JPH109702A - Heating and cooling appliance - Google Patents

Heating and cooling appliance

Info

Publication number
JPH109702A
JPH109702A JP16406196A JP16406196A JPH109702A JP H109702 A JPH109702 A JP H109702A JP 16406196 A JP16406196 A JP 16406196A JP 16406196 A JP16406196 A JP 16406196A JP H109702 A JPH109702 A JP H109702A
Authority
JP
Japan
Prior art keywords
indoor
temperature
heat exchanger
refrigerant
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16406196A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitayama
浩 北山
Takayuki Takatani
隆幸 高谷
Kazuo Nakatani
和生 中谷
Masataka Ozeki
正高 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP16406196A priority Critical patent/JPH109702A/en
Publication of JPH109702A publication Critical patent/JPH109702A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a comfortable cooling by avoiding a danger of breaking a compressor owing to a liquid compression due to the return of liquid to the compressor during a cooling operation and properly controlling the capacity of an indoor machine in a cooling and heating appliance using a non-azeotrope refrigerant with a slip of temperature. SOLUTION: A liquid pipeline temperature sensor 11 is provided in the liquid side of an indoor side heat exchanger 7 and a gas pipeline temperature sensor 12 is provided in a gas side. A temperature correction number determining means 17b determines a temperature change corresponding to a pressure loss in the indoor side heat exchanger 7 by using the function of the operating frequency of a compressor 1. A value obtained by subtracting a temperature correction number got by the temperature correction number determining means 17b from the difference between the detected temperature of the gas pipeline temperature sensor 12 and the detected temperature of the liquid pipeline temperature sensor 11 is used as the degree of superheat so that an indoor side expansion valve 8 is controlled. Thus, the degree of superheat is accurately calculated by an inexpensive construction, a liquid compression is prevented and the capacity of an indoor machine 10 is properly controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用いた冷暖房装置に関し、特に室内側膨脹弁の制御に係
わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling and heating apparatus using a non-azeotropic mixed refrigerant, and more particularly to control of an indoor expansion valve.

【0002】[0002]

【従来の技術】従来の技術としては特開昭63−180
051号公報で知られるような冷暖房装置がある。以
下、図面を参照しながら従来の技術について説明する。
2. Description of the Related Art The prior art is disclosed in Japanese Patent Application Laid-Open No. 63-180.
There is a cooling and heating device as disclosed in Japanese Patent Publication No. 051. Hereinafter, the related art will be described with reference to the drawings.

【0003】図7において、1は圧縮機、2は四方弁、
3は室外側熱交換器、4は室外側膨脹弁、5は室外ファ
ンで、これらにより室外機6を形成している。7は室内
側熱交換器、8は室内側膨脹弁、9は室内ファンで、こ
れらによって室内機10を形成している。そして、室外
機6と室内機10は液管Lとガス管Gによって環状に連
接されている。
In FIG. 7, 1 is a compressor, 2 is a four-way valve,
3 is an outdoor heat exchanger, 4 is an outdoor expansion valve, 5 is an outdoor fan, and these form an outdoor unit 6. 7 is an indoor heat exchanger, 8 is an indoor expansion valve, 9 is an indoor fan, and these form an indoor unit 10. The outdoor unit 6 and the indoor unit 10 are connected in a ring shape by a liquid pipe L and a gas pipe G.

【0004】また、室内側熱交換器7と室内側膨脹弁8
の間に液配管温度センサー11を、室内機10内に設置
され室内側熱交換器7とガス管Gの間の温度を見地する
ガス配管温度センサー12を備え、液配管温度センサー
11及びガス配管温度センサー12で検出した温度を用
いて室内側熱交換器7の過熱度を計算する過熱度計算手
段13及び過熱度計算手段13にて計算された過熱度に
基づいて室内側膨脹弁8を動作させる室内側膨脹弁動作
手段14を有しており、これらは制御装置15に収納さ
れている。
Further, an indoor heat exchanger 7 and an indoor expansion valve 8 are provided.
And a gas pipe temperature sensor 12 installed in the indoor unit 10 for monitoring a temperature between the indoor side heat exchanger 7 and the gas pipe G. The liquid pipe temperature sensor 11 and the gas pipe Superheat degree calculating means 13 for calculating the degree of superheat of the indoor heat exchanger 7 using the temperature detected by the temperature sensor 12, and operating the indoor expansion valve 8 based on the superheat degree calculated by the superheat degree calculating means 13. It has an indoor side expansion valve operating means 14 to be operated, and these are housed in a control device 15.

【0005】以上のように構成された冷暖房装置の動作
について問題となる冷房運転のみ説明する。
[0005] Only the cooling operation which poses a problem in the operation of the cooling and heating apparatus configured as described above will be described.

【0006】冷房運転時は、圧縮機1で圧縮された高温
高圧ガスは四方弁2を介して室外ファン5により、室外
側熱交換器3で室外空気と熱交換して凝縮し高圧の液冷
媒となり、室外側膨脹弁4を通り室内側膨脹弁8で減圧
され、低温低圧の二相冷媒となって室内側熱交換器7に
送られ室内ファン9により、室内空気の熱を吸熱して冷
房する。
During the cooling operation, the high-temperature and high-pressure gas compressed by the compressor 1 is exchanged with the outdoor air by the outdoor fan 5 via the four-way valve 2 and the outdoor heat exchanger 3 and condensed to form a high-pressure liquid refrigerant. After passing through the outdoor expansion valve 4, the pressure is reduced by the indoor expansion valve 8, becomes a low-temperature and low-pressure two-phase refrigerant, is sent to the indoor heat exchanger 7, absorbs the heat of the indoor air by the indoor fan 9, and performs cooling. I do.

【0007】この時、過熱度計算手段13は、室内側熱
交換器7の過熱度をそれぞれ液配管温度センサー11で
検出した温度とガス配管温度センサー12で検出した温
度の差として算出し、算出した過熱度に応じて、過熱度
が大きくなると開成し、過熱度が小さくなると閉成する
よう室内側膨脹弁動作手段14は、室内側膨脹弁8の開
度を適宜制御し、冷媒を低温低圧ガスとして、圧縮機1
に戻している。
At this time, the superheat calculating means 13 calculates the superheat of the indoor heat exchanger 7 as the difference between the temperature detected by the liquid pipe temperature sensor 11 and the temperature detected by the gas pipe temperature sensor 12, respectively. In accordance with the degree of superheat, the indoor expansion valve operating means 14 appropriately controls the degree of opening of the indoor expansion valve 8 so as to open when the degree of superheat increases and close when the degree of superheat decreases, and to control the refrigerant at low temperature and low pressure. Compressor 1 as gas
Back to.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、冷媒が単一冷媒の場合(空調機では一般
にR22)、図8に示すように蒸発器では温度滑りがな
いため、液配管温度センサー11で検出した温度とガス
配管温度センサー12で検出した温度の差を過熱度とす
ることは問題ないが、冷媒として非共沸混合物を用いた
場合、図9に示すように蒸発器では温度滑りがあるた
め、一定圧力においては、飽和ガス温度は飽和液温度よ
り上昇する。
However, in the above configuration, when the refrigerant is a single refrigerant (generally R22 in an air conditioner), there is no temperature slip in the evaporator as shown in FIG. There is no problem in setting the difference between the temperature detected by the sensor 11 and the temperature detected by the gas pipe temperature sensor 12 as the degree of superheating. However, when a non-azeotropic mixture is used as the refrigerant, the temperature in the evaporator as shown in FIG. Due to the slip, at a constant pressure, the saturated gas temperature rises above the saturated liquid temperature.

