents 2 and 3 disclose heat receiving heads having a meandering flow path.
[0005]
Patent Document 4 discloses a heat receiving head having a plurality of pipes having the same flow path cross-sectional area.
[0006]
[Patent Document 1]
JP-A-7-142886 [Patent Document 2]
JP-A-6-266474 [Patent Document 3]
JP 2001-133174 A [Patent Document 4]
JP 2001-102835 A
[Problems to be solved by the invention]
A personal computer or a server generates heat from a CPU, an MPU, or the like (hereinafter, referred to as a CPU) incorporated in a main body. However, the generated heat may cause unstable circuit operation or thermal deformation of mechanisms. is there. In particular, recently, as the operating frequency of the CPU has been further increased, the amount of heat generated has increased, and further improvement of the cooling function is desired.
[0008]
The prior art discloses a technique for obtaining a substantially constant cooling function over the entire area of a heat receiving surface by a heat receiving method of a liquid cooling system using meandering pipes or a plurality of pipes. However, in general, a CPU or the like has a structure in which a semiconductor element of about 10 mm square that generates heat is mounted on an organic (or ceramic) relay board, which is soldered to a motherboard or mounted in a socket mounted on the motherboard. You. The heat receiving head has a larger structure than the semiconductor element because it forms a flow path. Further, the temperature distribution of the heat receiving head in a state where the heat receiving head is attached to the CPU becomes lower as the distance from the center of the CPU becomes concentric. That is, in a system for efficiently cooling a CPU or the like, it is not necessary to make the heat receiving head uniform, and cooling having a distribution of cooling a hot place is more effective.
[0009]
It is known that it is effective for cooling to increase the water contact area with the refrigerant flowing in the heat receiving head, increase the flow rate of the refrigerant, and increase the temperature difference between the refrigerant and the heat receiving head. . In order to increase the flow rate, it is necessary to improve the performance of the means for transporting the refrigerant (generally, a pump). To increase the performance, the pump must be increased or the power must be increased.However, the mounting area cannot be secured due to the recent increase in density and power saving of electronic devices, so the pump cannot be enlarged and the power consumption cannot be increased. . In addition, there is a demand for minimizing the capacity of the pump in terms of noise.
[0010]
In order to increase the water contact area with a meandering pipe, it is conceivable to form a flow path on the entire surface of the heat receiving head, but in this case, the refrigerant reaches the central part of the CPU to receive heat from the heat receiving head while passing through the flow path At this time, the temperature of the refrigerant rises, and the temperature difference between the central part of the CPU and the refrigerant cannot be made large, so that effective cooling cannot be performed.
[0011]
When a plurality of pipes having the same flow path cross-sectional area are arranged in the heat receiving head, the flow rate of each pipe is the same, so that the flow rate of the ability to cool the central portion of the CPU also flows to the pipes located around the heat receiving head. It is necessary to increase the pump performance because unnecessary cooling is performed so as to cool the part that does not need to be cooled, and the total flow rate becomes several times the number of pipes.
[0012]
An object of the present invention is to provide a useful liquid cooling technique applied to a local heat-generating component such as a CPU of an information processing apparatus, and to propose a configuration in which a unique heat receiving effect not obtained in the related art can be obtained.
[0013]
[Means for Solving the Problems]
A first means for achieving the above object is achieved by providing a flow control means in each of the refrigerant flow paths of a heat receiving head having a plurality of pipes. The flow rate control means can be achieved by changing the cross-sectional area of each flow path or by providing a flow-blocking resistor in the flow path. A second means for achieving the above object is to form a resistor that obstructs the flow from a substance (for example, a bimetal) whose shape changes greatly depending on the temperature, and to open the flow path to the resistor when the temperature of the refrigerant is high. This can be achieved by reducing the path resistance and increasing the flow rate, and, when the temperature of the refrigerant is low, blocking the flow path by the resistor to increase the flow path resistance and restricting the flow rate, and allowing the refrigerant to flow intensively in the high temperature part. .
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A liquid cooling technique for a notebook personal computer according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration relating to liquid cooling of a notebook personal computer according to an embodiment of the present invention. Referring to FIG. 1, the notebook computer includes a personal computer main body 1 having a group of operation buttons, and a display unit 2 having a liquid crystal display unit which is rotatably supported by the main body 1. A motherboard (control circuit board) 3 supported by a main chassis is arranged. The motherboard 3 is mounted with various electric / electronic elements, integrated circuits, and electronic circuits necessary for operating the computer. The CPU 4 and the like, which sometimes generate heat, are also arranged on the motherboard 3. In FIG. 1, the CPU 4 is disposed under a W / J (water jacket as a heat receiving head) and transfers heat generated from the CPU 4 to the heat receiving head.
[0015]
The basic configuration of liquid cooling according to the embodiment of the present invention is as follows. A heat receiving head (W / J) 9 is fixed on a CPU 4 which is a largest heat source housed in a personal computer main body, and heat generated by the CPU is received by the heat receiving head. A tube 10 connected to the heat receiving head 9 and filled with a cooling liquid is collected between the liquid crystal display panel and the front cover and is dissipated through the front cover or housing.
[0016]
The details of the heat receiving head, which is a feature of the present invention, in the cooling liquid circulation type cooling system having the above configuration will be described below.
