JPH1099665A - Gas separation membrane and gas separation method - Google Patents

Gas separation membrane and gas separation method

Info

Publication number
JPH1099665A
JPH1099665A JP8256843A JP25684396A JPH1099665A JP H1099665 A JPH1099665 A JP H1099665A JP 8256843 A JP8256843 A JP 8256843A JP 25684396 A JP25684396 A JP 25684396A JP H1099665 A JPH1099665 A JP H1099665A
Authority
JP
Japan
Prior art keywords
gas
separation membrane
support layer
porous
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8256843A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Fujimoto
浩良 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Gore Tex Inc
Original Assignee
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore Tex Inc filed Critical Japan Gore Tex Inc
Priority to JP8256843A priority Critical patent/JPH1099665A/en
Publication of JPH1099665A publication Critical patent/JPH1099665A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas separation membrane putting excellent selective permeability of a specific component gas possessed by an amorphous fluoroplastic membrane to practical use and preventing an absorbing soln. component from simply leaking toward gas to be treated through a support layer even if a pinhole flaw is generated in said membrane and capable of efficiently removing a specific component gas by using an absorbing soln. and a separation method using the same. SOLUTION: A gas separation membrane for separating specific gas from mixed gas by using an absorbing soln. having function absorbing the specific gas is constituted by forming an amorphous fluoroplastic coating film on the single surface of a support layer composed of porous polytetrafluoroethylene resin or a porous polyolefin resin and has a multilayered structure wherein a part of the amorphous fluoroplastic coating film penetrates in the porous spaces of the support layer and the remainder thereof forms a continuous film on the surface of the support layer. By allowing the absorbing soln. to be present on the surface of the amorphous fluoroplastic coating film in the separation membrane, specific gas such as carbon dioxide or hydrogen sulfide can be efficiently separated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸ガスや硫化水
素の如き特定の気体成分を含む混合ガス中に含まれる特
定の気体成分を、気体分離膜を介して吸収液に吸収させ
て回収もしくは除去する際に用いられる、改善された気
体分離膜と気体分離法に関し、殊に特定気体成分の吸収
をより効率よく行ない得る様に改善された分離膜と分離
法に関するものである。
The present invention relates to a method for recovering or recovering a specific gas component contained in a mixed gas containing a specific gas component such as carbon dioxide gas and hydrogen sulfide by absorbing the specific gas component into an absorbent through a gas separation membrane. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved gas separation membrane and a gas separation method used for removal, and more particularly, to an improved separation membrane and a separation method so that a specific gas component can be absorbed more efficiently.

【0002】[0002]

【従来の技術】各種工場設備や火力発電所あるいは車輌
などから排出される排ガス中に含まれる炭酸ガスや硫化
水素等の特定気体成分を除去する方法として、これら特
定気体成分に対して吸収機能を有する吸収剤、たとえば
モノ(またはジ、トリ)エタノールアミンを、気体分離
膜を介して排ガスと接触させ、該気体分離膜を透過して
くる特定気体成分を吸収剤に吸収させて除去する方法が
ある。
2. Description of the Related Art As a method of removing specific gas components such as carbon dioxide gas and hydrogen sulfide contained in exhaust gas discharged from various factory facilities, thermal power plants or vehicles, an absorption function for these specific gas components is used. A method of contacting an absorbent, for example, mono (or di, tri) ethanolamine, with exhaust gas through a gas separation membrane and absorbing and removing a specific gas component permeating through the gas separation membrane by the absorbent is known. is there.

【0003】一方、特定気体成分を透過する気体分離膜
を用いて、排ガス中に含まれる特定気体成分を加圧透過
させて分離する方法も公知であり、この様な気体分離膜
の構成素材として、環状構造のフッ素系ポリマーからな
るアモルファスフッ素樹脂膜が知られている(特公昭6
3−264101号公報など)。即ちこのアモルファス
フッ素樹脂膜は、5〜500Å程度の平均細孔径を有し
ており、該膜を挟んで一方面側に被処理ガスを存在させ
て加圧すると、平均細孔径よりも小さい分子サイズの気
体成分は該膜を通して反対面側に透過するので、特定気
体成分を分離することができる。また上記公報に記載の
発明では、気体分離膜の片面側に多孔質の支持層を設
け、強度特性を高める方法も開示している。
On the other hand, a method is also known in which a specific gas component contained in exhaust gas is separated by pressure and permeation using a gas separation membrane that transmits a specific gas component. An amorphous fluororesin film made of a fluorine-based polymer having a cyclic structure is known (Japanese Patent Publication No.
No. 3-264101). That is, this amorphous fluororesin film has an average pore diameter of about 5 to 500 °, and when a gas to be treated is present on one side of the membrane and pressurized, the molecular size is smaller than the average pore diameter. The gaseous component of this type passes through the membrane to the opposite surface side, so that the specific gaseous component can be separated. The invention described in the above publication also discloses a method in which a porous support layer is provided on one side of a gas separation membrane to enhance strength characteristics.

【0004】更に他の技術として特開平5−30103
3号公報には、親水化処理を施した多孔質フッ素樹脂を
支持体とし、これを公知の気体分離膜と複合化した複合
膜が開示されている。この複合膜は、支持層となる多孔
質フッ素樹脂を親水化することによって、水蒸気や水の
透過性を高めたもので、フッ素樹脂の有する優れた耐熱
性や耐薬品性を有効に発揮させつつ、水や水蒸気の透過
性能を高めた分離膜として様々の用途展開が期待され
る。
[0004] Still another technique is disclosed in JP-A-5-30103.
No. 3 discloses a composite membrane in which a porous fluororesin subjected to a hydrophilization treatment is used as a support, and this is combined with a known gas separation membrane. This composite membrane is made by increasing the permeability of water vapor and water by hydrophilizing the porous fluororesin serving as the support layer, while effectively exhibiting the excellent heat resistance and chemical resistance possessed by the fluororesin. Various applications are expected as a separation membrane with improved water and water vapor permeability.

【0005】[0005]

【発明が解決しようとする課題】ところが上記特公昭6
3−264101号公報に開示された分離膜、特に多孔
質の支持層で強化した複合膜は、圧力差を利用して特定
気体成分の分離を行なうものであり、この種の複合膜を
前述の如き吸収液を用いた特定気体成分の吸収除去に利
用しようとすると、分離膜を構成する薄肉のアモルファ
スフッ素樹脂膜にピンホール欠陥等が生じた時に、支持
層を通して吸収液が被処理ガス側へ簡単に漏れ出す現象
が起こるため、吸収液を用いた特定気体成分の除去に利
用することはできない。
[Problems to be solved by the invention]
The separation membrane disclosed in Japanese Unexamined Patent Publication No. 3-264101, particularly a composite membrane reinforced with a porous support layer, separates a specific gas component by utilizing a pressure difference. If a thin amorphous fluororesin film constituting a separation membrane is subject to pinhole defects, etc., the absorption liquid is directed to the gas to be treated through the support layer when it is used to absorb and remove specific gas components using the absorption liquid. Since a phenomenon of easily leaking occurs, it cannot be used for removing a specific gas component using an absorbing solution.

