JPH1088153A - Production of low-sulfur diesel light oil - Google Patents

Production of low-sulfur diesel light oil

Info

Publication number
JPH1088153A
JPH1088153A JP24075396A JP24075396A JPH1088153A JP H1088153 A JPH1088153 A JP H1088153A JP 24075396 A JP24075396 A JP 24075396A JP 24075396 A JP24075396 A JP 24075396A JP H1088153 A JPH1088153 A JP H1088153A
Authority
JP
Japan
Prior art keywords
oil
hue
catalyst
sulfur content
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24075396A
Other languages
Japanese (ja)
Inventor
Toshiyuki Enomoto
敏行 榎本
Toshio Waku
俊雄 和久
Masaru Ushio
賢 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP24075396A priority Critical patent/JPH1088153A/en
Publication of JPH1088153A publication Critical patent/JPH1088153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a low-sulfur diesel light oil, excellent in hue and stability thereof by bringing a petroleum distillation distillate oil having a specific sulfur content and a specified boiling point into contact with hydrogen under specific conditions. SOLUTION: This method for producing a low-sulfur diesel light oil comprises a first step for bringing a petroleum distillation distillate oil having 0.1-2.0wt.% sulfur content and 150-400 deg.C boiling point which is a raw material oil into contact with hydrogen in the presence of a hydrogenating catalyst under conditions of 330-450 deg.C temperature and 45-100kg/cm<2> pressure and providing a product oil having <=0.05wt.% sulfur content and >=-10 hue expressed in terms of a value of Saybolt color and a second step for bringing the resultant product oil into contact with hydrogen in the presence of a hydrogenating catalyst under conditions of 200-320 deg.C temperature and 45-100kg/cm<2> pressure and affording a product oil having a hue exceeding that expressed in terms of the value of the Saybolt color in the first step. Furthermore, the hydrogenating catalyst is obtained by supporting one or metals of Cr, Mo and W and one or more metals of Co and Ni on a porous inorganic oxide carrier such as alumina or silica-alumina.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石油蒸留留出油原料
油から低硫黄分で、かつ色相および色相安定性も良好な
ディーゼル軽油を経済的に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for economically producing a diesel light oil having a low sulfur content and a good hue and hue stability from a petroleum distillate feedstock.

【0002】[0002]

【従来の技術】従来、我が国でのディーゼル軽油は、主
に直留軽油を一般的な脱硫反応装置で処理した脱硫直留
軽油留分に直留軽油留分、直留灯油留分、分解装置から
得られる軽油留分等を調合して硫黄分0.4〜0.5重
量%の範囲に調製して製造してきた。しかし、昨今の国
内環境問題に端を発し、ディーゼル車排ガス中のNOx
および粒子状物質の削減が要求され、このため、ディー
ゼル軽油中の硫黄分はすでに0.2重量%に引き下げら
れ、さらに平成9年には0.05重量%へ引き下げられ
ることが決定している。また、色相の規格は規定されて
いないが、石油各社は独自にセーボルト色、ASTM
色、APHA色等による一定の色相基準値を定め品質管
理をしている。とくに、軽油基材としての需要が今後大
幅に増加する見込みの分解軽油は色相が著しく悪いた
め、色相の改善も要求される。
2. Description of the Related Art Conventionally, diesel gas oil in Japan is mainly composed of a straight gas oil fraction, a straight gas oil fraction, and a cracker, which are mainly obtained by treating a straight gas oil with a general desulfurization reactor. And a sulfur fraction in the range of 0.4 to 0.5% by weight. However, starting with recent domestic environmental problems, NOx in diesel exhaust gas
And the reduction of particulate matter is required. For this reason, it has been decided that the sulfur content in diesel gas oil has already been reduced to 0.2% by weight, and further reduced to 0.05% by weight in 1997. . Hue standards are not specified, but petroleum companies have their own Saybolt color, ASTM
A certain hue reference value based on color, APHA color, and the like is determined and quality control is performed. In particular, cracked light oil, whose demand as a light oil base material is expected to increase significantly in the future, has a remarkably poor hue, so that an improvement in hue is also required.

【0003】ディーゼル軽油中の硫黄を0.2重量%以
下にするための一つの方法として、二段階水素化処理方
法が提案されている(方法−1:特開平3−86793
号公報)。しかしながら、この方法の反応条件(第1段
の圧力10〜40kg/cm2 、温度280〜370
℃、LHSV0.5〜5.0h-1)では硫黄分0.05
重量%を達成することは困難である。さらに、色相が不
良な分解軽油を原料油に使用した場合特に顕著である
が、第二反応塔圧力40kg/cm2 以下では第一反応
塔において、硫黄分0.05重量%を達成するために、
より高温で処理された脱硫油の色相改善は極めて困難で
ある。
As one method for reducing the sulfur in diesel gas oil to 0.2% by weight or less, a two-stage hydrotreating method has been proposed (method-1: Japanese Patent Laid-Open No. 3-86793).
No.). However, the reaction conditions of this method (first stage pressure 10-40 kg / cm 2 , temperature 280-370)
° C, LHSV 0.5-5.0 h -1 ), sulfur content 0.05
It is difficult to achieve weight percent. Furthermore, this is particularly remarkable when cracked gas oil having a poor hue is used as a feedstock oil. However, in order to achieve a sulfur content of 0.05% by weight in the first reaction tower at a pressure of the second reaction tower of 40 kg / cm 2 or less. ,
Improving the hue of desulfurized oils treated at higher temperatures is extremely difficult.

【0004】炭化水素化合物の色相や酸化安定性を改善
するための一つの方法として、二段階水素化処理方法が
提案されている(方法−2:米国特許第4,755,2
80号明細書)。しかしながら、この方法は炭化水素化
合物の色相および酸化反応性を改善する目的の第二反応
塔触媒にFe系触媒を用いており、Fe系触媒は硫化物
等により容易に被毒されるため(特開昭62−8418
2号公報)、その水素化活性を維持するために第二反応
塔供給物中の硫化水素等の硫黄化合物やアンモニア等の
窒素化合物を第二反応塔供給以前に10ppm以下に低
減させる必要がある。
As one method for improving the hue and oxidation stability of hydrocarbon compounds, a two-stage hydrotreating method has been proposed (Method-2: US Pat. No. 4,755,2).
No. 80). However, in this method, an Fe-based catalyst is used as the second reaction tower catalyst for the purpose of improving the hue and oxidation reactivity of the hydrocarbon compound, and the Fe-based catalyst is easily poisoned by sulfides and the like. Kaisho 62-8418
No. 2), in order to maintain the hydrogenation activity, it is necessary to reduce sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia in the feed to the second reactor to 10 ppm or less before feeding to the second reactor. .

【0005】炭化水素化合物の色相および臭気を改善す
るための一つの方法として、二段階水素化処理法が提案
されている(方法−3:米国特許第3,841,995
号明細書)。しかしながら、この方法は炭化水素化合物
の色相および臭気を改善する目的の第二反応塔にPt等
の貴金属系触媒を用いており、Pt等の貴金属系触媒は
硫化水素等により容易に被毒されるため、その水素化活
性を維持するために第二反応塔供給物中の硫化水素等の
硫黄化合物やアンモニア等の窒素化合物を第二反応塔供
給以前に事実上すべて除去する必要がある。
As one method for improving the hue and odor of hydrocarbon compounds, a two-stage hydrotreating method has been proposed (Method-3: US Pat. No. 3,841,995).
Specification). However, this method uses a noble metal catalyst such as Pt in the second reaction tower for the purpose of improving the hue and odor of the hydrocarbon compound, and the noble metal catalyst such as Pt is easily poisoned by hydrogen sulfide or the like. Therefore, in order to maintain the hydrogenation activity, it is necessary to remove virtually all sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia in the feed to the second reaction tower before feeding to the second reaction tower.

【0006】上記の方法−2、方法−3のように、第二
反応塔供給物中の硫化水素等の硫黄化合物やアンモニア
等の窒素化合物を第二反応塔以前に除去するためには、
たとえば、気液分離のセパレーターや液状物質中に溶存
する硫化水素、アンモニア除去のためのストリッパーお
よびガス状物質中に存在する硫化水素、アンモニア除去
のための洗浄塔等の設備が必要である。このため、これ
らの方法では設備投資額の増大およびランニングコスト
の増加を余儀なくされるという商業上非常に好ましくな
い重大な欠点がある。
In order to remove sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia in the feed of the second reaction tower before the second reaction tower as in the above-mentioned method-2 and method-3,
For example, facilities such as a separator for gas-liquid separation, a stripper for removing hydrogen sulfide and ammonia dissolved in a liquid substance, and a washing tower for removing hydrogen sulfide and ammonia present in a gaseous substance are required. For this reason, these methods have serious disadvantages, which are commercially unfavorable in that they require an increase in capital investment and an increase in running costs.

【0007】しかしながら、触媒の寿命、および生成油
の色相安定性(色相の貯蔵安定性)についてはまだ十分
に満足できるものではない。
[0007] However, the life of the catalyst and the hue stability (storage stability of hue) of the produced oil are not yet sufficiently satisfactory.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、原料
油である硫黄分0.1〜2.0重量%の範囲にある石油
蒸留留出油から硫黄分0.05重量%以下で、かつ色相
および色相安定性も良好なディーゼル軽油を経済的に製
造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a distillate from a petroleum distillate having a sulfur content of 0.1 to 2.0% by weight with a sulfur content of 0.05% by weight or less, Another object of the present invention is to provide a method for economically producing diesel light oil having good hue and good hue stability.

【0009】[0009]

【課題を解決するための手段】本発明者らは前記の問題
を解決するため鋭意研究した結果、原料油である石油蒸
留留出油を特定の条件で二段水素化処理することにより
低硫黄分で、かつ色相および色相安定性も良好なディー
ゼル軽油を製造できることを見出し本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, low-sulfur distillate, which is a feed oil, is subjected to two-stage hydrotreatment under specific conditions. It has been found that a diesel light oil can be produced with good hue and good hue stability in just minutes.

【0010】すなわち、本発明は原料油である硫黄分
0.1〜2.0重量%、沸点150〜400℃の範囲に
ある石油蒸留留出油を水素化処理触媒の存存下、温度3
30〜450℃、圧力45〜100kg/cm2 の条件
で水素と接触させて、硫黄分が0.05重量%以下、か
つ色相がセーボルト色値で−10を超える生成油を得る
第一工程と、前記生成油を水素化処理触媒の存在下、温
度200〜320℃、圧力45〜100kg/cm2
条件で水素と接触させて、色相が前記第一工程の色相の
セーボルト色値を超える生成油を得る第二工程とからな
ることを特徴とする低硫黄ディーゼル軽油の製造方法を
提供するものである。
That is, in the present invention, a petroleum distillate having a sulfur content of 0.1 to 2.0% by weight and a boiling point of 150 to 400 ° C. in the range of 3 to 3 wt.
A first step of contacting with hydrogen under the conditions of 30 to 450 ° C. and a pressure of 45 to 100 kg / cm 2 to obtain a product oil having a sulfur content of 0.05% by weight or less and a hue exceeding -10 in Saybolt color value; Contacting the product oil with hydrogen under the conditions of a temperature of 200 to 320 ° C. and a pressure of 45 to 100 kg / cm 2 in the presence of a hydrotreating catalyst, so that the hue exceeds the Saybolt color value of the hue of the first step. And a second step of obtaining an oil.

【0011】[0011]

【発明の実施の形態】本発明で用いる原料油は、硫黄分
0.1〜2.0重量%、沸点150〜400℃の範囲に
ある石油蒸留留出油である。好ましくは硫黄分0.5〜
2.0重量%、沸点200〜400℃の範囲にある石油
蒸留留出油である。石油蒸留留出油としては、例えば原
油の常圧あるいは減圧蒸留により得られる留出油(LG
O)、流動接触分解(FCC)油の蒸留により得られる
留出油(LCO)、熱分解油の蒸留により得られる留出
油等が挙げられる。これらの石油蒸留留出油は単独また
は混合物の形で用いることができる。
DETAILED DESCRIPTION OF THE INVENTION The feedstock oil used in the present invention is a petroleum distillate having a sulfur content of 0.1 to 2.0% by weight and a boiling point of 150 to 400 ° C. Preferably sulfur content 0.5 to
It is a petroleum distillate having a boiling point of 2.0% by weight and a boiling point of 200 to 400 ° C. As the petroleum distillate, for example, a distillate obtained by normal or reduced pressure distillation of crude oil (LG
O), distillate (LCO) obtained by distillation of fluid catalytic cracking (FCC) oil, distillate obtained by distillation of pyrolysis oil, and the like. These petroleum distillates can be used alone or in a mixture.

【0012】本発明では原料油として流動接触分解によ
り得られる留出油と原油の常圧蒸留により得られる留出
油の混合物で、沸点150〜400℃の範囲にある留出
油が好ましく用いられ、さらに好ましくは、沸点200
〜400℃の範囲にある留出油が用いられる。
In the present invention, a mixture of a distillate obtained by fluid catalytic cracking and a distillate obtained by atmospheric distillation of crude oil is preferably used as a feed oil, and a distillate having a boiling point of 150 to 400 ° C. is used. And more preferably a boiling point of 200
Distillate oils in the range of 400400 ° C. are used.

【0013】流動接触分解油の蒸留により得られる留出
油あるいは熱分解油の蒸留により得られる留出油と原油
の常圧あるいは減圧蒸留により得られる留出油を混合す
る場合の混合比率は1:99〜99:1で、好ましくは
5:95〜50:50である。
The mixing ratio of the distillate obtained by distillation of fluidized catalytic cracking oil or the distillate obtained by distillation of pyrolysis oil and the distillate obtained by distillation of crude oil at normal pressure or reduced pressure is 1 : 99 to 99: 1, preferably 5:95 to 50:50.

【0014】本発明においては、第一工程では主として
石油蒸留留出油原料油の水素化脱硫が行われ、第二工程
では事実上水素化脱硫は起こらず第一工程の脱硫生成油
の色相改善および色相安定性改善が行われる。
In the present invention, in the first step, hydrodesulfurization of a petroleum distillate feedstock is mainly performed, and in the second step, virtually no hydrodesulfurization occurs and the hue of the desulfurized product oil in the first step is improved. And hue stability improvement.

【0015】第一工程の水素化処理温度は330〜45
0℃、好ましくは340〜400℃、さらに好ましくは
350〜390℃の範囲である。330℃より低い場合
には硫黄分0.05重量%を達成することは困難であ
る。450℃より高い場合には第一工程の触媒の寿命が
短くなり経済的でない。なお、本発明において第一工程
の水素化処理温度とは触媒層の最高温度のことである。
通常、触媒層出口の温度が最高温度となる。
The hydrotreating temperature in the first step is from 330 to 45.
0 ° C, preferably 340-400 ° C, more preferably 350-390 ° C. If the temperature is lower than 330 ° C., it is difficult to achieve a sulfur content of 0.05% by weight. When the temperature is higher than 450 ° C., the life of the catalyst in the first step is shortened, which is not economical. In the present invention, the hydrogenation temperature in the first step is the maximum temperature of the catalyst layer.
Usually, the temperature at the outlet of the catalyst layer is the highest temperature.

【0016】第一工程の水素化処理圧力は45〜100
kg/cm2 、好ましくは50〜70kg/cm2 の範
囲である。なお、本発明において第一工程の水素化処理
圧力とは水素分圧のことである。
The hydrotreating pressure in the first step is 45 to 100.
kg / cm 2, preferably in the range of 50~70kg / cm 2. In the present invention, the hydrotreating pressure in the first step is a hydrogen partial pressure.

【0017】第一工程の原料油の供給量(液空間速度)
(LHSV)は1〜10h-1が好ましく、特に2〜6h
-1が好ましい範囲である。
Supply amount of feedstock oil in first step (liquid hourly space velocity)
(LHSV) is preferably 1 to 10 h -1 , particularly 2 to 6 h -1
-1 is a preferred range.

【0018】第一工程の水素/油比は好ましくは200
〜5000scf/bbl、特に好ましくは500〜3
000scf/bbl、さらに特に好ましくは600〜
200scf/bblの範囲である。
The hydrogen / oil ratio in the first step is preferably 200
-5000 scf / bbl, particularly preferably 500-3
000 scf / bbl, more preferably 600 to
It is in the range of 200 scf / bbl.

【0019】また本発明において、第一工程に必要に応
じて冷却などのために水素をクエンチすることが好まし
い。本発明において使用する水素としては純粋な水素で
もよいし、製油所で通常使用可能なガス状の炭化水素を
含んだ水素でもよい。本発明において、第一工程の水素
化処理触媒は多孔性無機酸化物担体に水素化活性金属と
してクロム、モリブデン、タングステンのうち少なくと
も1種の金属およびコバルト、ニッケルのうち少なくと
も1種の金属を担持した触媒である。
In the present invention, it is preferable to quench hydrogen for cooling or the like as required in the first step. The hydrogen used in the present invention may be pure hydrogen or hydrogen containing a gaseous hydrocarbon which can be used in a refinery. In the present invention, the hydrotreating catalyst of the first step supports at least one metal of chromium, molybdenum and tungsten and at least one metal of cobalt and nickel as a hydrogenation active metal on a porous inorganic oxide carrier. It is a catalyst.

【0020】水素化活性金属としては特にコバルト−モ
リブデンあるいはニッケル−モリブデンが好ましい。こ
れらの金属は担体上に金属状、酸化物、硫化物またはそ
れらの混合物の形態で存在できる。
The hydrogenation active metal is particularly preferably cobalt-molybdenum or nickel-molybdenum. These metals can be present on the support in the form of metals, oxides, sulfides or mixtures thereof.

【0021】多孔性無機酸化物担体としては、例えば、
アルミナ、シリカ、チタニア、ボリア、ジルコニア、シ
リカ−アルミナ、シリカ−マグネシア、アルミナ−マグ
ネシア、アルミナ−チタニア、シリカ−チタニア、アル
ミナ−ボリア、アルミナ−ジルコニア等が挙げられる。
特にアルミナ、シリカ−アルミナが好ましい。
Examples of the porous inorganic oxide carrier include:
Examples thereof include alumina, silica, titania, boria, zirconia, silica-alumina, silica-magnesia, alumina-magnesia, alumina-titania, silica-titania, alumina-boria, and alumina-zirconia.
Particularly, alumina and silica-alumina are preferable.

【0022】これらの触媒は通常石油蒸留留出油の水素
化脱硫に用いられている触媒であり、耐硫黄性が高い。
本発明では、第一工程の触媒には特にアルミナ担体にコ
バルト−モリブデン、ニッケル−モリブデンの活性金属
を担持した触媒を用いることが好ましい。
These catalysts are usually used for hydrodesulfurization of petroleum distillate and have high sulfur resistance.
In the present invention, it is preferable to use a catalyst in which an active metal such as cobalt-molybdenum or nickel-molybdenum is supported on an alumina carrier, as the catalyst in the first step.

【0023】活性金属の担持方法としては含浸法、共沈
法等の公知の方法を用いることができる。該活性金属の
担持量はそれぞれ酸化物として1〜30重量%の範囲が
好ましく、特に3〜20重量%の範囲が好ましい。該触
媒の形状は粒状、錠剤状、円柱形のいずれでもよい。
As a method for supporting the active metal, known methods such as an impregnation method and a coprecipitation method can be used. The loading amount of the active metal is preferably in the range of 1 to 30% by weight as an oxide, and particularly preferably in the range of 3 to 20% by weight. The shape of the catalyst may be any of granular, tablet, and columnar.

【0024】第一工程の水素化処理触媒は水素化処理に
用いる前に公知の方法で予備硫化して用いることが好ま
しい。第一工程の水素化処理反応塔の形式は固定床、流
動床、膨張床のいずれでもよいが、特に固定床が好まし
い。第一工程の反応塔での水素、石油蒸留留出油および
触媒の接触は並流上昇流、並流下降流、向流のいずれの
方式を採用してもよい。
The hydrotreating catalyst in the first step is preferably preliminarily sulfurized by a known method before use in the hydrotreating. The type of the hydrotreating reaction tower in the first step may be any of a fixed bed, a fluidized bed and an expanded bed, but a fixed bed is particularly preferred. The contact between the hydrogen, the petroleum distillate and the catalyst in the reaction column in the first step may be any of cocurrent upflow, cocurrent downflow, and countercurrent.

【0025】本発明の第一工程において、原料油である
石油蒸留留出油を前記の水素化処理条件で水素化処理し
て硫黄分が0.05重量%以下の生成油を得る。しかし
ながら、本発明では第一工程の生成油の硫黄分が著しく
低くなる条件で反応を行うと第一工程の触媒の寿命が短
くなり経済的でない。また後述するように本発明の方法
では第二工程の触媒に耐硫黄性の高い水素化処理触媒を
用いるため、第一工程の生成油の硫黄分を著しく低める
必要がない。したがって第一工程の生成油の硫黄分の下
限値を、好ましくは0.005重量%以上、より好まし
くは0.006重量%、特に好ましくは0.008重量
%以上にすることが好ましい。
In the first step of the present invention, a petroleum distillate, which is a feed oil, is hydrotreated under the above-mentioned hydrotreating conditions to obtain a product oil having a sulfur content of 0.05% by weight or less. However, in the present invention, if the reaction is carried out under the condition that the sulfur content of the oil produced in the first step is extremely low, the life of the catalyst in the first step is shortened, which is not economical. Further, as described later, in the method of the present invention, since a hydrotreating catalyst having high sulfur resistance is used as the catalyst in the second step, it is not necessary to significantly reduce the sulfur content of the oil produced in the first step. Therefore, the lower limit of the sulfur content of the oil produced in the first step is preferably at least 0.005% by weight, more preferably at least 0.006% by weight, particularly preferably at least 0.008% by weight.

【0026】また本発明の第一工程において、生成油の
色相をセーボルト色値で−10を超え(セーボルト値で
−10を含まず、−10より明るい色)、好ましくは−
5以上(セーボルト値で−5と同等または−5より明る
い色)、より好ましくは0以上にする。第一工程の生成
油の色相がセーボルト色値で−10以下(セーボルト色
値で−10と同等または−10より暗い色)の場合に
は、第二工程で色相改善を行った生成油の色相安定性が
低下する。また、第一工程の生成油の色相がセーボルト
値で−10以下になる場合には、第一工程の触媒の寿命
が短くなり経済的でない。
In the first step of the present invention, the hue of the produced oil is more than -10 in Saybolt color value (excluding -10 in Saybolt value and lighter than -10), preferably-
5 or more (color equivalent to or lighter than -5 in Saybolt value), more preferably 0 or more. When the hue of the oil produced in the first step is -10 or less in Saybolt color value (a color equivalent to or darker than -10 in the Saybolt color value), the hue of the oil produced by improving the hue in the second step Stability decreases. Further, when the hue of the oil produced in the first step is -10 or less in Saybolt value, the life of the catalyst in the first step is shortened, which is not economical.

【0027】本発明では第一工程で水素化処理した後、
第一工程で水素化処理して得た生成物(液状物質および
ガス状物質を含む)の実質全部を第二工程に供給して水
素化処理を行う。つまり第一工程で水素化処理して得た
生成物をセパレーター等で液状物質とガス状物質に気液
分離しないで、また液状物質およびガス状物質中に含有
する硫化水素等の硫黄化合物やアンモニア等の窒素化合
物をストリッピング等の繰作で除去しないで、そのまま
第二工程に供給し水素化処理を行う。
In the present invention, after the hydrogenation treatment in the first step,
Substantially all of the products (including liquid substances and gaseous substances) obtained by the hydrogenation treatment in the first step are supplied to the second step to perform the hydrogenation treatment. In other words, the product obtained by the hydrogenation treatment in the first step is not separated into a liquid substance and a gaseous substance by gas-liquid separation using a separator or the like, and a sulfur compound such as hydrogen sulfide or ammonia contained in the liquid substance or the gaseous substance is not used. Without removing the nitrogen compounds such as by stripping or the like, the nitrogen compounds are supplied to the second step as they are and subjected to a hydrogenation treatment.

【0028】本発明の第二工程の水素化処理温度は第一
工程の水素化処理温度より低く、200〜320℃、好
ましくは210〜290℃、さらに好ましくは220〜
280℃、もっとも好ましくは220〜260℃であ
る。200℃より低い場合には第二工程での色相の改善
が十分でない。320℃よりも高い場合は生成油の色相
がセーボルト色値で−10を超える生成油を得ることは
困難である。なお、本発明において第二工程の水素化処
理温度とは触媒層出口の温度のことである。
The hydrogenation temperature in the second step of the present invention is lower than the hydrogenation temperature in the first step, 200 to 320 ° C., preferably 210 to 290 ° C., more preferably 220 to 290 ° C.
280 ° C, most preferably 220-260 ° C. If the temperature is lower than 200 ° C., the hue in the second step is not sufficiently improved. If the temperature is higher than 320 ° C., it is difficult to obtain a product oil having a hue of the product oil exceeding −10 in Saybolt color value. In the present invention, the hydrogenation temperature in the second step refers to the temperature at the outlet of the catalyst layer.

【0029】第二工程の水素化処理圧力は45〜100
kg/cm2 、好ましくは50〜70kg/cm2 範囲
である。なお、本発明において第二工程の水素化処理圧
力とは水素分圧のことである。
The hydrotreating pressure in the second step is 45 to 100.
kg / cm 2, preferably 50~70kg / cm 2 range. In the present invention, the hydrotreating pressure in the second step is a hydrogen partial pressure.

【0030】第二工程の供給油の供給量(液空間速度)
(LHSV)は1〜15h-1が好ましく、特に4〜12
-1が好ましい範囲である。第二工程の水素/油比は2
00〜5000scf/bblが好ましく、より好まし
くは500〜3000scf/bbl、特に好ましくは
600〜2000scf/bblの範囲である。第二工
程で水素化処理に必要な水素は第一工程から供給される
水素で賄うが足りない場合には新たに水素を第二工程に
供給することもできる。
Supply amount of supply oil (liquid space velocity) in the second step
(LHSV) is preferably 1 to 15 h -1 , and particularly preferably 4 to 12 h -1.
h -1 is a preferred range. The hydrogen / oil ratio in the second step is 2
It is preferably in the range of 00 to 5000 scf / bbl, more preferably in the range of 500 to 3000 scf / bbl, and particularly preferably in the range of 600 to 2000 scf / bbl. Hydrogen required for the hydrotreating in the second step can be supplied by the hydrogen supplied from the first step, but if it is not enough, hydrogen can be newly supplied to the second step.

【0031】本発明において、第二工程の水素化処理触
媒は多孔性無機酸化物担体に水素化活性金属としてクロ
ム、モリブデン、タングステンのうち少なくとも1種の
金属およびコバルト、ニッケルのうち少なくとも1種の
金属を担持した触媒である。水素化活性金属としては特
にコバルト−モリブデンあるいはニッケル−モリブデン
が好ましい。これらの金属は担体上に金属状、酸化物、
硫化物またはそれらの混合物の形態で存在できる。
In the present invention, the hydrotreating catalyst in the second step is a method in which at least one metal selected from chromium, molybdenum, and tungsten and at least one selected from cobalt and nickel are used as a hydrogenation active metal on a porous inorganic oxide carrier. It is a catalyst that carries a metal. As the hydrogenation active metal, cobalt-molybdenum or nickel-molybdenum is particularly preferred. These metals are metal-like, oxide,
It can be in the form of a sulfide or a mixture thereof.

【0032】多孔性無機酸化物担体としては、例えば、
アルミナ、シリカ、チタニア、ボリア、ジルコニア、シ
リカ−アルミナ、シリカ−マグネシア、アルミナ−マグ
ネシア、アルミナ−チタニア、シリカ−チタニア、アル
ミナ−ボリア、アルミナ−ジルコニア等が挙げられる。
特にアルミナ、シリカ−アルミナが好ましい。
As the porous inorganic oxide carrier, for example,
Examples thereof include alumina, silica, titania, boria, zirconia, silica-alumina, silica-magnesia, alumina-magnesia, alumina-titania, silica-titania, alumina-boria, and alumina-zirconia.
Particularly, alumina and silica-alumina are preferable.

【0033】これらの触媒は通常石油蒸留留出油の水素
化脱硫に用いられている触媒であり、耐硫黄性が高い。
本発明では、第二工程の触媒には特にアルミナ担体にコ
バルト−モリブデン、ニッケルーモリブデンの活性金属
を担持した触媒を用いることが好ましい。
These catalysts are usually used for hydrodesulfurization of petroleum distillate and have high sulfur resistance.
In the present invention, it is preferable to use a catalyst in which an active metal such as cobalt-molybdenum or nickel-molybdenum is supported on an alumina carrier, as the catalyst in the second step.

【0034】活性金属の担持方法としては含浸法、共沈
法等の公知の方法を用いることができる。該活性金属の
担持量はそれぞれ酸化物として1〜30重量%の範囲が
好ましく、特に3〜20重量%の範囲が好ましい。該触
媒の形状は粒状、錠剤状、円柱形のいずれでもよい。
As a method for supporting the active metal, known methods such as an impregnation method and a coprecipitation method can be used. The loading amount of the active metal is preferably in the range of 1 to 30% by weight as an oxide, and particularly preferably in the range of 3 to 20% by weight. The shape of the catalyst may be any of granular, tablet, and columnar.

【0035】第二工程の水素化処理触媒としては第一工
程で用いたものと同じ触媒を用いることができるし、ま
た異なる触媒を用いることもできる。例えば、第一工程
で活性金属としてコバルト−モリブデンを用いた場合に
は、第二工程ではニッケル−モリブデンを用い、第一工
程で活性金属としてニッケル−モリブデンを用いた場合
には第二工程ではコバルト−モリブデンを用いることが
できる。
As the hydrotreating catalyst in the second step, the same catalyst as that used in the first step can be used, or a different catalyst can be used. For example, when cobalt-molybdenum is used as the active metal in the first step, nickel-molybdenum is used in the second step, and when nickel-molybdenum is used as the active metal in the first step, cobalt is used in the second step. -Molybdenum can be used.

【0036】第二工程の水素化処理触媒は水素化処理に
用いる前に公知の方法で予備硫化して用いることが好ま
しい。第二工程の水素化処理反応塔の形式は固定床、流
動床、膨脹床のいずれでもよいが、特に固定床が好まし
い。第二工程の水素、供給油および触媒の接触は並流上
昇流、並流下降流、向流のいずれの方式を採用してもよ
い。
The hydrotreating catalyst in the second step is preferably preliminarily sulfurized by a known method before use in the hydrotreating. The type of the hydrotreating reaction tower in the second step may be any of a fixed bed, a fluidized bed and an expanded bed, but a fixed bed is particularly preferred. The contact between the hydrogen, the supply oil and the catalyst in the second step may be any of cocurrent upflow, cocurrent downflow, and countercurrent.

【0037】本発明は第一工程と第二工程を直列に使用
するが、連続的操作に限定したものではなく、第一工程
相当の操作と第二工程相当の操作を個別に実施すること
もできる。本発明の第二工程では、第二工程の生成油の
色相を第一工程の生成油の色相のセイボルト色値を超え
たものにする。そして生成油の色相をセイボルト色値で
好ましくは0以上、さらに好ましくは+5以上、特に好
ましくは+10以上、さらに特に好ましくは+15以
上、最も好ましくは+20以上にする。
In the present invention, the first step and the second step are used in series. However, the present invention is not limited to the continuous operation, and the operation corresponding to the first step and the operation corresponding to the second step may be performed individually. it can. In the second step of the present invention, the hue of the oil produced in the second step is made to exceed the Saybolt color value of the hue of the oil produced in the first step. The hue of the resulting oil is preferably at least 0, more preferably at least +5, particularly preferably at least +10, particularly preferably at least +15, most preferably at least +20 in Saybolt color value.

【0038】本発明の第二工程では事実上水素化脱硫は
起こらずに、第一工程の生成油の色相改善および色相安
定性改善が行われる。したがって硫黄分は事実上第一工
程の生成油と同じく0.05重量%以下を保持する。
In the second step of the present invention, virtually no hydrodesulfurization occurs, and the hue and hue stability of the oil produced in the first step are improved. Therefore, the sulfur content is maintained at substantially 0.05% by weight or less as in the oil produced in the first step.

【0039】第二工程で水素化処理した後、生成油はセ
パレーターで気液分離し、液状物質はストリッピングし
て、硫化水素等の硫黄化合物やアンモニア等の窒素化合
物等の軽質分を分離して製品とする。また、本発明によ
る低硫黄軽油においては、その低温流動性の改善効果に
優れるという点から、水素化処理軽油の他に水素化精製
灯油を配合しても良い。
After the hydrogenation treatment in the second step, the produced oil is gas-liquid separated by a separator, and the liquid substance is stripped to separate light components such as sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia. Product. In addition, the low sulfur gas oil according to the present invention may be blended with hydrorefined kerosene in addition to the hydrotreated gas oil because of its excellent effect of improving low temperature fluidity.

【0040】[0040]

【実施例】本発明を実施例によりさらに詳細に説明する
が、本発明は実施例の範囲に限定されるものではない。 (実施例1)原料油として、硫黄分1.2重量%、色相
がセーボルト色値で+10の沸点150〜400℃の範
囲にある原油の常圧蒸留により得られる留出油(LG
O)を用いて、表1に示す触媒及び処理条件で二段階水
素化処理を行った。第一工程の水素化処理触媒にはアル
ミナ担体にCoO5重量%とMoO3 18重量%を担持
した市販触媒を用いた。第二工程の水素化処理触媒には
第一工程に用いた触媒と同じ市販触媒を用いた。該触媒
は公知の方法で予備硫化した。第一工程と第二工程は直
列に配し連続的に水素化処理を行った。この際、第一工
程で水素化処理した後、生成した液状物質およびガス状
物質はそのまま第二工程に供給し水素化処理を行った。
また第一工程、第二工程とも処理温度は等温とした。得
られた生成油の色相安定性を下記の方法で試験した結
果、および二段階水素化処理触媒の寿命を下記の方法で
実験した結果を表1に示す。
EXAMPLES The present invention will be described in more detail by way of examples, but the present invention is not limited to the scope of the examples. (Example 1) A distillate (LG) obtained by atmospheric distillation of a crude oil having a sulfur content of 1.2% by weight and a hue of +10 and a boiling point of 150 to 400 ° C with a Saybolt color value of +10 as a raw material oil.
Using O), a two-stage hydrogenation treatment was performed under the catalysts and treatment conditions shown in Table 1. As the hydrotreating catalyst in the first step, a commercially available catalyst having 5 wt% of CoO and 18 wt% of MoO 3 supported on an alumina carrier was used. As the hydrotreating catalyst in the second step, the same commercially available catalyst as the catalyst used in the first step was used. The catalyst was presulfurized in a known manner. The first step and the second step were arranged in series, and a hydrogenation treatment was continuously performed. At this time, after the hydrogenation treatment in the first step, the generated liquid substance and gaseous substance were supplied to the second step as they were to carry out the hydrogenation treatment.
In both the first step and the second step, the processing temperature was set to be isothermal. Table 1 shows the results of testing the hue stability of the obtained product oil by the following method and the results of experimenting the life of the two-stage hydrotreating catalyst by the following method.

【0041】(実施例2)原料油として、硫黄分0.8
重量%、色相がセーボルト値で+4の沸点150〜40
0℃の範囲にある混合油[流動接触分解により得られる
留出油(LCO)と原油の常圧蒸留により得られる留出
油(LGO)の混合油(混合比率20:80)]を用い
て、表1に示す触媒(実施例1と同じ)及び処理条件で
実施例1と同様に二段階水素化処理を行った。得られた
生成油の色相安定性および二段階水素化処理触媒の寿命
を同様にして試験した結果を表1に示す。
Example 2 As a feed oil, a sulfur content of 0.8 was used.
% By weight, boiling point 150 to 40 with hue of +4 in Saybolt value
Using a mixed oil in the range of 0 ° C. [a mixed oil of a distillate (LCO) obtained by fluid catalytic cracking and a distillate (LGO) obtained by atmospheric distillation of crude oil (mixing ratio: 20:80)] A two-stage hydrogenation treatment was performed in the same manner as in Example 1 using the catalysts (same as in Example 1) and processing conditions shown in Table 1. Table 1 shows the results of similar tests conducted on the hue stability of the resulting oil and the life of the two-stage hydrotreating catalyst.

【0042】(実施例3)第二工程の水素化処理触媒に
アルミナ担体にNiO5重量%とMoO3 18重量%を
担持した市販触媒を用いて、表1に示す触媒(第一工程
は実施例1と同じ)、原料油(実施例1と同じ)及び処
理条件で実施例1と同様に二段階水素化処理を行った。
得られた生成油の色相安定性を同様にして試験した結果
を表1に示す。
Example 3 A commercially available catalyst having 5% by weight of NiO and 18% by weight of MoO 3 supported on an alumina carrier was used as the hydrotreating catalyst in the second step. 1), a feed oil (same as in Example 1) and processing conditions, and a two-stage hydrogenation treatment was performed in the same manner as in Example 1.
Table 1 shows the results of similar tests conducted on the hue stability of the obtained product oil.

【0043】(実施例4)第一工程および第二工程の触
媒にアルミナ担体にNiO5重量%とMoO3 18重量
%を担持した市販触媒を用いて、表1に示す原料油(実
施例1と同じ)及び処理条件で実施例1と何様に二段階
水素化処理を行った。得られた生成油の色相安定性を同
様にして試験した結果を表1に示す。
[0043] (Example 4) using a commercially available catalyst supporting NiO5 wt% and MoO 3 18 wt% alumina carrier in the catalyst of the first step and the second step, the raw material oil are shown in Table 1 (Example 1 The same two-stage hydrogenation treatments as in Example 1 were carried out under the same conditions and processing conditions. Table 1 shows the results of similar tests conducted on the hue stability of the obtained product oil.

【0044】[0044]

【表1】 [Table 1]

【0045】(比較例1)比較例1では第一工程の生成
油の色相が本発明の条件を満たさない場合の比較実験を
行った。表2に示す原料油(実施例1と同じ)、触媒
(実施例1と同じ)及び処理条件で実施例1と同様に二
段階水素化処理を行った。得られた生成油の色相安定性
および二段階水素化処理触媒の寿命を同様にして試験し
た結果を表2に示す。
Comparative Example 1 In Comparative Example 1, a comparative experiment was conducted in the case where the hue of the oil produced in the first step did not satisfy the conditions of the present invention. A two-stage hydrogenation treatment was carried out in the same manner as in Example 1 using the feedstock (same as in Example 1), the catalyst (same as in Example 1) and the processing conditions shown in Table 2. Table 2 shows the results of similar tests conducted on the hue stability of the resulting oil and the life of the two-stage hydrotreating catalyst.

【0046】(比較例2)比較例2では第一工程の生成
油の色相が本発明の条件を満たさない場合の比較実験を
行った。表2に示す原料油(実施例2と同じ混合油)、
触媒(実施例2と同じ)及び処理条件で実施例1と同様
に二段階水素化処理を行った。得られた生成油の色相安
定性および二段階水素化処理触媒の寿命を同様にして試
験した結果を表2に示す。
Comparative Example 2 In Comparative Example 2, a comparative experiment was conducted in the case where the hue of the oil produced in the first step did not satisfy the conditions of the present invention. Raw oil shown in Table 2 (the same mixed oil as in Example 2),
A two-stage hydrogenation treatment was carried out in the same manner as in Example 1 using a catalyst (same as in Example 2) and processing conditions. Table 2 shows the results of similar tests conducted on the hue stability of the resulting oil and the life of the two-stage hydrotreating catalyst.

【0047】(比較例3)比較例3では処理圧力が本発
明の条件を満たさない場合の比較実験を行った。表2に
示す原料油(実施例1と同じ)、触媒(実施例1と同
じ)及び処理条件で実施例1と同様に二段階水素化処理
を行った。得られた生成油の色相安定性および二段階水
素化処理触媒の寿命を同様にして試験した結果を表2に
示す。
Comparative Example 3 In Comparative Example 3, a comparative experiment was performed in the case where the processing pressure did not satisfy the conditions of the present invention. A two-stage hydrogenation treatment was carried out in the same manner as in Example 1 using the feedstock (same as in Example 1), the catalyst (same as in Example 1) and the processing conditions shown in Table 2. Table 2 shows the results of similar tests conducted on the hue stability of the resulting oil and the life of the two-stage hydrotreating catalyst.

【0048】[0048]

【表2】 [Table 2]

【0049】(生成油の色相安定性試験)実施例1〜
4、比較例1〜3の二段階水素化処理して得た生成油
を、30℃の暗所で2カ月間保存した。保存後の生成油
の色相を表1及び表2に示した。
(Hue Stability Test of Produced Oil)
4. The product oil obtained by the two-stage hydrogenation treatment of Comparative Examples 1 to 3 was stored in a dark place at 30 ° C. for 2 months. The hue of the resulting oil after storage is shown in Tables 1 and 2.

【0050】(二段階水素化処理触媒寿命実験)実施例
1、2および比較例1〜3の実験を継続して触媒寿命実
験を行った。触媒の劣化に伴い生成油の硫黄分が増大す
るが、生成油の硫黄分を0.04重量%になるように反
応温度を徐々に上昇させた。反応開始時の反応温度から
20℃高い温度になるまでの期間を触媒寿命と定義し
た。
(Two-Step Hydrogenation Catalyst Life Experiment) A catalyst life experiment was conducted by continuing the experiments of Examples 1 and 2 and Comparative Examples 1 to 3. Although the sulfur content of the produced oil increases with the deterioration of the catalyst, the reaction temperature was gradually increased so that the sulfur content of the produced oil was 0.04% by weight. The period from the reaction temperature at the start of the reaction to a temperature 20 ° C. higher was defined as the catalyst life.

【0051】表1から判るように、実施例1、2では7
20日後でも20℃上昇しなかったが、表2に示したよ
うに、比較例1〜3ではそれぞれ90日後、75日後、
40日後に20℃上昇した。表1および表2から明らか
なように、実施例1〜4は比較例1〜3に比べて生成油
の色相が良好であり、色相安定性に優れている。さらに
触媒寿命も著しく長い。
As can be seen from Table 1, in Examples 1 and 2, 7
Although the temperature did not increase by 20 ° C. even after 20 days, as shown in Table 2, in Comparative Examples 1 to 3, 90 days and 75 days, respectively.
After 40 days the temperature rose by 20 ° C. As is clear from Tables 1 and 2, Examples 1 to 4 have better hue of the produced oil and better hue stability than Comparative Examples 1 to 3. Furthermore, the catalyst life is significantly longer.

【0052】[0052]

【発明の効果】本発明の二段階水素化処理方法は、原料
油である硫黄分が0.1〜2.0重量%の範囲にある石
油蒸留留出油から硫黄分0.05重量%以下で、かつ色
相が良好で、色相安定性が優れたディーゼル軽油を製造
することができる。また、本発明の方法は触媒寿命が長
く、該ディーゼル軽油を経済的に製造することができ
る。また、本発明の二段階水素化処理方法に用いる触媒
は耐硫黄性が高く、従来の鉄、Pt等の触媒を用いた二
段階水素化処理に比べて硫化水素等による触媒被毒を考
慮する必要がないので、セパレーター、ストリッパーお
よび洗浄塔などの除去設備が不必要である。従って、よ
り簡素な設備でもって低硫黄ディーゼル軽油を製造する
ことができるので、設備投資額の低減およびランニング
コストの減少を達成でき非常に経済的である。
According to the two-stage hydrotreating method of the present invention, the sulfur content of the feed oil is from 0.05 to 2.0% by weight from a petroleum distillate having a sulfur content of 0.05% by weight or less. A diesel light oil having excellent hue and excellent hue stability can be produced. Further, the method of the present invention has a long catalyst life and can economically produce the diesel gas oil. Further, the catalyst used in the two-stage hydrotreating method of the present invention has a high sulfur resistance, and takes into account catalyst poisoning due to hydrogen sulfide and the like as compared with the conventional two-stage hydrotreating using a catalyst such as iron or Pt. Since there is no need, removal equipment such as a separator, a stripper and a washing tower is unnecessary. Therefore, low-sulfur diesel gas oil can be manufactured with simpler equipment, and the cost of equipment and the running cost can be reduced, which is very economical.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料油である硫黄分0.1〜2.0重量
%、沸点150〜400℃の範囲にある石油蒸留留出油
を水素化処理触媒の存存下、温度330〜450℃、圧
力45〜100kg/cm2 の条件で水素と接触させ
て、硫黄分が0.05重量%以下、かつ色相がセーボル
ト色値で−10を超える生成油を得る第一工程と、前記
生成油を水素化処理触媒の存在下、温度200〜320
℃、圧力45〜100kg/cm2 の条件で水素と接触
させて、色相が前記第一工程の色相のセーボルト色値を
超える生成油を得る第二工程とからなることを特徴とす
る低硫黄ディーゼル軽油の製造方法。
A petroleum distillate having a sulfur content of 0.1 to 2.0% by weight and a boiling point of 150 to 400 ° C. in the presence of a hydrotreating catalyst at a temperature of 330 to 450 ° C. A first step of contacting with hydrogen under conditions of a pressure of 45 to 100 kg / cm 2 to obtain a product oil having a sulfur content of 0.05% by weight or less and a hue exceeding -10 in Saybolt color value; At a temperature of 200 to 320 in the presence of a hydrotreating catalyst.
A low-sulfur diesel comprising contacting with hydrogen at a temperature of 45 ° C. and a pressure of 45 to 100 kg / cm 2 to obtain a product oil whose hue exceeds the Saybolt color value of the hue of the first step. Manufacturing method of light oil.
【請求項2】 水素化処理触媒がクロム、モリブデン、
タングステンのうち少なくとも一種の金属およびコバル
ト、ニッケルのうち少なくとも一種の金属を多孔性無機
酸化物担体に担持したものである請求項1記載の低硫黄
ディーゼル軽油の製造方法。
2. The hydrotreating catalyst is chromium, molybdenum,
The method for producing a low-sulfur diesel light oil according to claim 1, wherein at least one metal of tungsten and at least one metal of cobalt and nickel are supported on a porous inorganic oxide carrier.
【請求項3】 多孔性無機酸化物がアルミナまたはシリ
カ−アルミナである請求項2記載の低硫黄ディーゼル軽
油の製造方法。
3. The method according to claim 2, wherein the porous inorganic oxide is alumina or silica-alumina.
JP24075396A 1996-09-11 1996-09-11 Production of low-sulfur diesel light oil Pending JPH1088153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24075396A JPH1088153A (en) 1996-09-11 1996-09-11 Production of low-sulfur diesel light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24075396A JPH1088153A (en) 1996-09-11 1996-09-11 Production of low-sulfur diesel light oil

Publications (1)

Publication Number Publication Date
JPH1088153A true JPH1088153A (en) 1998-04-07

Family

ID=17064206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24075396A Pending JPH1088153A (en) 1996-09-11 1996-09-11 Production of low-sulfur diesel light oil

Country Status (1)

Country Link
JP (1) JPH1088153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041064A (en) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 Deep-desulfurization method of diesel distillate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041064A (en) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 Deep-desulfurization method of diesel distillate

Similar Documents

Publication Publication Date Title
US5316658A (en) Process for the production of low-sulfur diesel gas oil
JP3868128B2 (en) Gas oil hydrodesulfurization apparatus and method
US4149965A (en) Method for starting-up a naphtha hydrorefining process
KR20020068369A (en) Process for removing sulfur from a hydrocarbon feed
JP2000109856A (en) Process for hydrodesulfurization of light oil
US7713407B2 (en) Production of low sulfur fuels using improved hydrocracker post-treatment catalyst
US6197718B1 (en) Catalyst activation method for selective cat naphtha hydrodesulfurization
JP4740544B2 (en) Selective hydrodesulfurization of naphtha stream
CA2292314C (en) A process for producing diesel oils of superior quality and low solidifying point from fraction oils
US6589418B2 (en) Method for selective cat naphtha hydrodesulfurization
JP2003183676A (en) Method for producing low-sulfur gasoline
JPH0386793A (en) Method for decreasing sulfur content of petroleum distillate
US20030070965A1 (en) Method for the production of very low sulfur diesel
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JPH1088153A (en) Production of low-sulfur diesel light oil
JP3634041B2 (en) Light oil quality treatment method
JP4217336B2 (en) Fuel oil desulfurization method and fuel oil desulfurization system
JP3293883B2 (en) Method for producing low sulfur diesel gas oil
JP3744698B2 (en) Process for hydrogenating polycyclic aromatic hydrocarbons
JPH05239472A (en) Method of processing heavy hydrocarbon oil
JP2001064657A (en) Production of low-sulfur gas oil
JP2000212578A (en) Production of low sulfur light oil and light oil composition prepared thereby
JPH0539492A (en) Production of low sulfur diesel gas oil
JPH06100870A (en) Preparation of base of light diesel oil good in hue and hue stability
JPH0657265A (en) Production of diesel gas oil base with good and stable hue