【0009】そのため、液配管温度センサー11で検出
した温度とガス配管温度センサー12で検出した温度の
差として過熱度を算出する事ができない。即ち、冷房運
転時には室内側熱交換器7のガス配管G側の温度が常に
高くなり、過熱度計算手段13は実際より過熱度を高く
計算するため、例えば湿り状態にも関わらず室内側膨脹
弁動作手段14は、室内側膨脹弁8を開成していく。
For this reason, the degree of superheat cannot be calculated as the difference between the temperature detected by the liquid pipe temperature sensor 11 and the temperature detected by the gas pipe temperature sensor 12. That is, during the cooling operation, the temperature on the gas pipe G side of the indoor heat exchanger 7 is always high, and the superheat calculating means 13 calculates the superheat higher than the actual one. The operating means 14 opens the indoor expansion valve 8.

【0010】このため冷媒は一層湿り状態となりその結
果、例えば圧縮機へ液戻りが生じて液圧縮に至り、圧縮
機を破損する危険性が高いという課題を有していた。
As a result, the refrigerant becomes more humid, and as a result, there is a problem that, for example, the liquid returns to the compressor, which leads to liquid compression, and there is a high risk of damaging the compressor.

【0011】本発明は上記課題を解決するもので、冷媒
として非共沸混合物を用いた場合においても冷房時によ
り精度良く過熱度を算出し、算出された過熱度に基づい
て、過熱度が大きくなると開成し、過熱度が小さくなる
と閉成するよう室内側膨脹弁8を制御することにより、
圧縮機1への液戻りによる液圧縮により圧縮機を破損す
る危険性を回避すると共に、室内機10の能力制御を適
切に行い、快適な冷房を提供することを目的としてい
る。
[0011] The present invention solves the above-mentioned problems. Even when a non-azeotropic mixture is used as a refrigerant, the degree of superheat is calculated more accurately during cooling, and based on the calculated degree of superheat, the degree of superheat increases. By controlling the indoor expansion valve 8 so that it opens when the temperature rises and closes when the degree of superheat decreases,
An object of the present invention is to avoid the risk of damaging the compressor due to liquid compression by returning liquid to the compressor 1 and appropriately control the capacity of the indoor unit 10 to provide comfortable cooling.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
本発明の冷暖房装置は、圧縮機、四方弁、室外側熱交換
器、室外側膨脹弁からなる室外機と、室内側熱交換器、
室内側膨脹弁からなる室内機を接続して環状の冷媒回路
を構成しこの冷媒回路に冷媒循環量計測手段を設け、前
記室内側熱交換器と前記室内側膨脹弁との間の液冷媒温
度を検知する液配管温度センサーと、前記室内側熱交換
器と前記四方弁との間の前記室内側熱交換器近傍のガス
冷媒温度を検知するガス配管温度センサーと、前記室内
機の室内側熱交換器内の圧力損失に相当する温度変化を
前記冷媒循環量計測手段で求めた循環量の関数を用いて
決定する温度補正数決定手段と、前記液配管温度センサ
ーと前記ガス配管温度センサーの検知温度の差から前記
温度補正数決定手段で決定した温度補正数を引いた値を
過熱度として計算する過熱度計算手段と、前記過熱度計
算手段によって計算した過熱度に基づき過熱度が大きく
なると開成し過熱度が小さくなると閉成するよう室内側
膨脹弁を動作させる室内側膨脹弁動作手段とから構成さ
れている。
In order to achieve this object, a cooling and heating apparatus according to the present invention comprises an outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve;
An indoor unit including an indoor expansion valve is connected to form an annular refrigerant circuit, and the refrigerant circuit is provided with a refrigerant circulation amount measuring means, and a liquid refrigerant temperature between the indoor heat exchanger and the indoor expansion valve is provided. A liquid pipe temperature sensor for detecting the temperature of a gas pipe, a gas pipe temperature sensor for detecting a gas refrigerant temperature near the indoor side heat exchanger between the indoor side heat exchanger and the four-way valve, and an indoor side heat of the indoor unit. Temperature correction number determining means for determining a temperature change corresponding to the pressure loss in the exchanger by using a function of the circulation amount obtained by the refrigerant circulation amount measuring means, and detection of the liquid pipe temperature sensor and the gas pipe temperature sensor Superheat degree calculating means for calculating a value obtained by subtracting the temperature correction number determined by the temperature correction number determination means from the temperature difference as a superheat degree, and opening when the superheat degree increases based on the superheat degree calculated by the superheat degree calculation means. Overheating And a and the indoor side expansion valve operation means for operating the indoor expansion valve to close the smaller.

【0013】この発明によれば、液圧縮による圧縮機の
破損を防止するとともに、室内機の能力制御を適切に行
い快適な冷房運転が得られる。
According to the present invention, it is possible to prevent damage to the compressor due to liquid compression, and to appropriately control the capacity of the indoor unit to obtain a comfortable cooling operation.

【0014】また、圧縮機、四方弁、室外側熱交換器、
室外側膨脹弁から成る室外機と、室内具ゎ熱交換器、室
内側膨脹弁から成る室内機を接続して環状の冷媒回路を
構成し、前記室内側熱交換器と前記室内側膨脹弁との間
の液冷媒温度を検知する液配管温度センサーと、前記室
内側熱交換器と前記四方弁との間の前記室内側熱交換器
近傍のガス冷媒温度を検知するガス配管温度センサー
と、前記室内機の室内側熱交換器内の圧力損失に相当す
る温度変化を前記圧縮機の運転周波数の関数を用いて決
定する温度補正数決定手段と、前記液配管温度センサー
と前記ガス配管温度センサーの検知温度の差から前記温
度補正数決定手段で決定した温度補正数を引いた値を過
熱度として計算する過熱度計算手段と、前記過熱度計算
手段によって計算した過熱度に基づき過熱度が大きくな
ると開成し過熱度が小さくなると閉成するよう室内側膨
脹弁を動作させる室内側膨脹弁動作手段を備えた構成と
なっている。
A compressor, a four-way valve, an outdoor heat exchanger,
An outdoor unit consisting of an outdoor expansion valve, an indoor unit and a heat exchanger, and an indoor unit consisting of an indoor expansion valve are connected to form an annular refrigerant circuit, and the indoor heat exchanger, the indoor expansion valve, A liquid pipe temperature sensor that detects a liquid refrigerant temperature between the; a gas pipe temperature sensor that detects a gas refrigerant temperature near the indoor heat exchanger between the indoor heat exchanger and the four-way valve; A temperature correction number determining means for determining a temperature change corresponding to a pressure loss in the indoor heat exchanger of the indoor unit using a function of an operating frequency of the compressor; and a liquid pipe temperature sensor and a gas pipe temperature sensor. Superheat degree calculating means for calculating a value obtained by subtracting the temperature correction number determined by the temperature correction number determination means from the difference between the detected temperatures as a superheat degree, and when the superheat degree increases based on the superheat degree calculated by the superheat degree calculation means. The superheat degree It has a configuration having an indoor side expansion valve operation means for operating the indoor expansion valve to close becomes fence.

