JPH1085822A - Method for controlling cooling of shape - Google Patents

Method for controlling cooling of shape

Info

Publication number
JPH1085822A
JPH1085822A JP24018696A JP24018696A JPH1085822A JP H1085822 A JPH1085822 A JP H1085822A JP 24018696 A JP24018696 A JP 24018696A JP 24018696 A JP24018696 A JP 24018696A JP H1085822 A JPH1085822 A JP H1085822A
Authority
JP
Japan
Prior art keywords
cooling
flange
temperature
rolling
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24018696A
Other languages
Japanese (ja)
Inventor
Teruo Fujibayashi
晃夫 藤林
Makoto Nakaseko
誠 中世古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24018696A priority Critical patent/JPH1085822A/en
Publication of JPH1085822A publication Critical patent/JPH1085822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of the cooling of shapes excellent in yield by dissolving temp. deviation which is generated in the longitudinal direction of the shape and preventing the generation of web wave. SOLUTION: The amount of temp. drop in the tip and rear end parts of a wide flange shape to the size and number of passes of the wide wide flange shape is preliminarily determined from biting speed, rolling speed and bite releasing speed at the time of reversely rolling the wide flange shape 1 with a universal rolling mill. The passages of the tip part and rear end part of the wide flange shape are detected with sensors on the inlet side of a flange cooling device having plural cooling blocks 8 and the nozzles 10 for cooling flanges which is provided in the passing direction of the wide flange shape after finish rolling. The cooling of the flanges is controlled so that the flow rate of cooling liquid supply pipe 9b of one system 9b of two systems 9a, 9b to the cooling blocks is increased from the time when the passage of the tip part of the shape through the cooling block is completed and the flow rate of the cooling liquid supplying pipe 9 to the cooling block is decreased from the time when the rear end part reaches the cooling block.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形鋼、特にH形鋼
の冷却制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling cooling of a section steel, particularly an H section steel.

【0002】[0002]

【従来の技術】H形鋼はウェブがフランジよりも厚みが
薄いため、フランジよりもウェブが冷えやすく、このた
め圧延後にウェブ波などの形状不良が発生しやすい。そ
こで通常はフランジ外面を冷却して、フランジとウェブ
の温度差を解消することがはかられている(例えば、日
本鉄鋼協会講演論文集vol.4(1991) No.5,p.1426 )。
2. Description of the Related Art Since a web of an H-section steel is thinner than a flange, the web is easier to cool than a flange, so that a shape defect such as a web wave is likely to occur after rolling. Therefore, it is usually attempted to eliminate the temperature difference between the flange and the web by cooling the outer surface of the flange (for example, Proceedings of the Iron and Steel Institute of Japan vol.4 (1991) No.5, p.1426).

【0003】フランジ冷却の際のフランジおよびウェブ
の温度履歴を図2に模式的に示す。図中、A線は圧延後
H形鋼を自然放冷したときのフランジ温度の履歴を示
し、B線は同じく自然放冷のときのウェブ温度の履歴を
示す。また、C1線、C2線はフランジをある時間強制
冷却(水冷)したときのフランジ温度の履歴を示す。図
2から分かるように、特にフランジを強制冷却しない場
合には、圧延後のフランジとウェブの温度差は、その熱
容量の差からウェブが早く冷えるため、A線とB線の開
きから、冷却床では最大200℃程度になる。この場
合、ウェブが冷却途中で座屈して伸びの変形を生じるた
め、後からフランジ温度が下がりフランジが縮んでくる
と、ウェブに波状の永久変形が発生する。このウェブ変
形を以下「冷却後のウェブ波」と呼ぶ。そこで、一般に
は図2のDで示す時点からフランジを水冷して、フラン
ジとウェブの温度差を少なくするようにフランジ冷却を
行うのが一般的である。しかしながらこのとき、フラン
ジ温度をウェブ温度より低くしすぎると、C1線で示す
ように冷却中にフランジが縮み過ぎて、ウェブが座屈
し、ウェブ波が発生する。以下このウェブ変形を「冷却
中のウェブ波」と呼ぶ。
FIG. 2 schematically shows the temperature history of the flange and the web during the cooling of the flange. In the drawing, line A shows the history of the flange temperature when the H-section steel is naturally cooled after rolling, and line B shows the history of the web temperature when the H-shaped steel is naturally cooled. Lines C1 and C2 show the history of the flange temperature when the flange is forcibly cooled (water-cooled) for a certain time. As can be seen from FIG. 2, especially when the flange is not forcibly cooled, the temperature difference between the flange and the web after rolling is determined by the difference in heat capacity between the web and the web. In this case, the temperature becomes about 200 ° C. In this case, the web buckles in the course of cooling to cause elongation deformation. Therefore, when the flange temperature decreases later and the flange shrinks, a corrugated permanent deformation occurs in the web. This web deformation is hereinafter referred to as "web wave after cooling". Therefore, generally, the flange is cooled with water from the point indicated by D in FIG. 2 so as to reduce the temperature difference between the flange and the web. However, at this time, if the flange temperature is set too low below the web temperature, the flange shrinks too much during cooling as shown by the line C1, and the web buckles and web waves are generated. Hereinafter, this web deformation is referred to as “web wave during cooling”.

