JPH1092445A - Whole solid type lithium battery - Google Patents

Whole solid type lithium battery

Info

Publication number
JPH1092445A
JPH1092445A JP8271691A JP27169196A JPH1092445A JP H1092445 A JPH1092445 A JP H1092445A JP 8271691 A JP8271691 A JP 8271691A JP 27169196 A JP27169196 A JP 27169196A JP H1092445 A JPH1092445 A JP H1092445A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
electrolyte
lithium battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8271691A
Other languages
Japanese (ja)
Inventor
Takaaki Iguchi
隆明 井口
Koji Kuwana
宏二 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAAGEO P SHINGU RES LAB KK
KAAGEO P-SHINGU RES LAB KK
Original Assignee
KAAGEO P SHINGU RES LAB KK
KAAGEO P-SHINGU RES LAB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAAGEO P SHINGU RES LAB KK, KAAGEO P-SHINGU RES LAB KK filed Critical KAAGEO P SHINGU RES LAB KK
Priority to JP8271691A priority Critical patent/JPH1092445A/en
Publication of JPH1092445A publication Critical patent/JPH1092445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce the inside resistance of a whole solid type lithium battery, suppress inside resistance increase with the lapse of time, and enhance cycle stability by adding inorganic solid electrolyte into at least one electrode of a positive electrode or a negative electrode. SOLUTION: In a whole solid type lithium battery in which high molecular solid electrolyte is mainly used as electrolyte, by adding inorganic solid electrolyte into a positive electrode or a negative electrode, active material in the electrode forms boundary faces with the high molecular solid electrolyte and the inorganic solid electrolyte respectively. When the ion conductivity of the inorganic solid electrolyte is higher than that of the high molecular solid electrolyte, the resistance of the boundary face of the active material and the solid electrolyte can be reduced, and the formation of boundary face products resulting from the separation and the side reaction of the boundary face of the active material and the high molecular solid electrolyte. Thereby, the inside resistance of a whole solid type lithium battery is reduced, inside resistance aging increase is suppressed, and cycle stability is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全固体型リチウム
電池に関するものであり、さらに詳しくは電極中の固体
電解質に関するものである。
The present invention relates to an all-solid-state lithium battery, and more particularly to a solid electrolyte in an electrode.

【0002】[0002]

【従来の技術】リチウム電池は高起電力、高エネルギー
密度化が可能であることから、近年需要が急速に増大
し、研究開発が盛んに行われている。実用化に至った主
なリチウム電池は、リチウム−ヨウ素電池などの特殊な
用途で使用される電池を除くと、電解質として非水系の
液系電解質が使用されている。従って、これらのリチウ
ム電池は、漏液やガス発生による周辺機器の破壊や、電
池の破裂、発火の危険性が懸念されるため、通常、電池
や電池パックに安全弁やPTC素子、あるいは保護回路
などが設けられている。従って、リチウム電池の信頼性
をより一層向上させることが望まれる中、液系電解質の
代わりに固体電解質を使用した全固体型リチウム電池の
開発が期待されている。
2. Description of the Related Art Since a lithium battery can have a high electromotive force and a high energy density, its demand has been rapidly increasing in recent years, and research and development have been actively carried out. Most lithium batteries that have been put into practical use are non-aqueous liquid electrolytes, except for batteries used for special applications such as lithium-iodine batteries. Therefore, these lithium batteries are concerned about the risk of destruction of peripheral devices due to liquid leakage or gas generation, rupture of the battery, and the danger of ignition. Therefore, safety valves, PTC elements, protection circuits, etc. are usually installed in batteries and battery packs. Is provided. Therefore, while it is desired to further improve the reliability of the lithium battery, development of an all-solid-state lithium battery using a solid electrolyte instead of a liquid electrolyte is expected.

