JPH1097873A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH1097873A
JPH1097873A JP8251313A JP25131396A JPH1097873A JP H1097873 A JPH1097873 A JP H1097873A JP 8251313 A JP8251313 A JP 8251313A JP 25131396 A JP25131396 A JP 25131396A JP H1097873 A JPH1097873 A JP H1097873A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
organic electrolyte
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8251313A
Other languages
Japanese (ja)
Other versions
JP3371713B2 (en
Inventor
Kenji Nakai
賢治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP25131396A priority Critical patent/JP3371713B2/en
Priority to TW086113644A priority patent/TW400661B/en
Priority to US08/934,832 priority patent/US5962167A/en
Priority to KR1019970048510A priority patent/KR19980024915A/en
Publication of JPH1097873A publication Critical patent/JPH1097873A/en
Application granted granted Critical
Publication of JP3371713B2 publication Critical patent/JP3371713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte secondary battery capable of preventing its intense breakage such as a burst or explosion through the suppression of a rise in its temperature resulting from chemical reactions at its overcharge. SOLUTION: An organic electrolyte secondary battery employs positive electrodes comprising a positive collector 1 and positive active material layers 2. The positive active material layer 2 is formed by sufficiently mixing LiCoO2 powders, graphite powders and PVDF together at a weight ratio of 80:10:10 in this order, adding an appropriate volume of N-methyl-2-pyrolidone as a dispersion solvent to the mixture, sufficiently kneading the resultant mixture into an inky state through dispersion, adding a predetermined volume of strontium carbonate to the inky mixture, kneading the mixture again through dispersion, and applying the kneaded mixture to both surfaces of the positive collector 1 by the roll-to-roll transfer followed by drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電解液二次電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される有機電解
液二次電池は、高エネルギ−密度であるメリットを活か
して、主にVTRカメラやノ−トパソコン、携帯電話等
のポ−タブル機器に使用されている。特に近年は負極に
炭素材等の、リチウムを吸蔵、放出可能な材料を用いた
いわゆるリチウムイオン二次電池が普及している。この
電池の内部構造は、通常以下に記述するような捲回式に
される。すなわち、正極、負極共に活物質は金属箔に塗
着される。そして、セパレ−タを挟んで正極、負極が直
接接触しないように捲回され、容器となる円筒形の缶に
収納、電解液注液後、キャップ封口されている。電池組
立時では負極活物質として用いる炭素材は、いわばリチ
ウムが放出しきった状態、即ち放電状態である。従っ
て、通常正極も放電状態の活物質、例えばLiCoO2
(コバルト酸リチウム)やLiNiO2(ニッケル酸リ
チウム)などが用いられる。そして、初充電することに
よって電池として機能させることができる。こうして必
要に応じて充電、放電できるリチウムイオン二次電池と
なる。
2. Description of the Related Art Organic electrolyte secondary batteries typified by lithium secondary batteries take advantage of their high energy density and are mainly used in portable devices such as VTR cameras, notebook computers, and mobile phones. It is used. Particularly in recent years, a so-called lithium ion secondary battery using a material capable of occluding and releasing lithium, such as a carbon material, for a negative electrode has become widespread. The internal structure of this battery is usually wound as described below. That is, the active material is applied to the metal foil for both the positive electrode and the negative electrode. The positive electrode and the negative electrode are wound so as not to come into direct contact with each other with the separator interposed therebetween, housed in a cylindrical can serving as a container, filled with an electrolytic solution, and sealed with a cap. When assembling the battery, the carbon material used as the negative electrode active material is in a state where lithium has been completely released, that is, in a discharged state. Therefore, the positive electrode is usually also in the discharged active material, for example, LiCoO 2
Such as (lithium cobaltate) and LiNiO 2 (lithium nickel oxide) is used. The battery can function as a battery by being charged for the first time. Thus, a lithium ion secondary battery that can be charged and discharged as needed is obtained.

【0003】[0003]

【発明が解決しようとする課題】一般に有機電解液二次
電池は、電極反応に関与する物質が化学的に活性な材料
であること、水分の混入により性能劣化する有機電解液
を用いていること等の理由により、電池外界と電池内部
構成物とが完全に隔離された密閉構造をとる。従って、
何らかの原因で電池内圧が上昇した場合には電池が破裂
し、周辺機器に損傷を与えてしまうことがある。さら
に、電池が爆発した場合には、周辺機器の破損のおそれ
がある。特にリチウム二次電池の場合には、過充電時に
その確率が極めて高くなる。通常、リチウム二次電池
は、充電、放電時の電流、電圧を適正に保つための電気
回路で保護されているが、この保護回路が故障した場合
に充電上限電圧の制御が効かず、充電の進行に伴い電池
電圧が上昇し、電解液が電気分解、ガス発生し、電池内
圧が上昇する。この状態がさらに持続すると、内部抵抗
の上昇によるジュ−ル熱と、電解液や電解液の分解生成
物と活物質の化学反応による反応熱で、電池温度が急激
に上昇する。このような状態にある電池は、破裂、爆発
に至る確率が高くなる。
Generally, an organic electrolyte secondary battery uses a chemically active material as a substance involved in an electrode reaction, and uses an organic electrolyte which deteriorates in performance due to the incorporation of moisture. For such reasons, a sealed structure is provided in which the outside of the battery and the internal components of the battery are completely isolated. Therefore,
If the internal pressure of the battery rises for some reason, the battery may explode and damage peripheral devices. Further, when the battery explodes, there is a possibility that peripheral devices may be damaged. In particular, in the case of a lithium secondary battery, the probability at the time of overcharging becomes extremely high. Normally, a lithium secondary battery is protected by an electric circuit that maintains the current and voltage during charging and discharging properly.However, if this protection circuit fails, the control of the charging upper limit voltage does not work, and the charging As the process proceeds, the battery voltage increases, the electrolytic solution undergoes electrolysis and gas generation, and the battery internal pressure increases. When this state is further maintained, the battery temperature sharply rises due to Joule heat due to an increase in internal resistance and reaction heat due to a chemical reaction between the electrolyte and the decomposition product of the electrolyte and the active material. The battery in such a state has a high probability of explosion or explosion.