【0004】フランジ冷却は、設備上最長でも100
m、通過時間にして10〜30秒であるので、この限ら
れた時間内のフランジ冷却によって、冷却中および冷却
後のウェブ波の発生を防止するためには、図2のC2線
で示すように水冷中のみならず、冷却後の放冷中でもフ
ランジとウェブの温度差が大きくならないような最適な
フランジ冷却を施す必要がある。
[0004] Flange cooling requires a maximum of 100
m, and the transit time is 10 to 30 seconds. In order to prevent the generation of web waves during and after cooling by the flange cooling within this limited time, as shown by the line C2 in FIG. It is necessary to perform optimum flange cooling not only during water cooling but also during cooling after cooling so that the temperature difference between the flange and the web does not increase.

【0005】一般にH形鋼1は、図3に示すようにユニ
バーサル圧延機2でリバース圧延することによって圧延
され、仕上圧延機3による仕上圧延後にフランジ冷却装
置4を通過してフランジ水冷が施され、さらに切断機5
で鋸断後、冷却床6へ送られて放冷される。この中で、
ユニバーサル圧延機2でリバース圧延する際には、圧延
中のH形鋼1のフランジ温度を制御するために圧延機前
後に冷却ゾーン7a、7bが設けられているのが一般的
である。H形鋼1はこのユニバーサル圧延機2で圧延さ
れながらその長さが最長で80m程度に伸びる。しか
し、設備上圧延機前後の冷却ゾーン7a、7bはその長
さが限られているので、H形鋼1の全長にわたって一斉
に冷却することは不可能である。そこで一般には圧延機
前後の約10mが冷却ゾーンとなっており、H形鋼を通
過させながら冷却を行う。圧延は、通常、咬み込み速度
および咬み放し速度が定常部(H形鋼の中央部)の圧延
速度よりも遅いため、H形鋼1の先端部および後端部の
冷却ゾーン通過時間が定常部の冷却ゾーン通過時間より
も長くなるため、先端部および後端部の温度は定常部の
温度よりも低下する。また、リバース圧延時にも同じ理
由から先端部および後端部の温度は定常部よりも温度が
低下する。従って、H形鋼のフランジの長手方向の温度
分布は、図4に模式的に示すように、定常部に比べて先
端部および後端部の温度が低い分布となっている。
[0005] Generally, the H-section steel 1 is rolled by reverse rolling in a universal rolling mill 2 as shown in FIG. , And a cutting machine 5
And then sent to the cooling floor 6 where it is cooled. In this,
When reverse rolling is performed by the universal rolling mill 2, cooling zones 7a and 7b are generally provided before and after the rolling mill in order to control the flange temperature of the H-beam 1 during rolling. The length of the H-section steel 1 is extended up to about 80 m while being rolled by the universal rolling mill 2. However, since the length of the cooling zones 7a and 7b before and after the rolling mill is limited on the equipment, it is impossible to simultaneously cool the entire length of the H-section steel 1. Therefore, generally, about 10 m before and after the rolling mill is a cooling zone, and cooling is performed while passing through an H-section steel. In rolling, usually, the biting speed and the biting release speed are slower than the rolling speed of the stationary portion (the central portion of the H-shaped steel), so that the passage time through the cooling zone at the front end and the rear end of the H-shaped steel 1 is constant. Therefore, the temperature at the front end and the rear end is lower than the temperature at the steady portion. Also, at the time of reverse rolling, the temperature of the leading end and the trailing end is lower than that of the steady part for the same reason. Accordingly, the temperature distribution in the longitudinal direction of the flange of the H-section steel is such that, as schematically shown in FIG. 4, the temperature at the front end portion and the rear end portion is lower than that at the steady portion.