【0015】この発明によれば、安価な構成で、液圧縮
による圧縮機の破損を防止するとともに、室内機の能力
制御を適切に行い快適な冷房運転が得られる。
According to the present invention, it is possible to prevent the compressor from being damaged by the liquid compression and to appropriately control the capacity of the indoor unit to achieve a comfortable cooling operation with an inexpensive configuration.

【0016】さらに、圧縮機、四方弁、室外側熱交換
器、室外側膨脹弁から成る室外機と、室内側熱交換器、
室内側膨脹弁からなる室内機を接続して環状の冷媒回路
を構成し、前記冷媒回路の低圧側に吸入圧力センサーを
設け、前記室内側熱交換器と、前記室内側膨脹弁との間
の液冷媒温度を検知する液配管温度センサーと、前記室
内側熱交換器と前記四方弁との間の前記室内側熱交換器
近傍のガス冷媒温度を検知するガス配管温度センサー
と、前記室内機の室内側熱交換器内の圧力損失に相当す
る温度変化を前記圧縮機の運転周波数と前記吸入圧力セ
ンサーの検知圧力との積の関数を用いて決定する温度補
正数決定手段と、前記液配管温度センサーと前記ガス配
管温度センサーの検知温度の差から前記温度補正数決定
手段で決定した温度補正数を引いた値を過熱度として計
算する過熱度計算手段と、前記過熱度計算手段によって
計算した過熱度に基づき過熱度が大きくなると開成し過
熱度が小さくなると閉成するよう室内側膨脹弁を動作さ
せる室内側膨脹弁動作手段を備えた構成となっている。
Further, an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve;
An annular refrigerant circuit is formed by connecting indoor units each including an indoor expansion valve, and a suction pressure sensor is provided on a low pressure side of the refrigerant circuit, and a suction pressure sensor is provided between the indoor heat exchanger and the indoor expansion valve. A liquid pipe temperature sensor that detects a liquid refrigerant temperature, a gas pipe temperature sensor that detects a gas refrigerant temperature near the indoor heat exchanger between the indoor heat exchanger and the four-way valve, Temperature correction number determining means for determining a temperature change corresponding to a pressure loss in the indoor heat exchanger using a function of a product of an operating frequency of the compressor and a detection pressure of the suction pressure sensor; and Superheat degree calculating means for calculating a value obtained by subtracting the temperature correction number determined by the temperature correction number determination means from the difference between the detected temperatures of the sensor and the gas pipe temperature sensor as superheat degree, and superheat calculated by the superheat degree calculation means Based on degree It has a configuration having an indoor side expansion valve operation means for operating the indoor expansion valve to close when the the open Mr. superheat can superheat increases decreases.

【0017】この発明によれば、さらに精度よく、液圧
縮による圧縮機の破損を防止するとともに、室内機の能
力制御を適切に行い快適な冷房運転が得られる。
According to the present invention, the compressor can be more accurately prevented from being damaged due to liquid compression, and the capacity of the indoor unit can be appropriately controlled to achieve a comfortable cooling operation.

【0018】[0018]

【発明の実施の形態】本発明の請求項2に記載の発明
は、圧縮機、四方弁、室外側熱交換器、室外側膨脹弁か
らなる室外機と室内側熱交換器、室内側膨脹弁からなる
室内機を接続して環状の冷媒回路を構成し、この冷媒回
路に冷媒循環量計測手段を設け、前記室内側熱交換器と
前記室内側膨脹弁との間の液冷媒温度を検知する液配管
温度センサーと、前記室内側熱交換器と前記四方弁との
間の前記室内側熱交換器近傍のガス冷媒温度を検知する
ガス配管温度センサーと、前記室内機の室内側熱交換器
内の圧力損失に相当する温度変化を前記冷媒循環量計測
手段で求めた循環量の関数を用いて決定する温度補正数
決定手段と、前記液配管温度センサーと前記ガス配管温
度センサーの検知温度の差から前記温度補正数決定手段
で決定した温度補正数を引いた値を過熱度として計算す
る過熱度計算手段と、前記過熱度計算手段によって計算
した過熱度に基づき過熱度が大きくなると開成し過熱度
が小さくなると閉成するよう室内側膨脹弁を動作させる
室内側膨脹弁動作手段とから構成したものであり、室内
側熱交換器内の圧力損失を考慮した温度滑りの温度上昇
分を圧力損失に影響する冷媒循環量を用いて予測したの
で、温度滑りの影響を受けることがなく、室内機出口の
過熱度を精度良く算出できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 2 of the present invention is directed to an outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an indoor heat exchanger, and an indoor expansion valve. To form an annular refrigerant circuit, and a refrigerant circulation amount measuring means is provided in the refrigerant circuit to detect a liquid refrigerant temperature between the indoor heat exchanger and the indoor expansion valve. A liquid pipe temperature sensor, a gas pipe temperature sensor that detects a gas refrigerant temperature near the indoor heat exchanger between the indoor heat exchanger and the four-way valve, and an indoor heat exchanger of the indoor unit. Temperature correction number determining means for determining a temperature change corresponding to the pressure loss of the refrigerant using the function of the circulation amount obtained by the refrigerant circulation amount measuring means, and a difference between the detected temperatures of the liquid pipe temperature sensor and the gas pipe temperature sensor. From the temperature correction number determined by the temperature correction number determination means. Superheat degree calculating means for calculating a value obtained by subtracting the superheat degree, and operating the indoor expansion valve so as to open when the superheat degree increases and close when the superheat degree decreases based on the superheat degree calculated by the superheat degree calculation means. And an indoor expansion valve operating means for causing the temperature increase of the temperature slip in consideration of the pressure loss in the indoor heat exchanger using the refrigerant circulation amount that affects the pressure loss. The degree of superheat at the indoor unit outlet can be accurately calculated without being affected by the slip.

【0019】請求項3に記載の発明は、圧縮機、四方
弁、室外側熱交換器、室外側膨脹弁から成る室外機と、
室内側熱交換器、室内側膨脹弁から成る室内機を接続し
て環状の冷媒回路を構成し、前記室内側熱交換器と前記
室内側膨脹弁との間の液冷媒温度を検知する液配管温度
センサーと前記室内側熱交換器と前記四方弁との間の前
記室内側熱交換器近傍のガス冷媒温度を検知するガス配
管温度センサーと、前記室内機の室内側熱交換器内の圧
力損失に相当する温度変化を前記圧縮機の運転周波数の
関数を用いて決定する温度補正数決定手段と、前記液配
管温度センサーと前記ガス配管温度センサーの検知温度
の差から前記温度補正数決定手段で決定した温度補正数
を引いた値を過熱度として計算する過熱度計算手段と、
前記過熱度計算手段によって計算した過熱度に基づき過
熱度が大きくなると開成し過熱度が小さくなると閉成す
るよう室内側膨脹弁を動作させる室内側膨脹弁動作手段
とから構成したものであり、室内側熱交換器内の圧力損
失を考慮した温度滑りの温度上昇分を、圧力損失に影響
する冷媒循環量を圧縮機の運転周波数を用いることによ
って予測したので、温度滑りの影響を受けることがな
く、室内機出口の過熱度を、安価な方法で精度良く算出
できる。
According to a third aspect of the present invention, there is provided an outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve;
A liquid pipe for detecting a liquid refrigerant temperature between the indoor heat exchanger and the indoor expansion valve by connecting an indoor unit comprising an indoor heat exchanger and an indoor expansion valve to form an annular refrigerant circuit; A gas pipe temperature sensor for detecting a temperature of a gas refrigerant near the indoor heat exchanger between the temperature sensor, the indoor heat exchanger, and the four-way valve; and a pressure loss in the indoor heat exchanger of the indoor unit. Temperature correction number determining means for determining a temperature change corresponding to the operation frequency of the compressor using a function of the operating frequency, and the temperature correction number determining means from the difference between the detected temperatures of the liquid pipe temperature sensor and the gas pipe temperature sensor. Superheat degree calculating means for calculating a value obtained by subtracting the determined temperature correction number as a superheat degree,
A room-side expansion valve operating means for operating the room-side expansion valve to open when the degree of superheat is increased and close when the degree of superheat is reduced based on the degree of superheat calculated by the degree of superheat calculation means, The temperature rise of the temperature slip taking into account the pressure loss in the inner heat exchanger was predicted by using the operating frequency of the compressor to determine the amount of refrigerant circulating that affected the pressure loss. In addition, the degree of superheat at the indoor unit outlet can be accurately calculated by an inexpensive method.