FIG. 2 is a top cross-sectional view of one embodiment of the present invention, and arrows indicate the magnitude and direction 22 of the flow rate of the refrigerant flowing through each flow path 21. FIG. 3B is a cross-sectional view taken along line AA of FIG. FIG. 3A shows the temperature distribution 24 of the base 23 of the heat receiving head in FIG. 3B by a solid line and the flow rate characteristic 25 of each flow path by a bar graph.
[0017]
As shown in FIG. 2, the heat receiving head is an embodiment of a flow path through which the refrigerant flows, a partition plate 26 forming the flow path, an outer frame 27, a base 23 in contact with the heating element, a top plate 28, and a temperature-sensitive flow rate limiting means. It is composed of a certain bimetal 29. The base, the outer frame, and the partition plate may be formed integrally, or may be formed independently of each other and then formed by bonding or the like. Further, they are preferably made of a metal having good heat conductivity. Further, the heat receiving head is provided with an inlet 30 through which the refrigerant flows into the heat receiving head and an outlet 31 through which the refrigerant whose heat has been removed from the heat receiving head flows out on the opposite side. The bimetal is formed by bonding a high expansion metal plate 32 having a large amount of expansion and contraction due to a temperature difference and a low expansion metal plate 33 having a small amount of expansion and contraction due to a temperature difference. As the temperature rises, the amount of extension on the high expansion metal side increases, so that the high expansion metal side is bent in a convex state.
The bimetal is attached to an outer frame or a partition plate with the high expansion metal side on the outflow side of each flow path and the inflow side of each flow path. The bimetal may be attached to the base or top plate.
[0018]
Hereinafter, the operation of the heat receiving head of the present invention will be described. When the CPU is started, the temperature of the base thermally connected to the CPU starts to rise. As shown in FIG. 2A, the temperature distribution has a peak just above the CPU and decreases toward the periphery. As the temperature of the heat receiving head and the temperature of the refrigerant in the heat receiving head rises, the temperature of the attached bimetal rises and starts to deform toward the outlet. The deformation of the bimetal attached to the high-temperature channel just above the CPU is large, and the deformation becomes small as it goes to the surroundings. Accordingly, since the flow path resistance of the flow path having a bimetal having large deformation decreases, the flow rate can be controlled to increase as the flow path becomes closer to the CPU where the temperature becomes higher. As a result, the flow rate of each flow path can be controlled as shown in the bar graph of FIG. 2A, and the flow rate of the hatched portion 34 can be reduced as compared with the case where the flow rate is not controlled. This eliminates the necessity of flowing an excessive flow rate, so that the capacity of the pump can be reduced. As described above, the size and power consumption of the pump can be reduced.
[0019]
If the required flow rate is known in advance, it is possible to arrange the partition plates of equal thickness as shown in FIG. It is. Further, it is also possible to realize the embodiment shown in FIG. 5 in which partition plates having different thicknesses are arranged at equal pitches.
[0020]
As shown in FIGS. 6 to 8, as another method of manufacturing heat receiving heads having different flow path cross-sectional areas, pipes 35 having different diameters of circular, elliptical or square shapes are arranged in a row in a row on a base, and heat conduction bonding is performed. There is also a method of forming by using an agent or soldering 36. According to this manufacturing method, since the flow path becomes the inner diameter of the pipe and is closed as the flow path, the top plate can be eliminated. Further, in the case of using a rectangular pipe, the contact surface with the CPU can be formed flat, so that the base is not required. 6 to 8 show cross sections taken along the line AA in FIG. 2 in the present embodiment.
[0021]
FIG. 9 shows an embodiment in which the present invention is applied to a modularized heating element 37. In this way, by using the heat receiving heads provided with the bimetals in the respective flow paths, even when the heating element 38 does not exist at the center of the heat receiving head or when the heat generation is distributed in the module, the cooling can be performed at a minimum necessary flow rate. Become. In addition, a module or the like may generate different heat-generating components depending on the function used. Even if the part A generates heat when using a certain function and the part B generates heat when using another function, the flow can be selectively and automatically concentrated at each time. Therefore, it can respond flexibly to heat generation.
[0022]
【The invention's effect】
As described above, according to the present invention, it is used in a liquid cooling system of an information processing apparatus in which a local heating element such as a CPU is arranged, such as a personal computer or a server, and efficiently removes heat from the local heating element to a radiator. It becomes possible to transport. Since cooling can be performed at a minimum necessary flow rate, the capacity of the pump can be reduced. As a result, miniaturization and power saving of the pump can be expected, and application to a smaller information processing device can be expected.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of a liquid cooling system for a notebook personal computer according to an embodiment of the present invention.
FIG. 2 is a diagram showing a first embodiment of the present invention.
FIG. 3 is a diagram illustrating a flow control operation according to the first embodiment of the present invention.
FIG. 4 is a view showing a second embodiment of the present invention.
FIG. 5 is a view showing a third embodiment of the present invention.
FIG. 6 is a view showing a fourth embodiment of the present invention.
FIG. 7 is a view showing a fifth embodiment of the present invention.
FIG. 8 is a view showing a sixth embodiment of the present invention.
FIG. 9 is a view showing a seventh embodiment of the present invention.
[Explanation of symbols]
1: body part, 2: display part, 3: motherboard, 4: CPU, 9: heat receiving head, 10: tube, 21: flow path, 22: size and direction of flow rate, 23: base, 24: temperature distribution, 25 : Flow characteristics of each flow path, 26: partition plate, 27: outer frame, 28: top plate, 29: bimetal, 30: inlet, 31: outlet, 32: high expansion metal plate, 33: low expansion metal Plate, 34: reducible flow rate, 35: pipe, 36: heat conductive adhesive or soldering, 37: module, 38: heating element,