【0006】このような温度分布を持つH形鋼をフラン
ジ冷却装置4に送ってフランジ冷却を施すと、H形鋼1
の先端部と後端部は温度が低下しているため、冷却中の
ウェブ波が発生しやすい。そこで先端部および後端部の
冷却を弱めると、逆に定常部にとってはフランジが冷却
不足となり、冷却後のウェブ波が発生する。以上のよう
に圧延機で生じたH形鋼の長手方向の不均一な温度分布
からウェブ波が発生しやすかった。
When an H-section steel having such a temperature distribution is sent to the flange cooling device 4 to perform flange cooling, the H-section steel 1
Since the temperature of the leading end and the trailing end of the substrate is low, web waves are likely to be generated during cooling. Therefore, if the cooling of the front end portion and the rear end portion is weakened, the flange becomes insufficiently cooled for the stationary portion, and a web wave after the cooling is generated. As described above, the web wave was easily generated from the uneven temperature distribution in the longitudinal direction of the H-section steel generated in the rolling mill.

【0007】これまでフランジの冷却装置、冷却方法お
よび温度制御方法に関しては多くの提案がなされてい
る。例えば、圧延機に案内するサイドガイドに冷却水ノ
ズルを設けてフランジ冷却を行うもの(特公昭41−2
0336号)、ウェブ波評価指数を関数式で表示して温
度調整を行う方法(特公昭60−37856号)があ
り、特にH形鋼の温度偏差に応じて冷却を制御する方法
としては、鋼材のトラッキング情報により、冷却制御ゾ
ーンを順次作動させ、冷却液を噴射させるフランジ冷却
制御方法(特開平4−52021号)、フランジの幅方
向にノズルを多段配置して、送り方向には多連配置し
て、各ゾーン、各配置段ごとの冷却水供給をON−OF
F制御し、フランジ幅方向の温度分布を一様ならしめる
曲り制御方法(特開平5−337535号)、被圧延材
の表面温度の測定値に応じて、水冷ゾーンと冷却水量を
補正する温度制御を行う冷却方法(特開平6−2184
22号)がある。
Many proposals have been made on a cooling device, a cooling method, and a temperature control method for a flange. For example, a method in which a cooling water nozzle is provided in a side guide for guiding a rolling mill to perform flange cooling (Japanese Patent Publication No. 41-2)
No. 0336), there is a method of adjusting the temperature by displaying the web wave evaluation index as a function formula (Japanese Patent Publication No. 60-37856). Particularly, as a method of controlling the cooling according to the temperature deviation of the H-section steel, a steel material is used. The cooling information is sequentially operated according to the tracking information, and a flange cooling control method for injecting a cooling liquid (Japanese Patent Laid-Open No. 4-52021), a multi-stage arrangement of nozzles in the width direction of the flange and a multi-stage arrangement in the feed direction And supply the cooling water for each zone and each arrangement stage to ON-OF
F control, a bend control method for equalizing the temperature distribution in the flange width direction (JP-A-5-337535), temperature control for correcting the water cooling zone and the amount of cooling water according to the measured value of the surface temperature of the material to be rolled (Japanese Patent Laid-Open No. 6-2184)
No. 22).