【0003】全固体型リチウム電池のキーデバイスとな
る、リチウムイオン伝導性を有する固体電解質として
は、高分子系固体電解質や無機系固体電解質が挙げられ
る。一般的な高分子系固体電解質は、エチレンオキシド
やプロピレンオキシドの重合体あるいはそれらの共重合
体に、支持塩としてリチウム塩が固溶されたもので、薄
膜シートの作製や電極−電解質および電極中の活物質−
電解質の界面の形成が容易であるなど、加工性に優れる
利点から、これを使用した全固体型リチウム電池の研究
が盛んに行われている。しかしながら、現状では、高分
子系固体電解質のイオン伝導度が室温において10-5
/cm台と小さいため、これを使用した全固体型リチウ
ム電池は十分な充放電電流が得られていない。また、活
物質−電解質界面の剥離や副反応による界面生成物の形
成などによって、電池の放置に伴う内部抵抗の増大や、
二次電池ではサイクル安定性が悪いなどの諸問題を抱え
ている。
As a solid electrolyte having lithium ion conductivity, which is a key device of an all-solid-state lithium battery, a polymer-based solid electrolyte and an inorganic-based solid electrolyte are exemplified. A general polymer-based solid electrolyte is a solid solution of a lithium salt as a supporting salt in a polymer of ethylene oxide or propylene oxide or a copolymer thereof. Active material-
Due to its excellent workability, such as easy formation of an electrolyte interface, all-solid-state lithium batteries using the same have been actively studied. However, at present, the ionic conductivity of the polymer-based solid electrolyte is 10 −5 S at room temperature.
/ Cm, which is so small that an all-solid-state lithium battery using the same cannot obtain a sufficient charge / discharge current. In addition, due to the separation of the active material-electrolyte interface and the formation of interface products due to side reactions, the internal resistance increases as the battery is left standing,
Secondary batteries have various problems such as poor cycle stability.

【0004】一方無機系固体電解質は、イオン伝導度が
高分子系固体電解質よりも高く、室温で10-3S/cm
以上のものが知られており、また難燃性であるという特
性を有しているが、電池材料としては通常粉体の状態で
使用されるために、活物質−電解質の界面や電解質−電
解質の界面が点接触となりやすく接触面積を十分とする
ことが困難であるため、これを使用した全固体型リチウ
ム電池は内部抵抗が大きくなり十分な性能が得られてい
ない。
On the other hand, an inorganic solid electrolyte has a higher ionic conductivity than a polymer solid electrolyte, and has an ion conductivity of 10 −3 S / cm at room temperature.
The above materials are known and have the property of being flame-retardant. However, since they are usually used in the form of a powder as a battery material, an active material-electrolyte interface or an electrolyte-electrolyte The interface is likely to be a point contact, and it is difficult to make the contact area sufficient. Therefore, the all-solid-state lithium battery using this has a large internal resistance and cannot obtain sufficient performance.

【0005】従来、これらの問題点を解決するため、高
分子系固体電解質に液系電解質を添加したゲル状電解質
を使用することが試みられ、全固体型リチウム電池の性
能を向上させることが可能となった。しかし、電池内に
液系電解質が内填されている以上、安全性に対しての懸
念は皆無とは言いがたい。さらには、高分子系固体電解
質と無機系固体電解質の各々の優位性を合併することを
目的として、両者の混合体をシート化し、セパレータと
して適用された例がある(特公平2−87415号)
が、実質的な効果は電解質シートの強度の増加などに寄
与するところが大きく、飛躍的な電池性能の向上には至
っていない。また、電極中での実施例については特筆さ
れていない。
Conventionally, in order to solve these problems, it has been attempted to use a gel electrolyte obtained by adding a liquid electrolyte to a polymer solid electrolyte, and it is possible to improve the performance of an all solid lithium battery. It became. However, it is hard to say that there is no concern about safety as long as the liquid electrolyte is included in the battery. Furthermore, there is an example in which a mixture of the polymer-based solid electrolyte and the inorganic-based solid electrolyte is formed into a sheet and applied as a separator for the purpose of merging the respective advantages of the solid electrolyte and the solid electrolyte (Japanese Patent Publication No. 2-87415).
However, the substantial effect largely contributes to an increase in the strength of the electrolyte sheet and the like, and has not led to a dramatic improvement in battery performance. Further, no particular mention is made of the embodiment in the electrode.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術の
問題点を解決するものであって、全固体型リチウム電池
の内部抵抗の低減、経時的な内部抵抗の増大の抑制およ
びサイクル安定性を向上することによって、高い信頼性
を有し且つ高性能な全固体型リチウム電池を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention solves the problems of the prior art, and reduces the internal resistance of an all-solid-state lithium battery, suppresses the increase in internal resistance over time, and improves cycle stability. To provide an all-solid-state lithium battery having high reliability and high performance.