【0020】請求項4に記載の発明は、圧縮機、四方
弁、室外側熱交換器、室外側膨脹弁から成る室外機と、
室内側熱交換器、室内側膨脹弁から成る室内機を接続し
て環状の冷媒回路を構成し、前記冷媒回路の低圧側に吸
入圧力センサーを設け、前記室内側熱交換器と前記室内
側膨脹弁との間の液冷媒温度を検知する液配管温度セン
サーと、前記室内側熱交換器と前記四方弁との間の前記
室内側熱交換器近傍のガス冷媒温度を検知するガス配管
温度センサーと、前記室内機の室内側熱交換器内の圧力
損失に相当する温度変化を前記圧縮機の運転周波数と前
記吸入圧力センサーの検知圧力との積の関数を用いて決
定する温度補正数決定手段と、前記液配管温度センサー
と前記ガス配管温度センサーの検知温度の差から前記温
度補正数決定手段で決定した温度補正数を引いた値を過
熱度として計算する過熱度計算手段と、前記過熱度計算
手段によって計算した過熱度に基づき過熱度が大きくな
ると開成し過熱度が小さくなると閉成するよう室内側膨
脹弁を動作させる室内側膨脹弁動作手段とから構成した
ものであり、室内側熱交換器内の圧力損失を考慮した温
度滑りの温度上昇分を、圧力損失に影響する冷媒循環量
を圧縮機の運転周波数と吸入圧力との積を用いることに
よって予測したので、室内機出口の過熱度をさらに精度
良く算出できる。
According to a fourth aspect of the present invention, there is provided an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve.
An indoor unit including an indoor heat exchanger and an indoor expansion valve is connected to form an annular refrigerant circuit, and a suction pressure sensor is provided on a low pressure side of the refrigerant circuit, and the indoor heat exchanger and the indoor expansion are provided. A liquid pipe temperature sensor that detects a liquid refrigerant temperature between the valve, and a gas pipe temperature sensor that detects a gas refrigerant temperature near the indoor heat exchanger between the indoor heat exchanger and the four-way valve. Temperature correction number determining means for determining a temperature change corresponding to a pressure loss in an indoor heat exchanger of the indoor unit using a function of a product of an operating frequency of the compressor and a detection pressure of the suction pressure sensor; Superheat degree calculation means for calculating a value obtained by subtracting the temperature correction number determined by the temperature correction number determination means from the difference between the detected temperatures of the liquid pipe temperature sensor and the gas pipe temperature sensor as superheat degree, and the superheat degree calculation Calculated by means And an indoor expansion valve operating means for operating the indoor expansion valve to open when the degree of superheat increases and close when the degree of superheat decreases based on the degree of superheat, and the pressure inside the indoor heat exchanger. The temperature rise of the temperature slip taking into account the loss was predicted by using the product of the operating frequency of the compressor and the suction pressure to determine the amount of refrigerant circulating that affects the pressure loss. Can be calculated.

【0021】以下、本発明の実施の形態について、図1
から図6を用いて説明する。尚、従来と同一構成につい
ては同一符号を付し、その詳細な説明は省略する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. The same components as those in the related art are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0022】(実施の形態1)図1は非共沸混合冷媒を
用いた冷暖房装置の冷媒サイクル図を示している。図1
において、11は室内側膨脹弁8と室内側熱交換器7の
間に設けられた液冷媒温度を検知する液配管温度センサ
ー、12は室内側熱交換器7と四方弁2との間の室内側
熱交換器7近傍のガス冷媒温度を検知するガス配管温度
センサー、16は圧縮機1と四方弁2の間に設置された
冷媒循環量計測手段、17aは室内側熱交換器7内の圧
力損失に相当する温度変化を冷媒循環量計測手段16で
求めた冷媒循環量Grの関数を用いて算出する温度補正
数決定手段、13aはガス配管温度センサー12によっ
て検知したガス冷媒温度と液配管温度センサー11によ
って検知した液冷媒温度との差から温度補正数決定手段
17aで決定された温度補正数を引いた値を過熱度とし
て計算する過熱度計算手段、14aは過熱度計算手段1
3aによって計算された過熱度に基づき室内側膨脹弁8
を動作させる室内側膨脹弁動作手段であり、これらは制
御装置15aに収納されている。
(Embodiment 1) FIG. 1 shows a refrigerant cycle diagram of a cooling and heating apparatus using a non-azeotropic mixed refrigerant. FIG.
, 11 is a liquid pipe temperature sensor provided between the indoor expansion valve 8 and the indoor heat exchanger 7 to detect a liquid refrigerant temperature, and 12 is a chamber between the indoor heat exchanger 7 and the four-way valve 2. A gas pipe temperature sensor for detecting the temperature of the gas refrigerant near the inner heat exchanger 7, 16 is a refrigerant circulation amount measuring means installed between the compressor 1 and the four-way valve 2, and 17a is a pressure in the indoor heat exchanger 7. Temperature correction number determining means for calculating a temperature change corresponding to the loss using a function of the refrigerant circulation amount Gr obtained by the refrigerant circulation amount measuring means 16, 13 a denotes a gas refrigerant temperature and a liquid pipe temperature detected by the gas pipe temperature sensor 12. Superheat degree calculating means for calculating a value obtained by subtracting the temperature correction number determined by the temperature correction number determining means 17a from the difference between the liquid refrigerant temperature detected by the sensor 11 and the superheat degree, and 14a a superheat degree calculation means 1
Indoor expansion valve 8 based on the degree of superheat calculated by 3a
, Which are housed in the control device 15a.