【0008】これらの従来技術はいずれも圧延中のH形
鋼の鋼材表面温度の測定値に準じて温度制御を行う方法
であるが、測定した表面温度は真の温度、つまり鋼材内
部の平均温度を反映していないため、復熱後の温度予測
精度が悪い。また、特開平6−190416号公報に
は、被圧延材の表面温度の測定値から復熱後の温度を計
算によって求め、その値に応じて水冷ゾーンの冷却水量
を補正して温度制御を行う冷却方法が開示されている
が、板厚や板内初期温度分布の違いから予測した復熱温
度が実際と大きく異なっており、温度精度が十分ではな
い。従って、従来の温度制御方法ではH形鋼の先端部と
後端部に存在する低温部を解消するようなオンライン温
度制御方法、具体的には先後端部の冷却水量をその温度
に応じて定常部に比べて少なくするというような温度制
御は難しく、たとえ実施したとしても精度が十分ではな
かった。その結果、H形鋼の先端部と後端部のウェブ波
の発生は避けられなかった。
All of these prior arts are methods for controlling the temperature in accordance with a measured value of the surface temperature of the steel material of the H-section steel being rolled, but the measured surface temperature is a true temperature, that is, an average temperature inside the steel material. , The accuracy of temperature prediction after reheating is poor. Japanese Patent Application Laid-Open No. Hei 6-190416 discloses that a temperature after recuperation is calculated from a measured value of a surface temperature of a material to be rolled, and a temperature control is performed by correcting a cooling water amount in a water cooling zone according to the calculated value. Although a cooling method is disclosed, the recuperation temperature predicted from the difference in the sheet thickness and the initial temperature distribution in the sheet is significantly different from the actual temperature, and the temperature accuracy is not sufficient. Therefore, in the conventional temperature control method, an on-line temperature control method that eliminates the low-temperature portion existing at the leading end and the trailing end of the H-section steel, specifically, the amount of cooling water at the leading and trailing ends is regulated in accordance with the temperature. It was difficult to control the temperature, for example, to make it smaller than the part, and even if it was implemented, the accuracy was not sufficient. As a result, generation of web waves at the front and rear ends of the H-section steel was inevitable.

【0009】[0009]

【発明が解決しようとする課題】本発明は、かかる問題
を解決するためになされたもので、形鋼の長手方向に発
生する温度偏差を解消して、ウェブ波の発生を防止し、
歩留りのよい形鋼の冷却制御方法を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in order to solve such a problem, and eliminates a temperature deviation occurring in a longitudinal direction of a section steel to prevent generation of a web wave.
It is an object of the present invention to provide a method of controlling the cooling of a shaped steel with a good yield.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するた
め、本発明に係る形鋼の冷却制御方法は、被圧延材のリ
バース圧延、仕上圧延、フランジ冷却を経て形鋼を製造
する方法において、被圧延材のリバース圧延時における
咬み込み速度、圧延速度、咬み放し速度から、あらかじ
め被圧延材のサイズ、パス回数に対する、被圧延材の先
端部および後端部の温度降下量を求めておき、被圧延材
がフランジ冷却装置を通過する時、前記温度降下量に基
づいて該被圧延材の先端部および後端部の冷却液量を該
被圧延材の定常部の冷却液量よりも減少するよう制御す
ることとしたものである。
Means for Solving the Problems In order to solve the above problems, a method for controlling the cooling of a shaped steel according to the present invention is directed to a method for producing a shaped steel through reverse rolling, finish rolling, and flange cooling of a material to be rolled. From the biting speed, the rolling speed, and the biting speed during the reverse rolling of the material to be rolled, the size of the material to be rolled, the number of passes, in advance, the amount of temperature drop at the leading end and the rear end of the material to be rolled is determined. When the material to be rolled passes through the flange cooling device, the amount of coolant at the leading end and the rear end of the material to be rolled is reduced from the amount of coolant at the steady portion of the material to be rolled based on the temperature drop. The control is performed as follows.

【0011】また、本発明は、前記フランジ冷却装置が
被圧延材の通過方向に設けられた複数の冷却ブロックを
有し、前記フランジ冷却装置の入側において該被圧延材
の先端部および後端部の通過を検出し、その先端部が前
記冷却ブロックを通過し終わる時からその冷却ブロック
への冷却液供給量を増加し、その後端部が前記冷却ブロ
ックに到達する時からその冷却ブロックへの冷却液供給
量を減少するよう制御することを特徴とする。
Further, according to the present invention, the flange cooling device has a plurality of cooling blocks provided in a passage direction of the material to be rolled, and a leading end portion and a rear end of the material to be rolled are provided on the entrance side of the flange cooling device. Part is detected, the amount of coolant supplied to the cooling block is increased from the time when the leading end thereof has passed through the cooling block, and the amount of coolant supplied to the cooling block is increased when the trailing end reaches the cooling block. The cooling liquid supply amount is controlled to be reduced.