【0007】[0007]

【課題を解決するための手段】発明者らは鋭意検討の結
果、主として高分子系固体電解質を電解質として使用し
た全固体型リチウム電池において、内部抵抗、経時的な
内部抵抗の増大およびサイクル安定性に関わる決定的要
因の一つは電極中の活物質と高分子系固体電解質の界面
にあることが分かった。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that, in an all-solid-state lithium battery mainly using a polymer-based solid electrolyte as an electrolyte, the internal resistance, the internal resistance over time, and the cycle stability are increased. It was found that one of the decisive factors related to this was the interface between the active material in the electrode and the solid polymer electrolyte.

【0008】本発明は、主として高分子系固体電解質を
電解質とする全固体型リチウム電池において、正極ある
いは負極の少なくとも1つの電極中に無機系固体電解質
を添加することによって、内部抵抗の低減、経時的な内
部抵抗の増大の抑制およびサイクル安定性の向上を目的
とするものである。
The present invention is directed to an all-solid-state lithium battery mainly using a polymer-based solid electrolyte as an electrolyte, by adding an inorganic solid electrolyte to at least one of a positive electrode and a negative electrode to reduce internal resistance and reduce aging. It is intended to suppress an increase in internal resistance and to improve cycle stability.

【0009】以下、発明について詳細に説明する。Hereinafter, the invention will be described in detail.

【0010】正極あるいは負極中に、無機系固体電解質
を添加することによって、電極中の活物質は高分子系固
体電解質と無機系固体電解質の各々と界面を形成する。
この場合、無機系固体電解質のイオン伝導性が高分子系
固体電解質よりも高い場合には、活物質と固体電解質の
界面の抵抗を低減できる可能性があり、従って、全固体
型リチウム電池の内部抵抗の低減につながる。また、活
物質と無機系固体電解質とが形成する空隙に、高分子系
固体電解質が形成した形態となるために、活物質と固体
電解質の接触面積を十分とすることが可能である。
[0010] By adding an inorganic solid electrolyte to the positive electrode or the negative electrode, the active material in the electrode forms an interface with each of the polymer solid electrolyte and the inorganic solid electrolyte.
In this case, when the ionic conductivity of the inorganic solid electrolyte is higher than that of the polymer solid electrolyte, there is a possibility that the resistance at the interface between the active material and the solid electrolyte can be reduced, and therefore, the internal This leads to a reduction in resistance. In addition, since the polymer solid electrolyte is formed in the gap formed by the active material and the inorganic solid electrolyte, the contact area between the active material and the solid electrolyte can be made sufficient.

【0011】また、電極中に無機系固体電解質を添加す
ることによって、全固体型リチウム電池の経時的な内部
抵抗の増大の抑制とサイクル安定性を向上させることが
可能となる。これは、電極中の活物質が、無機系固体電
解質および高分子系固体電解質の各々と界面を形成する
ことによって、従来の高分子系固体電解質の場合で問題
となっていた活物質と高分子系固体電解質の界面の剥離
や、副反応による界面生成物の形成などが抑制されたも
のと考えられる。詳細は明らかではないが、高分子系固
体電解質の場合は、支持塩として固溶されたリチウム塩
がアニオンとカチオンにイオン解離し電気伝導に寄与し
ており、特にアニオンが関与する副反応の影響が大きい
と予測される。一方、無機系固体電解質はリチウムイオ
ンのみが電気伝導に関与するため、副反応が起こりにく
いことが考えられる。従って、活物質が無機系固体電解
質と高分子系固体電解質の各々と界面を形成している本
発明の全固体型リチウム電池の場合には、活物質と固体
電解質の界面における剥離や副反応が起こりにくいた
め、経時的な内部抵抗の増大の抑制とサイクル安定性の
向上が可能になったものと考えられる。
Further, by adding an inorganic solid electrolyte to the electrode, it is possible to suppress an increase in internal resistance over time of the all-solid-state lithium battery and to improve cycle stability. This is because the active material in the electrode forms an interface with each of the inorganic solid electrolyte and the polymer solid electrolyte, and the active material and the polymer, which have been problematic in the case of the conventional polymer solid electrolyte, It is considered that the separation of the interface of the system solid electrolyte and the formation of interface products due to side reactions were suppressed. Although the details are not clear, in the case of the polymer-based solid electrolyte, the lithium salt dissolved as a supporting salt is ionically dissociated into anions and cations and contributes to electric conduction, and particularly, the influence of side reactions involving anions. Is expected to be large. On the other hand, in the inorganic solid electrolyte, since only lithium ions participate in electric conduction, it is considered that a side reaction hardly occurs. Therefore, in the case of the all-solid-state lithium battery of the present invention in which the active material forms an interface with each of the inorganic solid electrolyte and the polymer solid electrolyte, peeling and side reactions at the interface between the active material and the solid electrolyte may occur. It is considered that it is possible to suppress the increase of the internal resistance over time and to improve the cycle stability because it hardly occurs.