【0006】また上記特開平5−301033号公報に
開示された複合膜は、支持層となる多孔質フッ素樹脂を
親水化することによって水蒸気や水の透過性を高めたも
のであるから、この種の複合膜を前述の如き吸収液を用
いた特定気体成分の吸収除去に利用しようとすると、分
離膜を構成する薄肉のアモルファスフッ素樹脂膜にピン
ホール欠陥等が生じた時に、やはり支持層を通して吸収
液が被処理ガス側へ簡単に漏れ出す現象が起こるため、
吸収液を用いた特定気体成分の除去にその特徴を有効に
活かすことはできない。
[0006] The composite membrane disclosed in Japanese Patent Application Laid-Open No. Hei 5-301333 is one in which the permeability of water vapor and water is increased by hydrophilizing a porous fluororesin serving as a support layer. If the composite membrane is used to absorb and remove specific gas components using the absorbing solution as described above, when a pinhole defect or the like occurs in the thin amorphous fluororesin membrane constituting the separation membrane, it is also absorbed through the support layer. Since the phenomenon that the liquid easily leaks to the gas to be treated occurs,
The characteristic cannot be effectively utilized for removing the specific gas component using the absorbing liquid.

【0007】本発明は上記の様な事情に着目してなされ
たものであって、その目的は、特に吸収液を用いた特定
気体成分の吸収除去を対象とし、吸収液と接触状態で使
用した時に、アモルファスフッ素樹脂膜に対して優れた
支持効果を発揮すると共に、該アモルファスフッ素樹脂
膜にピンホール欠陥ができた場合でも、特定気体成分の
吸収除去効率を下げることなく且つ吸収液の漏れ出しも
起こさない様な気体分離膜を開発し、ひいては吸収液を
用いた特定気体成分の吸収分離を効率よく実施し得る様
な気体分離法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has as its object to absorb and remove a specific gas component using an absorbing solution, and is used in contact with the absorbing solution. Occasionally, an excellent supporting effect is exerted on the amorphous fluororesin film, and even when a pinhole defect is formed in the amorphous fluororesin film, the leakage of the absorbing liquid can be performed without lowering the efficiency of absorbing and removing the specific gas component. It is an object of the present invention to develop a gas separation membrane that does not cause the gas separation, and to provide a gas separation method that can efficiently perform absorption separation of a specific gas component using an absorbing solution.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の気体分離膜とは、特定の気体を吸収す
る機能を有する吸収液を用いて混合気体から特定の気体
成分を分離するための気体分離膜であって、該分離膜
は、多孔質ポリテトラフルオロエチレン樹脂または多孔
質ポリオレフィン樹脂よりなる支持層の片面側に、アモ
ルファスフッ素樹脂被覆が形成されてなり、上記アモル
ファスフッ素樹脂被覆は、一部が前記支持層の多孔質空
間に侵入すると共に、残部は前記支持層の表面で連続皮
膜を形成しているところにその特徴が存在する。
The gas separation membrane of the present invention which can solve the above problems separates a specific gas component from a mixed gas by using an absorbing liquid having a function of absorbing a specific gas. A gas separation membrane, wherein the separation membrane is formed by forming an amorphous fluororesin coating on one side of a support layer made of a porous polytetrafluoroethylene resin or a porous polyolefin resin; Is characterized in that a part thereof penetrates into the porous space of the support layer and the remainder forms a continuous film on the surface of the support layer.

【0009】本発明の上記気体分離膜においては、前記
支持層としての厚みを5〜200μmの範囲とし、また
前記アモルファスフッ素樹脂被覆についてはその厚みを
0.01〜10μmの範囲とすることにより、複合分離
膜としての性能を一層確実に発揮させることができる。
また、前記支持層における前記アモルファスフッ素樹脂
被覆形成面の反対面側に強化層を形成し、複合分離膜と
しての強度特性を更に高めることは、気体分離膜として
の寿命を延長する上で有効である。本発明の気体分離膜
は、その使用形態に応じてフィルム状またはチューブ状
として実用化することができる。
In the gas separation membrane of the present invention, the thickness of the support layer is in the range of 5 to 200 μm, and the thickness of the amorphous fluororesin coating is in the range of 0.01 to 10 μm. The performance as a composite separation membrane can be more reliably exhibited.
Further, forming a reinforcing layer on the surface of the support layer opposite to the surface on which the amorphous fluororesin coating is formed to further enhance the strength characteristics as a composite separation membrane is effective in extending the life as a gas separation membrane. is there. The gas separation membrane of the present invention can be put into practical use in the form of a film or a tube depending on the form of use.

【0010】そして上記気体分離膜を使用し、該分離膜
における前記アモルファスフッ素樹脂被覆形成面側に前
記吸収液を存在させて特定気体成分の分離を行なえば、
後述する如く支持層を構成する多孔質ポリテトラフルオ
ロエチレン樹脂の有する撥水特性によって吸収液の漏れ
出しを有効に防止しつつ、アモルファスフッ素樹脂被覆
に対する支持作用を有効に発揮させることができ、吸収
液による特定気体成分の吸収除去を長時間にわたって効
率よく遂行することができる。
When the above gas separation membrane is used and the absorption liquid is present on the surface of the separation membrane on which the amorphous fluororesin coating is formed to separate the specific gas component,
As described later, the porous polytetrafluoroethylene resin constituting the support layer has a water-repellent property, thereby effectively preventing leakage of the absorbing liquid, and can effectively exert a supporting action on the amorphous fluororesin coating. The specific gas component can be efficiently absorbed and removed by the liquid over a long period of time.

【0011】[0011]

【発明の実施の形態】上記の様に本発明の気体分離膜
は、多孔質ポリテトラフルオロエチレン樹脂または多孔
質ポリオレフィン樹脂よりなる支持層の片面側に、アモ
ルファスフッ素樹脂被覆が形成された複合膜であり、上
記アモルファスフッ素樹脂被覆は、一部が前記支持層の
多孔質空間に侵入すると共に、残部は前記支持層の表面
で連続皮膜を形成している。
DETAILED DESCRIPTION OF THE INVENTION As described above, the gas separation membrane of the present invention is a composite membrane in which an amorphous fluororesin coating is formed on one surface of a support layer made of porous polytetrafluoroethylene resin or porous polyolefin resin. A part of the amorphous fluororesin coating enters the porous space of the support layer, and the remainder forms a continuous film on the surface of the support layer.

【0012】ここで支持層を構成する多孔質ポリテトラ
フルオロエチレン(PTFE)樹脂または多孔質ポリオ
レフィン(PO)樹脂は、PTFE樹脂またはPO樹脂
を、延伸法、発泡法、溶剤抽出法などによって多孔質化
したものであり、成形されたフィルムやチューブ等に2
次元的ないし3次元的な連通孔が無数に形成された連続
多孔質構造を有しており、中でも特開昭51−1899
1号や米国特許第3,953,566号などに開示され
た延伸多孔質PTFE樹脂は、強度的にも非常に優れた
ものとして推奨される。
Here, the porous polytetrafluoroethylene (PTFE) resin or the porous polyolefin (PO) resin constituting the support layer is obtained by stretching a PTFE resin or a PO resin by a stretching method, a foaming method, a solvent extraction method, or the like. It can be used in molded films and tubes.
It has a continuous porous structure in which a number of one-dimensional or three-dimensional communication holes are formed.
No. 1 and U.S. Pat. No. 3,953,566 are recommended as expanded porous PTFE resins which are very excellent in strength.

【0013】なお該支持層構成材として多孔質のPTF
E樹脂またはPO樹脂を選択したのは、それ自身優れた
耐熱性、耐薬品性、耐候性を有している他、特に撥水性
にすぐれたものであり、多孔質の故に優れた気体透過性
を有しているが細孔内への吸収液の侵入は起こりにく
く、これを支持層として吸収液の接触側に配置して使用
すると、気体成分の透過は殆んど阻害することなく吸収
液の漏れ出しを可及的に阻止することが可能となる。特
に多孔質PTFE樹脂を支持層構成材として使用する
と、そのとりわけ優れた強度、耐薬品性、撥水性が遺憾
なく発揮され、支持層としての機能を一段と優れたもの
とすることができるので好ましい。
[0013] The support layer constituting material is porous PTF.
E resin or PO resin is selected because it has excellent heat resistance, chemical resistance, and weather resistance. In addition, it has excellent water repellency and excellent gas permeability because of its porous nature. However, the absorption liquid does not easily enter the pores, and if it is used as a support layer on the contact side of the absorption liquid, the absorption of the gas component is almost not hindered. Can be prevented as much as possible. In particular, it is preferable to use a porous PTFE resin as a constituent material of the support layer, since particularly excellent strength, chemical resistance and water repellency can be exhibited without fail, and the function as the support layer can be further improved.