【0004】このような問題の一応の対策として、電池
内圧の上昇に応じて作動する電流遮断機構が電池に組み
込まれた密閉型構造とし、過充電で電池内圧が上昇した
場合に充電電流を断ち切り、それ以上の電気量が電池に
流入しないようにしている。しかし、たとえ充電電流が
断ち切られたとしても、上記化学反応が伴った場合には
電池の温度上昇を即座に止めることはできない。そこで
電流遮断装置が作動する圧力を低くすると、40〜60
℃といった暖められた周囲環境温度(ノ−トパソコン内
では頻繁にこのくらいの温度になる。)で、電池を通常
条件(保護回路で守られた条件)で使用している場合に
おいてさえ、電流遮断機構が作動してしまう。従って、
電流遮断機構の作動圧力は、あまり低く設定できない制
約がある。このようにリチウム二次電池は、誤使用、誤
操作、誤動作により、場合によっては破裂、爆発等危険
な壊れ方をするので、電池の安全性を確保することは、
この上ない重要な課題である。
[0004] As a temporary measure against such a problem, a closed circuit structure in which a current interruption mechanism which operates in response to an increase in the internal pressure of the battery is incorporated in the battery, and the charging current is cut off when the internal pressure of the battery increases due to overcharging. , So that no more amount of electricity flows into the battery. However, even if the charging current is cut off, the temperature rise of the battery cannot be stopped immediately when the above-mentioned chemical reaction is accompanied. Therefore, when the pressure at which the current interrupter operates is reduced, 40 to 60
Even if the battery is used under normal conditions (conditions protected by a protection circuit) at a warmed ambient environment temperature such as ℃ (this temperature frequently occurs in a notebook computer), current is cut off. The mechanism operates. Therefore,
There is a restriction that the operating pressure of the current interruption mechanism cannot be set too low. As described above, lithium secondary batteries can be dangerously broken, such as rupture or explosion, due to misuse, misoperation, or malfunction.
This is a very important task.

【0005】本発明者らが、電池の破裂に至る状況を詳
細に分析した結果、電流遮断機構作動時の電池温度に関
わりなく、すなわちそれほど電池内圧が上昇しなくて
も、上記化学反応を伴い、およそ130℃を越えると、
電池が破裂する確率が高くなることがわかった。このよ
うな問題を解決するために、いくつかの改善がなされて
きた。たとえば、特開平4−328278号公報、特開
平4−329269号公報では正極に炭酸リチウムや蓚
酸リチウムを含有させ、電池が過充電状態になったとき
に炭酸リチウムや蓚酸リチウムを電気化学的に分解、炭
酸ガスを発生させ、早い段階で電池内圧上昇、電池内圧
上昇に応じて作動する電流遮断機構を作動させることが
提案されている。とりわけ、特開平4−329268号
公報では、リチウムとコバルトの配合モル比をLi/C
o=1.0より大きくしたリチウムリッチな条件で正極
活物質を合成、あるいは、Li/Co=1.0で合成し
た正極活物質と炭酸リチウムとを混合、熱処理すること
で正極活物質に炭酸リチウム層を含有させている。しか
し、このような方法で合成した正極活物質粒子は通常平
均粒子径が10〜25μmと大きく成長したものとな
る。粒子が大きく成長した正極活物質を用いて電池とし
た場合に、活物質の比表面積が小さいために電流密度が
大きくなり、高率放電特性、低温放電特性が悪くなると
いうデメリットがある。さらに単に炭酸リチウムを正極
に混合しただけでは、大きな電流で過充電状態になった
場合に炭酸リチウムの分解による炭酸ガスの発生、電池
内圧の上昇が電池温度上昇に追随できず、著しい破壊が
発生することがある。これらの問題を補うために、特開
平6−338323号公報や特開平8−102331号
公報では正極に炭酸マンガン、炭酸コバルト、炭酸ニッ
ケルを添加したり、炭酸ナトリウム、炭酸カリウム、炭
酸ルビジウム、炭酸マグネシウム、炭酸カルシウム、炭
酸バリウムを含有させたりしている。しかし、それで
も、本発明の発明者がトレ−ス実験を実施したところ、
その効果は必ずしも十分なものではなっかった。このよ
うな状況を精力的に、詳細に検討した結果、その原因は
前記炭酸塩の平均粒子径にあることが判明した。また、
前記各公報では、炭酸塩が電気化学的に分解、炭酸ガス
を発生させるという記載がなされているが、本発明者の
詳細な分析によると、前記炭酸塩のみが分解するのでは
なく、有機電解液との相互作用によって有機電解液とと
もに分解、ガス発生することが判明した。しかも発生し
たガスは炭酸ガスではなく、主に酸素、炭化水素系のガ
スであることが判明した。従って、前記炭酸塩の平均粒
子径が大きいと、その表面積が小さくなるために電解液
との相互作用を伴った分解反応が十分促進されず、十分
電池内圧を上昇させ、所望のタイミングで電流遮断機構
を作動させることは困難である。
As a result of a detailed analysis of the situation leading to the explosion of the battery, the present inventors have found that the above-mentioned chemical reaction is involved regardless of the battery temperature at the time of operating the current interrupt mechanism, that is, even if the internal pressure of the battery does not rise so much. Above about 130 ° C,
It was found that the probability of the battery exploding was increased. Several improvements have been made to solve these problems. For example, in JP-A-4-328278 and JP-A-4-329269, the positive electrode contains lithium carbonate or lithium oxalate, and when the battery is overcharged, the lithium carbonate and lithium oxalate are electrochemically decomposed. It has been proposed to generate carbon dioxide gas and to activate the battery internal pressure at an early stage and to activate a current cutoff mechanism that operates in response to the battery internal pressure increase. In particular, JP-A-4-329268 discloses that the molar ratio of lithium to cobalt is Li / C
The positive electrode active material was synthesized under lithium-rich conditions with o greater than 1.0, or the positive electrode active material synthesized with Li / Co = 1.0 and lithium carbonate were mixed and heat-treated to form a positive electrode active material. Contains a lithium layer. However, the positive electrode active material particles synthesized by such a method usually have a large average particle diameter of 10 to 25 μm. When a battery is formed using a positive electrode active material in which particles grow large, there is a demerit that a current density increases due to a small specific surface area of the active material, and high-rate discharge characteristics and low-temperature discharge characteristics deteriorate. Furthermore, if lithium carbonate is simply mixed into the positive electrode, in the case of an overcharged state with a large current, decomposition of lithium carbonate will generate carbon dioxide gas, and the rise in battery internal pressure will not be able to follow the rise in battery temperature, causing significant destruction. May be. To compensate for these problems, Japanese Patent Application Laid-Open Nos. Hei 6-338323 and Hei 8-102331 disclose adding manganese carbonate, cobalt carbonate, and nickel carbonate to the positive electrode, and adding sodium carbonate, potassium carbonate, rubidium carbonate, and magnesium carbonate. , Calcium carbonate and barium carbonate. Nevertheless, when the inventors of the present invention conducted trace experiments,
The effect was not always enough. As a result of vigorous and detailed examination of such a situation, it was found that the cause was the average particle diameter of the carbonate. Also,
In each of the above publications, it is described that carbonates are electrochemically decomposed and carbon dioxide gas is generated. However, according to a detailed analysis of the present inventors, not only the carbonates are decomposed but organic electrolysis is not performed. It was found that by interaction with the solution, decomposition and gas generation occurred together with the organic electrolyte solution. Moreover, it was found that the generated gas was not oxygen gas but mainly oxygen-based gas. Therefore, when the average particle diameter of the carbonate is large, the decomposition surface reaction with the interaction with the electrolytic solution is not sufficiently promoted because the surface area is small, and the internal pressure of the battery is sufficiently increased to interrupt the current at a desired timing. It is difficult to operate the mechanism.