【0012】本発明中の無機系固体電解質としては、ヨ
ウ化物、酸化物、窒化物、硫化物など一連のリチウムイ
オン伝導性固体電解質において効果がある。特に、高分
子系固体電解質よりもイオン伝導性が大きいものが望ま
しく、例を挙げるならば、Li 2S−SiS2,Li2
−GeS2,Li2S−P25などを主体とする硫化物ガ
ラス質材料、Li2O−SiO2,Li2O−B23,L
2O−P25などを主体とする酸化物ガラス質材料、
La0.51Li0.34TiO2.94,Li3N,LiAlC
4,リチウム酸素酸塩などである。中でも、無機系固
体電解質は粉体として使用されるため、それ自身の粒界
抵抗が小さいガラス質の材料が望ましい。詳細について
は明らかではないが、ガラス質の無機系固体電解質は結
晶質の無機系固体電解質に比べて粒界の抵抗が非常に小
さいため、電極中の活物質との間の界面形成において電
解質自身の粒界の抵抗の影響が小さく、また材料自身が
持つ柔軟性が活物質との間の接触面積の増大に寄与する
ものと考えられるからである。
The inorganic solid electrolyte in the present invention includes
A series of lithium ions such as oxides, oxides, nitrides, and sulfides
Effective in on-conducting solid electrolytes. In particular, high
Higher ion conductivity than secondary solid electrolyte is desired
To give an example, Li TwoS-SiSTwo, LiTwoS
-GeSTwo, LiTwoSPTwoSFiveSulfide gas mainly composed of
Lath material, LiTwoO-SiOTwo, LiTwoOBTwoOThree, L
iTwoOPTwoOFiveOxide glassy material mainly composed of
La0.51Li0.34TiO2.94, LiThreeN, LiAlC
lFour, Lithium oxyacid salts and the like. Among them, inorganic solids
Since body electrolytes are used as powders, they have their own grain boundaries.
A vitreous material with low resistance is desirable. For more information
Although it is not clear, vitreous inorganic solid electrolyte
Very low grain boundary resistance compared to amorphous inorganic solid electrolyte
For this reason, electric current is generated at the interface between the active material and the electrode.
The effect of the resistance of the grain boundary of the resolving itself is small, and the material itself
Flexibility contributes to increase contact area with active material
This is because it is considered something.

【0013】[0013]

【発明の実施の形態】以下、電極活物質がリチウムコバ
ルト複合酸化物(以下、LiCoO2)からなる正極電
極を使用した全固体型リチウム二次電池を例にとって、
図1と図2に基づき本発明を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an all-solid-state lithium secondary battery using a positive electrode whose electrode active material is a lithium-cobalt composite oxide (hereinafter, LiCoO 2 ) will be described.
The present invention will be described in detail with reference to FIGS.

【0014】尚、高分子系固体電解質は、エチレンオキ
シドおよびポリエチレンオキシドの共重合体からなり、
支持塩としてテトラフルオロほう酸リチウム(以下、L
iBF4)を固溶したものを使用した。
The polymer-based solid electrolyte comprises a copolymer of ethylene oxide and polyethylene oxide,
As a supporting salt, lithium tetrafluoroborate (hereinafter, L
iBF 4 ) was used as a solid solution.