【0014】またポリエチレン樹脂やポリプロピレン樹
脂などからなる多孔質PO樹脂も、多孔質PTFE樹脂
に比べると耐熱性や撥水性はやや劣るが、前記特公昭6
3−264101号公報や特開平5−301033号公
報に開示された複合膜における支持層構成材に較べると
優れた耐薬品性と撥水性を有しており、こうした特性
は、吸収液を用いて特定ガス成分の吸収分離を行なう気
体分離膜用の支持層構成材としての要求特性を備えてい
るといえる。
A porous PO resin made of a polyethylene resin, a polypropylene resin, or the like also has slightly lower heat resistance and water repellency than a porous PTFE resin.
It has excellent chemical resistance and water repellency as compared with the constituent material of the support layer in the composite membrane disclosed in JP-A-3-264101 and JP-A-5-301333. It can be said that it has the required characteristics as a support layer constituent material for a gas separation membrane that performs absorption separation of a specific gas component.

【0015】支持層として用いられる上記多孔質PTF
E樹脂や多孔質PO樹脂の細孔径は、ガス成分の吸収分
離に用いる吸収液の圧力等によっても変わってくるので
一律に規定することはできないが、ガス透過性を阻害す
ることなく吸収液の漏れ出しを確実に阻止するには、平
均細孔径で0.05〜3μm程度、より好ましくは0.
1〜0.5μm、空孔率で30〜90%、より好ましく
は50〜80%のものが好ましく、また、吸収液と接し
てその液圧を受ける分離膜の支持層としての機能を十分
に活かし、且つ細孔による吸収液の漏れ出し効果を有効
に発揮させる上では、その厚みを5〜200μm、より
好ましくは20〜50μmの範囲とすることが望まし
い。
The above porous PTF used as a support layer
The pore size of the E resin or the porous PO resin cannot be uniformly defined because it varies depending on the pressure of the absorbing solution used for the absorption and separation of gas components. However, the pore size of the absorbing solution is not impaired without impairing gas permeability. In order to surely prevent the leakage, the average pore diameter is about 0.05 to 3 μm, more preferably 0.1 to 3 μm.
It preferably has a porosity of 30 to 90%, more preferably 50 to 80%, and has a sufficient function as a support layer of a separation membrane which comes in contact with the absorbing solution and receives the liquid pressure. In order to make the most of the effect and effectively exhibit the leaking effect of the absorbing liquid by the pores, it is desirable that the thickness be in the range of 5 to 200 μm, more preferably 20 to 50 μm.

【0016】上記平均細孔径や空孔率は、多孔質化する
ときの条件、例えば延伸多孔質膜では縦・横方向の延伸
倍率を変える方法等によって任意に調整することがで
き、また支持層としての膜厚は、多孔質化処理後の厚さ
減少率を加味してその前のフィルムの膜厚を変えること
よって調整すればよい。
The above average pore diameter and porosity can be arbitrarily adjusted by the conditions for forming the porous layer, for example, by changing the stretching ratio in the longitudinal and transverse directions for a stretched porous membrane. May be adjusted by taking into account the thickness reduction rate after the porous treatment and changing the thickness of the film before that.

【0017】尚上記の様に、本発明で支持層として使用
する多孔質PTFE樹脂や多孔質PO樹脂は、その優れ
た撥水特性を活かして細孔内への吸収液の侵入を阻止
し、吸収液の漏れ出しを阻止するところに最大の特徴を
有するものであり、こうした特性を更に高めるため、多
孔質化した後の支持層構成材を撥水剤で処理し、液漏れ
防止性能を更に高めることも有効である。ここで用いら
れる好ましい撥水・撥油処理剤としては、例えばPCT
/US93/08884号(WO 94/22928
号)に記載されているフルオロアルキルアクリレートや
フルオロアルキルメタクリレート等から導かれるポリマ
ー、PCT/US94/10075号(WO95/34
583号)に記載されているフルオロアルキルアクリレ
ートまたはフルオロアルキルメタクリレートとテトラフ
ルオロエチレンまたはテトラフルオロエチレン/ヘキサ
フルオロプロピレンとの共重合体等が挙げられ、これら
の撥水・撥油処理剤は平均粒径が0.001〜0.1μ
m程度のマイクロエマルジョンとして得られるので、こ
れらを多孔質化したPTFE樹脂やPO樹脂フィルムに
含浸付着させて乾燥すれば、多孔質フィルム層内のノー
ドやフィブリル等の骨格組織に均一に付着して撥水性被
覆を形成し、気体透過性を阻害することなく支持層とし
ての撥水性を一段と高められ、吸収液の漏れ出しをより
確実に阻止することが可能となる。
As described above, the porous PTFE resin and the porous PO resin used as the support layer in the present invention prevent the absorption liquid from entering the pores by utilizing the excellent water repellency. It has the greatest feature in preventing the leakage of the absorbing liquid, and in order to further enhance such characteristics, the support layer constituting material after being made porous is treated with a water repellent to further improve the liquid leakage preventing performance. Raising it is also effective. As a preferable water / oil repellent treatment agent used here, for example, PCT
/ US93 / 0888 (WO 94/22928)
No. PCT / US94 / 10075 (WO95 / 34) derived from fluoroalkyl acrylates and fluoroalkyl methacrylates described in US Pat.
No. 583) and a copolymer of tetrafluoroethylene or tetrafluoroethylene / hexafluoropropylene described in US Pat. Is 0.001-0.1μ
Since these are obtained as microemulsions of about m, they are impregnated and adhered to a porous PTFE resin or PO resin film and dried, and uniformly adhere to skeletal tissues such as nodes and fibrils in the porous film layer. By forming a water-repellent coating, the water-repellency of the support layer can be further increased without impairing gas permeability, and leakage of the absorbing liquid can be more reliably prevented.

【0018】上記支持層の片面側に形成されるアモルフ
ァスフッ素樹脂被覆は、被覆内に5〜500Åレベルの
微細な連通孔を有する選択透過性を有する被覆であり、
その例としては、例えば特開昭63−264101号に
開示されている如く、主鎖に環状構造を有する含フッ素
系ポリマーを挙げることができ、具体的には主鎖に
The amorphous fluororesin coating formed on one side of the support layer is a permselective coating having fine communication holes of 5 to 500 ° level in the coating.
Examples thereof include a fluorine-containing polymer having a cyclic structure in the main chain as disclosed in, for example, JP-A-63-264101.

【0019】[0019]

【化1】 Embedded image

【0020】等の構造単位を有するポリマーを使用し、
これをパーフルオロベンゼンやトリクロロトリフルオロ
エタン等の溶剤に溶解し、ロールコート法、キャスト
法、ディッピング法、スピンコート法など任意の方法
で、成膜し乾燥する方法によって得ることができ、その
フィルムはそれ自身で選択透過性を発揮する。そして使
用するポリマーの種類や複合組成を任意に選択すること
によって、吸収分離すべき特定気体成分に応じた選択透
過性の被覆を得ることができる。
Using a polymer having structural units such as
This film can be obtained by dissolving this in a solvent such as perfluorobenzene or trichlorotrifluoroethane, and forming and drying the film by any method such as a roll coating method, a casting method, a dipping method, and a spin coating method. Exhibits permselectivity by itself. By arbitrarily selecting the type of the polymer to be used and the composite composition, a selectively permeable coating corresponding to the specific gas component to be absorbed and separated can be obtained.