【0006】さらに、有機電解液の分解電圧よりも低い
電位で、上記炭酸塩は電気化学的に分解されるが、電池
が大電流で過充電状態になった場合には、電池電圧が急
速に上昇するため、上記炭酸塩の分解電圧を超え、有機
電解液の分解電圧へと、いとも簡単に到達し、破裂、爆
発することが多々あった。また、上記種々金属の炭酸塩
を正極に含ませても、過充電時には電解液の分解を抑制
することはできず、それに伴う電池温度の上昇も抑制す
ることはできない。本発明が解決しようとする課題は、
前述のような過充電時の化学反応による電池温度の上昇
を抑制し、電池の破裂や爆発といった著しい破壊を抑制
することである。
[0006] Further, the carbonate is electrochemically decomposed at a potential lower than the decomposition voltage of the organic electrolyte, but when the battery is overcharged with a large current, the battery voltage rapidly increases. Because of the rise, the decomposition voltage of the carbonate exceeded the decomposition voltage of the above-mentioned carbonate, and easily reached the decomposition voltage of the organic electrolyte. In addition, even if the above-mentioned carbonates of various metals are contained in the positive electrode, decomposition of the electrolytic solution cannot be suppressed at the time of overcharging, and a rise in battery temperature due to the decomposition cannot be suppressed. The problem to be solved by the present invention is
The purpose of the present invention is to suppress a rise in battery temperature due to a chemical reaction at the time of overcharging as described above, and to suppress remarkable destruction such as bursting or explosion of a battery.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の、正極と負極と有機電解液が密閉容器に収
納され、当該密閉容器が、所定圧力よりも高い内圧で開
放作動する弁機構を有してなる有機電解液二次電池は、
正極が炭酸ストロンチウム(SrCO3)を含有してい
ることを特徴とする。上記構成において、電池内圧上昇
で作動する電流遮断機構を備え、前記電流遮断機構は、
弁機構が開放作動する電池内圧より低い電池内圧で作動
することが好ましい。
According to the present invention, there is provided a valve according to the present invention, wherein a positive electrode, a negative electrode and an organic electrolyte are housed in a closed container, and the closed container is opened at an internal pressure higher than a predetermined pressure. Organic electrolyte secondary battery having a mechanism,
The positive electrode contains strontium carbonate (SrCO 3 ). In the above configuration, a current cutoff mechanism that operates by increasing the internal battery pressure is provided, and the current cutoff mechanism includes
It is preferable that the valve mechanism operates at a battery internal pressure lower than the battery internal pressure at which the valve mechanism is opened.