【0015】[実施例1]LiCoO2とアセチレンブ
ラック(以下、AB)、モノマー状高分子系固体電解質
およびLi2S−SiS2ガラス質固体電解質の粉体を、
電極中に占める固体電解質の体積分率を50体積%に
し、その固体電解質中に占めるガラス質固体電解質の体
積分率が60体積%となるように、秤量、混合した合剤
を、アセトニトリルを使用してスラリー状にし、アルミ
ニウム集電体1上にコーティングした。有機溶剤を揮発
させた後、モノマー状高分子系固体電解質を硬化し、3
cm×3cmに裁断したものを正極電極2とした。この
正極電極2と、銅集電体3上に厚さ0.1mmのリチウ
ム箔4が圧着されたものを4cm×4cmに裁断した負
極電極との間に、厚さ0.03mmの高分子系固体電解
質シート5を挟み込んで、積層した。これを、アルミラ
ミネート6に包み込んで、4方を融着することによっ
て、全固体型リチウム二次電池A1を作製した。尚、L
2S−SiS2ガラス質固体電解質は、イオン伝導度が
室温で1×10-3S/cmのものを使用した。
Example 1 LiCoO 2 , acetylene black (hereinafter, referred to as AB), a monomeric polymer solid electrolyte and a powder of a Li 2 S—SiS 2 glassy solid electrolyte were
The volume fraction of the solid electrolyte occupying in the electrode is set to 50% by volume, and the mixture weighed and mixed is acetonitrile so that the volume fraction of the vitreous solid electrolyte occupying the solid electrolyte is 60% by volume. Then, a slurry was formed and coated on the aluminum current collector 1. After volatilizing the organic solvent, the monomeric polymer-based solid electrolyte is cured and
The positive electrode 2 was cut to a size of cm × 3 cm. Between the positive electrode 2 and a negative electrode obtained by cutting a 0.1 mm thick lithium foil 4 on a copper current collector 3 into 4 cm × 4 cm, a 0.03 mm thick polymer The solid electrolyte sheet 5 was sandwiched and laminated. This was wrapped in an aluminum laminate 6 and fused on four sides to produce an all-solid-state lithium secondary battery A1. Note that L
The i 2 S—SiS 2 glassy solid electrolyte having an ion conductivity of 1 × 10 −3 S / cm at room temperature was used.

【0016】[実施例2]無機系固体電解質として、L
0.51Li0.34TiO2.94の粉末を使用した以外は、
[実施例1]と同様の方法により、電池A2を作製し
た。尚、La0.51Li0.34TiO2.94は、バルクのイオ
ン伝導度が室温で1×10-3S/cmのものを使用し
た。
Example 2 As an inorganic solid electrolyte, L
a 0.51 Li 0.34 TiO 2.94 except that powder was used.
Battery A2 was produced in the same manner as in [Example 1]. The La 0.51 Li 0.34 TiO 2.94 used had a bulk ionic conductivity of 1 × 10 −3 S / cm at room temperature.

【0017】[実施例3]無機系固体電解質として、
0.5Li3PO4−0.5Li4SiO4の粉末を使用し
た以外は、[実施例1]と同様の方法により、電池A3
を作製した。尚、0.5Li3PO4−0.5Li4Si
4は、バルクのイオン伝導度が室温で2×10-5S/
cmのものを使用した。
Example 3 As an inorganic solid electrolyte,
Battery A3 was produced in the same manner as in [Example 1] except that 0.5Li 3 PO 4 -0.5Li 4 SiO 4 powder was used.
Was prepared. Note that 0.5Li 3 PO 4 -0.5Li 4 Si
O 4 has a bulk ionic conductivity of 2 × 10 −5 S / at room temperature.
cm.

【0018】[比較例1]LiCoO2とAB、および
高分子系固体電解質からなる合剤を使用して、正極電極
としたこと以外は、[実施例1]と同様の方法により、
電池B1を作製した。
[Comparative Example 1] The same method as in [Example 1] was used except that a positive electrode was formed using a mixture comprising LiCoO 2 and AB and a polymer-based solid electrolyte.
Battery B1 was produced.

【0019】[比較例2]無機系固体電解質の代わり
に、石英(SiO2)粉末を使用したこと以外は、[実
施例1]と同様の方法により、電池B2を作製した。
Comparative Example 2 A battery B2 was produced in the same manner as in [Example 1] except that quartz (SiO 2 ) powder was used instead of the inorganic solid electrolyte.