【0023】(実施の形態2)図3は非共沸混合冷媒を
用いた冷暖房装置の冷媒サイクル図を示している。図3
において、11は室内側膨脹弁8と室内側熱交換器7の
間に設けられた液冷媒温度を検知する液配管温度センサ
ー、12は室内側熱交換器7と四方弁2との間に室内側
熱交換器7近傍のガス冷媒温度を検知するガス配管温度
センサー、17bは室内側熱交換器7内の圧力損失に相
当する温度変化を圧縮機1の運転周波数Fの関数を用い
て算出する温度補正数決定手段、13bはガス配管温度
センサー12によって検知したガス冷媒温度と液配管温
度センサー11によって検知した液冷媒温度との差から
温度補正数決定手段17bで決定された温度補正数を引
いた値を過熱度として計算する過熱度計算手段、14b
は過熱度計算手段13bによって計算された過熱度に基
づき室内膨脹弁8を動作させる室内側膨脹弁動作手段で
あり、これらは制御装置15bに収納されている。
(Embodiment 2) FIG. 3 is a refrigerant cycle diagram of a cooling and heating apparatus using a non-azeotropic mixed refrigerant. FIG.
In the figure, 11 is a liquid pipe temperature sensor provided between the indoor expansion valve 8 and the indoor heat exchanger 7 for detecting the temperature of the liquid refrigerant, and 12 is a chamber between the indoor heat exchanger 7 and the four-way valve 2. A gas pipe temperature sensor 17b that detects the temperature of the gas refrigerant near the inner heat exchanger 7 calculates a temperature change corresponding to the pressure loss in the indoor heat exchanger 7 using a function of the operating frequency F of the compressor 1. The temperature correction number determining means 13b subtracts the temperature correction number determined by the temperature correction number determining means 17b from the difference between the gas refrigerant temperature detected by the gas pipe temperature sensor 12 and the liquid refrigerant temperature detected by the liquid pipe temperature sensor 11. Calculating means for calculating the superheat value as a superheat degree, 14b
Is an indoor expansion valve operating means for operating the indoor expansion valve 8 based on the degree of superheat calculated by the degree of superheat calculation means 13b, and these are housed in the control device 15b.

【0024】(実施の形態3)図5は非共沸混合冷媒を
用いた冷暖房装置の冷媒サイクル図を示している。図5
において、11は室内側膨脹弁と室内側交換器7の間に
設けられた液冷媒温度を検知する液配管温度センサー、
12は室内側熱交換器7と四方弁2との間の室内側熱交
換器7近傍のガス冷媒温度を検知するガス配管温度セン
サー、19は圧縮機1と四方弁2の間に設置された吸入
圧力センサー、17cは室内側熱交換器7内の圧力損失
に相当する温度変化を圧縮機1の運転周波数Fと吸入圧
力センサー19の検知圧力Psとの積の関数を用いて算
出する温度補正数決定手段、13cはガス配管温度セン
サー12によって検知したガス冷媒温度と液配管温度セ
ンサー11によって検知した液冷媒温度との差から温度
補正数決定手段17cで決定された温度補正数を引いた
値を過熱度として計算する過熱度計算手段17cで決定
された温度補正数を引いた値を過熱度として計算する過
熱度計算手段、14cは過熱度計算手段13cによって
計算された過熱度に基づき室内側膨脹弁8を動作させる
室内側膨脹弁動作手段であり、これらは制御装置15c
に収納されている。
(Embodiment 3) FIG. 5 is a refrigerant cycle diagram of a cooling and heating apparatus using a non-azeotropic mixed refrigerant. FIG.
, 11 is a liquid pipe temperature sensor provided between the indoor expansion valve and the indoor exchanger 7 for detecting a liquid refrigerant temperature;
Reference numeral 12 denotes a gas pipe temperature sensor for detecting the temperature of the gas refrigerant near the indoor heat exchanger 7 between the indoor heat exchanger 7 and the four-way valve 2, and 19 is provided between the compressor 1 and the four-way valve 2. The suction pressure sensor 17c calculates a temperature change corresponding to a pressure loss in the indoor heat exchanger 7 using a function of a product of an operating frequency F of the compressor 1 and a detection pressure Ps of the suction pressure sensor 19. The number determining means 13 c is a value obtained by subtracting the temperature correction number determined by the temperature correction number determining means 17 c from the difference between the gas refrigerant temperature detected by the gas pipe temperature sensor 12 and the liquid refrigerant temperature detected by the liquid pipe temperature sensor 11. Is calculated as a superheat degree. A superheat degree calculation means for calculating a value obtained by subtracting the temperature correction number determined by the superheat degree calculation means 17c as the superheat degree, and 14c is a superheat degree calculated by the superheat degree calculation means 13c. Based an indoor side expansion valve operation means for operating the indoor expansion valve 8, which control device 15c
It is stored in.

【0025】[0025]

【実施例】以上のように構成された冷暖房装置につい
て、ここでは問題となっている冷房運転について動作の
説明を行うこととする。尚、従来と同一の動作について
は、詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the cooling / heating device configured as described above will be described for the cooling operation, which is a problem here. Note that the detailed description of the same operation as that in the related art is omitted.

【0026】(実施例1)図2は本発明の実施の形態1
における冷暖房装置のフローチャートである。
Embodiment 1 FIG. 2 shows Embodiment 1 of the present invention.
It is a flowchart of a cooling and heating apparatus in FIG.

【0027】図2により、STEP1で制御装置15a
が冷房運転指令を検知すると、STEP2で液配管温度
センサー11は液冷媒温度Tiを検知し、ガス配管温度
センサー12は温度Toを検知し、冷媒循環量計測手段
16は冷媒循環量Grを検知する。STEP3では、温
度補正数決定手段17aによって、例えば(式1)に示
した関数を用いて温度補正数Aを算出し、STEP4で
は、STEP2で検知したガス配管温度Toと液配管温
度TiとSTEP3で算出した温度補正数Aとから過熱
度SH=To−Ti−Aを算出し、STEP5では、S
TEP4で算出された過熱度SHに応じ、過熱度が大き
くなると開成し、過熱度が小さくなると閉成するよう室
内側膨脹弁8を動作させる。
As shown in FIG. 2, the control unit 15a in STEP1
Detects the cooling operation command, the liquid pipe temperature sensor 11 detects the liquid refrigerant temperature Ti, the gas pipe temperature sensor 12 detects the temperature To, and the refrigerant circulation amount measuring means 16 detects the refrigerant circulation amount Gr in STEP2. . In STEP3, the temperature correction number determining means 17a calculates the temperature correction number A by using, for example, the function shown in (Equation 1). In STEP4, the gas pipe temperature To and the liquid pipe temperature Ti detected in STEP2 are used. The degree of superheat SH = To-Ti-A is calculated from the calculated temperature correction number A, and in STEP5, S
According to the degree of superheat SH calculated in TEP4, the indoor expansion valve 8 is operated so as to open when the degree of superheat increases and close when the degree of superheat decreases.