【0021】該アモルファスフッ素樹脂被覆の厚さは、
気体透過性を高める意味からすると薄くした方が好まし
いが、薄くし過ぎると選択透過膜としての強度や耐液圧
性が乏しくなるばかりでなくピンホール欠陥も生じ易く
なって選択透過性も劣化してくるので、好ましくは0.
01〜10μm、より好ましくは0.5〜5μmの範囲
に設定することが望ましい。
The thickness of the amorphous fluororesin coating is as follows:
It is preferable to reduce the thickness in order to enhance gas permeability, but if it is too thin, not only the strength and liquid pressure resistance as a permselective membrane will be poor, but also pinhole defects will easily occur and the permselectivity will deteriorate. So that it is preferably 0.
It is desirable to set it in the range of 01 to 10 μm, more preferably 0.5 to 5 μm.

【0022】上記多孔質PTFE樹脂または多孔質PO
樹脂よりなる支持層とアモルファスフッ素樹脂との複合
に当たっては、該支持層の片面側にアモルファスフッ素
樹脂被覆を形成すると共に、該アモルファスフッ素樹脂
被覆は、その一部を前記支持層表層部の多孔質空間に侵
入せしめ、噛み込み(アンカー)効果によって強固に接
合一体化させると共に、残部は前記支持層の表面で連続
皮膜を形成し、選択分離膜としての性能が有効に発揮で
きる様にすることが必要となる。しかして、支持層の片
面に接着剤を用いて前記アモルファスフッ素樹脂被覆の
接合を行なおうとすると、接着剤の存在によってモルフ
ァスフッ素樹脂被覆の選択分離膜としての性能劣化が避
けられないが、上記の様にモルファスフッ素樹脂被覆の
一部を支持層の細孔内に侵入させて噛み込ませてやれ
ば、モルファスフッ素樹脂被覆の選択分離膜としての性
能に悪影響を与えることなく該被覆を強固に接合一体化
することができるからである。そして、該支持層の表面
で該モルファスフッ素樹脂被覆の連続皮膜を形成するこ
とによって、支持層の片面側に選択分離膜が強固に接合
一体化した複合膜が得られるのである。
The above porous PTFE resin or porous PO
In the composite of a support layer made of a resin and an amorphous fluororesin, an amorphous fluororesin coating is formed on one side of the support layer, and the amorphous fluororesin coating partially covers the porous layer of the surface layer of the support layer. It is made to penetrate into the space and is firmly joined and integrated by the bite (anchor) effect, and the rest forms a continuous film on the surface of the support layer so that the performance as a selective separation membrane can be exhibited effectively. Required. Thus, when the bonding of the amorphous fluororesin coating is performed using an adhesive on one surface of the support layer, the performance degradation of the selective separation membrane of the morphous fluororesin coating cannot be avoided due to the presence of the adhesive. If part of the morphous fluororesin coating is allowed to penetrate into the pores of the support layer and bite into the support layer as described above, the morphous fluororesin coating can be firmly strengthened without adversely affecting the performance as a selective separation membrane. This is because bonding and integration can be performed. Then, by forming a continuous film of the morphous fluororesin coating on the surface of the support layer, a composite membrane in which the selective separation membrane is firmly bonded and integrated on one side of the support layer is obtained.

【0023】この様にアモルファスフッ素樹脂被覆を支
持層表面に噛み込み状態で形成する方法は特に制限され
ないが、好ましい方法を例示すると、 上記アモルファスフッ素樹脂被覆を構成する原料樹脂
の溶剤溶液からなるドープを支持層の片面に直接塗布
し、製膜と同時に細孔内に噛み込ませる方法、この時、
ドープの粘性を適正に調整すれば、噛み込みの程度を任
意に変更することができる、 アモルファスフッ素樹脂よりなる薄膜を予め製造して
おき、これを、同種のアモルファスフッ素樹脂の溶剤溶
液からなるドープを用いて支持層の片面に接合させ、乾
燥状態で該ドープ中のアモルファスフッ素樹脂を支持層
表層部の細孔内へ噛み込ませ状態で固化させる方法、 アモルファスフッ素樹脂よりなる薄膜を予め製造して
おき、これを支持層の片面に重ね合わせた後、ヒートロ
ールやヒートプレス等を用いてアモルファスフッ素樹脂
の軟化点以上で且つ支持層構成材の軟化点以下の温度で
加熱圧着し、アモルファスフッ素樹脂薄膜の一部を支持
層の細孔内へ噛み込ませてから冷却固化させる方法、等
が好ましい方法として例示される。
The method of forming the amorphous fluororesin coating on the surface of the support layer in a state of being bitten is not particularly limited, but a preferred method is exemplified by a dope comprising a solvent solution of the raw material resin constituting the amorphous fluororesin coating. Is applied directly to one side of the support layer, and at the same time as the film is formed, it is bitten into the pores.
By properly adjusting the viscosity of the dope, the degree of bite can be changed arbitrarily.A thin film made of amorphous fluororesin is manufactured in advance, and this is mixed with a solvent solution of the same type of amorphous fluororesin. A method in which the amorphous fluororesin in the dope is solidified in a dry state while being bitten into pores of the surface layer of the support layer, and a thin film made of the amorphous fluororesin is manufactured in advance. After that, this is overlaid on one side of the support layer, and then heat-pressed using a heat roll or a heat press at a temperature not lower than the softening point of the amorphous fluororesin and not higher than the softening point of the support layer constituent material. A method in which a part of the resin thin film is bitten into pores of the support layer and then solidified by cooling is exemplified as a preferable method.

【0024】本発明の気体分離膜は、支持層とアモルフ
ァスフッ素樹脂被覆(以下、選択透過膜ということもあ
る)との複合によってそれなりの強度や耐圧性を有して
いるが、強度を更に高めるため、該気体分離膜における
選択透過膜形成面の反対面側に補強層を積層して一層の
強化を図ることも有効である。ここで用いられる補強層
は、使用時において被処理ガス側に配置されるものであ
り、支持層構成材と同等以上の気体透過性を有している
素材を用いることが望ましく、例えば素材に制限のない
様々の不織布、織物、編物、ネット状物、フェルトな
ど、被処理ガスの種類に応じて、腐食や劣化を起こさな
いものを任意に選択して使用できる。該補強層の積層法
にも格別の制限はなく、接着剤を使用する方法や熱融着
法など公知の方法を適宜採用できるが、接合による通気
性の劣化を招くことのない様、点状、線状、格子状等で
接合させることが望まれる。
Although the gas separation membrane of the present invention has a certain strength and pressure resistance due to the combination of the support layer and the amorphous fluororesin coating (hereinafter, also referred to as a permselective membrane), the strength is further increased. Therefore, it is effective to further strengthen the layer by stacking a reinforcing layer on the surface of the gas separation membrane opposite to the surface on which the permselective membrane is formed. The reinforcing layer used here is disposed on the side of the gas to be treated at the time of use, and it is desirable to use a material having gas permeability equal to or higher than that of the support layer constituting material. Depending on the type of gas to be treated, any non-woven fabric, woven fabric, knitted material, net-like material, felt, etc. that does not cause corrosion or deterioration can be arbitrarily selected and used. The method of laminating the reinforcing layer is not particularly limited, and a known method such as a method using an adhesive or a heat fusion method can be appropriately employed. It is desired to join them in a linear, lattice, or the like.