【0008】炭酸ストロンチウムを正極に含ませること
により、電池の過充電時においても有機電解液の電気化
学的な分解を抑制することができる。また、万が一上記
過充電が過剰なものとなり、有機電解液及び/又は炭酸
ストロンチウムの電気化学的分解が促進した場合でも有
機電解液二次電池が、電池内圧上昇で作動する電流遮断
機構を備え、前記電流遮断機構は、弁機構が開放作動す
る電池内圧より低い電池内圧で作動する構成を備えるこ
とにより、過剰な電池内圧上昇に対しては電池内のガス
を電池外部へ逃がすことができ、より電池の安全性が高
まる。
By including strontium carbonate in the positive electrode, electrochemical decomposition of the organic electrolyte can be suppressed even when the battery is overcharged. Also, in the unlikely event that the overcharge becomes excessive and the electrochemical decomposition of the organic electrolyte and / or strontium carbonate is promoted, the organic electrolyte secondary battery is provided with a current cutoff mechanism that operates by increasing the internal pressure of the battery, The current cutoff mechanism has a configuration in which the valve mechanism operates at a battery internal pressure lower than the battery internal pressure at which the valve mechanism is opened, so that gas in the battery can be released to the outside of the battery with respect to an excessive increase in battery internal pressure, Battery safety is increased.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態の一例を以下
に図面を参照しながら説明する。図1は本発明を実施し
た円筒形リチウム二次電池の断面図である。1は正極集
電体で厚さ20μmのアルミニウム箔である。平面サイ
ズは50mm×450mmである。2は正極活物質層
で、リチウムイオンを電極反応種とし、リチウムを放
出、吸蔵可能な正極活物質LiCoO2と導電助剤であ
るグラファイトと、バインダ−であるポリフッ化ビニリ
デン(PVDF)と、電解液とから構成される。正極活
物質層2の詳細な作製方法を記す。LiCoO2(平均
粒径約1〜2μm)粉末とグラファイト(平均粒径約
0.5μm)粉末とPVDFを重量比で80:10:1
0に十分混合し、そこへ分散溶媒となるN−メチル−2
−ピロリドンを適量加え、十分に混練、分散させ、イン
ク状にする。さらにそこへ炭酸ストロンチウム(キシダ
化学(株)製)を所定量加え、再び混練、分散させる。こ
の混練物をロ−ルtoロ−ルの転写により正極集電体1
の両面に塗着、乾燥し、正極活物質層2を得る。(但
し、この段階では電解液は入っていない。)正極活物質
層2の厚さは正極集電体1の両面各々100μmであ
る。3は負極集電体で厚さ10μmの銅箔ある。平面サ
イズは50mm×490mmである。4は負極活物質層
で、リチウムイオンを電極反応種とし、リチウムを放
出、吸蔵することのできる負極活物質としての無定形炭
素と、バインダ−であるポリフッ化ビニリデン(PVD
F)と、電解液とから構成される。負極活物質層4の詳
細な作製方法を記す。無定形炭素とPVDFを重量比で
90:10となるように混合しそこへ分散溶媒となるN
−メチル−2−ピロリドンを適量加え、十分に混練、分
散させ、インク状にする。この混練物をロ−ルtoロ−
ルの転写により負極集電体3の両面に塗着、乾燥し、負
極活物質層4を得る。(但し、この段階では電解液は入
っていない。)負極活物質層2の厚さは負極集電体3の
両面各々100μmである。5はセパレ−タで、厚さ2
5μmの微多孔性のポリエチレンフィルムである。正
極、負極の間にセパレ−タ5が配置されるように捲回
し、負極缶6に挿入する。そして負極集電体に予め溶接
させておいたタブ端子を負極缶6に溶接する。7は正極
キャップで8は正極タブ端子である。正極タブ端子8は
予め正極集電体1に溶接しておき、正極キャップ7に溶
接する。次に、電解液5mlを負極缶6内に注入する。
電解液は1mol/lのLiPF6が溶解された、炭酸
プロピレンと炭酸ジメチルと炭酸ジエチルの混合溶媒で
あり、その混合比は体積にして30:55:15であ
る。9は絶縁性のガスケットである。正極キャップ7を
負極缶上部に配置し、ガスケット9を介して負極缶上部
をかしめ、電池を密閉する。ここで、正極キャップ7内
には、電池内圧の上昇によって作動する電流遮断機構
(圧力スイッチ)と前記電流遮断機構が作動する電池内
圧よりも高い電池内圧によって開放作動する弁機構が組
み込まれている。前記圧力スイッチとは、具体的には、
電池内圧の上昇によって作動する可動部材により正極集
電端子と、正極外部端子(電池の外観から、正極端子と
表現される部材)との電気的接続を断つ機構からなるも
のである。また、前記弁機構は非復帰型、つまり一旦電
池内圧が過剰に高まり、弁が作動すると元の状態(電池
を密閉する状態)に復帰しないものを使用した。但し復
帰型の弁機構を採用しても構わない。上記「電池内圧に
よって作動する電流遮断機構」には、電池内圧が6〜8
kg/cm2で作動するものを用いた。また、上記「電
流遮断機構が作動する電池内圧よりも高い電池内圧によ
って開放作動する弁機構」の弁には、電池内圧が10〜
15kg/cm2で開放するものを用いた。これらの値
は任意に設定可能である。電池の使用目的等により設計
すればよい。例えば弁について言うと、弁の材質、厚
み、面積等を調整することで容易に設計変更が可能であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a cylindrical lithium secondary battery embodying the present invention. Reference numeral 1 denotes a positive electrode current collector, which is an aluminum foil having a thickness of 20 μm. The plane size is 50 mm × 450 mm. Reference numeral 2 denotes a positive electrode active material layer, which uses lithium ions as an electrode reactive species, and can release and occlude lithium, a positive electrode active material LiCoO 2 , graphite as a conductive additive, polyvinylidene fluoride (PVDF) as a binder, and electrolysis. Liquid. A detailed manufacturing method of the positive electrode active material layer 2 will be described. 80: 10: 1 by weight ratio of LiCoO 2 (average particle size: about 1 to 2 μm) powder, graphite (average particle size: about 0.5 μm) powder, and PVDF
0, and mixed with N-methyl-2 as a dispersion solvent.
Add an appropriate amount of pyrrolidone, knead and disperse sufficiently to form an ink. Further, a predetermined amount of strontium carbonate (manufactured by Kishida Chemical Co., Ltd.) is added thereto, and the mixture is kneaded and dispersed again. This kneaded material is roll-to-roll transferred to form a positive electrode current collector 1.
Is applied to both sides and dried to obtain a positive electrode active material layer 2. (However, no electrolyte is contained at this stage.) The thickness of the positive electrode active material layer 2 is 100 μm on each side of the positive electrode current collector 1. Reference numeral 3 denotes a negative electrode current collector, which is a copper foil having a thickness of 10 μm. The plane size is 50 mm × 490 mm. Reference numeral 4 denotes a negative electrode active material layer, which uses lithium ion as an electrode reactive species, amorphous carbon as a negative electrode active material capable of releasing and occluding lithium, and polyvinylidene fluoride (PVD) as a binder.
F) and an electrolytic solution. A detailed method for forming the negative electrode active material layer 4 will be described. Amorphous carbon and PVDF are mixed at a weight ratio of 90:10, and N as a dispersion solvent is added thereto.
-Methyl-2-pyrrolidone is added in an appropriate amount, sufficiently kneaded and dispersed to form an ink. This kneaded material is rolled to roll.
The negative electrode active material layer 4 is obtained by coating and drying both surfaces of the negative electrode current collector 3 by transferring the same. (However, no electrolyte is contained at this stage.) The thickness of the negative electrode active material layer 2 is 100 μm on both sides of the negative electrode current collector 3. 5 is a separator having a thickness of 2
5 μm microporous polyethylene film. It is wound so that the separator 5 is arranged between the positive electrode and the negative electrode, and inserted into the negative electrode can 6. Then, the tab terminal which has been welded to the negative electrode current collector in advance is welded to the negative electrode can 6. 7 is a positive electrode cap and 8 is a positive electrode tab terminal. The positive electrode tab terminal 8 is welded to the positive electrode current collector 1 in advance, and then welded to the positive electrode cap 7. Next, 5 ml of the electrolytic solution is injected into the negative electrode can 6.
The electrolyte is a mixed solvent of propylene carbonate, dimethyl carbonate and diethyl carbonate in which 1 mol / l of LiPF 6 is dissolved, and the mixing ratio is 30:55:15 by volume. 9 is an insulating gasket. The positive electrode cap 7 is arranged on the upper part of the negative electrode can, and the upper part of the negative electrode can is caulked via the gasket 9 to seal the battery. Here, in the positive electrode cap 7, a current cutoff mechanism (pressure switch) that is activated by an increase in the battery internal pressure and a valve mechanism that is opened by a battery internal pressure higher than the battery internal pressure at which the current cutoff mechanism is activated are incorporated. . The pressure switch is, specifically,
The mechanism comprises a mechanism for disconnecting an electrical connection between a positive electrode current collecting terminal and a positive electrode external terminal (a member represented as a positive electrode terminal from the external appearance of the battery) by a movable member that is activated by an increase in battery internal pressure. In addition, the valve mechanism used was a non-return type, that is, a valve mechanism which does not return to the original state (a state in which the battery is sealed) once the internal pressure of the battery becomes excessively high and the valve operates. However, a return type valve mechanism may be adopted. The “current interruption mechanism operated by the battery internal pressure” includes a battery internal pressure of 6 to 8;
Those operating at kg / cm 2 were used. Further, the valve of the above-mentioned "valve mechanism which is opened by a battery internal pressure higher than the battery internal pressure at which the current cutoff mechanism operates" has a battery internal pressure of 10 to 10.
One that opened at 15 kg / cm 2 was used. These values can be set arbitrarily. What is necessary is just to design according to the intended use of a battery. For example, regarding a valve, the design can be easily changed by adjusting the material, thickness, area, and the like of the valve.