【0012】以上の手段により、形鋼の先端部と後端部
のフランジ温度を定常部のフランジ温度と同じにするこ
とが可能となるので、局部的なウェブ波の発生を防止で
き、歩留りの高い形鋼の製造が可能となる。
By the above means, it is possible to make the flange temperature of the front end portion and the rear end portion of the section steel the same as the flange temperature of the steady portion, so that the generation of local web waves can be prevented, and the yield can be reduced. Production of high section steel is possible.

【0013】[0013]

【発明の実施の形態】図1は本発明の冷却制御方法に使
用するフランジ冷却装置の一部分を示す概要図で、図3
で示したフランジ冷却装置4の一部を構成するものであ
る。このフランジ冷却装置4は、複数の冷却ブロック8
に分かれており、その1つが図1に示されている。図示
のように、冷却ブロック8は被圧延材1のフランジ側に
それぞれ2本の独立に流量制御可能な冷却液供給管9
a、9bを有する。なお、他方のフランジ側にも同じ冷
却液供給管が配置されているが、図示は省略する。これ
らの冷却液供給管9a、9bにはフランジに向けて冷却
液を噴射するノズル10が交互に設けられている。この
ようにして1つの冷却ブロック8が構成されている。H
形鋼以外の形鋼、例えばT形鋼に対しては、一方側の冷
却液供給管への冷却液供給を停止すればよい。
FIG. 1 is a schematic diagram showing a part of a flange cooling device used in a cooling control method according to the present invention.
This constitutes a part of the flange cooling device 4 shown in FIG. The flange cooling device 4 includes a plurality of cooling blocks 8.
, One of which is shown in FIG. As shown in the figure, a cooling block 8 is provided on the flange side of the material 1 to be rolled with two cooling liquid supply pipes 9 each capable of independently controlling the flow rate.
a and 9b. Although the same coolant supply pipe is arranged on the other flange side, it is not shown. The cooling liquid supply pipes 9a and 9b are alternately provided with nozzles 10 for jetting the cooling liquid toward the flange. Thus, one cooling block 8 is configured. H
For a shaped steel other than the shaped steel, for example, a T-shaped steel, the supply of the coolant to the coolant supply pipe on one side may be stopped.

【0014】[0014]

【実施例】H形鋼について実施した本発明の実施例を説
明する。H形鋼は、図3に示すような設備で、高さ40
0mm、幅200mm、フランジ厚み22mm、ウェブ
厚み12mm、長さ80mのものを製造した。まず、H
形鋼1をユニバーサル圧延機2でリバース圧延し、その
途中で圧延機前後の10mの冷却ゾーン7a、7bでフ
ランジを水冷した。圧延パスは9パス(4往復+1パ
ス)としたが、そのうち最後の4パスはこの冷却ゾーン
7a、7bで水を噴射し、フランジの冷却を行った。こ
のとき咬み込み速度は3.1m/s、定常部の圧延速度
は7.9m/s、咬み放し速度は4.7m/sであっ
た。従って、冷却ゾーン7a、7bでの冷却時間は、先
端部、定常部、後端部が圧延機前後の10mの冷却ゾー
ン(合計20mの冷却ゾーン)を通過するのにそれぞれ
6.5秒、2.5秒、4.3秒かかった。これに応じて
同じ冷却条件でフランジの冷却が行なわれたとしてもそ
の冷却量は1回の往復(2パスあたり)で先端部と後端
部が定常部に比べて約2倍冷却が多く施された計算にな
る。実際、このときH形鋼の先端部、中央部、後端部の
温度はそれぞれ780℃、850℃、775℃であっ
た。
EXAMPLE An example of the present invention implemented on an H-section steel will be described. The H-section steel is equipped with equipment as shown in FIG.
A product having a thickness of 0 mm, a width of 200 mm, a flange thickness of 22 mm, a web thickness of 12 mm, and a length of 80 m was produced. First, H
The section steel 1 was reverse-rolled by the universal rolling mill 2, and the flange was water-cooled in the cooling zones 7 a and 7 b of 10 m before and after the rolling mill. The rolling pass was 9 passes (4 reciprocations + 1 pass). Of the last 4 passes, water was injected in the cooling zones 7a and 7b to cool the flange. At this time, the biting speed was 3.1 m / s, the rolling speed in the steady portion was 7.9 m / s, and the biting release speed was 4.7 m / s. Therefore, the cooling time in the cooling zones 7a, 7b is 6.5 seconds, 2 seconds for the leading end, the steady part, and the trailing end to pass through the 10 m cooling zone before and after the rolling mill (total 20 m cooling zone). It took 0.5 seconds and 4.3 seconds. Accordingly, even if the flange is cooled under the same cooling conditions, the cooling amount is about twice as much at the front end and the rear end in one reciprocation (per two passes) as compared to the steady part. Calculated. Actually, at this time, the temperatures at the front end, center, and rear end of the H-section steel were 780 ° C, 850 ° C, and 775 ° C, respectively.