Claims (4)

CPUを含む少なくとも1つの発熱部に冷却液が出入りする受熱ヘッドを固定し、前記冷却液に発熱部の発生熱を伝達して放熱をおこなう情報処理装置の液冷システムにおいて、
前記受熱ヘッドは複数の流路を有し、それぞれの流路の冷却液の流量制御手段を備えたことを特徴とする情報処理装置の液冷システム。
In a liquid cooling system of an information processing apparatus, a heat receiving head through which a coolant flows in and out of at least one heat generating unit including a CPU is fixed, and heat generated by the heat generating unit is transmitted to the coolant to radiate heat.
A liquid cooling system for an information processing apparatus, wherein the heat receiving head has a plurality of flow paths and a flow rate control unit for a cooling liquid in each flow path.
請求項1記載の情報処理装置の液冷システムにおいて、
前記流量制御手段は、冷却液温度あるいは受熱ヘッド温度を検出し流量制御をおこなうことを特徴とする情報処理装置の液冷システム。
The liquid cooling system for an information processing apparatus according to claim 1,
A liquid cooling system for an information processing apparatus, wherein the flow control means detects a cooling liquid temperature or a heat receiving head temperature and performs flow control.
請求項2記載の情報処理装置の液冷システムにおいて、
前記流量制御手段は、バイメタルあるいは形状記憶合金から成ることを特徴とする情報処理装置の液冷システム。
The liquid cooling system for an information processing apparatus according to claim 2,
A liquid cooling system for an information processing apparatus, wherein the flow control means is made of a bimetal or a shape memory alloy.
請求項2記載の情報処理装置の液冷システムにおいて、
前記流量制御手段は、円形又は楕円形又は四角形のそれぞれ異なる太さのパイプを組合せて形成されるか、異なる厚さの仕切り板を同一のピッチで形成されるか、
同一の厚さの仕切り板を異なるピッチで形成されるか、のいずれかの構造を有することを特徴とする情報処理装置の液冷システム。
The liquid cooling system for an information processing apparatus according to claim 2,
The flow rate control means is formed by combining pipes of different diameters of circular or oval or square, or partition plates of different thickness are formed at the same pitch,
A liquid cooling system for an information processing apparatus, comprising a structure in which partition plates having the same thickness are formed at different pitches.
JP2003089679A 2003-03-28 2003-03-28 Liquid cooling system for information processor Pending JP2004295718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089679A JP2004295718A (en) 2003-03-28 2003-03-28 Liquid cooling system for information processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089679A JP2004295718A (en) 2003-03-28 2003-03-28 Liquid cooling system for information processor