【0025】本発明の気体分離膜は、具体的な使用態様
に応じてフィルム状またはチューブ状に形成することが
でき、チューブ状とする場合は、支持層となるポリテト
ラフルオロエチレン樹脂を最初からチューブ状に加工し
てから多孔質化処理し、その後アモルファスフッ素樹脂
被覆を形成してもよく、或は長尺フィルムの両側縁を長
手方向に接合してチューブ状に加工しても構わない。
The gas separation membrane of the present invention can be formed into a film or a tube according to the specific mode of use. When the gas separation membrane is formed into a tube, a polytetrafluoroethylene resin serving as a support layer is formed from the beginning. The film may be processed into a tube and then subjected to a porous treatment, and then an amorphous fluororesin coating may be formed. Alternatively, both sides of the long film may be joined in the longitudinal direction and processed into a tube.

【0026】かくして得られる本発明の気体分離膜を使
用するに当たっては、上記アモルファスフッ素樹脂被覆
形成面を吸収液側にして、その反対側に被処理ガスを存
在させると、該支持層の細孔を通過し該アモルファスフ
ッ素樹脂被覆を選択透過した特定気体成分のみが吸収液
に吸収され、特定気体成分の選択的除去を行なうことが
可能となる。また上記アモルファスフッ素樹脂被覆にピ
ンホール欠陥が存在し或は使用時にその様な欠陥が生
じ、該被覆を通して吸収液が被処理ガス側に漏れ出そう
としても、該支持層を構成する多孔質PTFE樹脂や多
孔質PO樹脂は前述の如く撥水性を有しているので、支
持層の細孔部分で吸収液の移行が阻止され、支持層の被
処理ガス側にまで吸収液が漏れ出すことはなくなる。
In using the gas separation membrane of the present invention thus obtained, when the surface on which the amorphous fluororesin coating is formed is set to the absorption liquid side and the gas to be treated is present on the opposite side, the pores of the support layer are reduced. Only the specific gas component that has passed through the amorphous fluororesin coating and selectively permeated is absorbed by the absorbing liquid, and the specific gas component can be selectively removed. In addition, even if a pinhole defect exists in the above-mentioned amorphous fluororesin coating or such a defect occurs during use and the absorbing liquid tries to leak to the gas to be treated through the coating, the porous PTFE constituting the support layer can be used. Since the resin and the porous PO resin have water repellency as described above, the transfer of the absorbing liquid is prevented at the pores of the supporting layer, and the absorbing liquid does not leak to the gas to be treated of the supporting layer. Disappears.

【0027】換言すると、本発明の気体分離膜における
アモルファスフッ素樹脂被覆が形成されていない面を吸
収液側に配置して特定成分ガスの吸収除去を行なおうと
すると、吸収液またはその蒸気が徐々に支持層の細孔内
に浸透し、細孔部分において所謂液溜りが生じ、その部
分では吸収液が循環しない。被処理ガスと循環する吸収
液との間で液溜りが生じることは、特定ガスの吸収効率
(分離効率)を大きく低下させることになる。又、アモ
ルファスフッ素樹脂被覆にピンホール欠陥があり或は作
業時にピンホール欠陥ができると、該ピンホール欠陥を
通過した吸収液は直接被処理ガス側に漏れ出すことにな
り、折角支持層に設けられた細孔による吸収液露出阻止
作用が全く発揮されなくなる。
In other words, if the surface of the gas separation membrane of the present invention where the amorphous fluororesin coating is not formed is arranged on the absorption liquid side to absorb and remove the specific component gas, the absorption liquid or its vapor gradually decreases. Then, the liquid penetrates into the pores of the support layer, and a so-called liquid pool occurs in the pores, and the absorbing liquid does not circulate in those parts. The occurrence of a liquid pool between the gas to be treated and the circulating absorption liquid greatly reduces the absorption efficiency (separation efficiency) of the specific gas. In addition, if there is a pinhole defect in the amorphous fluororesin coating or a pinhole defect occurs during the work, the absorbing solution that has passed through the pinhole defect leaks directly to the gas to be treated, and is provided on the bent support layer. The function of preventing the absorption liquid from being exposed due to the formed pores is not exhibited at all.

【0028】図1,2は、本発明の気体分離膜を用いて
被処理ガスから特定気体成分を吸収除去する方法を示す
概念図であり、図1はフィルム状の気体分離膜を用いた
例で、気液分離装置1内を気体分離膜2によって仕切
り、該分離膜2のアモルファスフッ素樹脂被覆形成面側
に吸収液A(例えばモノエタノールアミン等)を流して
循環ポンプPにより循環すると共に、その反対面側に被
処理ガスBを流し、被処理ガス中に含まれる特定成分ガ
ス、例えば炭酸ガスや硫化水素等を、気体分離膜2を通
して吸収液A側へ移行させて吸収除去する。
FIGS. 1 and 2 are conceptual views showing a method of absorbing and removing a specific gas component from a gas to be treated by using the gas separation membrane of the present invention. FIG. 1 shows an example using a film-shaped gas separation membrane. Then, the inside of the gas-liquid separation device 1 is partitioned by the gas separation membrane 2, and the absorption liquid A (for example, monoethanolamine or the like) flows on the side of the separation membrane 2 where the amorphous fluororesin coating is formed, and is circulated by the circulation pump P. The gas B to be treated is caused to flow on the opposite side, and a specific component gas, for example, carbon dioxide gas or hydrogen sulfide, contained in the gas to be treated is transferred to the absorption liquid A through the gas separation membrane 2 to be absorbed and removed.

【0029】また図2では、気体分離装置1内にチュー
ブ状の気体分離膜2を多数配置し、該チューブの内側に
吸収液(または被処理ガス)を通過させると共に、その
外側に被処理ガス(または吸収液)を流し、排ガス中の
特定成分ガスをチューブを通して吸収液側に移行させて
吸収除去する。この時、チューブ内に吸収液を流す場合
は、該チューブの内面側にアモルファスフッ素樹脂被覆
を形成し、逆にチューブの外面側に吸収液を流す場合
は、該チューブの外面側にアモルファスフッ素樹脂被覆
を形成すればよい。
In FIG. 2, a large number of tubular gas separation membranes 2 are arranged in a gas separation device 1 so that an absorbing liquid (or a gas to be treated) is passed inside the tube and a gas to be treated is placed outside the tube. (Or absorption liquid) is flowed, and the specific component gas in the exhaust gas is transferred to the absorption liquid side through a tube to be absorbed and removed. At this time, when flowing the absorbing liquid into the tube, an amorphous fluororesin coating is formed on the inner surface side of the tube. Conversely, when flowing the absorbing liquid onto the outer surface side of the tube, the amorphous fluororesin is coated on the outer surface side of the tube. What is necessary is just to form a coating.

【0030】尚図1,2では気体分離装置としての基本
的な構造を示したが、本発明はあくまでも気体分離膜と
しての複合構造に特徴を有するものであるから、分離装
置自体の具体的な構成については一切制限されない。
Although FIGS. 1 and 2 show the basic structure of a gas separation device, the present invention is characterized by a composite structure as a gas separation membrane. The configuration is not limited at all.