【0010】正極に炭酸ストロンチウムを含有させたこ
とで、過充電時において、電池電圧上昇を伴った場合、
速やかにガス発生、電池内圧上昇を促進させ、早い段階
で電流遮断機構を作動、電池温度上昇を抑制することが
できる。この作用は、炭酸ストロンチウムの粒子径に依
存しにくい。さらに、急速に電池電圧が上昇し、上記炭
酸塩の分解電圧を超え、有機電解液の分解電圧へと達し
た場合には、詳細なメカニズムはは明らかではないが、
炭酸ストロンチウムが電解液の分解を抑制するため、電
池内での化学反応を抑制する、あるいは、化学反応によ
って生じる電池温度の上昇を緩やかにすることができ
る。よって電池内圧が急激に上昇すること、電池温度が
異常上昇するようなこともない。
[0010] When strontium carbonate is contained in the positive electrode, when overcharging is accompanied by an increase in battery voltage,
The generation of gas and the increase in battery internal pressure are promptly promoted, and the current cutoff mechanism is activated at an early stage to suppress the increase in battery temperature. This effect hardly depends on the particle size of strontium carbonate. Furthermore, when the battery voltage rises rapidly, exceeds the decomposition voltage of the carbonate, and reaches the decomposition voltage of the organic electrolyte, the detailed mechanism is not clear,
Since strontium carbonate suppresses decomposition of the electrolytic solution, it is possible to suppress a chemical reaction in the battery, or to moderate a rise in battery temperature caused by the chemical reaction. Therefore, the battery internal pressure does not suddenly increase and the battery temperature does not abnormally increase.

【0011】[0011]

【実施例】発明の実施の形態の記載により作製した電池
(実施例)及び以下に述べる従来例1〜従来例12の電
池を作製し、比較検討した。従来例1は、正極に炭酸ス
トロンチウムを加えないで、その他は全く上記実施例と
同条件で作製した。従来例2は、正極に炭酸リチウム、
従来例3は、蓚酸リチウム、従来例4は炭酸マンガン、
従来例5は炭酸コバルト、従来例6は炭酸ニッケル、従
来例7は炭酸ナトリウム、従来例8は炭酸カリウム、従
来例9は炭酸ルビジウム、従来例10は炭酸カルシウ
ム、従来例11は炭酸マグネシウム、従来例12は炭酸
バリウムを所定量添加したものである。
EXAMPLES Batteries (Examples) manufactured according to the description of the embodiment of the invention and batteries of Conventional Examples 1 to 12 described below were manufactured and compared. In Conventional Example 1, the strontium carbonate was not added to the positive electrode, and the other components were manufactured under the same conditions as in the above Example. In Conventional Example 2, lithium carbonate was used for the positive electrode,
Conventional Example 3 is lithium oxalate, Conventional Example 4 is manganese carbonate,
Conventional Example 5 is cobalt carbonate, Conventional Example 6 is nickel carbonate, Conventional Example 7 is sodium carbonate, Conventional Example 8 is potassium carbonate, Conventional Example 9 is rubidium carbonate, Conventional Example 10 is calcium carbonate, Conventional Example 11 is magnesium carbonate, and In Example 12, a predetermined amount of barium carbonate was added.

【0012】実施例、および各従来例の電池では、炭酸
ストロンチウムやその他の各種炭酸塩、蓚酸塩の添加量
は、正極活物質LiCoO2の重量に対して0.05〜
20%とした。また、各種炭酸塩、蓚酸塩の平均粒径は
1μm〜40μmとした。作製した電池は以下に示す条
件で充電し、放電の後、2.8Aで連続的に充電し続
け、過充電状態にした。そのときの電池の破壊状況を表
1、表2に示す。表中の数値は、上段が電池放電容量
(mAh)、下段が電池を過充電状態にしたときの破裂
あるいは爆発発生率(%)である。また表中の括弧内に
記した物質は正極に含ませた添加材名である。なお、本
過充電テストは周囲温度30℃で実施し、炭酸ストロン
チウムや各種炭酸塩の平均粒径は5μmとした。充電:
4.2V定電圧、上限電流100mA、20h、周囲温
度25℃放電:100mA定電流、終止電圧2.8V、
周囲温度25℃
In the batteries of Examples and each of the conventional examples, the amount of strontium carbonate, other various carbonates, and oxalate is 0.05 to 0.05% by weight of the positive electrode active material LiCoO 2.
20%. The average particle size of various carbonates and oxalates was 1 μm to 40 μm. The produced battery was charged under the following conditions. After discharging, the battery was continuously charged at 2.8 A, and was placed in an overcharged state. Tables 1 and 2 show the destruction status of the battery at that time. The numerical values in the table indicate the battery discharge capacity (mAh) in the upper row and the rupture or explosion occurrence rate (%) when the battery is overcharged in the lower row. The substances described in parentheses in the table are the names of the additives contained in the positive electrode. The overcharge test was performed at an ambient temperature of 30 ° C., and the average particle size of strontium carbonate and various carbonates was 5 μm. charging:
4.2V constant voltage, upper limit current 100mA, 20h, ambient temperature 25 ° C Discharge: 100mA constant current, final voltage 2.8V,
Ambient temperature 25 ° C

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】表1、表2から明らかなように、正極に炭
酸ストロンチウムを添加したことにより、過充電に陥っ
た場合の破裂、爆発といった電池の著しい破壊が抑制さ
れる。炭酸ストロンチウムが重量で正極活物質に対して
0.2重量%以上になるとさらに顕著な効果が得られ
る。一方、炭酸ストロンチウムの添加量が15重量%を
越えると、放電容量が急激に低下する。この理由は、添
加物の電子伝導度が低いために電池の内部抵抗が大きく
なったことによると思われる。
As is clear from Tables 1 and 2, by adding strontium carbonate to the positive electrode, remarkable destruction of the battery such as rupture or explosion in the event of overcharging is suppressed. If the strontium carbonate content is 0.2% by weight or more based on the weight of the positive electrode active material, a more remarkable effect can be obtained. On the other hand, when the amount of strontium carbonate exceeds 15% by weight, the discharge capacity sharply decreases. The reason is considered to be that the internal resistance of the battery was increased due to the low electronic conductivity of the additive.

【0016】表3は、上記過充電テストにおいて、炭酸
ストロンチウムの平均粒径を、5、10、15、20、
25、30、35、40μmとし、添加量を5%とした
ときの、電池の破裂、爆発の発生率(%)を示したもの
である。
Table 3 shows that the average particle size of strontium carbonate was 5, 10, 15, 20,
This figure shows the occurrence rate (%) of the rupture and explosion of the battery when 25, 30, 35, and 40 μm and the addition amount is 5%.

【0017】[0017]

【表3】 [Table 3]

【0018】平均粒径が30μm以下の場合において破
裂、爆発の発生率が0%となり、好ましいものである。
平均粒径が30μmを越えると効果がいくぶん小さくな
るのは、炭酸ストロンチウムの表面積が小さくなり、電
池電圧上昇に対する感度が鈍くなり、ガス発生速度が遅
くなるためと思われる。
When the average particle size is 30 μm or less, the rate of burst and explosion is 0%, which is preferable.
The reason why the effect is somewhat reduced when the average particle size exceeds 30 μm is considered to be because the surface area of strontium carbonate is reduced, the sensitivity to the increase in battery voltage is reduced, and the gas generation rate is reduced.