【0028】A=a1×Gr+b1……(式1) ここで、a1,b1は定数 この第1の実施例によれば、非共沸混合冷媒を用いた場
合の室内側熱交換器7の過熱度がガス配管温度Toと液
配管温度Tiとの差から室内側熱交換器7内の圧力損失
に相当する温度変化分を引いた値にほとんど等しいこ
と、室内側熱交換器7内の圧力損失が冷媒循環量にほぼ
比例することに注目して、温度補正数決定手段17aに
よって室内側熱交換器7内の圧力損失に相当する温度変
化分を求めるとともに、過熱度計算手段13aによって
過熱度SH=To−Ti−Aを求めているので、室内側
熱交換器内の圧力損失をも考慮した室内機出口の過熱度
を精度良く算出でき、冷房運転時には、適切に室内側膨
脹弁を制御することができ、圧縮機への液戻りによる液
圧縮により圧縮機を破損する危険性を回避すると共に、
室内機の能力制御を適切に行うことができる。
A = a1 × Gr + b1 (Equation 1) where a1 and b1 are constants. According to the first embodiment, overheating of the indoor heat exchanger 7 when a non-azeotropic mixed refrigerant is used. Degree is substantially equal to a value obtained by subtracting a temperature change corresponding to a pressure loss in the indoor heat exchanger 7 from a difference between the gas pipe temperature To and the liquid pipe temperature Ti, and a pressure loss in the indoor heat exchanger 7. Is substantially proportional to the amount of circulating refrigerant, the temperature correction number determining means 17a determines the temperature change corresponding to the pressure loss in the indoor heat exchanger 7, and the superheat calculating means 13a calculates the superheat SH. = To-Ti-A, the degree of superheat at the outlet of the indoor unit can be accurately calculated in consideration of the pressure loss in the indoor heat exchanger, and the indoor expansion valve is appropriately controlled during the cooling operation. The liquid can be returned to the compressor by the liquid While avoiding the risk of damaging the compressor due to compression,
The capacity control of the indoor unit can be appropriately performed.

【0029】尚、非共沸混合冷媒として、例えば、HF
C系の混合冷媒である、R32/125/134a(3
0/10/60wt%)やR32/125/134a
(23/25/52wt%)を使用できることは言うま
でもない。また、複数の室内機或いは室外機を有する冷
暖房装置においても適応可能である。
As the non-azeotropic refrigerant mixture, for example, HF
R32 / 125 / 134a (3
0/10 / 60wt%) or R32 / 125 / 134a
It goes without saying that (23/25/52 wt%) can be used. Further, the present invention is also applicable to a cooling and heating device having a plurality of indoor units or outdoor units.

【0030】(実施例2)図4は本発明の実施の形態2
における冷暖房装置のフローチャートである。
(Embodiment 2) FIG. 4 shows Embodiment 2 of the present invention.
It is a flowchart of a cooling and heating apparatus in FIG.

【0031】図4により、STEP1で制御装置15b
が冷房運転指令を検知すると、STEP2で液配管温度
センサー11は液冷媒温度Tiを検知し、ガス配管温度
センサー12は温度Toを検知し、また圧縮機1の運転
周波数Fも検知する。STEP3では換算周波数計算手
段18bによって、冷暖房装置がマルチシステムの場合
に、当該室内側熱交換器7の1パス当たりの冷媒循環量
に相応する室内機換算周波数fを(式2)を用いて算出
する(室外機1:室内機1の冷暖房装置の場合はf=
F)。
As shown in FIG. 4, the control unit 15b
Detects the cooling operation command, the liquid pipe temperature sensor 11 detects the liquid refrigerant temperature Ti, the gas pipe temperature sensor 12 detects the temperature To, and also detects the operating frequency F of the compressor 1 in STEP2. In STEP3, the converted frequency calculating means 18b calculates the indoor unit converted frequency f corresponding to the amount of refrigerant circulated per pass of the indoor heat exchanger 7 using (Equation 2) when the cooling and heating device is a multi-system. (In the case of the outdoor unit 1: the air conditioner of the indoor unit 1, f =
F).

【0032】 f=(当該室内機容量)/(全運転室内機容量)×F……(式2) STEP4では、温度補正数決定手段17bによって、
例えば(式3)に示した関数を用いて温度補正数Aを算
出し、STEP5では、STEP2で検知したガス配管
温度Toと液配管温度TiとSTEP4で算出した温度
補正数Aとから過熱度SH=To−Ti−Aを算出し、
STEP6では、STEP5で算出された過熱度SHに
応じ、過熱度が大きくなると開成し、過熱度が小さくな
ると閉成するよう室内側膨脹弁8を動作させる。
F = (the relevant indoor unit capacity) / (all operating indoor unit capacities) × F (Equation 2) In STEP 4, the temperature correction number determining means 17b determines
For example, the temperature correction number A is calculated using the function shown in (Equation 3). In STEP5, the superheat degree SH is calculated from the gas pipe temperature To detected in STEP2, the liquid pipe temperature Ti, and the temperature correction number A calculated in STEP4. = To-Ti-A,
In STEP6, the indoor expansion valve 8 is operated so as to open when the degree of superheat increases and close when the degree of superheat decreases according to the superheat degree SH calculated in STEP5.

【0033】A=a2×f+b2……(式3) ここで、a2,b2は定数 この第2の実施例によれば、非共沸混合冷媒を用いた場
合の室内側熱交換器7の過熱度がガス配管温度Toと液
配管温度Tiとの差から室内側熱交換器7内の圧力損失
に相当する温度変化分を引いた値にほとんど等しいこ
と、室内側熱交換器7内の圧力損失が冷媒循環量、換言
すると圧縮機周波数にほぼ比例することに注目して、温
度補正数決定手段17bniによって室内側熱交換器7
内の圧力損失に相当する温度変化分を求めるとともに、
過熱度計算手段13bによって過熱度SH=To−Ti
−Aを求めているので、安価な構成で室内側交換器内の
圧力損失をも考慮した室内機出口の過熱度を精度良く算
出でき、冷房運転時には、適切に室内側膨脹弁を制御す
ることができ、圧縮機への液戻りによる液圧縮により、
圧縮機を破損する危険性を回避すると共に、室内機の能
力制御を適切に行うことができる。
A = a2 × f + b2 (Equation 3) where a2 and b2 are constants According to the second embodiment, overheating of the indoor heat exchanger 7 when a non-azeotropic mixed refrigerant is used. Degree is substantially equal to a value obtained by subtracting a temperature change corresponding to a pressure loss in the indoor heat exchanger 7 from a difference between the gas pipe temperature To and the liquid pipe temperature Ti, and a pressure loss in the indoor heat exchanger 7. Is substantially proportional to the refrigerant circulation amount, in other words, the compressor frequency, and the temperature correction number determining means 17bni determines the indoor heat exchanger 7
Temperature change equivalent to the pressure loss inside
The superheat degree SH = To−Ti by the superheat degree calculation means 13b.
Since -A is required, it is possible to accurately calculate the degree of superheat at the indoor unit outlet in consideration of the pressure loss in the indoor exchanger with an inexpensive configuration, and to appropriately control the indoor expansion valve during cooling operation. Liquid compression by liquid return to the compressor,
The risk of damage to the compressor can be avoided, and the capacity control of the indoor unit can be appropriately performed.

【0034】尚、非共沸混合冷媒として、例えば、HF
C系の混合冷媒である、R32/125/134a(3
0/10/60wt%)やR32/125/134a
(23/25/52wt%)を使用できることは言うま
でもない。また、複数の室内機或いは室外機を有する冷
暖房装置においても適応可能である。
As the non-azeotropic mixed refrigerant, for example, HF
R32 / 125 / 134a (3
0/10 / 60wt%) or R32 / 125 / 134a
It goes without saying that (23/25/52 wt%) can be used. Further, the present invention is also applicable to a cooling and heating device having a plurality of indoor units or outdoor units.

【0035】(実施例3)図6は本発明の実施の形態3
における冷暖房装置のフローチャートである。
(Embodiment 3) FIG. 6 shows Embodiment 3 of the present invention.
It is a flowchart of a cooling and heating apparatus in FIG.