【0020】これらの作製した電池について、60℃の
温度で、電池のインピーダンス測定および、充放電試験
を実施した。電池のインピーダンスは、電池作製直後と
充放電による10サイクル後および50サイクル後に放
電末の状態で測定を実施した。充放電試験は、充電を定
電流定電圧方式により充電電圧4.30Vで、放電は定
電流方式で放電電圧3.00Vで実施し、定電流時の電
流値は電池の試算容量の1/10とした。
The batteries thus manufactured were subjected to a battery impedance measurement and a charge / discharge test at a temperature of 60 ° C. The impedance of the battery was measured at the end of discharge immediately after the battery was manufactured and after 10 and 50 cycles of charge and discharge. In the charge / discharge test, charging was carried out at a charging voltage of 4.30 V by a constant current / constant voltage method, and discharging was carried out at a discharge voltage of 3.00 V by a constant current method. The current value at a constant current was 1/10 of the estimated capacity of the battery. And

【0021】表1に、各々の電池の作製直後のインピー
ダンス、および充放電による10サイクル後および50
サイクル後のインピーダンスの測定結果を示す。
Table 1 shows the impedance immediately after the production of each battery, and the values after 50 cycles and 50 cycles after charging and discharging.
The measurement result of the impedance after a cycle is shown.

【0022】[0022]

【表1】 [Table 1]

【0023】図2に、各々の電池の充放電試験結果(容
量−サイクル試験結果)を示す。
FIG. 2 shows the charge / discharge test results (capacity-cycle test results) of each battery.

【0024】表1から分かるように、比較例電池B1に
比べて、実施例電池A1では、初期インピーダンスが低
減されている。このことは、図2に示す電池の初期容量
に対応している。また、図2に示す結果から、比較例電
池B1ではサイクルの経過に伴い電池容量が著しい低下
を示したのに対して、実施例電池A1,A2,A3のい
ずれの電池でも、電池容量の低下が小さくなっている。
As can be seen from Table 1, the battery A1 of the embodiment has a lower initial impedance than the battery B1 of the comparative example. This corresponds to the initial capacity of the battery shown in FIG. Also, from the results shown in FIG. 2, the battery capacity of Comparative Example B1 showed a remarkable decrease with the passage of the cycle, whereas the batteries of Example Batteries A1, A2 and A3 showed a decrease in the battery capacity. Is getting smaller.

【0025】表1から、比較例電池B1は、サイクルの
経過に伴い電池のインピーダンスが顕著に増加してお
り、それに伴って充放電試験において充電電流が小さく
なり、充電電気量が低下するため、電池容量の低下を招
いたものと考えられる。一方、実施例電池A1,A2,
A3では、サイクルの経過に伴う電池インピーダンスの
変化が小さいため、サイクル安定性が向上したものと考
えられる。これらのことから、高分子系固体電解質を使
用したLiCoO 2電極への無機系固体電解質の添加
は、電池の充放電反応に伴う電池インピーダンスの増加
を抑制する効果があるということができる。
From Table 1, it can be seen that the battery of Comparative Example B1 has a cycle
The battery impedance has increased significantly over time.
As a result, the charging current in the charge / discharge test is
And the amount of charged electricity decreases, leading to a decrease in battery capacity.
It is thought that there was. On the other hand, Example batteries A1, A2,
In A3, the battery impedance with the passage of the cycle
Considering that the change was small, the cycle stability was improved.
available. For these reasons, using polymer-based solid electrolytes
LiCoO used TwoAddition of inorganic solid electrolyte to electrode
Indicates an increase in battery impedance due to battery charge / discharge reactions
Can be said to be effective.