【0015】このH形鋼1を仕上圧延後、図1の構成か
らなるフランジ冷却装置4へ送り、通過させながら水冷
によりフランジの冷却を施した。このフランジ冷却装置
4は全長75mで、5mずつの冷却ブロックに分割され
ている。各冷却ブロックのフランジ冷却用のノズル10
は、フランジの片側において独立に流量を制御可能な2
系統の冷却液供給管9a、9bから300mmピッチで
交互に設置されている。そして、時定数を小さくして冷
却の制御性を上げるために、図示しない流量制御弁を各
冷却ブロックの2系統の冷却液供給管9a、9bにそれ
ぞれ配置している。また、フランジ冷却装置4の入側に
は図3に示すようにH形鋼の通過を検出するセンサー1
1を設け、H形鋼1の先端と後端の通過を検知する。
After finishing and rolling this H-section steel 1, it was sent to a flange cooling device 4 having the structure shown in FIG. 1, and the flange was cooled by water cooling while passing through. The flange cooling device 4 has a total length of 75 m and is divided into cooling blocks of 5 m each. Nozzle 10 for cooling the flange of each cooling block
Has two independently controllable flow rates on one side of the flange
The cooling liquid supply pipes 9a and 9b of the system are installed alternately at a pitch of 300 mm. Then, in order to reduce the time constant and improve the controllability of cooling, flow control valves (not shown) are arranged in the two cooling liquid supply pipes 9a and 9b of each cooling block. As shown in FIG. 3, a sensor 1 for detecting passage of an H-section steel is provided on the inlet side of the flange cooling device 4.
1 to detect the passage of the front and rear ends of the H-section steel 1.

【0016】そして、このフランジ冷却装置4にH形鋼
1を搬送速度7m/sで通過させてフランジの冷却を施
した。冷却水量はあらかじめH形鋼の先端部が適正に冷
却されるように各冷却ブロックの水量を1系統の冷却液
供給管9aに対しては100%、もう1系統の冷却液供
給管9bに対しては50%に絞って通過前に流量を設定
しておく。フランジ冷却装置4の前に設けたセンサー1
1によってH形鋼1の先端の通過を検知し、搬送速度か
ら各冷却ブロックをH形鋼先端から20mの部分が通過
し終わる時刻を計算して、先端部の20m区間がその冷
却ブロックを通過し終わったら、その冷却ブロックの冷
却水量を先端部の冷却水量よりも25%多くなるよう
に、各冷却ブロックの2系統9a、9bあるうちの1系
統9bの冷却液供給管の流量を50%から100%に開
放した。同じ様にH形鋼1の後端の通過をセンサー8が
検知した場合、搬送速度から各冷却ブロックにH形鋼後
端から20mの部分が通過し終わる時刻を計算して、そ
の後端部が各冷却ブックに差しかかったらその冷却ブロ
ックの冷却水量を定常部の冷却水量よりも25%少なく
するように、各冷却ブロックの2系統9a、9bあるう
ちの1系統9bの冷却液供給管の流量を100%から5
0%に絞った。
The H-shaped steel 1 was passed through the flange cooling device 4 at a conveying speed of 7 m / s to cool the flange. The amount of cooling water is set to 100% for one cooling liquid supply pipe 9a and to 100% for another cooling liquid supply pipe 9b so that the tip of the H-section steel is properly cooled in advance. And set the flow rate to 50% before passing. Sensor 1 provided before flange cooling device 4
1 detects the passage of the end of the H-section steel 1 and calculates the time at which the portion 20 m from the end of the H-section steel passes through each cooling block from the transport speed, and the section 20 m of the tip passes through the cooling block. When the cooling is completed, the flow rate of the cooling liquid supply pipe of one of the two systems 9a and 9b of each cooling block is set to 50% so that the amount of cooling water of the cooling block is 25% larger than the amount of cooling water at the front end. To 100%. Similarly, when the sensor 8 detects the passage of the rear end of the H-section steel 1, the time at which the portion 20 m from the rear end of the H-section steel passes through each cooling block is calculated from the transport speed, and the rear end is calculated. When reaching each cooling book, the flow rate of the cooling liquid supply pipe of one of the two systems 9a and 9b of each cooling block is set such that the cooling water amount of the cooling block is reduced by 25% from the cooling water amount of the steady part. From 100% to 5
It was reduced to 0%.