【0019】従来例1の電池では、非常に高い確率で、
電池が破裂、爆発に至っていたが、従来例2〜12では
確率が低下している。しかし、炭酸ストロンチウムを添
加した実施例の電池のように、ほぼ完全に電池の破裂、
爆発を回避したわけではない。その理由を検討するため
に、満充電状態にある各電池の電極を正極、負極ともに
一部を取り出し、正極を作用極、負極を対極として高電
圧側に走査した。走査速度は0.1mV/sec、試験
温度は30℃条件は次のとおりである。試験に供するた
めに切り出した電極の寸法は、正極が20mm×20m
m、負極が21mm×21mmである。切り出した正極
と負極はセパレ−タをはさんで対向させた2極式セル
で、同電解液中で電圧走査した。尚、ここでは参照電極
は採用していない。その理由は、電圧走査中の対極(負
極)電位が殆ど変化しないためである。従って負極に金
属リチウム、リチウム合金を用いたり、無定形炭素以外
の、リチウムを吸蔵、放出することのできる負極材料、
例えば黒鉛のような結晶性の高い炭素材料等を用いても
図2に示す結果と同様の結果が得られると考えられる。
In the battery of Conventional Example 1, the probability is very high.
Although the battery exploded and exploded, the probability is reduced in Conventional Examples 2 to 12. However, like the battery of the example to which strontium carbonate was added, the battery ruptured almost completely,
We did not avoid the explosion. In order to investigate the reason, a part of both the positive electrode and the negative electrode of each battery in a fully charged state was taken out, and the positive electrode was used as a working electrode and the negative electrode was used as a counter electrode to scan toward a high voltage side. The scanning speed is 0.1 mV / sec and the test temperature is 30 ° C. The conditions are as follows. The dimensions of the electrode cut out for the test were as follows: the positive electrode was 20 mm x 20 m
m, the negative electrode is 21 mm × 21 mm. The cut positive electrode and negative electrode were a bipolar cell in which a separator was opposed to each other, and voltage scanning was performed in the same electrolytic solution. Here, the reference electrode is not used. This is because the potential of the counter electrode (negative electrode) during voltage scanning hardly changes. Therefore, lithium metal, lithium alloy for the negative electrode, or other than amorphous carbon, a negative electrode material that can occlude and release lithium,
For example, it is considered that a result similar to the result shown in FIG. 2 can be obtained even when a highly crystalline carbon material such as graphite is used.

【0020】電圧走査の結果を図2〜図8に示す。図2
は正極に炭酸ストロンチウムを添加した実施例の電池の
電極を用いて電圧走査した結果、図3は、正極には何も
添加しない従来例1の電池の電極を用いて電圧走査した
結果、図4は正極に炭酸リチウムを添加した従来例2の
電池の電極を用いて電圧走査した結果、図5は正極に蓚
酸リチウムを添加した従来例3の電池の電極を用いて電
圧走査した結果、図6は正極に炭酸マンガンを添加した
従来例4の電池の電極を用いて電圧走査した結果、図7
は正極に炭酸カリウムを添加した従来例8の電池の電極
を用いて電圧走査した結果、図8は正極に炭酸マグネシ
ウムを添加した従来例11の電池の電極を用いて電圧走
査した結果をそれぞれ示す。図2〜図8において4.6
V付近に観測される電流ピークは、電解液や添加剤の電
気化学的分解に起因するピークではなく、正極の酸化ピ
ークである。図3の、正極には何も添加しない従来例1
の電池の電極を用いて電圧走査した結果では、約5.1
Vから電解液の分解に相当する電流値の上昇が観測され
る。これは電池が過充電状態となり、約5.1V以上と
なると、電池が破裂、爆発に至る確率がかなり高くなる
という試験結果と一致している。図4の正極に炭酸リチ
ウムを添加した従来例2の電池の電極を用いて電圧走査
した結果では、電解液の分解に相当する電流が流れる電
圧よりも低い、約5Vで炭酸リチウムと電解液との分解
反応に相当する電流ピ−クが観測され、特開平4−32
8278号公報の記述内容と一致している。しかし、
5.5V付近から急激に電解液の分解に起因する電流値
の上昇が観測され、図2のような、正極に炭酸ストロン
チウムを含有させた際の電解液分解抑制効果はみられな
かった。ところが図5〜図8に示されているように、そ
の他各種炭酸塩や蓚酸リチウムを添加した従来例3、従
来例4、従来例8、従来例11の電池の電極を用いて電
圧走査した結果では、電解液の分解に相当する電流が流
れる電圧よりも低い電圧で、添加物と電解液との分解反
応に相当する電流は観測されない。従って添加物の効果
は殆どないといえる。
The results of the voltage scanning are shown in FIGS. FIG.
FIG. 3 shows the result of voltage scanning using the electrode of the battery of the example in which strontium carbonate was added to the positive electrode, and FIG. 3 shows the result of voltage scanning using the electrode of the battery of Conventional Example 1 in which nothing was added to the positive electrode. FIG. 5 shows the result of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode. FIG. 5 shows the result of voltage scanning using the electrode of the battery of Conventional Example 3 in which lithium oxalate was added to the positive electrode. FIG. 7 shows the result of voltage scanning using the electrode of the battery of Conventional Example 4 in which manganese carbonate was added to the positive electrode.
Shows the result of voltage scanning using the electrode of the battery of Conventional Example 8 in which potassium carbonate was added to the positive electrode, and FIG. 8 shows the result of voltage scanning using the electrode of the battery of Conventional Example 11 in which magnesium carbonate was added to the positive electrode. . 4.6 in FIGS.
The current peak observed near V is not a peak due to electrochemical decomposition of the electrolyte or the additive, but an oxidation peak of the positive electrode. Conventional example 1 in which nothing is added to the positive electrode in FIG.
As a result of voltage scanning using the battery electrodes of
From V, an increase in the current value corresponding to the decomposition of the electrolytic solution is observed. This is in agreement with the test result that when the battery is overcharged and the voltage becomes about 5.1 V or more, the probability of the battery exploding or exploding becomes considerably high. The result of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode in FIG. A current peak corresponding to the decomposition reaction was observed.
8278 gazette. But,
A sharp increase in current value due to decomposition of the electrolyte was observed from around 5.5 V, and no effect of suppressing the decomposition of the electrolyte when strontium carbonate was contained in the positive electrode was observed as shown in FIG. However, as shown in FIGS. 5 to 8, the results of voltage scanning using the electrodes of the batteries of Conventional Example 3, Conventional Example 4, Conventional Example 8, and Conventional Example 11 to which other various carbonates and lithium oxalate were added. Thus, at a voltage lower than the voltage at which the current corresponding to the decomposition of the electrolyte flows, no current corresponding to the decomposition reaction between the additive and the electrolyte is observed. Therefore, it can be said that the additive has almost no effect.