【0026】また、実施例電池A1にある無機系固体電
解質がガラス質材料の場合には、それ自身の粒界抵抗が
小さいため、初期の電池インピーダンスを低下させるこ
とが可能となり、有効である。また、比較として、比較
例電池B2にあるリチウムイオン伝導性を有しない無機
材料SiO 2粉末を添加した場合には、初期の電池イン
ピーダンスは増加し、さらに充放電反応に伴う電池イン
ピーダンスの増加を抑制する効果は得られないことが分
かる。
The inorganic solid-state battery in the battery A1 of the embodiment was used.
If the dissolution is a vitreous material, its own grain boundary resistance
Small enough to lower the initial battery impedance.
And it is effective. Also, as a comparison,
Example Inorganic without lithium ion conductivity in battery B2
Material SiO TwoIf powder is added, the initial battery
The impedance increases, and the battery
It is clear that the effect of suppressing the increase in
Call

【0027】以上のことから、本発明にある、高分子系
固体電解質を主体とする全固体型リチウム電池におい
て、正極あるいは負極の少なくとも1つの電極中に、無
機系固体電解質を添加することによって、電池のインピ
ーダンスの低減や経時的なインピーダンスの増加を抑制
する効果が得られ、従って充電電流の増加による電池容
量の増大とサイクル安定性を向上させることが可能とな
った。
As described above, in the all-solid-state lithium battery mainly comprising a polymer solid electrolyte according to the present invention, by adding an inorganic solid electrolyte to at least one of the positive electrode and the negative electrode, The effect of reducing the impedance of the battery and suppressing the increase of the impedance over time can be obtained. Therefore, it is possible to increase the battery capacity and improve the cycle stability by increasing the charging current.

【0028】以上、本発明について、電極活物質がリチ
ウムコバルト複合酸化物LiCoO2である正極電極を
使用した全固体型リチウム二次電池の場合を例にとって
説明したが、特に二次電池に限定されるものではなく、
全固体型リチウム一次電池についても同様の効果が得ら
れる。また、正極電極活物質も実施例に限定されるもの
ではなく、さらには、リチウム金属、リチウム合金、あ
るいはリチウムを吸蔵・放出が可能な材料からなる負極
電極についても同様である。その他、高分子系固体電解
質、導電剤などの電極材料および電極構成比、電池作製
方法、電池構造などはこれらに限定されるものではな
い。
Although the present invention has been described with reference to the case of an all solid-state lithium secondary battery using a positive electrode whose electrode active material is a lithium-cobalt composite oxide LiCoO 2 , the present invention is particularly limited to a secondary battery. Not something
The same effect can be obtained for an all-solid-state lithium primary battery. Also, the positive electrode active material is not limited to the examples, and the same applies to a negative electrode made of lithium metal, a lithium alloy, or a material capable of inserting and extracting lithium. In addition, electrode materials such as a polymer-based solid electrolyte and a conductive agent and an electrode composition ratio, a battery manufacturing method, a battery structure, and the like are not limited thereto.

【0029】[0029]

【発明の効果】以上述べたように、この発明によれば主
として高分子系固体電解質を電解質とする全固体型リチ
ウム電池の正極あるいは負極の少なくとも1つの電極中
に、無機系固体電解質を添加することによって、内部抵
抗が低減し、又、経時的な内部抵抗の増大の抑制とサイ
クル安定性の向上の信頼性の向上と高性能化を図ること
ができる。
As described above, according to the present invention, an inorganic solid electrolyte is added to at least one of a positive electrode and a negative electrode of an all-solid-state lithium battery using a polymer solid electrolyte as an electrolyte. As a result, the internal resistance is reduced, and the increase in the internal resistance over time can be suppressed, the reliability of the cycle stability can be improved, and the performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の全固体型リチウム電池の断面図であ
る。
FIG. 1 is a cross-sectional view of an all-solid-state lithium battery of the present invention.

【図2】実施例および比較例の電池による容量−サイク
ル特性図である。
FIG. 2 is a diagram showing capacity-cycle characteristics of batteries of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 アルミニウム集電体 2 正極電極 3 銅集電体 4 リチウム箔 5 固体電解質シート 6 アルミラミネート DESCRIPTION OF SYMBOLS 1 Aluminum current collector 2 Positive electrode 3 Copper current collector 4 Lithium foil 5 Solid electrolyte sheet 6 Aluminum laminate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主として高分子系固体電解質を電解質と
する全固体型リチウム電池において、正極あるいは負極
の少なくとも1つの電極中に無機系固体電解質が添加さ
れたことを特徴とする、全固体型リチウム電池。
1. An all-solid lithium battery mainly comprising a polymer solid electrolyte as an electrolyte, wherein an inorganic solid electrolyte is added to at least one of a positive electrode and a negative electrode. battery.
【請求項2】 前記、無機系固体電解質のイオン伝導性
が該高分子系固体電解質のイオン伝導性よりも大きいこ
とを特徴とする請求項1記載の全固体型リチウム電池。
2. The all-solid-state lithium battery according to claim 1, wherein the ionic conductivity of the inorganic solid electrolyte is higher than the ionic conductivity of the polymer solid electrolyte.
【請求項3】 前記、無機系固体電解質がガラス質であ
ることを特徴とする請求項1記載の全固体型リチウム電
池。
3. The all-solid-state lithium battery according to claim 1, wherein the inorganic solid electrolyte is vitreous.
JP8271691A 1996-09-19 1996-09-19 Whole solid type lithium battery Pending JPH1092445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8271691A JPH1092445A (en) 1996-09-19 1996-09-19 Whole solid type lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8271691A JPH1092445A (en) 1996-09-19 1996-09-19 Whole solid type lithium battery