【0017】このような冷却水量の増減制御によって、
H形鋼の先端部、定常部および後端部をほぼ目標の冷却
停止温度500℃へ±15℃以内で制御することができ
た。その結果、フランジの冷却不足、過冷却から発生す
る冷却後のウェブ波と冷却中のウェブ波は見られなかっ
た。
By controlling the increase or decrease of the cooling water amount,
It was possible to control the leading end, the steady part, and the trailing end of the H-section steel to the target cooling stop temperature of 500 ° C. within ± 15 ° C. As a result, the web wave after cooling and the web wave during cooling caused by insufficient cooling and overcooling of the flange were not observed.

【0018】また、H形鋼の先端部、定常部および後端
部に対する冷却水量(注水量)については次のように検
討した。H形鋼のフランジ厚み、リバース圧延中の冷却
ゾーン通過速度、フランジを冷却するパス数毎に、あら
かじめH形鋼の先端部および後端部の冷却ゾーンでの温
度降下量を求めておく。この表から圧延速度、咬み込み
速度、咬み放し速度に応じたH形鋼の先端部および後端
部の温度降下量を求める。H形鋼の先端部および後端部
の温度降下量を示す線図は、図4に示した温度曲線と類
似したものとなる。また本実施例のように、H形鋼が2
パスにわたってフランジの水冷が施される場合について
はH形鋼の先端および後端がそれぞれ咬み込み、咬み放
しを経るので、このときの通過速度は(咬み込み速度+
咬み放し速度)/2とした。このような近似でも特に大
きな温度誤差は生じなかった。一方、フランジ冷却装置
4に関しても注水量、入側温度、フランジ厚み、通過速
度と温度降下量との関係をあらかじめ求めておく。次
に、最終目標の冷却終了温度とするためのH形鋼の先端
部、定常部および後端部のフランジ冷却装置4における
所要温度降下量、生産性を確保するための通過速度、お
よびフランジ厚みから、H形鋼の先端部、定常部および
後端部の注水量を決定する。なお、本実施例で求めた各
条件下での温度降下量は、実績値をもとに決定したが、
伝熱の計算で求めてもよい。
The cooling water amount (water injection amount) for the front end portion, the steady portion, and the rear end portion of the H-section steel was examined as follows. The amount of temperature drop in the cooling zone at the front and rear ends of the H-section steel is determined in advance for each flange thickness of the H-section steel, the cooling zone passage speed during reverse rolling, and the number of passes for cooling the flange. From this table, the amount of temperature drop at the front end and the rear end of the H-section steel is determined according to the rolling speed, biting speed, and biting speed. The diagram showing the temperature drop amounts at the front and rear ends of the H-section steel is similar to the temperature curve shown in FIG. Also, as in the present embodiment, the H-section steel is 2
In the case where the flange is water-cooled over the pass, the leading end and the trailing end of the H-shaped steel bite and release, respectively, so that the passing speed at this time is (biting speed +
(Biting speed) / 2. Even such an approximation did not cause a particularly large temperature error. On the other hand, regarding the flange cooling device 4, the relationship between the water injection amount, the inlet temperature, the flange thickness, the passing speed, and the temperature drop amount is determined in advance. Next, the required temperature drop in the flange cooling device 4 at the front end portion, the steady portion, and the rear end portion of the H-section steel for setting the final cooling end temperature, the passing speed for ensuring productivity, and the flange thickness , The amount of water to be injected into the front end portion, the steady portion, and the rear end portion of the H-section steel is determined. In addition, the temperature drop amount under each condition obtained in this example was determined based on the actual value,
The heat transfer may be calculated.