【0036】図6より、STEP1で制御装置15cが
冷房運転指令を検知すると、STEP2で液配管温度セ
ンサー11は液冷媒温度Tiを検知し、ガス配管温度セ
ンサー12は温度Toを検知し、吸入圧力センサー19
は吸入圧力Psを検知し、また圧縮機1の運転周波数F
も検知する。STEP3では換算周波数計算手段18c
によって、冷暖房装置がマルチシステムの場合に、当該
室内側熱交換器7の1パス当たりの冷媒循環量に相応す
る室内機換算周波数fを(式2)を用いて算出する。
(室外機1:室内機1の冷暖房装置の場合はf=F)。
As shown in FIG. 6, when the control device 15c detects the cooling operation command in STEP1, the liquid pipe temperature sensor 11 detects the liquid refrigerant temperature Ti, the gas pipe temperature sensor 12 detects the temperature To, and the suction pressure in STEP2. Sensor 19
Detects the suction pressure Ps and operates the compressor 1 at the operating frequency F
Is also detected. In STEP3, the converted frequency calculating means 18c
Accordingly, when the cooling / heating device is a multi-system, the indoor unit converted frequency f corresponding to the refrigerant circulation amount per pass of the indoor side heat exchanger 7 is calculated using (Equation 2).
(Outdoor unit 1: f = F in the case of the cooling / heating device of the indoor unit 1).

【0037】STEP4では、温度補正決定手段17c
によって、例えば(式4)に示した関数を用いて温度補
正数Aを算出し、STEP5では、STEP2で検知し
たガス配管温度Toと液配管温度TiとSTEP4で算
出した温度補正数ATとから過熱度SH=To−Ti−
Aを算出し、STEP6では、STEP5で算出された
過熱度SHに応じ、過熱度が大きくなると開成し、過熱
度が小さくなると閉成するよう室内側膨脹弁8を動作さ
せる。
In STEP 4, the temperature correction determining means 17c
For example, the temperature correction number A is calculated using the function shown in (Equation 4), and in STEP5, the temperature is corrected from the gas pipe temperature To and the liquid pipe temperature Ti detected in STEP2 and the temperature correction number AT calculated in STEP4. Degree SH = To-Ti-
A is calculated, and in step 6, the indoor expansion valve 8 is operated so as to open when the degree of superheat increases and close when the degree of superheat decreases according to the degree of superheat SH calculated in step 5.

【0038】 A=a3×(f×Ps)+b3……(式4) ここで、a3,b3は定数 この第3の実施例によれば、非共沸混合冷媒を用いた場
合の室内側熱交換器7の過熱度がガス配管温度Toと液
配管温度Tiとの差から室内側熱交換器7内の圧力損失
に相当する温度変化分を引いた値にほとんど等しいこと
と、室内側熱交換器7内の圧力損失が冷媒循環量、換言
すると圧縮機周波数と吸入圧力との積にほぼ比例するこ
とに注目して、温度補正数決定手段17cによって室内
側熱交換器7内の圧力損失に相当する温度変化分を求め
るとともに、過熱度計算手段13cによって過熱度SH
=To−Ti−Aを求めているので、安価な構成で室内
側熱交換器内の圧力損失をも考慮した室内機出口の過熱
度をさらに精度良く算出でき、冷房運転時には、適切に
室内側膨脹弁を制御することができ、圧縮機への液戻り
による液圧縮により、圧縮機を破損する危険性を回避す
ると共に、室内機の能力制御を適切に行うことができ
る。
A = a3 × (f × Ps) + b3 (Equation 4) where a3 and b3 are constants. According to the third embodiment, the indoor heat generated when a non-azeotropic mixed refrigerant is used is used. That the degree of superheat of the exchanger 7 is substantially equal to the difference between the gas pipe temperature To and the liquid pipe temperature Ti minus the temperature change corresponding to the pressure loss in the indoor heat exchanger 7; Noting that the pressure loss in the heat exchanger 7 is substantially proportional to the refrigerant circulation amount, in other words, the product of the compressor frequency and the suction pressure, the temperature correction number determining means 17c determines the pressure loss in the indoor heat exchanger 7 A corresponding temperature change is obtained, and the superheat degree SH is calculated by the superheat degree calculation means 13c.
= To-Ti-A, the degree of superheat at the outlet of the indoor unit can be calculated more accurately in consideration of the pressure loss in the indoor heat exchanger with an inexpensive configuration. The expansion valve can be controlled, and the risk of damaging the compressor due to the liquid compression by returning the liquid to the compressor can be avoided, and the capacity control of the indoor unit can be appropriately performed.

【0039】尚、非共沸混合冷媒として、例えば、HF
C系の混合冷媒である、R32/125/134a(3
0/10/60wt%)やR32/125/134a
(23/25/52wt%)を使用できることは言うま
でもない。また、複数の室内機或いは室外機を有する冷
暖房装置においても適応可能である。
As the non-azeotropic refrigerant, for example, HF
R32 / 125 / 134a (3
0/10 / 60wt%) or R32 / 125 / 134a
It goes without saying that (23/25/52 wt%) can be used. Further, the present invention is also applicable to a cooling and heating device having a plurality of indoor units or outdoor units.

【0040】[0040]

【発明の効果】以上のように本発明によれば、温度滑り
を有する非共沸混合冷媒を用いた冷暖房装置において、
室内機出口の過熱度を安価な構成で精度良く算出し、常
に適切に室内側膨脹弁を制御し、液圧縮による圧縮機の
破損を防止するとともに、室内機の能力制御を適切に行
い快適な冷房運転が得られるという有利な効果が得られ
る。
As described above, according to the present invention, in a cooling and heating apparatus using a non-azeotropic mixed refrigerant having a temperature slip,
The degree of superheat at the indoor unit outlet is accurately calculated with an inexpensive configuration, always controlling the indoor expansion valve appropriately, preventing damage to the compressor due to liquid compression, and appropriately controlling the capacity of the indoor unit for comfortable operation. An advantageous effect that a cooling operation can be obtained is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における冷暖房装置の冷
媒サイクル図
FIG. 1 is a refrigerant cycle diagram of a cooling and heating device according to a first embodiment of the present invention.

【図2】本発明の実施の形態1における冷暖房装置のフ
ローチャート
FIG. 2 is a flowchart of a cooling / heating device according to Embodiment 1 of the present invention.

【図3】本発明の実施の形態2における冷暖房装置の冷
媒サイクル図
FIG. 3 is a refrigerant cycle diagram of a cooling and heating device according to Embodiment 2 of the present invention.

【図4】本発明の実施の形態2における冷暖房装置のフ
ローチャート
FIG. 4 is a flowchart of a cooling / heating apparatus according to Embodiment 2 of the present invention.

【図5】本発明の実施の形態3における冷暖房装置の冷
媒サイクル図
FIG. 5 is a refrigerant cycle diagram of a cooling / heating device according to Embodiment 3 of the present invention.

【図6】本発明の実施の形態3における冷暖房装置のフ
ローチャート
FIG. 6 is a flowchart of a cooling and heating apparatus according to Embodiment 3 of the present invention.

【図7】従来の冷暖房装置の冷媒サイクル図FIG. 7 is a refrigerant cycle diagram of a conventional cooling / heating device.