【0031】本発明の気体分離膜および気体分離法を採
用して処理される被処理ガスあるいは使用する吸収液の
種類は特に制限されず、例えば一般工場、焼却設備、廃
液処理設備、火力発電所等からの排ガス、或は車輌等か
らの排気ガスの如く、炭酸ガス、硫化水素等を含有する
様々の排ガスに適用することができ、また吸収液の種類
もそれら被処理排ガス中に含まれる特定気体成分の種類
に応じて、例えばモノ(またジ、トリ)エタノールアミ
ン、あるいはそれらの水溶液、水酸化ナトリウムや水酸
化カリウム等の水溶液などを使用することができる。
The type of gas to be treated or the type of absorbing solution to be treated by employing the gas separation membrane and the gas separation method of the present invention is not particularly limited. For example, general factories, incineration facilities, waste liquid treatment facilities, thermal power plants It can be applied to various exhaust gases containing carbon dioxide gas, hydrogen sulfide, etc., such as exhaust gas from automobiles, etc., and exhaust gas from vehicles, etc. Depending on the type of the gaseous component, for example, mono (or di, tri) ethanolamine, an aqueous solution thereof, an aqueous solution of sodium hydroxide, potassium hydroxide, or the like can be used.

【0032】[0032]

【実施例】次に実施例を挙げて本発明をより具体的に説
明するが、本発明はもとより下記実施例によって制限を
受けるものではなく、前・後記の趣旨に適合し得る範囲
で適当に変更を加えて実施することも可能であり、それ
らは全て本発明の技術的範囲に包含される。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, but may be appropriately adjusted within a range that can conform to the purpose of the preceding and following examples. Modifications can be made and all are included in the technical scope of the present invention.

【0033】実施例1 ポリテトラフルオロエチレン樹脂フィルムを2軸方向に
延伸してなる多孔質PTFE樹脂膜(平均細孔径0.2
μm、厚さ40μm、空孔率80%)を支持層構成材と
して使用し、その片面に、環構造を有する含フッ素系ポ
リマー(E.I.Dupont社製商品名「Tefro
n AF#2400」)1重量部を溶剤(3M社製商品
名「フロリナートFC−75」)49重量部に溶解した
溶液を、ロールコート法によって乾燥厚みが1μm,3
μmおよび5μmの厚みとなる様にコーティングし、オ
ーブン中150℃で5分間乾燥することにより、多孔質
PTFE樹脂よりなる支持層の表面に上記厚さのアモル
ファスフッ素樹脂被覆が形成された気体分離膜を製造し
た。
Example 1 A porous PTFE resin film (average pore diameter of 0.2) obtained by stretching a polytetrafluoroethylene resin film biaxially
μm, a thickness of 40 μm, and a porosity of 80%) were used as a support layer constituting material, and a fluorine-containing polymer having a ring structure (trade name “Tetro manufactured by EI Dupont” on one side)
n AF # 2400 ”) was dissolved in 49 parts by weight of a solvent (trade name“ Fluorinert FC-75 ”manufactured by 3M) in a dry weight of 1 μm, 3 μm by a roll coating method.
A gas separation membrane in which an amorphous fluororesin coating of the above thickness is formed on the surface of a support layer made of porous PTFE resin by coating to a thickness of 5 μm and 5 μm and drying in an oven at 150 ° C. for 5 minutes. Was manufactured.

【0034】この気体分離膜を、図1に示した様な分離
装置に分離膜としてセットし、吸収液としてモノエタノ
ールアミンの100%液を0.5リットル/分の速度で
循環させながら、分離膜を挟んでその反対側に20%の
炭酸ガスを含む混合ガスを0.2リットル/分の流速で
流し、該混合ガス中の炭酸ガスの吸収液による吸収除去
を行なった。この時の炭酸ガスの吸収液方向への移動速
度および吸収除去率を測定したところ、表1に示す結果
が得られた。尚表1には、アモルファスフッ素樹脂被覆
を形成されておらない上記多孔質PTFE樹脂膜をその
まま分離膜として用いた場合の例を、比較のため対照例
として示した。また表中のCO2 除去性能は、アモルフ
ァスフッ素樹脂被覆の厚みが0である時の除去性能を1
00とし、これに対する相対値として示した。ガス透過
率測定装置としては、柳本製作所製の「GTR−10
型」を使用した。
This gas separation membrane was set as a separation membrane in a separation apparatus as shown in FIG. 1, and a 100% solution of monoethanolamine was circulated as an absorbing solution at a rate of 0.5 liter / min. A mixed gas containing 20% carbon dioxide was flowed at a flow rate of 0.2 liter / minute to the opposite side of the membrane with the carbon dioxide gas absorbed and removed by the absorbing solution of the carbon dioxide in the mixed gas. At this time, when the moving speed of the carbon dioxide gas in the direction of the absorbing solution and the absorption removal rate were measured, the results shown in Table 1 were obtained. Table 1 shows, as a comparative example, an example in which the porous PTFE resin membrane having no amorphous fluororesin coating was used as a separation membrane as it was. The CO 2 removal performance in the table is 1 when the thickness of the amorphous fluororesin coating is 0.
00 and shown as a relative value to this. As a gas permeability measuring device, "GTR-10" manufactured by Yanagimoto Seisakusho
Type "was used.

【0035】[0035]

【表1】 [Table 1]

【0036】表1からも明らかである様に、アモルファ
スフッ素樹脂被覆を形成しておらないものでは、炭酸ガ
ス透過性は大きいが、モノエタノールアミンの透過を防
止できず、本発明の目的にそぐわない。これに対しその
片面にアモルファスフッ素樹脂被覆を形成した本発明の
実施例では、炭酸ガス透過性はかなり下がってくるがモ
ノエタノールアミンの透過は全く起こらず、気相側への
吸収液の漏れ出しを生じることなく炭酸ガスを吸収除去
できることが分かる。そしてアモルファスフッ素樹脂被
覆の厚みを1μm程度まで薄肉化してやれば、炭酸ガス
の透過性を極端に下げることなく吸収液の透過をほぼ完
全に阻止することができ、分離膜を用いた特定成分ガス
の吸収液による吸収除去を効率よく実施できることが分
かる。
As is evident from Table 1, when the amorphous fluororesin coating is not formed, carbon dioxide gas permeability is high, but permeation of monoethanolamine cannot be prevented, which is not suitable for the purpose of the present invention. . On the other hand, in the embodiment of the present invention in which the amorphous fluororesin coating is formed on one surface, the permeability of carbon dioxide gas is considerably reduced, but the permeation of monoethanolamine does not occur at all, and the leakage of the absorbing liquid to the gas phase side is prevented. It can be understood that carbon dioxide gas can be absorbed and removed without causing the occurrence of carbon dioxide gas. If the thickness of the amorphous fluororesin coating is reduced to about 1 μm, it is possible to almost completely prevent the absorption liquid from permeating without significantly lowering the permeability of the carbon dioxide gas. It can be seen that absorption removal by the absorbing solution can be performed efficiently.

【0037】また他の実験でセル内に、上記各気体分離
膜を挟んで空気とモノエタノールアミン水溶液を入れ、
空気層方向へのモノエタノールアミンの漏れ出し状態を
観察したところ、多孔質PTFE樹脂のままの分離膜
(比較対照材)では、実験開始直後から空気層方向への
モノエタノールアミン蒸気の透過が見られ、3日後には
空気層側の膜表面にモノエタノールアミンを含む水滴の
付着が観察されたが、アモルファスフッ素樹脂被覆を形
成した実施例の気体分離膜では、1か月経過後もモノエ
タノールアミンの滲み出しや蒸気の漏れ出しは全く認め
られなかった。
In another experiment, air and an aqueous monoethanolamine solution were put into the cell with the above gas separation membranes interposed therebetween.
Observation of the state of leakage of monoethanolamine in the direction of the air layer revealed that permeation of monoethanolamine vapor in the direction of the air layer was observed immediately after the start of the experiment in the separation membrane (porous control material) as it was with the porous PTFE resin. 3 days later, water droplets containing monoethanolamine were observed to adhere to the air layer side membrane surface. However, in the gas separation membrane of the example in which the amorphous fluororesin coating was formed, monoethanolamine was retained after one month. No seepage of amine or leakage of vapor was observed at all.