Publications (1)

Publication Number Publication Date
JP2004295718A true JP2004295718A (en) 2004-10-21

Family

ID=33403474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089679A Pending JP2004295718A (en) 2003-03-28 2003-03-28 Liquid cooling system for information processor

Country Status (1)

Country Link
JP (1) JP2004295718A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619076B1 (en) 2005-04-11 2006-08-31 삼성전자주식회사 Heat sink apparatus for radiating of the electronic device
WO2007049809A1 (en) * 2005-10-28 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling structure of electric device
KR100806261B1 (en) 2005-03-31 2008-02-22 가부시끼가이샤 히다치 세이사꾸쇼 Cooling jacket
KR100817267B1 (en) * 2005-04-01 2008-03-27 가부시끼가이샤 히다치 세이사꾸쇼 Cooling jacket
JP2008536337A (en) * 2005-04-11 2008-09-04 インテル コーポレイション A microfluidic cooling method for integrated circuits.
JP2008258340A (en) * 2007-04-04 2008-10-23 Hitachi Ltd Cooler and electronic apparatus equipped with the same
JP2009016708A (en) * 2007-07-09 2009-01-22 Fuji Electric Device Technology Co Ltd Semiconductor device, and manufacturing method of semiconductor device
US7538427B2 (en) 2005-03-08 2009-05-26 Seiko Epson Corporation Microchannel structure and manufacturing method therefor, light source device, and projector
WO2009069578A1 (en) * 2007-11-26 2009-06-04 Kabushiki Kaisha Toyota Jidoshokki Liquid-cooled cooling device
US7583501B2 (en) 2007-03-01 2009-09-01 Nec Corporation Electronic apparatus
US20100089468A1 (en) * 2006-12-22 2010-04-15 Kevin Scott Flow distribution regulation arrangement with bimetallic elements for adjusting the flow distribution in a cooling channel
US7778029B2 (en) * 2007-02-23 2010-08-17 Nec Corporation System comprising heat-generator and cooler thereof, and disk array system
JP2012533868A (en) * 2009-08-10 2012-12-27 富士電機株式会社 Semiconductor module and cooler
JP2014529878A (en) * 2011-08-02 2014-11-13 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Cooling device with thermoelectric sensor
FR3010830A1 (en) * 2013-09-17 2015-03-20 Commissariat Energie Atomique DEVICE FOR COOLING AN INTEGRATED CIRCUIT CHIP
JP2016508674A (en) * 2013-01-31 2016-03-22 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Liquid cooling
US10123464B2 (en) 2012-02-09 2018-11-06 Hewlett Packard Enterprise Development Lp Heat dissipating system
CN109041537A (en) * 2018-08-30 2018-12-18 西安电子科技大学 A kind of the self-regulation runner cold plate and self-adjusting method of marmem driving
US10571206B2 (en) 2012-09-28 2020-02-25 Hewlett Packard Enterprise Development Lp Cooling assembly
CN111326999A (en) * 2020-04-08 2020-06-23 昆山圣星通讯器材有限公司 High temperature resistant prevents freezing formula MPP pipe
CN114423249A (en) * 2022-01-29 2022-04-29 联想(北京)有限公司 Heat radiation structure
GB2606054A (en) * 2021-02-18 2022-10-26 Nvidia Corp Intelligent and dynamic cold plate for datacenter cooling systems

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538427B2 (en) 2005-03-08 2009-05-26 Seiko Epson Corporation Microchannel structure and manufacturing method therefor, light source device, and projector
KR100806261B1 (en) 2005-03-31 2008-02-22 가부시끼가이샤 히다치 세이사꾸쇼 Cooling jacket
KR100817267B1 (en) * 2005-04-01 2008-03-27 가부시끼가이샤 히다치 세이사꾸쇼 Cooling jacket
JP2008536337A (en) * 2005-04-11 2008-09-04 インテル コーポレイション A microfluidic cooling method for integrated circuits.
KR100619076B1 (en) 2005-04-11 2006-08-31 삼성전자주식회사 Heat sink apparatus for radiating of the electronic device
WO2007049809A1 (en) * 2005-10-28 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling structure of electric device
US20100089468A1 (en) * 2006-12-22 2010-04-15 Kevin Scott Flow distribution regulation arrangement with bimetallic elements for adjusting the flow distribution in a cooling channel
US8434692B2 (en) * 2006-12-22 2013-05-07 Siemens Aktiengesellschaft Flow distribution regulation arrangement with bimetallic elements for adjusting the flow distribution in a cooling channel
US7778029B2 (en) * 2007-02-23 2010-08-17 Nec Corporation System comprising heat-generator and cooler thereof, and disk array system
US7583501B2 (en) 2007-03-01 2009-09-01 Nec Corporation Electronic apparatus
JP4697171B2 (en) * 2007-04-04 2011-06-08 株式会社日立製作所 COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP2008258340A (en) * 2007-04-04 2008-10-23 Hitachi Ltd Cooler and electronic apparatus equipped with the same
JP2009016708A (en) * 2007-07-09 2009-01-22 Fuji Electric Device Technology Co Ltd Semiconductor device, and manufacturing method of semiconductor device
WO2009069578A1 (en) * 2007-11-26 2009-06-04 Kabushiki Kaisha Toyota Jidoshokki Liquid-cooled cooling device
US9190344B2 (en) 2007-11-26 2015-11-17 Kabushiki Kaisha Toyota Jidoshokki Liquid-cooled-type cooling device
JP5343007B2 (en) * 2007-11-26 2013-11-13 株式会社豊田自動織機 Liquid cooling system
US8933557B2 (en) 2009-08-10 2015-01-13 Fuji Electric Co., Ltd. Semiconductor module and cooling unit
JP2012533868A (en) * 2009-08-10 2012-12-27 富士電機株式会社 Semiconductor module and cooler
JP2014529878A (en) * 2011-08-02 2014-11-13 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Cooling device with thermoelectric sensor
US10123464B2 (en) 2012-02-09 2018-11-06 Hewlett Packard Enterprise Development Lp Heat dissipating system
US10571206B2 (en) 2012-09-28 2020-02-25 Hewlett Packard Enterprise Development Lp Cooling assembly
EP2952076B1 (en) * 2013-01-31 2019-10-30 Hewlett-Packard Enterprise Development LP Liquid cooling
US10458724B2 (en) 2013-01-31 2019-10-29 Hewlett Packard Enterprise Development Lp Liquid cooling
JP2016508674A (en) * 2013-01-31 2016-03-22 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Liquid cooling
US10330395B2 (en) 2013-01-31 2019-06-25 Hewlett Packard Enterprise Development Lp Liquid cooling
US9803937B2 (en) 2013-01-31 2017-10-31 Hewlett Packard Enterprise Development Lp Liquid cooling
FR3010830A1 (en) * 2013-09-17 2015-03-20 Commissariat Energie Atomique DEVICE FOR COOLING AN INTEGRATED CIRCUIT CHIP
US9615443B2 (en) 2013-09-17 2017-04-04 Stmicroelectronics (Crolles 2) Sas Integrated circuit chip cooling device
JP2015061076A (en) * 2013-09-17 2015-03-30 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ Cooling device
KR20150032216A (en) * 2013-09-17 2015-03-25 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Integrated circuit chip cooling device
EP2851949A1 (en) 2013-09-17 2015-03-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cooling device for integrated circuit chip
KR102282296B1 (en) 2013-09-17 2021-07-28 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Integrated circuit chip cooling device
CN109041537A (en) * 2018-08-30 2018-12-18 西安电子科技大学 A kind of the self-regulation runner cold plate and self-adjusting method of marmem driving
CN109041537B (en) * 2018-08-30 2019-06-14 西安电子科技大学 A kind of the self-regulation runner cold plate and self-adjusting method of marmem driving
CN111326999A (en) * 2020-04-08 2020-06-23 昆山圣星通讯器材有限公司 High temperature resistant prevents freezing formula MPP pipe
GB2606054A (en) * 2021-02-18 2022-10-26 Nvidia Corp Intelligent and dynamic cold plate for datacenter cooling systems
US11956931B2 (en) 2021-02-18 2024-04-09 Nvidia Corporation Intelligent and dynamic cold plate for datacenter cooling systems
CN114423249A (en) * 2022-01-29 2022-04-29 联想(北京)有限公司 Heat radiation structure