Publications (1)

Publication Number Publication Date
JPH1092445A true JPH1092445A (en) 1998-04-10

Family

ID=17503510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8271691A Pending JPH1092445A (en) 1996-09-19 1996-09-19 Whole solid type lithium battery

Country Status (1)

Country Link
JP (1) JPH1092445A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348711A (en) * 1999-04-07 2000-12-15 Hydro Quebec COMPOUND COATING LiPO3
JP2001015162A (en) * 1999-06-29 2001-01-19 Sony Corp Solid electrolyte battery
JP2006164783A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Electrode, battery, and their manufacturing method
US20080131781A1 (en) * 2004-08-17 2008-06-05 Lg Chem, Ltd. Lithium Secondary Batteries With Enhanced Safety And Performance
JP2010113820A (en) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte composition and battery using it
KR101939142B1 (en) * 2017-07-28 2019-01-16 한국생산기술연구원 ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME
JP2020129446A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348711A (en) * 1999-04-07 2000-12-15 Hydro Quebec COMPOUND COATING LiPO3
JP2001015162A (en) * 1999-06-29 2001-01-19 Sony Corp Solid electrolyte battery
JP4505886B2 (en) * 1999-06-29 2010-07-21 ソニー株式会社 Solid electrolyte battery
US20080131781A1 (en) * 2004-08-17 2008-06-05 Lg Chem, Ltd. Lithium Secondary Batteries With Enhanced Safety And Performance
JP2006164783A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Electrode, battery, and their manufacturing method
JP4525323B2 (en) * 2004-12-08 2010-08-18 日産自動車株式会社 Electrode, battery, and manufacturing method thereof
JP2010113820A (en) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte composition and battery using it
KR101939142B1 (en) * 2017-07-28 2019-01-16 한국생산기술연구원 ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME
JP2020129446A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4352475B2 (en) Solid electrolyte secondary battery
EP1636870B1 (en) Stacked-type lithium-ion rechargeable battery
US7413582B2 (en) Lithium battery
WO2016093589A1 (en) Electrode assembly having improved safety, manufacturing method therefor and electrochemical element comprising electrode assembly
KR20190113605A (en) Hybrid solid electrolyte membrane for all solid state secondary battery and all solid state secondary battery comprising the same
JP4601752B2 (en) Gel electrolyte and gel electrolyte battery
KR20080103847A (en) Electorde assembly and secondary battery using the same
JP2000100471A (en) Sheet battery
JP2004146361A (en) Lithium battery negative electrode, and lithium battery including same
US9048490B2 (en) Lithium ion secondary battery
US20240128601A1 (en) Electrode piece, rolled core and battery
EP1714347B1 (en) Electrochemical cell having an improved safety
CN110402506B (en) Lithium ion secondary battery
KR101288650B1 (en) Separator and lithium secondary battery
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
CN110416630B (en) All-solid-state battery
KR20200119207A (en) Nonaqueous electrolyte secondary battery
CN101714656A (en) Lithium-ion secondary battery
JPH1092445A (en) Whole solid type lithium battery
JP2000195495A (en) Sheet battery
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JPH11111266A (en) High polymer electrolyte secondary battery
KR20150071250A (en) Electrode assembly comprising dfferent kind of separator comprising taping part for improving safety and lithium secondary batteries comprising the same
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP2011142040A (en) Solid-state battery module