【0038】また、多孔質PTFE膜に代わる支持層構
成材として、多孔質ポリプロピレン系樹脂膜(成膜後2
軸延伸して多孔質化した膜、平均細孔径0.2μm、厚
さ50μm、空孔率50%、ガーレー数200秒)を使
用し、以下は上記と同様にしてその片面に厚さ1〜5μ
mのアモルファスフッ素樹脂被覆を形成した気体分離膜
について同様の実験を行なったところ、表2に示す結果
が得られ、上記多孔質PTFE樹脂を支持層として使用
した場合とほぼ同様の結果が得られた。
As a constituent material of the support layer in place of the porous PTFE film, a porous polypropylene-based resin film (2
Axial stretching and making the membrane porous, average pore diameter 0.2 μm, thickness 50 μm, porosity 50%, Gurley number 200 seconds) were used, and the following was applied to one side with a thickness of 1 to 5μ
When a similar experiment was performed on a gas separation membrane formed with an amorphous fluororesin coating of m, the results shown in Table 2 were obtained, and almost the same results were obtained as when the porous PTFE resin was used as a support layer. Was.

【0039】[0039]

【表2】 [Table 2]

【0040】また上記と同様に他の実験で、セル内に、
支持層を多孔質ポリプロピレン樹脂とする各気体分離膜
を挟んで空気とモノエタノールアミン水溶液を入れ、空
気層方向へのモノエタノールアミンの漏れ出し状態を観
察したところ、多孔質ポリプロピレン樹脂のままの分離
膜(比較対照材)では、実験開始直後から空気層方向へ
のモノエタノールアミン蒸気の透過が見られ、3日後に
は空気層側の膜表面にモノエタノールアミンを含む水滴
の付着が観察されたが、アモルファスフッ素樹脂被覆を
形成した実施例の気体分離膜では、30日経過後もモノ
エタノールアミンの滲み出しや蒸気の漏れ出しは全く認
められなかった。
In another experiment similar to the above, in the cell,
Air and monoethanolamine aqueous solution were put between each gas separation membrane using porous polypropylene resin as the support layer, and leakage of monoethanolamine toward the air layer was observed. In the film (comparative material), permeation of monoethanolamine vapor was observed in the direction of the air layer immediately after the start of the experiment, and after 3 days, adhesion of water droplets containing monoethanolamine was observed on the film surface on the air layer side. However, in the gas separation membrane of the example in which the amorphous fluororesin coating was formed, no seepage of monoethanolamine or leakage of vapor was observed at all even after 30 days.

【0041】なお支持層の構成素材としては、耐熱性、
耐薬品性、強度特性、撥水性などを総合的に考えると、
分離膜としての性能および耐久性の観点から多孔質PT
FEの方が支持層構成材として優れたものと思われる。
しかし、コストを考慮すると多孔質POの方がかなり安
価であるので、その用途によっては多孔質POを支持層
として有効に活用することも勿論可能である。
The constituent materials of the support layer include heat resistance,
Considering chemical resistance, strength properties, water repellency, etc. comprehensively,
Porous PT from the viewpoint of performance and durability as a separation membrane
FE seems to be superior as a support layer constituting material.
However, considering the cost, the porous PO is considerably cheaper, and it is of course possible to effectively utilize the porous PO as a support layer depending on the application.

【0042】一方、アモルファスフッ素樹脂被覆構成材
として最も一般的なのは、上記実施例で用いたE.I.
Dupont社製の「Tefron AF」、および旭
硝子社製の「CYTOP」であるが、これらのアモルフ
ァスフッ素樹脂を用いた分離膜のCO2 ,O2 ,N2
対する透過係数(吸収液は用いていない)は下記表3に
示す通りであり、いずれもCO2 ガスに対する透過係数
が最も高く、該アモルファスフッ素樹脂被覆を設けた本
発明の気体分離膜は、特定気体成分としてCO 2 を吸収
液側に移行させて吸収除去するための分離膜として、ガ
ス透過性の観点からしても優れたものであることを確認
することができる。
On the other hand, the constituent material of the amorphous fluororesin coating
The most common is E. coli used in the above examples. I.
"Teflon AF" manufactured by Dupont and Asahi
“CYTOP” manufactured by Glass Co., Ltd.
CO in separation membrane using fluorinated resinTwo , OTwo , NTwo To
Table 3 below shows the permeation coefficient (without using an absorbing solution).
As shown, all are COTwo Permeability coefficient for gas
Is the highest, the book provided with the amorphous fluororesin coating
The gas separation membrane of the present invention uses CO 2 as a specific gas component. Two Absorb
As a separation membrane for transfer to the liquid side for absorption and removal,
Confirmed to be excellent even from the viewpoint of permeability
can do.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】本発明は以上の様に構成されており、多
孔質PTFEまたは多孔質POを支持層とし、その片面
にアモルファスフッ素樹脂被覆を形成することによっ
て、各種排ガス等から特定成分ガスを吸収液によって吸
収除去するための気体分離膜として有効に活用すること
ができる。
The present invention is constituted as described above. By forming porous PTFE or porous PO as a support layer and forming an amorphous fluororesin coating on one surface thereof, a specific component gas can be obtained from various exhaust gases and the like. It can be effectively used as a gas separation membrane for absorbing and removing by an absorbing liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の気体分離膜を用いた特定成分ガスの吸
収分離法を例示する説明図である。
FIG. 1 is an explanatory view illustrating an absorption separation method for a specific component gas using a gas separation membrane of the present invention.

【図2】本発明の気体分離膜を用いた他の吸収分離法を
例示する説明図である。
FIG. 2 is an explanatory view illustrating another absorption separation method using the gas separation membrane of the present invention.

【符号の説明】 1 気体分離装置 2 気体分離膜 P 循環ポンプ[Description of Signs] 1 Gas separation device 2 Gas separation membrane P Circulation pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 71/26 B01D 71/26 71/36 71/36 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 71/26 B01D 71/26 71/36 71/36