【図8】単一冷媒のモリエル線図FIG. 8 is a Mollier diagram of a single refrigerant.

【図9】非共沸混合冷媒のモリエル線図FIG. 9 is a Mollier diagram of a non-azeotropic refrigerant mixture.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外側熱交換器 4 室外側膨脹弁 6 室外機 7 室内側熱交換器 8 室内側膨脹弁 10 室内機 11 液配管温度センサー 12 ガス配管温度センサー 13a,13b,13c 過熱度計算手段 14a,14b,14c 室内側膨脹弁動作手段 16 冷媒循環量計測手段 17a,17b,17c 温度補正数決定手段 18a,18b,18c 換算周波数計算手段 19 吸入圧力センサー DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor expansion valve 6 Outdoor unit 7 Indoor heat exchanger 8 Indoor expansion valve 10 Indoor unit 11 Liquid pipe temperature sensor 12 Gas pipe temperature sensor 13a, 13b, 13c Overheating Degree calculating means 14a, 14b, 14c Indoor expansion valve operating means 16 Refrigerant circulation amount measuring means 17a, 17b, 17c Temperature correction number determining means 18a, 18b, 18c Converted frequency calculating means 19 Suction pressure sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中谷 和生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 尾関 正高 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Kazuo Nakatani, Kazuma, Kazuma, Osaka 1006, Kadoma, Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外側熱交換器、室外
側膨脹弁からなる室外機と、室内側熱交換器、室内側膨
脹弁からなる室内機を接続して環状の冷媒回路を構成
し、前記室内側熱交換器と前記室内側膨脹弁との間の液
冷媒温度を検知する液配管温度センサーと、前記室内側
熱交換器と前記四方弁との間の前記室内側熱交換器近傍
のガス冷媒温度を検知するガス配管温度センサーと、前
記室内機の室内側熱交換器内の圧力損失に相当する温度
変化を決定する温度補正数決定手段と、前記液配管温度
センサーと前記ガス配管温度センサーの検知温度の差か
ら前記温度補正数決定手段で決定した温度補正数を引い
た値を過熱度として計算する加熱度計算手段と、前記加
熱度計算手段によって計算した過熱度に基づき過熱度が
大きくなると開成し過熱度が小さくなると閉成するよう
室内側膨脹弁を動作させる室内側膨脹弁動作手段を設
け、冷媒として非共沸混合物を用いた冷暖房装置。
An annular refrigerant circuit is formed by connecting an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve to an indoor unit including an indoor heat exchanger and an indoor expansion valve. A liquid pipe temperature sensor configured to detect a liquid refrigerant temperature between the indoor heat exchanger and the indoor expansion valve, and the indoor heat exchange between the indoor heat exchanger and the four-way valve. A gas pipe temperature sensor for detecting a gas refrigerant temperature in the vicinity of the chamber, a temperature correction number determining means for determining a temperature change corresponding to a pressure loss in the indoor heat exchanger of the indoor unit, the liquid pipe temperature sensor and the liquid pipe temperature sensor. Heating degree calculating means for calculating a value obtained by subtracting the temperature correction number determined by the temperature correction number determining means from the difference between the detected temperatures of the gas pipe temperature sensors as a superheat degree, and When the degree of superheat increases, the A cooling / heating device using a non-azeotropic mixture as a refrigerant, comprising indoor expansion valve operating means for operating an indoor expansion valve so as to close when the degree of heat is reduced.
【請求項2】 環状の冷媒回路に冷媒環状量計測手段を
設けるとともに、温度補正数決定手段が前記冷媒循環量
計測手段で求めた冷媒循環量の関数である請求項1記載
の冷暖房装置。
2. The cooling and heating apparatus according to claim 1, wherein the annular refrigerant circuit is provided with an annular refrigerant amount measuring means, and the temperature correction number determining means is a function of the refrigerant circulation amount obtained by the refrigerant circulation amount measuring means.
【請求項3】 温度補正数決定手段が圧縮機の運転周波
数の関数である請求項1記載の冷暖房装置。
3. The cooling and heating apparatus according to claim 1, wherein the temperature correction number determining means is a function of an operating frequency of the compressor.
【請求項4】 環状の冷媒回路の低圧側に吸入圧力セン
サーを設けるとともに、温度補正数決定手段が圧縮機の
運転数は数と前記吸入圧力センサーの検知圧力との積の
関数である請求項1記載の冷暖房装置。
4. A suction pressure sensor is provided on the low pressure side of the annular refrigerant circuit, and the temperature correction number determining means determines that the number of operating compressors is a function of the product of the number and the detected pressure of the suction pressure sensor. 2. The cooling and heating device according to 1.
JP16406196A 1996-06-25 1996-06-25 Heating and cooling appliance Pending JPH109702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16406196A JPH109702A (en) 1996-06-25 1996-06-25 Heating and cooling appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16406196A JPH109702A (en) 1996-06-25 1996-06-25 Heating and cooling appliance

Publications (1)

Publication Number Publication Date
JPH109702A true JPH109702A (en) 1998-01-16

Family

ID=15786045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16406196A Pending JPH109702A (en) 1996-06-25 1996-06-25 Heating and cooling appliance

Country Status (1)

Country Link
JP (1) JPH109702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774131A (en) * 1986-10-04 1988-09-27 Chemische Fabrik Stockhausen Gmbh Process for the production of polyurethane-coated textile surfaces, polyurethane-coated textile surfaces and their use in the production of breathable and waterproof clothing
EP3236177A4 (en) * 2014-12-15 2017-12-27 Daikin Industries, Ltd. Air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774131A (en) * 1986-10-04 1988-09-27 Chemische Fabrik Stockhausen Gmbh Process for the production of polyurethane-coated textile surfaces, polyurethane-coated textile surfaces and their use in the production of breathable and waterproof clothing
EP3236177A4 (en) * 2014-12-15 2017-12-27 Daikin Industries, Ltd. Air-conditioning device

Similar Documents

Publication Publication Date Title
US11098916B2 (en) Air conditioning system
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
US20120260678A1 (en) Air conditioner, method for controlling opening of expansion valve, and computer-readable recording medium with expansion valve opening control program recorded thereon
KR101550573B1 (en) Refrigeration device
WO2020115935A1 (en) Air conditioning system
EP3199889B1 (en) Air conditioner
CN109855251A (en) Discharge superheat modification method, device, computer product and the air-conditioning of air-conditioning
US9677798B2 (en) Refrigerating device
KR100505237B1 (en) Control method of air-conditioner
JP4730318B2 (en) Refrigeration equipment
JP2018146142A (en) Air conditioner
KR101911272B1 (en) Air conditioner and Method for controlling it
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JPH109702A (en) Heating and cooling appliance
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JP2002061979A (en) Cooling and heating system
WO2021009881A1 (en) Refrigeration cycle system
JPH08226732A (en) Air conditioning equipment
JP3511708B2 (en) Operation control unit for air conditioner
JPH1019398A (en) Multi-chanber type air conditioner
JPH0593547A (en) Controller for motor-driven type expansion valve
KR100286545B1 (en) Method for controlling operation of compressor for air conditioner
KR100347900B1 (en) Air conditioner driving method
JPH09138020A (en) Cooling and heating device
JPH07305908A (en) Air conditioner