【0021】これら従来例の電池の電極を用いて電圧走
査した結果(図3〜図8)では、いずれも5.1Vを超
えると電解液の分解反応に相当する電流値の上昇が観測
される。従って、図3〜図8は、比較的大きな電流で電
池が急激に過充電状態に陥った場合に、破裂、爆発を抑
制できないことを示唆している。
In the results of voltage scanning using the electrodes of these conventional batteries (FIGS. 3 to 8), when the voltage exceeds 5.1 V, an increase in the current value corresponding to the decomposition reaction of the electrolytic solution is observed. . Therefore, FIGS. 3 to 8 suggest that when the battery suddenly falls into an overcharged state with a relatively large current, bursting and explosion cannot be suppressed.

【0022】それに対して図2の正極に炭酸ストロンチ
ウムを添加した、本発明の電池の電極を用いて電圧走査
した結果では、約5.1Vで炭酸ストロンチウムと電解
液との分解反応に相当する電流ピ−クが観測され、それ
よりも高い電圧では、電解液の分解反応に相当する電流
が殆ど観測されない。従って、正極に炭酸ストロンチウ
ムを添加した電池は、比較的大きな電流で電池が急激に
過充電状態に陥った場合に、破裂、爆発を抑制できるこ
とがわかる。
On the other hand, as a result of voltage scanning using the electrode of the battery of the present invention in which strontium carbonate was added to the positive electrode in FIG. 2, a current corresponding to a decomposition reaction between strontium carbonate and the electrolyte of about 5.1 V was obtained. A peak is observed, and at a voltage higher than that, almost no current corresponding to the decomposition reaction of the electrolytic solution is observed. Therefore, it can be seen that a battery in which strontium carbonate is added to the positive electrode can suppress rupture and explosion when the battery suddenly falls into an overcharged state with a relatively large current.

【0023】本実施例では正極活物質にLiCoO2
用いたが、その他の正極活物質、例えばLiNiO2
LiMnO2、等を用いても本実施例と同様の効果が得
られる。
In this embodiment, LiCoO 2 is used as the positive electrode active material, but other positive electrode active materials, for example, LiNiO 2 ,
Even if LiMnO 2 or the like is used, the same effect as that of the present embodiment can be obtained.

【0024】[0024]

【発明の効果】本発明により、過充電に陥った場合の破
裂、爆発といった有機電解液二次電池の著しい破壊を有
効に回避することができた。とりわけ比較的大きな電流
で電池が急激に過充電状態に陥った場合にも、破裂、爆
発を抑制できた。また本発明の電池が急激に過充電状態
に陥り、電解液の分解電圧に突入した場合には、炭酸ス
トロンチウムの電解液の分解を抑制する効果を発揮す
る。つまり炭酸ストロンチウムには、電解液の分解電
圧よりも低い電圧でガス発生する機能と、電池がたと
え電解液の分解電圧に突入しても、電解液の分解を抑制
する機能、という2つの機能がある。電池内圧上昇によ
って作動する電流遮断機構を備えた場合には、前記の
機能を利用して、さらに次のことが可能である。本発明
の電池が過充電状態となると、電解液が分解する電圧よ
りも低い電圧で炭酸ストロンチウムと電解液との相互作
用でガス発生し、電池内圧上昇によって作動する電流遮
断機構を速やかに作動させ、過充電電流を断ち切り、電
池温度の上昇を抑制し、電池の破裂、爆発を回避する。
従って、本発明による電池の安全性を確保する効果は、
これまでに提案されている添加物の効果を遥かに上回る
ほど大きい。
According to the present invention, remarkable destruction of the organic electrolyte secondary battery such as rupture or explosion in the event of overcharging can be effectively avoided. In particular, even when the battery suddenly enters an overcharged state with a relatively large current, the explosion and explosion could be suppressed. Further, when the battery of the present invention suddenly falls into an overcharged state and enters the decomposition voltage of the electrolytic solution, the effect of suppressing the decomposition of the strontium carbonate electrolytic solution is exhibited. In other words, strontium carbonate has two functions: a function of generating gas at a voltage lower than the decomposition voltage of the electrolytic solution, and a function of suppressing decomposition of the electrolytic solution even when the battery enters the decomposition voltage of the electrolytic solution. is there. In the case where a current interruption mechanism that operates by increasing the internal pressure of the battery is provided, the following can be further performed by using the above-described function. When the battery of the present invention is in an overcharged state, gas is generated due to the interaction between strontium carbonate and the electrolyte at a voltage lower than the voltage at which the electrolyte is decomposed, and the current interruption mechanism that is activated by an increase in the battery internal pressure is quickly activated. Cut off the overcharge current, suppress the battery temperature rise, and avoid the battery explosion and explosion.
Therefore, the effect of ensuring the safety of the battery according to the present invention is as follows.
The effect is far greater than the effects of additives proposed so far.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機電解液二次電池の一例の縦断面図
である。
FIG. 1 is a longitudinal sectional view of an example of an organic electrolyte secondary battery of the present invention.

【図2】正極に炭酸ストロンチウムを添加した実施例の
電池の電極を用いて電圧走査した結果を示したものであ
る。
FIG. 2 shows the results of voltage scanning using the electrodes of the battery of the example in which strontium carbonate was added to the positive electrode.

【図3】正極には何も添加しない比較例1の電池の電極
を用いて電圧走査した結果を示したものである。
FIG. 3 shows the result of voltage scanning using the electrode of the battery of Comparative Example 1 in which nothing was added to the positive electrode.

【図4】正極に炭酸リチウムを添加した比較例2の電池
の電極を用いて電圧走査した結果をを示したものであ
る。
FIG. 4 shows the result of voltage scanning using the electrode of the battery of Comparative Example 2 in which lithium carbonate was added to the positive electrode.

【図5】正極に蓚酸リチウムを添加した比較例3の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 5 shows a result of voltage scanning using an electrode of a battery of Comparative Example 3 in which lithium oxalate was added to a positive electrode.

【図6】正極に炭酸マンガンを添加した比較例4の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 6 shows a result of voltage scanning using an electrode of a battery of Comparative Example 4 in which manganese carbonate was added to a positive electrode.

【図7】正極に炭酸カリウムを添加した比較例8の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 7 shows the result of voltage scanning using the electrode of the battery of Comparative Example 8 in which potassium carbonate was added to the positive electrode.

【図8】正極に炭酸マグネシウムを添加した比較例11
の電池の電極を用いて電圧走査した結果を示したもので
ある。
FIG. 8 Comparative Example 11 in which magnesium carbonate was added to a positive electrode
3 shows the results of voltage scanning using the electrodes of the battery of FIG.