Similar Documents

Publication Publication Date Title
JP2004295718A (en) Liquid cooling system for information processor
JP4126046B2 (en) Electronic equipment cooling structure
JP4372193B2 (en) Endothermic member, cooling device and electronic device
JP4234722B2 (en) Cooling device and electronic equipment
JP2005229033A (en) Liquid-cooled system and electronic apparatus having the same
JP2006286767A (en) Cooling jacket
EP1708263B1 (en) Cooling jacket
WO2003043397A1 (en) Electronic apparatus
JP2009532871A (en) Cooling system
JP2010501095A (en) Method and system for cooling a computing device
JP2008027374A (en) Heat receiver for liquid cooling unit, liquid cooling unit, and electronic device
EP2626899A2 (en) Heat dissipating module
US20210018229A1 (en) Composite water-cooling radiator structure
US7589962B1 (en) Apparatus for cooling a heat dissipating device located within a portable computer
JP2006053914A (en) Electronic device
EP1742262B1 (en) Hinged Heat Dissipation Apparatus
JP2007250701A (en) Cooling device for electronic equipment
JP5920356B2 (en) Water cooling device, electronic device having water cooling device, and water cooling method
JP2009099995A (en) Refrigerator and electronic apparatus
TWI761541B (en) Cooling system of mainboard for electronic equipment
JPH10107192A (en) Heat sink
JP2006046868A (en) Radiator and heat pipe
JP4228680B2 (en) Cooling member
TW532056B (en) Cooling unit for cooling a heat-generating component, and electronic apparatus having a cooling unit
JP2003022148A (en) Liquid cooling system for notebook-sized computer