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 特定の気体成分を吸収する機能を有する
吸収液を用いて混合気体から特定の気体成分を分離する
ための気体分離膜であって、該分離膜は、多孔質ポリテ
トラフルオロエチレン樹脂よりなる支持層の片面側に、
アモルファスフッ素樹脂被覆が形成されてなり、上記ア
モルファスフッ素樹脂被覆は、一部が前記支持層の多孔
質空間に侵入すると共に、残部は前記支持層の表面で連
続皮膜を形成していることを特徴とする気体分離膜。
1. A gas separation membrane for separating a specific gas component from a mixed gas using an absorbing liquid having a function of absorbing a specific gas component, wherein the separation membrane is made of porous polytetrafluoroethylene. On one side of the support layer made of resin,
An amorphous fluororesin coating is formed, wherein the amorphous fluororesin coating partially enters the porous space of the support layer, and the remainder forms a continuous film on the surface of the support layer. Gas separation membrane.
【請求項2】 特定の気体成分を吸収する機能を有する
吸収液を用いて混合気体から特定の気体成分を分離する
ための気体分離膜であって、該分離膜は、多孔質ポリオ
レフィン樹脂よりなる支持層の片面側に、アモルファス
フッ素樹脂被覆が形成されてなり、上記アモルファスフ
ッ素樹脂被覆は、一部が前記支持層の多孔質空間に侵入
すると共に、残部は前記支持層の表面で連続皮膜を形成
していることを特徴とする気体分離膜。
2. A gas separation membrane for separating a specific gas component from a mixed gas using an absorbing liquid having a function of absorbing a specific gas component, wherein the separation membrane is made of a porous polyolefin resin. On one side of the support layer, an amorphous fluororesin coating is formed, and the amorphous fluororesin coating partially penetrates into the porous space of the support layer, and the rest forms a continuous film on the surface of the support layer. A gas separation membrane, which is formed.
【請求項3】 前記支持層の厚みが5〜200μmであ
り、前記アモルファスフッ素樹脂被覆の厚みが0.01
〜10μmである請求項1または2に記載の気体分離
膜。
3. The thickness of the support layer is 5 to 200 μm, and the thickness of the amorphous fluororesin coating is 0.01 to 200 μm.
The gas separation membrane according to claim 1, wherein the thickness of the gas separation membrane is from 10 μm to 10 μm.
【請求項4】 前記支持層における前記アモルファスフ
ッ素樹脂被覆形成面の反対面側に強化層が形成されてい
る請求項1〜3のいずれかに記載の気体分離膜。
4. The gas separation membrane according to claim 1, wherein a reinforcing layer is formed on the support layer on the side opposite to the surface on which the amorphous fluororesin coating is formed.
【請求項5】 フィルム状もしくはチューブ状に形成さ
れたものである請求項1〜4のいずれかに記載の気体分
離膜。
5. The gas separation membrane according to claim 1, wherein the gas separation membrane is formed in a film shape or a tube shape.
【請求項6】 請求項1〜5のいずれかに記載の分離膜
を使用し、該分離膜における前記アモルファスフッ素樹
脂被覆形成面側に前記吸収液を存在させて特定気体成分
の分離を行なう気体分離法。
6. A gas that uses the separation membrane according to claim 1 and separates a specific gas component by allowing the absorption liquid to exist on the surface of the separation membrane on which the amorphous fluororesin coating is formed. Separation method.
JP8256843A 1996-09-27 1996-09-27 Gas separation membrane and gas separation method Withdrawn JPH1099665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8256843A JPH1099665A (en) 1996-09-27 1996-09-27 Gas separation membrane and gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8256843A JPH1099665A (en) 1996-09-27 1996-09-27 Gas separation membrane and gas separation method

Publications (1)

Publication Number Publication Date
JPH1099665A true JPH1099665A (en) 1998-04-21

Family

ID=17298194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8256843A Withdrawn JPH1099665A (en) 1996-09-27 1996-09-27 Gas separation membrane and gas separation method

Country Status (1)

Country Link
JP (1) JPH1099665A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192409A (en) * 2005-01-17 2006-07-27 Daikin Ind Ltd Gas-liquid separating element
WO2007125944A1 (en) 2006-04-28 2007-11-08 Asahi Kasei Chemicals Corporation Gas separation membrane
JP2007296454A (en) * 2006-04-28 2007-11-15 Asahi Kasei Chemicals Corp Gas-separation membrane
WO2009054460A1 (en) 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane
JP2010184239A (en) * 2001-07-16 2010-08-26 Rheodyne Llc Method for creating membrane degassing system
WO2017159457A1 (en) * 2016-03-16 2017-09-21 住友電工ファインポリマー株式会社 Method for manufacturing laminate, and laminate
JP2017170418A (en) * 2016-03-16 2017-09-28 住友電工ファインポリマー株式会社 Manufacturing method of laminate and the laminate
CN108815998A (en) * 2018-05-31 2018-11-16 武汉大学 A kind of electronegative gas electromigration membrane separating method
JP2019534785A (en) * 2016-10-14 2019-12-05 ロスネフト・オイル・カンパニー A method for extracting components of a gas mixture by partitioning on a nanoporous membrane

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184239A (en) * 2001-07-16 2010-08-26 Rheodyne Llc Method for creating membrane degassing system
JP2006192409A (en) * 2005-01-17 2006-07-27 Daikin Ind Ltd Gas-liquid separating element
JP2013091065A (en) * 2006-04-28 2013-05-16 Asahi Kasei Chemicals Corp Gas separation membrane
JP5507079B2 (en) * 2006-04-28 2014-05-28 旭化成ケミカルズ株式会社 Gas separation membrane
JPWO2007125944A1 (en) * 2006-04-28 2009-09-10 旭化成ケミカルズ株式会社 Gas separation membrane
JP2007296454A (en) * 2006-04-28 2007-11-15 Asahi Kasei Chemicals Corp Gas-separation membrane
US8092581B2 (en) 2006-04-28 2012-01-10 Asahi Kasei Chemicals Corporation Gas separation membrane
WO2007125944A1 (en) 2006-04-28 2007-11-08 Asahi Kasei Chemicals Corporation Gas separation membrane
US8206493B2 (en) 2007-10-26 2012-06-26 Asahi Kasei Chemicals Corporation Gas separation membrane
WO2009054460A1 (en) 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane
WO2017159457A1 (en) * 2016-03-16 2017-09-21 住友電工ファインポリマー株式会社 Method for manufacturing laminate, and laminate
JP2017170418A (en) * 2016-03-16 2017-09-28 住友電工ファインポリマー株式会社 Manufacturing method of laminate and the laminate
US10717053B2 (en) 2016-03-16 2020-07-21 Sumitomo Electric Fine Polymer, Inc. Method for producing laminated complex, and laminated complex
JP2019534785A (en) * 2016-10-14 2019-12-05 ロスネフト・オイル・カンパニー A method for extracting components of a gas mixture by partitioning on a nanoporous membrane
US10828599B2 (en) 2016-10-14 2020-11-10 Rosneft Oil Company (Rosneft) Method of extracting components of gas mixtures by pertraction on nanoporous membranes
JP2021006346A (en) * 2016-10-14 2021-01-21 ロスネフト・オイル・カンパニー Method for extracting component of gas mixture by pertraction on nanoporous membrane
CN108815998A (en) * 2018-05-31 2018-11-16 武汉大学 A kind of electronegative gas electromigration membrane separating method

Similar Documents

Publication Publication Date Title
EP1880755B1 (en) Hydrophilic body
US9463422B2 (en) Forward osmosis membranes
US7825046B2 (en) Oleophobic laminated article
JP5865317B2 (en) Carbon dioxide separation composite, carbon dioxide separation module, and method for producing carbon dioxide separation composite
US20020014154A1 (en) Separation of gaseous components from a gas stream with a liquid absorbent
US20160008765A1 (en) Method for producing acid gas separation composite membrane, and acid gas separation membrane module
JP6694326B2 (en) Composite membrane
US20210101119A1 (en) Composite hollow fiber membrane, and method for producing composite hollow fiber membrane
US7665615B2 (en) Composite article having hydrophilic properties and method of manufacture
KR101572660B1 (en) Reverse osmosis membrane with nanofiber-web layer and method for manufacturing thereof
US9132616B2 (en) Multi-layer composite membrane materials and methods therefor
WO2018079729A1 (en) Gas separation membrane, gas separation membrane element, and gas separation method
JPH1099665A (en) Gas separation membrane and gas separation method
KR101447268B1 (en) Thin film composite membrane and method for preparing the same
US20090220764A1 (en) Oleophobic laminated article and method
KR20200012863A (en) Gas separators, gas separator elements, gas separators and gas separation methods
KR20140073354A (en) Polyamide composite membrane having high quality and manufacturing method thereof
CN115970511B (en) High flux hollow fiber TFC film
JP3681219B2 (en) Polysulfone porous separation membrane
JPH10225626A (en) Spiral membrane element
JPH1133373A (en) Complex hollow fiber membrane
JP2000288367A (en) Manufacture of hydrophobic porous membrane
JP3873434B2 (en) Gas dissolution module and gas dissolution method using porous polytetrafluoroethylene membrane for gas dissolution
JP2017144390A (en) Composite membrane
KR20170064425A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202