【符号の説明】[Explanation of symbols]

1.正極集電体 2.正極活物質層 3.負極集電体 4.負極活物質層 5.セパレ−タ 6.負極缶 7.正極キャップ 8.正極タブ端子 9.ガスケット 1. 1. positive electrode current collector 2. positive electrode active material layer Negative electrode current collector 4. Negative electrode active material layer 5. Separator 6. Negative electrode can 7 Positive electrode cap 8. Positive electrode tab terminal 9. gasket

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極と負極と有機電解液が密閉容器に収納
され、当該密閉容器が、所定圧力よりも高い電池内圧で
開放作動する弁機構を有してなる有機電解液二次電池に
おいて、前記正極が炭酸ストロンチウムを含有している
ことを特徴とする有機電解液二次電池。
An organic electrolyte secondary battery comprising a positive electrode, a negative electrode, and an organic electrolyte housed in a closed container, wherein the closed container has a valve mechanism that is opened at a battery internal pressure higher than a predetermined pressure. An organic electrolyte secondary battery, wherein the positive electrode contains strontium carbonate.
【請求項2】電池内圧上昇で作動する電流遮断機構を備
え、前記電流遮断機構は、弁機構が開放作動する電池内
圧より低い電池内圧で作動することを特徴とする請求項
1記載の有機電解液二次電池。
2. The organic electrolysis according to claim 1, further comprising a current cutoff mechanism that operates when the internal pressure of the battery rises, wherein the current cutoff mechanism operates at a lower battery internal pressure than when the valve mechanism opens. Liquid secondary battery.
【請求項3】炭酸ストロンチウムの含有量が、正極活物
質重量に対して0.2〜15%であることを特徴とする
請求項1又は2記載の有機電解液二次電池。
3. The organic electrolyte secondary battery according to claim 1, wherein the content of strontium carbonate is 0.2 to 15% based on the weight of the positive electrode active material.
【請求項4】炭酸ストロンチウムの平均粒子径が30μ
m以下であることを特徴とする請求項1〜3のいずれか
に記載の有機電解液二次電池。
4. An average particle diameter of strontium carbonate is 30 μm.
m or less, and the organic electrolyte secondary battery according to claim 1.
【請求項5】正極が充電、放電に伴い、リチウムを放
出、吸蔵することのできる材料であり、負極がリチウム
金属、リチウム合金、リチウムを吸蔵、放出することの
できる材料の中から選ばれる請求項1〜4のいずれかに
記載の有機電解液二次電池。
5. The positive electrode is a material capable of releasing and occluding lithium during charging and discharging, and the negative electrode is selected from lithium metal, lithium alloy, and a material capable of occluding and releasing lithium. Item 6. The organic electrolyte secondary battery according to any one of Items 1 to 4.
【請求項6】正極が充電、放電に伴い、リチウムを放
出、吸蔵することのできる材料であり、負極がリチウム
を吸蔵、放出することのできる炭素材である請求項1〜
4のいずれかに記載の有機電解液二次電池。
6. The positive electrode is a material capable of releasing and occluding lithium during charge and discharge, and the negative electrode is a carbon material capable of occluding and releasing lithium.
5. The organic electrolyte secondary battery according to any one of 4.
JP25131396A 1996-09-24 1996-09-24 Organic electrolyte secondary battery Expired - Fee Related JP3371713B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25131396A JP3371713B2 (en) 1996-09-24 1996-09-24 Organic electrolyte secondary battery
TW086113644A TW400661B (en) 1996-09-24 1997-09-19 Non-aqueous liquid electrolyte battery
US08/934,832 US5962167A (en) 1996-09-24 1997-09-22 Non-aqueous liquid electrolyte secondary cell
KR1019970048510A KR19980024915A (en) 1996-09-24 1997-09-24 Nonaqueous Electrolyte Secondary Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25131396A JP3371713B2 (en) 1996-09-24 1996-09-24 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1097873A true JPH1097873A (en) 1998-04-14
JP3371713B2 JP3371713B2 (en) 2003-01-27

Family

ID=17220957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25131396A Expired - Fee Related JP3371713B2 (en) 1996-09-24 1996-09-24 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3371713B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110251A (en) * 2000-09-27 2002-04-12 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
CN102214818A (en) * 2010-04-09 2011-10-12 索尼公司 Battery
CN111509190A (en) * 2019-01-30 2020-08-07 丰田自动车株式会社 Positive electrode active material and nonaqueous electrolyte secondary battery provided with same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242913A (en) * 1992-02-27 1993-09-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH06338323A (en) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH07254436A (en) * 1994-03-16 1995-10-03 Fuji Elelctrochem Co Ltd Lithium secondary battery and manufacture thereof
JPH08102331A (en) * 1994-09-29 1996-04-16 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH0945371A (en) * 1995-07-27 1997-02-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH09139211A (en) * 1995-11-15 1997-05-27 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09306510A (en) * 1996-05-07 1997-11-28 Fuji Elelctrochem Co Ltd Nonaqueous battery
JPH10154532A (en) * 1996-09-24 1998-06-09 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242913A (en) * 1992-02-27 1993-09-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH06338323A (en) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH07254436A (en) * 1994-03-16 1995-10-03 Fuji Elelctrochem Co Ltd Lithium secondary battery and manufacture thereof
JPH08102331A (en) * 1994-09-29 1996-04-16 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH0945371A (en) * 1995-07-27 1997-02-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH09139211A (en) * 1995-11-15 1997-05-27 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09306510A (en) * 1996-05-07 1997-11-28 Fuji Elelctrochem Co Ltd Nonaqueous battery
JPH10154532A (en) * 1996-09-24 1998-06-09 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110251A (en) * 2000-09-27 2002-04-12 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
CN102214818A (en) * 2010-04-09 2011-10-12 索尼公司 Battery
JP2011222300A (en) * 2010-04-09 2011-11-04 Sony Corp Battery
US9023537B2 (en) 2010-04-09 2015-05-05 Sony Corporation Battery
CN111509190A (en) * 2019-01-30 2020-08-07 丰田自动车株式会社 Positive electrode active material and nonaqueous electrolyte secondary battery provided with same

Also Published As

Publication number Publication date
JP3371713B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
JP3358478B2 (en) Organic electrolyte secondary battery
KR19980024915A (en) Nonaqueous Electrolyte Secondary Battery
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2009146739A (en) Manufacturing method of positive active material
KR20040079316A (en) Battery
KR20010011900A (en) Lithium secondary battery
JPH10125327A (en) Organic electrolyte secondary battery
US7425385B2 (en) Non-aqueous electrolyte secondary battery
JP2003142078A (en) Nonaqueous electrolyte secondary battery
JPH11273674A (en) Organic electrolyte secondary battery
JP2001250543A (en) Lithium secondary battery
JP2000156227A (en) Nonaqueous electrolyte battery
JP3533893B2 (en) Non-aqueous electrolyte secondary battery
JP3402237B2 (en) Non-aqueous electrolyte secondary battery
JP3371713B2 (en) Organic electrolyte secondary battery
JPH10134817A (en) Organic electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JPH11224670A (en) Lithium secondary battery
JPH1140199A (en) Lithium secondary battery
JP3010973B2 (en) Non-aqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP2000188132A5 (en)
JP3358482B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees