JP3293883B2 - Method for producing low sulfur diesel gas oil - Google Patents

Method for producing low sulfur diesel gas oil

Info

Publication number
JP3293883B2
JP3293883B2 JP19028892A JP19028892A JP3293883B2 JP 3293883 B2 JP3293883 B2 JP 3293883B2 JP 19028892 A JP19028892 A JP 19028892A JP 19028892 A JP19028892 A JP 19028892A JP 3293883 B2 JP3293883 B2 JP 3293883B2
Authority
JP
Japan
Prior art keywords
oil
distillate
distillation
catalyst
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19028892A
Other languages
Japanese (ja)
Other versions
JPH0625678A (en
Inventor
賢 牛尾
多美男 中野
実 畑山
勝彦 石川
勝 佐藤
Original Assignee
日石三菱株式会社
新日本石油精製株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日石三菱株式会社, 新日本石油精製株式会社 filed Critical 日石三菱株式会社
Priority to JP19028892A priority Critical patent/JP3293883B2/en
Publication of JPH0625678A publication Critical patent/JPH0625678A/en
Application granted granted Critical
Publication of JP3293883B2 publication Critical patent/JP3293883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は石油蒸留留出油から低硫
黄分で、かつ色相も良好なディーゼル軽油を製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a diesel light oil having a low sulfur content and good color from a petroleum distillate.

【0002】[0002]

【従来の技術】現在、我国でのディーゼル軽油は、主に
直留軽油を一般的脱硫反応装置で処理した脱硫軽油留分
に直留軽油留分、直留灯油留分、分解装置から得られる
軽油留分等を調合して硫黄分0.4〜0.5重量%の範
囲に調節して製造している。しかし、昨今の国内環境問
題に端を発し、ディーゼル車排ガス中のNOxおよび粒
子状物質の削減が要求されている。
2. Description of the Related Art At present, diesel gas oil in Japan is mainly obtained from a straight gas oil fraction, a straight gas oil fraction, a straight kerosene fraction, and a cracking device into a desulfurized gas oil fraction obtained by treating a straight-run gas oil with a general desulfurization reactor. It is manufactured by mixing gas oil fractions and the like and adjusting the sulfur content to a range of 0.4 to 0.5% by weight. However, starting with recent domestic environmental problems, reduction of NOx and particulate matter in exhaust gas of diesel vehicles is required.

【0003】このため、ディーゼル軽油中の硫黄分を現
行の0.4〜0.5重量%から先ず0.2重量%(第一
段階脱硫目標値)へ、さらにその後0.05重量%(第
二段階脱硫目標値)へ段階的に引き下げることが石油業
界に要求されている。また、色相の規格は規定されてい
ないが、石油会社各社は独自にセーボルト色、ASTM
色、APHA色等による一定の色相基準値を定め品質管
理をしている。とくに、軽油基材としての需要が今後大
幅に増加する見込みの分解軽油は色相が著しく悪いた
め、色相の改善も要求される。
[0003] For this reason, the sulfur content in diesel gas oil is first reduced from the current 0.4 to 0.5% by weight to 0.2% by weight (the target value of the first stage desulfurization), and then 0.05% by weight ( The petroleum industry is required to gradually reduce it to the two-step desulfurization target value). Hue standards are not specified, but petroleum companies have their own Saebold colors, ASTM
A certain hue reference value based on color, APHA color, and the like is determined and quality control is performed. In particular, cracked light oil, whose demand as a light oil base material is expected to increase significantly in the future, has a remarkably poor hue, so that an improvement in hue is also required.

【0004】ディーゼル軽油中の硫黄分の第一段階脱硫
目標値の0.2重量%以下を達成するための一つの方法
として、2段階水素化処理方法が提案されている(方法
−1:特開平3−86793号公報)。しかしながら、
この方法の反応条件(第1段の圧力10〜40kg/c
2 、温度280〜370℃、LHSV 0.5〜5.
0h-1、第2段の圧力10〜40kg/cm2 、温度1
50〜325℃、LHSV 0.5〜5.0h-1)では
第二段階脱硫目標値の硫黄分0.05重量%を達成する
ことは困難である。さらに、色相が不良な分解軽油を原
料油に使用した場合特に顕著であるが、第二反応塔圧力
40kg/cm2 以下では第一反応塔において、硫黄分
0.05重量%を達成するために、より高温度で処理さ
れた脱硫油の色相改善は極めて困難である。
[0004] As one method for achieving a target value of 0.2% by weight or less of the first-stage desulfurization target value of the sulfur content in diesel gas oil, a two-stage hydrotreating method has been proposed (Method-1: Special Feature). JP-A-3-86793). However,
Reaction conditions for this method (first stage pressure 10-40 kg / c
m 2 , temperature 280-370 ° C., LHSV 0.5-5.
0h -1 , second stage pressure 10-40 kg / cm 2 , temperature 1
At a temperature of 50 to 325 ° C. and an LHSV of 0.5 to 5.0 h −1 ), it is difficult to achieve the target value of the second stage desulfurization of 0.05% by weight of sulfur. Furthermore, this is particularly remarkable when cracked gas oil having a poor hue is used as a feedstock oil. However, in order to achieve a sulfur content of 0.05% by weight in the first reaction tower at a pressure of the second reaction tower of 40 kg / cm 2 or less. It is extremely difficult to improve the color of desulfurized oil treated at a higher temperature.

【0005】炭化水素化合物の色相や酸化安定性を改善
するための一つの方法として、二段階水素化処理方法が
提案されてる(方法−2:US PAT. 4,75
5,280)。しかしながら、この方法は炭化水素化合
物の色相および酸化安定性を改善する目的の第二反応塔
触媒にFe系触媒を用いており、Fe系触媒の水素化活
性は硫化水素等により容易に被毒されるため(特開昭6
2−84182号公報)、第二反応塔供給物中の硫化水
素等の硫黄化合物やアンモニア等の窒素化合物を第二反
応塔供給以前に10ppm以下に低減させる必要があ
る。この方法のように、第二反応塔供給物中の硫化水素
等の硫黄化合物やアンモニア等の窒素化合物を第二反応
塔供給以前に除去するためには、たとえば、気液分離の
セパレーターや液状物質中に溶存する硫化水素/アンモ
ニア除去のためのストリッパーおよびガス状物質中に存
在する硫化水素/アンモニア除去のための洗浄塔などの
設備が必要である。そのため、この方法では商業上非常
に好ましくない設備投資額の増大およびランニングコス
トの増加を余儀なくされる。
As one method for improving the hue and oxidation stability of hydrocarbon compounds, a two-stage hydrotreating method has been proposed (Method-2: US Pat. No. 4,757).
5,280). However, in this method, an Fe-based catalyst is used as the second reaction tower catalyst for the purpose of improving the hue and oxidation stability of the hydrocarbon compound, and the hydrogenation activity of the Fe-based catalyst is easily poisoned by hydrogen sulfide or the like. (Japanese Unexamined Patent Publication
It is necessary to reduce sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia in the second reaction tower feed to 10 ppm or less before the second reaction tower feed. In order to remove sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia in the second reaction tower feed before supplying the second reaction tower as in this method, for example, a gas-liquid separation separator or a liquid substance may be used. Equipment such as a stripper for removing hydrogen sulfide / ammonia dissolved therein and a washing tower for removing hydrogen sulfide / ammonia present in gaseous substances is required. For this reason, this method necessitates an increase in capital investment and running cost, which are extremely unfavorable commercially.

【0006】炭化水素化合物の色相および臭気を改善す
るための一つの方法として、二段階水素化処理方法が提
案されている(方法−3:US PAT. 3,84
1,995)。しかしながら、この方法は炭化水素化合
物の色相および臭気を改善する目的の第二反応塔触媒に
Pt等の貴金属系触媒を用いており、Pt等の貴金属系
触媒の水素化活性は硫化水素等により容易に被毒される
ため、第二反応塔供給物中の硫化水素等の硫黄化合物や
アンモニア等の窒素化合物を第二反応塔供給以前に事実
上硫化水素フリー/アンモニアフリーにする必要があ
る。このことは上記方法−2と同様に商業上非常に好ま
しくない設備投資額の増大およびランニングコストの増
加を余儀なくされる。
[0006] As one method for improving the hue and odor of hydrocarbon compounds, a two-stage hydrotreating method has been proposed (Method-3: US PAT. 3,84).
1,995). However, in this method, a noble metal-based catalyst such as Pt is used as a catalyst in the second reaction tower for the purpose of improving the hue and odor of the hydrocarbon compound, and the hydrogenation activity of the noble metal-based catalyst such as Pt is easily increased by hydrogen sulfide or the like. Therefore, sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia in the feed to the second reaction tower must be virtually free of hydrogen sulfide / ammonia before being fed to the second reaction tower. This, like the above-mentioned method-2, necessitates an increase in capital investment and running cost, which are extremely unfavorable in commerce.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は色相お
よび酸化安定性が不良で、硫黄分0.1〜2.0重量%
の範囲にある石油蒸留留出油から硫黄分0.05重量%
以下(脱硫目標値)で、かつ色相もセーボルト色値−1
0以上(色相基準値)であるディーゼル軽油を製造する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a toner having a poor hue and oxidation stability and a sulfur content of 0.1 to 2.0% by weight.
0.05% by weight of sulfur content from petroleum distillate oil in the range
Below (desulfurization target value) and the hue is Saybolt color value -1
It is to produce diesel light oil of 0 or more (hue reference value).

【0008】[0008]

【課題を解決するための手段】本発明者らは前記の問題
を解決するため鋭意研究した結果、石油蒸留留出油を特
定の条件で2段水素化処理することにより低硫黄分で、
かつ色相も良好なディーゼル軽油を製造できることを知
見し本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the petroleum distillate was subjected to two-stage hydrotreating under specific conditions to obtain a low sulfur content,
The inventors have found that diesel gas oil having good hue can be produced, and have completed the present invention.

【0009】すなわち、本発明は硫黄分0.1〜2.0
重量%、沸点150〜400℃の範囲にある石油蒸留留
出油を、多孔性担体にクロム、モリブデン、タングステ
ン、コバルト、ニッケルおよび鉄よりなる群から選ばれ
る少なくとも1種類の水素化活性金属を担持させた水素
化処理触媒の存在下、温度330℃〜375℃未満、圧
力45〜100Kg/cm2 の条件で水素と接触させて
硫黄分を0.05重量%以下にする第一工程と、多孔性
担体にクロム、モリブデン、タングステン、コバルト、
ニッケルおよび鉄よりなる群から選ばれる少なくとも2
種類の水素化活性金属を担持させた水素化処理触媒の存
在下、温度225〜275℃、圧力45〜100Kg/
cm2 の条件で第一工程で生成した物質を水素と接触さ
せて硫黄分を0.05重量%以下、かつ色相をセーボル
ト色値で−10以上にする第二工程とからなる低硫黄デ
ィーゼル軽油の製造方法に関する。
That is, the present invention provides a sulfur content of 0.1 to 2.0.
Weight percent, a petroleum distillate having a boiling point in the range of 150 to 400 ° C., and at least one hydrogenation active metal selected from the group consisting of chromium, molybdenum, tungsten, cobalt, nickel and iron supported on a porous carrier. A first step of bringing into contact with hydrogen under conditions of a temperature of 330 ° C. to less than 375 ° C. and a pressure of 45 to 100 kg / cm 2 in the presence of the hydrotreated catalyst to reduce the sulfur content to 0.05% by weight or less; Chromium, molybdenum, tungsten, cobalt,
At least 2 selected from the group consisting of nickel and iron
Temperature of 225 to 275 ° C., pressure of 45 to 100 kg /
a low-sulfur diesel gas oil comprising a second step of bringing the substance produced in the first step into contact with hydrogen under conditions of cm 2 to make the sulfur content 0.05% by weight or less and the hue to a Saybolt color value of -10 or more. And a method for producing the same.

【0010】本発明で用いる石油蒸留留出油は硫黄分
0.1〜2.0重量%、沸点150〜400℃の範囲に
ある石油蒸留留出油である。石油蒸留留出油としては、
例えば原油の常圧あるいは減圧蒸留により得られる留出
油、流動接触分解(FCC)油の蒸留により得られる留
出油、熱分解油の蒸留により得られる留出油等が挙げら
れる。これらの石油蒸留留出油は単独または混合物の形
で用いることができる。本発明では流動接触分解(FC
C)油の蒸留により得られる留出油あるいは熱分解油の
蒸留により得られる留出油と原油の常圧蒸留あるいは減
圧蒸留により得られる留出油の混合物が好ましく用いら
れる。流動接触分解(FCC)油の蒸留により得られる
留出油あるいは熱分解油の蒸留により得られる留出油と
原油の常圧あるいは減圧蒸留により得られる留出油を混
合する場合の混合比率は1:99〜99:1で、好まし
くは10:90〜50:50である。本発明では流動接
触分解(FCC)により得られる留出油と原油の常圧蒸
留により得られる留出油の混合物で、硫黄分0.1〜
2.0重量%、沸点150〜400℃の範囲にある留出
油が好ましく用いられる。
The petroleum distillate used in the present invention is a petroleum distillate having a sulfur content of 0.1 to 2.0% by weight and a boiling point of 150 to 400 ° C. As a petroleum distillate,
For example, a distillate obtained by distillation of crude oil under normal pressure or reduced pressure, a distillate obtained by distillation of fluid catalytic cracking (FCC) oil, a distillate obtained by distillation of pyrolysis oil and the like can be mentioned. These petroleum distillates can be used alone or in a mixture. In the present invention, fluid catalytic cracking (FC
C) A mixture of a distillate obtained by distillation of oil or a distillate obtained by distillation of pyrolysis oil and a distillate obtained by atmospheric distillation or vacuum distillation of crude oil is preferably used. The mixing ratio of a distillate obtained by distillation of fluid catalytic cracking (FCC) oil or a distillate obtained by distillation of pyrolysis oil and a distillate obtained by normal pressure or reduced pressure distillation of crude oil is 1 : 99 to 99: 1, preferably 10:90 to 50:50. In the present invention, a mixture of a distillate obtained by fluid catalytic cracking (FCC) and a distillate obtained by atmospheric distillation of crude oil, and having a sulfur content of 0.1 to 0.1%
A distillate having a boiling point of 2.0% by weight and a boiling point of 150 to 400 ° C is preferably used.

【0011】本発明において、第一工程では主として石
油蒸留留出油の水素化脱硫が行われ、第二工程では主と
して脱硫油の色相改善が行われる。
In the present invention, in the first step, hydrodesulfurization of a petroleum distillate is mainly performed, and in the second step, the hue of the desulfurized oil is mainly improved.

【0012】第一工程の水素化処理温度は330〜37
5℃未満、好ましくは340〜375℃未満の範囲であ
る。330℃より低い場合には第二段階脱硫目標値の硫
黄分0.05重量%を達成することは困難である。第一
工程の水素化処理温度とは触媒層出口の温度のことであ
る。
[0012] The hydrogenation temperature in the first step is 330-37.
It is below 5 ° C, preferably below 340-375 ° C. When the temperature is lower than 330 ° C., it is difficult to achieve the target value of the second-stage desulfurization of 0.05% by weight of sulfur. The hydrogenation temperature in the first step refers to the temperature at the outlet of the catalyst layer.

【0013】第一工程の水素化処理圧力は45〜100
Kg/cm2 、好ましくは50〜70Kg/cm2 の範
囲である。第一工程の水素化処理圧力とは水素分圧のこ
とである。
The hydrotreating pressure in the first step is 45 to 100.
Kg / cm 2, preferably in the range of 50~70Kg / cm 2. The hydrotreating pressure in the first step is a hydrogen partial pressure.

【0014】第一工程の石油蒸留留出油の供給量(液空
間速度)(LHSV)は2〜6h-1が好ましく、特に2
〜4h-1が好ましい範囲である。第一工程の水素/油比
は200〜5000scf/bblが好ましく、特に5
00〜2000scf/bblが好ましい範囲である。
The feed rate (liquid hourly space velocity) (LHSV) of the petroleum distillate in the first step is preferably from 2 to 6 h -1 , and particularly preferably
44h −1 is a preferred range. The hydrogen / oil ratio in the first step is preferably from 200 to 5000 scf / bbl, especially
A preferable range is from 00 to 2000 scf / bbl.

【0015】第一工程の水素化処理触媒としては多孔性
無機酸化物担体に水素化活性金属を担持した通常石油蒸
留留出油の水素化精製に用いられている触媒を用いるこ
とができる。多孔性無機酸化物担体としては、例えばア
ルミナ、シリカ、チタニア、ボリア、ジルコニア、シリ
カ−アルミナ、シリカ−マグネシア、アルミナ−マグネ
シア、アルミナ−チタニア、シリカ−チタニア、アルミ
ナ−ボリア、アルミナ−ジルコニア等が挙げられる。特
にアルミナ、シリカ−アルミナが好ましい。
As the hydrotreating catalyst in the first step, there can be used a catalyst generally used for hydrorefining a petroleum distillate having a hydrogenation active metal supported on a porous inorganic oxide carrier. Examples of the porous inorganic oxide carrier include alumina, silica, titania, boria, zirconia, silica-alumina, silica-magnesia, alumina-magnesia, alumina-titania, silica-titania, alumina-boria, alumina-zirconia, and the like. Can be Particularly, alumina and silica-alumina are preferable.

【0016】水素化活性金属としては周期律表第6族金
属および第8族鉄族金属が好ましく、より好ましくはク
ロム、モリブデン、タングステン、コバルト、ニッケ
ル、鉄が挙げられる。これらの活性金属は単独または混
合物の形で用いられる。特にコバルト−モリブデンある
いはニッケル−モリブデンが好ましい。これらの金属は
担体上に金属状、酸化物、硫化物またはそれらの混合物
の形態で存在できる。本発明では、第一工程の触媒には
特にアルミナ担体にコバルト−モリブデン、ニッケル−
モリブデンの活性金属を担持した触媒を用いることが好
ましい。活性金属の担持方法としては含浸法、共沈法等
の公知の方法を用いることができる。
The hydrogenation-active metal is preferably a Group 6 metal or a Group 8 iron group metal of the periodic table, more preferably chromium, molybdenum, tungsten, cobalt, nickel or iron. These active metals are used alone or in a mixture. Particularly, cobalt-molybdenum or nickel-molybdenum is preferable. These metals can be present on the support in the form of metals, oxides, sulfides or mixtures thereof. According to the present invention, the catalyst of the first step is preferably made of cobalt-molybdenum, nickel-
It is preferable to use a catalyst supporting an active metal of molybdenum. A known method such as an impregnation method or a coprecipitation method can be used as a method for supporting the active metal.

【0017】該活性金属の担持量はそれぞれ酸化物とし
て1〜30重量%が好ましく、特に3〜20重量%の範
囲が好ましい。
The loading amount of the active metal is preferably 1 to 30% by weight as an oxide, and more preferably 3 to 20% by weight.

【0018】該触媒の形状は粒状、錠剤状、円柱形のい
ずれでもよい。第一工程の水素化処理触媒は水素化処理
に用いる前に公知の方法で予備硫化して用いてもよい。
The shape of the catalyst may be any of granular, tablet, and columnar. The hydrotreating catalyst of the first step may be preliminarily sulfurized by a known method before use in the hydrotreating.

【0019】第一工程の水素化処理反応塔の形式は固定
床、流動床、膨張床のいずれでもよいが、特に固定床が
好ましい。第一工程の水素、石油蒸留留出油および触媒
の接触は並流上昇流、並流下降流、向流のいずれの方式
を採用してもよい。本発明の第一工程では石油蒸留留出
油の硫黄分を0.05重量%以下になるように水素化脱
硫処理をする。
The type of the hydrotreating reaction tower in the first step may be any of a fixed bed, a fluidized bed and an expanded bed, but a fixed bed is particularly preferred. In the first step, the contact between the hydrogen, the petroleum distillate and the catalyst may be any of cocurrent upflow, cocurrent downflow, and countercurrent. In the first step of the present invention, hydrodesulfurization treatment is performed so that the sulfur content of the petroleum distillate is 0.05% by weight or less.

【0020】本発明では第一工程で水素化処理した後、
第一工程で生成した液状物質およびガス状物質の実質全
部を第二工程に供給し水素化処理を行う。つまり生成し
た液状物質およびガス状物質中に含有する硫化水素等の
硫黄化合物やアンモニア等の窒素化合物等の軽質分を、
ストリッピン等の操作で除去しないで、第二工程に供給
し水素化処理を行う。
In the present invention, after the hydrogenation treatment in the first step,
Substantially all of the liquid substance and gaseous substance generated in the first step are supplied to the second step to perform a hydrogenation treatment. That is, light components such as sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia contained in the generated liquid substance and gaseous substance,
It is supplied to the second step without being removed by an operation such as stripping, and is subjected to a hydrogenation treatment.

【0021】本発明の第二工程の水素化処理温度は20
0〜300℃、好ましくは220〜275℃、特に好ま
しくは230〜250℃の範囲である。200℃より低
い場合には第二工程で色相がセーボルト色値で−10以
上(色相基準値)を達成することは困難である。300
℃を越える場合には第二工程で色相がセーボルト色値で
−10以上(色相基準値)を達成することは困難であ
る。
The hydrogenation temperature in the second step of the present invention is 20.
The temperature is in the range of 0 to 300 ° C, preferably 220 to 275 ° C, particularly preferably 230 to 250 ° C. If the temperature is lower than 200 ° C., it is difficult to achieve a Sauebolt color value of −10 or more (hue reference value) in the second step. 300
When the temperature exceeds ℃, it is difficult to achieve a Sauebolt color value of −10 or more (hue reference value) in the second step.

【0022】第二工程の水素化処理温度とは触媒層出口
の温度のことである。
The hydrotreating temperature in the second step is the temperature at the outlet of the catalyst layer.

【0023】第二工程の水素化処理圧力は45〜100
Kg/cm2 、好ましくは50〜70Kg/cm2 の範
囲である。さらに第二工程の圧力は第一工程と同等ある
いは高い圧力が好ましい。第二工程の水素化処理圧力と
は水素分圧のことである。第二工程の水素分圧は第一工
程と同等あるいは高い水素分圧が好ましい。第二工程の
石油蒸留留出油の供給量(液空間速度)(LHSV)は
2〜12h-1が好ましく、特に4〜10h-1が好ましい
範囲である。第二工程の水素/油比は200〜5000
scf/bblが好ましく、特に500〜3000sc
f/bblが好ましい範囲である。
The hydrotreating pressure in the second step is 45 to 100.
Kg / cm 2, preferably in the range of 50~70Kg / cm 2. Further, the pressure in the second step is preferably equal to or higher than that in the first step. The hydrotreating pressure in the second step is a hydrogen partial pressure. The hydrogen partial pressure in the second step is preferably equal to or higher than that in the first step. The supply amount of petroleum distillate oil in the second step (liquid hourly space velocity) (LHSV) is preferably from 2~12h -1, a particularly preferred range 4~10h -1. The hydrogen / oil ratio in the second step is 200-5000
scf / bbl is preferred, especially 500 to 3000 sc
f / bbl is a preferred range.

【0024】第二工程の水素化処理触媒としては通常第
一工程で用いたものと同様の触媒を用いることができ
る。また、第二工程の触媒には第一工程で用いたものと
異種の触媒を用いることができる。例えば、第一工程で
活性金属としてコバルト−モリブデンを用いた場合に
は、第二工程ではニッケル−モリブデンを用い、第一工
程で活性金属としてニッケル−モリブデンをもちいた場
合には、第二工程ではコバルト−モリブデンを用いる場
合を例示することができる。第二工程の水素化処理触媒
は水素化処理に用いる前に公知の方法で予備硫化して用
いてもよい。
As the hydrotreating catalyst in the second step, the same catalyst as that usually used in the first step can be used. Further, a catalyst different from that used in the first step can be used as the catalyst in the second step. For example, when cobalt-molybdenum is used as the active metal in the first step, nickel-molybdenum is used in the second step, and when nickel-molybdenum is used as the active metal in the first step, in the second step, A case where cobalt-molybdenum is used can be exemplified. The hydrotreating catalyst in the second step may be used by being preliminarily sulfurized by a known method before being used in the hydrotreating.

【0025】第二工程の水素化処理反応塔の形式は固定
床、流動床、膨張床のいずれでもよいが、特に固定床が
好ましい。第二工程の水素、石油蒸留留出油および触媒
の接触は並流上昇流、並流下降流、向流のいずれの方式
を採用してもよい。本発明は第一工程と第二工程を直列
に使用するが、連続的操作に限定したものではなく、第
一工程相当の操作と第二工程相当の操作を個別に実施す
ることもできる。
The type of the hydrotreating reaction tower in the second step may be any of a fixed bed, a fluidized bed and an expanded bed, but a fixed bed is particularly preferred. The contact between the hydrogen, the petroleum distillate and the catalyst in the second step may be any of cocurrent upflow, cocurrent downflow, and countercurrent. Although the present invention uses the first step and the second step in series, the present invention is not limited to the continuous operation, and the operation corresponding to the first step and the operation corresponding to the second step can be performed individually.

【0026】本発明の第二工程で硫黄分0.05重量%
以下を保持し、かつセーボルト色値で−10以上、好ま
しくは0以上になるように水素化処理する。第二工程で
水素化処理した後、生成油はセパレーターで気液分離
し、液状物質はストリッピングして、硫化水素等の硫黄
化合物やアンモニア等の窒素化合物等の軽質分を分離し
て製品とする。
In the second step of the present invention, the sulfur content is 0.05% by weight.
Hydrogenation is performed so that the following is maintained and the Saybolt color value is -10 or more, preferably 0 or more. After the hydrogenation treatment in the second step, the product oil is gas-liquid separated by a separator, the liquid substance is stripped, and light components such as sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia are separated into products. I do.

【0027】[0027]

【実施例】本発明を実施例によりさらに詳細に説明す
る。 (実施例−1)石油蒸留留出油として、硫黄分1.2重
量%、沸点150〜400℃の範囲にある流動接触分解
(FCC)により得られる留出油と原油の常圧蒸留によ
り得られる留出油の混合品(混合比率30:70)を用
いて表1に示す反応条件で2段水素化処理を行った。第
一工程の水素化処理触媒にはアルミナ担体に5重量%C
oOと15重量%MoO3 を担持した市販触媒を用い
た。第二工程の水素化処理触媒にはアルミナ担体に5重
量%CoOと15重量%MoO3 を担持した市販触媒を
用いた。該触媒は公知の方法で予備硫化した。第一工程
と第二工程の反応塔は直列に配し連続的に水素化処理を
行った。この際、第一工程で水素化処理した後、生成し
た液状物質およびガス状物質はそのまま第二工程に供給
し水素化処理を行った。この結果を表1に示す。
EXAMPLES The present invention will be described in more detail with reference to Examples. (Example-1) As a petroleum distillate, a distillate obtained by fluid catalytic cracking (FCC) having a sulfur content of 1.2% by weight and a boiling point in the range of 150 to 400 ° C and a crude oil obtained by atmospheric distillation. A two-stage hydrogenation treatment was carried out under the reaction conditions shown in Table 1 using the mixture of distillate oils (mixing ratio 30:70). 5% by weight C on alumina carrier
A commercially available catalyst supporting oO and 15% by weight of MoO 3 was used. As the hydrotreating catalyst in the second step, a commercially available catalyst having 5 wt% CoO and 15 wt% MoO 3 supported on an alumina carrier was used. The catalyst was presulfurized in a known manner. The reaction towers of the first step and the second step were arranged in series and continuously subjected to a hydrogenation treatment. At this time, after the hydrogenation treatment in the first step, the generated liquid substance and gaseous substance were supplied to the second step as they were to carry out the hydrogenation treatment. Table 1 shows the results.

【0028】(実施例−2)石油蒸留留出油として、硫
黄分1.2重量%、沸点150〜400℃の範囲にある
流動接触分解(FCC)により得られる留出油と原油の
常圧蒸留により得られる留出油の混合品(混合比率3
0:70)を用いて表1に示す反応条件で2段水素化処
理を行った。第一工程および第二工程の水素化処理触媒
にはアルミナ担体に5重量%NiOと15重量%MoO
3 を担持した市販触媒を用いた。該触媒は公知の方法で
予備硫化した。第一工程と第二工程の反応塔は直列に配
し連続的に水素化処理を行った。この際、第一工程で水
素化処理した後、生成した液状物質およびガス状物質は
そのまま第二工程に供給し水素化処理を行った。この結
果を併せて表1に示す。
(Example 2) As a petroleum distillate, a distillate obtained by fluid catalytic cracking (FCC) having a sulfur content of 1.2% by weight and a boiling point in the range of 150 to 400 ° C. and an ordinary pressure of crude oil Distillate oil mixture obtained by distillation (mixing ratio 3
0:70) and a two-stage hydrogenation treatment was carried out under the reaction conditions shown in Table 1. In the hydrotreating catalysts of the first and second steps, 5 wt% NiO and 15 wt% MoO
A commercially available catalyst carrying 3 was used. The catalyst was presulfurized in a known manner. The reaction towers of the first step and the second step were arranged in series and continuously subjected to a hydrogenation treatment. At this time, after the hydrogenation treatment in the first step, the generated liquid substance and gaseous substance were supplied to the second step as they were to carry out the hydrogenation treatment. The results are shown in Table 1.

【0029】(実施例−3)石油蒸留留出油として、硫
黄分1.2重量%、沸点150〜400℃の範囲にある
流動接触分解(FCC)により得られる留出油と原油の
常圧蒸留により得られる留出油の混合品(混合比率3
0:70)を用いて表1に示す反応条件で2段水素化処
理を行った。第一工程の水素化処理触媒にはアルミナ担
体に5重量%CoOと15重量%MoO3 を担持した市
販触媒を用いた。第二工程の水素化処理触媒にはアルミ
ナ担体に5重量%NiOと15重量%MoO3 を担持し
た市販触媒を用いた。該触媒は公知の方法で予備硫化し
た。第一工程と第二工程の反応塔は直列に配し連続的に
水素化処理を行った。この際、第一工程で水素化処理し
た後、生成した液状物質およびガス状物質はそのまま第
二工程に供給し水素化処理を行った。この結果を併せて
表1に示す。
Example 3 As a petroleum distillate distillate, a distillate obtained by fluid catalytic cracking (FCC) having a sulfur content of 1.2% by weight and a boiling point in the range of 150 to 400 ° C. and an ordinary pressure of crude oil Distillate oil mixture obtained by distillation (mixing ratio 3
0:70) and a two-stage hydrogenation treatment was carried out under the reaction conditions shown in Table 1. As the hydrotreating catalyst in the first step, a commercially available catalyst having 5 wt% CoO and 15 wt% MoO 3 supported on an alumina carrier was used. As the hydrotreating catalyst in the second step, a commercially available catalyst having 5 wt% NiO and 15 wt% MoO 3 supported on an alumina carrier was used. The catalyst was presulfurized in a known manner. The reaction towers of the first step and the second step were arranged in series and continuously subjected to a hydrogenation treatment. At this time, after the hydrogenation treatment in the first step, the generated liquid substance and gaseous substance were supplied to the second step as they were to carry out the hydrogenation treatment. The results are shown in Table 1.

【0030】(実施例−4)石油蒸留留出油として、硫
黄分1.2重量%、沸点150〜400℃の範囲にある
流動接触分解(FCC)により得られる留出油と原油の
常圧蒸留により得られる留出油の混合品(混合比率3
0:70)を用いて表1に示す反応条件で2段水素化処
理を行った。第一工程の水素化処理触媒にはアルミナ担
体に5重量%NiOと15重量%MoO3 を担持した市
販触媒を用いた。第二工程の水素化処理触媒にはアルミ
ナ担体に5重量%CoOと15重量%MoO3 を担持し
た市販触媒を用いた。該触媒は公知の方法で予備硫化し
た。第一工程と第二工程の反応塔は直列に配し連続的に
水素化処理を行った。この際、第一工程で水素化処理し
た後、生成した液状物質およびガス状物質はそのまま第
二工程に供給し水素化処理を行った。この結果を併せて
表1に示す。
(Example 4) As a petroleum distillate, a distillate obtained by fluid catalytic cracking (FCC) having a sulfur content of 1.2% by weight and a boiling point in the range of 150 to 400 ° C. and an ordinary pressure of crude oil Distillate oil mixture obtained by distillation (mixing ratio 3
0:70) and a two-stage hydrogenation treatment was carried out under the reaction conditions shown in Table 1. As the hydrotreating catalyst in the first step, a commercially available catalyst having 5 wt% NiO and 15 wt% MoO 3 supported on an alumina carrier was used. As the hydrotreating catalyst in the second step, a commercially available catalyst having 5 wt% CoO and 15 wt% MoO 3 supported on an alumina carrier was used. The catalyst was presulfurized in a known manner. The reaction towers of the first step and the second step were arranged in series and continuously subjected to a hydrogenation treatment. At this time, after the hydrogenation treatment in the first step, the generated liquid substance and gaseous substance were supplied to the second step as they were to carry out the hydrogenation treatment. The results are shown in Table 1.

【0031】(比較例−1)比較例−1では本発明の第
二工程の低温処理効果を明確にするために一段水素化処
理を行った。この結果を併せて表1に示す。その結果、
得られた製品軽油の硫黄分は脱硫目標値に合格であった
が、色相は基準値に不合格であった。60kg/cm2
の圧力で硫黄分・色相ともに目標値に合格させるために
は、製品軽油の着色を防止するため脱硫反応に不利な低
温で実施せねばならない。この結果、石油蒸留留出油の
供給量(液空間速度)LHSVを極端に小さくする必要
性が生じ、商業装置にとっては非常に好ましくないこと
である。
Comparative Example 1 In Comparative Example 1, a single-stage hydrogenation treatment was performed to clarify the low-temperature treatment effect of the second step of the present invention. The results are shown in Table 1. as a result,
The sulfur content of the obtained product gas oil passed the desulfurization target value, but the hue failed the reference value. 60 kg / cm 2
In order for the sulfur content and the hue to pass the target values at the pressure described above, it must be carried out at a low temperature that is disadvantageous to the desulfurization reaction in order to prevent coloring of the product gas oil. As a result, it becomes necessary to extremely reduce the supply amount (liquid hourly space velocity) LHSV of the petroleum distillate, which is extremely undesirable for commercial equipment.

【0032】(比較例−2)比較例−2では本発明の第
二工程の低温処理効果を明確にするために一段水素化処
理を行った。この結果を併せて表1に示す。その結果、
得られた製品軽油の硫黄分は脱硫目標値に合格であった
が、色相は基準値に不合格であった。
Comparative Example 2 In Comparative Example 2, a single-stage hydrogenation treatment was performed to clarify the low-temperature treatment effect of the second step of the present invention. The results are shown in Table 1. as a result,
The sulfur content of the obtained product gas oil passed the desulfurization target value, but the hue failed the reference value.

【0033】(比較例−3)比較例−3では第二工程の
低温処理効果を明確にするために一段水素化処理を行っ
た。この結果を併せて表1に示す。その結果、得られた
製品軽油の硫黄分・色相ともに目標値に不合格であっ
た。100kg/cm2 の圧力で硫黄分・色相ともに目
標値に合格させるためには、製品軽油の着色を防止する
ため脱硫反応に不利な低温で実施せねばならない。この
結果、石油蒸留留出油の供給量(液空間速度)LHSV
を極端に小さくさせる必要性が生じ、商業装置にとって
は非常に好ましくないことである。
Comparative Example 3 In Comparative Example 3, a single-stage hydrogenation treatment was performed to clarify the low-temperature treatment effect of the second step. The results are shown in Table 1. As a result, both the sulfur content and the hue of the obtained product gas oil failed the target values. In order for the sulfur content and the hue to pass the target values at a pressure of 100 kg / cm 2 , it must be carried out at a low temperature that is disadvantageous to the desulfurization reaction in order to prevent coloring of the product gas oil. As a result, the supply amount (liquid hourly space velocity) of the petroleum distillate distillate LHSV
Needs to be extremely small, which is very undesirable for commercial equipment.

【0034】(比較例−4)比較例−4では第一工程の
圧力および温度が共に本発明の条件を満たさない場合の
比較実験を行った。この結果を併せて表1に示す。その
結果、得られた製品軽油の硫黄分・色相ともに目標値に
不合格であった。二段水素化処理法の圧力が30kg/
cm2 では色相改善効果は認められず、二段水素化処理
の色相改善効果を十分発揮させるには45kg/cm2
以上の圧力が必要である。
(Comparative Example 4) In Comparative Example 4, a comparative experiment was performed in which both the pressure and the temperature in the first step did not satisfy the conditions of the present invention. The results are shown in Table 1. As a result, both the sulfur content and the hue of the obtained product gas oil failed the target values. The pressure of the two-stage hydrotreating method is 30 kg /
cm 2 , no hue improving effect was observed, and 45 kg / cm 2 was required to sufficiently exhibit the hue improving effect of the two-stage hydrogenation treatment.
The above pressure is required.

【0035】(比較例−5)比較例−5では貴金属系の
Pt触媒を第二反応塔の水素化処理触媒に使用するには
硫化水素を除去する必要があることを明確にすめために
行った。この結果を併せて表1に示す。その結果、第二
反応塔の水素化処理触媒が貴金属系触媒では、第二反応
塔供給物質中に硫化水素(ガス中に硫化水素2vol%
存在)が存在すると色相改善効果は認められず、二段階
水素化処理法の効果が発揮できない。
(Comparative Example-5) In Comparative Example-5, in order to clearly use the noble metal-based Pt catalyst as a hydrotreating catalyst in the second reaction tower, it was necessary to remove hydrogen sulfide. Was. The results are shown in Table 1. As a result, when the hydrotreating catalyst of the second reaction tower is a noble metal catalyst, hydrogen sulfide (2 vol% of hydrogen sulfide in the gas)
), The effect of improving the hue is not recognized, and the effect of the two-stage hydrotreating method cannot be exhibited.

【0036】(比較例−6)比較例−6では第一工程の
温度が本発明の条件を満たさない場合の比較実験を行っ
た。この結果を併せて表1に示す。その結果、得られた
製品軽油の色相は合格であるが、硫黄分が目標値に不合
格てあった。二段水素化処理法で硫黄分が目標値に達成
されるには第一工程の温度が330℃以上必要である。
なお、比較例1〜6では原料油は実施例1と同じものを
使用した。
(Comparative Example-6) In Comparative Example-6, a comparative experiment was conducted when the temperature in the first step did not satisfy the conditions of the present invention. The results are shown in Table 1. As a result, the hue of the obtained product light oil passed, but the sulfur content did not pass the target value. In order to achieve the target sulfur content in the two-stage hydrotreating method, the temperature of the first step needs to be 330 ° C. or higher.
In Comparative Examples 1 to 6, the same raw material oil as in Example 1 was used.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例および比較例から明らかなように、
商業ベースの石油蒸留留出油の供給量(液空間速度)L
HSVで硫黄分と色相ともに目標値に合格させるために
は本発明の二段水素化処理法が効果的である。
As is clear from the examples and comparative examples,
Commercial base distillate distillate feed rate (liquid hourly space velocity) L
The two-stage hydrotreating method of the present invention is effective for passing both the sulfur content and the hue to the target values by HSV.

【0039】[0039]

【発明の効果】本発明により、色相および酸化安定性が
不良で、硫黄分が0.1〜2.0重量%の範囲にある留
出油を含む石油蒸留留出油から硫黄分0.05重量%以
下(脱硫目標値)で、かつ色相もセーボルト色値で−1
0以上(色相基準値)であるディーゼル軽油を製造する
ことができる。また、本発明により、第二工程の反応塔
水素化処理触媒に多孔性担体にクロム、モリブデン、タ
ングステン、コバルトおよびニッケルよりなる群から選
ばれる少なくとも1種類以上の水素化活性金属種を担持
させた触媒を使用するため、従来の一段法に比べより大
きな液空間速度で処理することができる。つまりより小
さな反応塔容量で処理できる。また従来の鉄、Pt等の
触媒を用いた二段階水素化処理に比べて硫化水素等によ
る触媒被毒を考慮する必要がないので、セパレーター、
ストリッパーおよび洗浄塔などの除去設備が不必要であ
る。したがってより簡素な設備でもって製造することが
できる。これは設備投資額の低減およびランニングコス
トの減少となり商業上非常に好ましい事である。
Industrial Applicability According to the present invention, a sulfur content of 0.05 to 2.0% by weight is obtained from a petroleum distillate containing a distillate having poor hue and oxidation stability and having a sulfur content in the range of 0.1 to 2.0% by weight. % By weight (desulfurization target value) and the hue is -1 in Saybolt color value.
Diesel gas oil having a value of 0 or more (hue reference value) can be produced. Further, according to the present invention, at least one or more hydrogenation active metal species selected from the group consisting of chromium, molybdenum, tungsten, cobalt, and nickel are supported on the porous carrier in the reaction tower hydrotreating catalyst in the second step. Since a catalyst is used, the treatment can be performed at a larger liquid hourly space velocity than in the conventional one-stage method. That is, the treatment can be performed with a smaller reaction tower volume. In addition, since there is no need to consider catalyst poisoning due to hydrogen sulfide or the like as compared with a conventional two-stage hydrogenation treatment using a catalyst such as iron or Pt, a separator,
Removal equipment such as a stripper and a washing tower is unnecessary. Therefore, it can be manufactured with simpler equipment. This results in a reduction in capital investment and a reduction in running costs, which is commercially very favorable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑山 実 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社中央技術研究所内 (72)発明者 石川 勝彦 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社中央技術研究所内 (72)発明者 佐藤 勝 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社中央技術研究所内 (56)参考文献 特開 平3−86793(JP,A) 特公 昭34−4689(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C10G 65/04 C10G 45/02 - 45/30 ──────────────────────────────────────────────────続 き Continued on the front page (72) Minoru Hatayama 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Japan Inside the Central Research Laboratory of Petroleum Co., Ltd. (72) Katsuhiko Ishikawa 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Japan Petroleum Co., Ltd. Central Research Laboratory (72) Inventor Masaru Sato 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Japan Japan Petroleum Co., Ltd. Central Research Laboratory (56) Reference JP-A-3-86793 (JP, A) 34-4689 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C10G 65/04 C10G 45/02-45/30

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫黄分0.1〜2.0重量%、沸点15
0〜400℃の範囲にある石油蒸留留出油を、多孔性担
体にクロム、モリブデン、タングステン、コバルト、ニ
ッケルおよび鉄よりなる群から選ばれる少なくとも1種
類の水素化活性金属を担持させた水素化処理触媒の存在
下、温度330℃〜375℃未満、圧力45〜100K
g/cm2 の条件で水素と接触させて硫黄分を0.05
重量%以下にする第一工程と、多孔性担体にクロム、モ
リブデン、タングステン、コバルト、ニッケルおよび鉄
よりなる群から選ばれる少なくとも2種類の水素化活性
金属を担持させた水素化処理触媒の存在下、温度220
〜275℃、圧力45〜100Kg/cm2 の条件で第
一工程で生成した物質を水素と接触させて硫黄分を0.
05重量%以下、かつ色相をセーボルト色値で−10以
上にする第二工程とからなる低硫黄ディーゼル軽油の製
造方法。
1. A sulfur content of 0.1 to 2.0% by weight and a boiling point of 15
Hydrogenation of a petroleum distillate having a temperature in the range of 0 to 400 ° C., wherein at least one hydrogenation active metal selected from the group consisting of chromium, molybdenum, tungsten, cobalt, nickel and iron is supported on a porous carrier. In the presence of the treatment catalyst, the temperature is from 330 ° C to less than 375 ° C, and the pressure is from 45 to 100K.
g / cm 2 and contact with hydrogen to reduce the sulfur content to 0.05
Weight percent or less, and in the presence of a hydrotreating catalyst in which at least two hydrogenation active metals selected from the group consisting of chromium, molybdenum, tungsten, cobalt, nickel and iron are supported on a porous carrier. , Temperature 220
The substance produced in the first step was brought into contact with hydrogen under the conditions of -275 ° C and a pressure of 45-100 kg / cm 2 to reduce the sulfur content to 0.1 kg.
A low-sulfur diesel fuel oil comprising a second step of adjusting the hue to -10 or more in a Saybolt color value of not more than 05% by weight.
【請求項2】 第二工程で多孔性担体にクロム、モリブ
デン、タングステン、コバルトおよびニッケルよりなる
群から選ばれる少なくとも2種類の水素化活性金属を担
持させた水素化処理触媒を用いる請求項1記載の製造方
法。
2. The method according to claim 1, wherein in the second step, a hydrotreating catalyst is used in which at least two kinds of hydrogenation active metals selected from the group consisting of chromium, molybdenum, tungsten, cobalt and nickel are supported on the porous carrier. Manufacturing method.
【請求項3】 水素化活性金属がコバルト−モリブデ
ン、ニッケル−モリブデンまたはこれらの混合物である
請求項2記載の製造方法。
3. The method according to claim 2, wherein the hydrogenation active metal is cobalt-molybdenum, nickel-molybdenum, or a mixture thereof.
【請求項4】 第一工程で生成した液状物質およびガス
状物質の実質全部を第二工程に供給する請求項1から請
求項3のいずれかに記載の製造方法。
4. The production method according to claim 1, wherein substantially all of the liquid substance and the gaseous substance generated in the first step are supplied to the second step.
【請求項5】 第一工程の液空間速度が2〜6h-1であ
る請求項1から請求項4記載の製造方法。
5. The method according to claim 1 , wherein the liquid hourly space velocity in the first step is 2 to 6 h −1 .
【請求項6】 第二工程の液空間速度が2〜12h-1
ある請求項1から請求項5のいずれかに記載の製造方
法。
6. The production method according to claim 1 , wherein the liquid hourly space velocity in the second step is 2 to 12 h −1 .
【請求項7】 第一工程の水素/油比が200〜500
0scf/bblである請求項1から請求項6のいずれ
かに記載の製造方法。
7. The hydrogen / oil ratio of the first step is from 200 to 500.
The production method according to any one of claims 1 to 6, wherein the production rate is 0 scf / bbl.
【請求項8】 第二工程の水素/油比が200〜500
0scf/bblである請求項1から請求項7のいずれ
かに記載の製造方法。
8. The hydrogen / oil ratio of the second step is from 200 to 500.
The method according to claim 1, wherein the production method is 0 scf / bbl.
【請求項9】 石油蒸留留出油が、流動接触分解(FC
C)油の蒸留により得られる留出油あるいは熱分解油の
蒸留により得られる留出油と原油の常圧蒸留あるいは減
圧蒸留により得られる留出油の混合物である請求項1か
ら請求項8のいずれかに記載の製造方法。
9. The petroleum distillate is subjected to fluid catalytic cracking (FC
C) A mixture of a distillate obtained by distillation of oil or a distillate obtained by distillation of pyrolysis oil and a distillate obtained by atmospheric distillation or vacuum distillation of crude oil. The production method according to any one of the above.
【請求項10】 石油蒸留留出油の、流動接触分解(F
CC)油の蒸留により得られる留出油あるいは熱分解油
の蒸留により得られる留出油と原油の常圧蒸留あるいは
減圧蒸留により得られる留出油の混合比率が1:99〜
99:1である請求項1から請求項のいずれかに記載
の製造方法。
10. A fluid catalytic cracking (F) of a petroleum distillate distillate.
CC) The mixing ratio of distillate obtained by distillation of oil or distillate obtained by distillation of pyrolysis oil to distillate obtained by atmospheric distillation or vacuum distillation of crude oil is 1:99 to
99: The process according to any one of claims 9 a is from claim 1 1.
【請求項11】 第一工程および第二工程の水素化処理
触媒の水素化活性金属の担持量が酸化物として1〜30
重量%である請求項1から請求項10のいずれかに記載
の製造方法。
11. The amount of supported hydrogenation active metal of the hydrotreating catalyst in the first step and the second step is 1 to 30 as an oxide.
The method according to any one of claims 1 to 10, wherein the amount is% by weight.
【請求項12】 第一工程および第二工程の水素化処理
触媒を予備硫化する請求項1から請求項11のいずれか
に記載の製造方法。
12. The production method according to claim 1, wherein the hydrotreating catalysts of the first step and the second step are preliminarily sulfurized.
JP19028892A 1992-06-25 1992-06-25 Method for producing low sulfur diesel gas oil Expired - Lifetime JP3293883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19028892A JP3293883B2 (en) 1992-06-25 1992-06-25 Method for producing low sulfur diesel gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19028892A JP3293883B2 (en) 1992-06-25 1992-06-25 Method for producing low sulfur diesel gas oil

Publications (2)

Publication Number Publication Date
JPH0625678A JPH0625678A (en) 1994-02-01
JP3293883B2 true JP3293883B2 (en) 2002-06-17

Family

ID=16255681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19028892A Expired - Lifetime JP3293883B2 (en) 1992-06-25 1992-06-25 Method for producing low sulfur diesel gas oil

Country Status (1)

Country Link
JP (1) JP3293883B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010314A1 (en) * 2000-07-28 2002-02-07 Japan Energy Corporation Process for super deep desulfurization of light oil fraction
KR101245470B1 (en) * 2005-02-25 2013-03-25 에스케이에너지 주식회사 Method for Preparation of Ultra Low Sulfur Diesel Fuel Having Improved Color Properties

Also Published As

Publication number Publication date
JPH0625678A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JP3187104B2 (en) Method for producing low sulfur diesel gas oil
JP3387700B2 (en) Desulfurization method of catalytic cracking gasoline
JP4798324B2 (en) Method for desulfurizing gasoline comprising desulfurization of heavy and intermediate fractions resulting from fractionation into at least three fractions
US6231753B1 (en) Two stage deep naphtha desulfurization with reduced mercaptan formation
US4149965A (en) Method for starting-up a naphtha hydrorefining process
JP2000109856A (en) Process for hydrodesulfurization of light oil
EP1506270B1 (en) Multi-stage hydrodesulfurization of cracked naphtha streams with a stacked bed reactor
JP3424053B2 (en) Method for producing low sulfur low aromatic gas oil
JP2003529668A (en) Multi-stage hydrotreating method for naphtha desulfurization
JP4099400B2 (en) Method for producing medicinal white oil using M41S and sulfur sorbent
US7713407B2 (en) Production of low sulfur fuels using improved hydrocracker post-treatment catalyst
JP4740544B2 (en) Selective hydrodesulfurization of naphtha stream
JP3293883B2 (en) Method for producing low sulfur diesel gas oil
US5376258A (en) Process for hydrogenating treatment of heavy hydrocarbon oil
US4298458A (en) Low pressure hydrotreating of residual fractions
US6264827B1 (en) Manufacturing process of diesel gas oil with high cetane number and low sulfur
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
JPH05230473A (en) Treatment of heavy hydrocarbon oil
JPH0539492A (en) Production of low sulfur diesel gas oil
JPH05239472A (en) Method of processing heavy hydrocarbon oil
JPH1088153A (en) Production of low-sulfur diesel light oil
JPH06100870A (en) Preparation of base of light diesel oil good in hue and hue stability
RU2100408C1 (en) Method for producing low-sulphur diesel fuel
JPH0657265A (en) Production of diesel gas oil base with good and stable hue

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11