【0019】本実施例では、ノズルを2系統に分けてそ
の流量を調整することで冷却制御を行ったが、同じ冷却
制御はノズルを間引くことによっても可能であることは
いうまでもない。また、H形鋼の先端部と後端部の低温
である部分の長さは咬み込み速度から定常部の圧延速度
へ変更した位置および定常部の圧延速度から咬み放し速
度へ速度を落とした位置の通過に応じてフランジ冷却装
置の注水量の制御を行うことが望ましい。
In this embodiment, the cooling control is performed by dividing the nozzles into two systems and adjusting the flow rate. However, it goes without saying that the same cooling control can be performed by thinning out the nozzles. The lengths of the low-temperature portions at the front and rear ends of the H-section steel are the positions where the biting speed was changed to the rolling speed of the steady portion and the positions where the speed was reduced from the rolling speed of the steady portion to the releasing speed. It is desirable to control the amount of water injected into the flange cooling device in accordance with the passage of water.

【0020】(比較例)比較例として、上記実施例と同
じH形鋼1を同じフランジ冷却装置4を通過させてフラ
ンジの冷却を行った。このとき、H形鋼の先端部、後端
部の冷却制御は行わず全ての部分に各冷却ブロックに設
けられた2系統の冷却液供給管9a、9bから100%
の水量を供給して冷却した。搬送速度は実施例と同じで
ある。その結果、フランジ冷却装置4を通過後のH形鋼
1の先端部、中央部、後端部の温度はそれぞれ440
℃、550℃、455℃であり、先端部と後端部に冷却
中に発生したと見られるウェブ波(冷却中のウェブ波)
が見られた。また、同じ装置で、同じH形鋼を先端部、
後端部の冷却性を行わず全ての部分に各冷却ブロックに
設けられた1系統の冷却液供給管9aから100%、残
りの1系統の冷却液供給管9bから50%の水量を供給
して冷却した。搬送速度は実施例と同じである。その結
果、フランジ冷却装置4を通過後のH形鋼の先端部、中
央部、後端部の温度はそれぞれ550℃、620℃、5
45℃であり、中央部に冷却後のウェブ波の発生が見ら
れた。
(Comparative Example) As a comparative example, the same H-shaped steel 1 as in the above embodiment was passed through the same flange cooling device 4 to cool the flange. At this time, the cooling control of the leading end and the trailing end of the H-section steel is not performed, and 100% of the cooling liquid supply pipes 9a and 9b provided in each cooling block are provided in all parts.
Was supplied and cooled. The transport speed is the same as in the embodiment. As a result, the temperature at the front end, center, and rear end of the H-section steel 1 after passing through the flange cooling device 4 is 440, respectively.
° C, 550 ° C, 455 ° C, web waves appearing to have occurred during cooling at the leading and trailing ends (web waves during cooling)
It was observed. In addition, the same device, the same H-shaped steel tip,
Without cooling the rear end, 100% water is supplied to all parts from one cooling liquid supply pipe 9a provided in each cooling block and 50% water is supplied from the remaining one cooling liquid supply pipe 9b. And cooled. The transport speed is the same as in the embodiment. As a result, the temperatures at the front end, center, and rear end of the H-section steel after passing through the flange cooling device 4 are 550 ° C., 620 ° C., and 5 ° C., respectively.
The temperature was 45 ° C., and generation of a web wave after cooling was observed at the center.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば次のような効果を得ることができる。 (1)形鋼の全体にわたってフランジの温度を一様とす
ることができるので、局部的なウェブ波の発生がない。 (2)ウェブ波の発生がないため、製品の製造歩留りを
落とすことなく形鋼の製造が可能となる。
As is clear from the above description, according to the present invention, the following effects can be obtained. (1) Since the temperature of the flange can be made uniform over the entire shape steel, there is no generation of local web waves. (2) Since there is no generation of web waves, it is possible to produce a shaped steel without lowering the production yield of the product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるフランジ冷却装置の1冷却ブロ
ックを示す概要図である。
FIG. 1 is a schematic diagram showing one cooling block of a flange cooling device according to the present invention.

【図2】H形鋼圧延後のフランジおよびウェブの温度履
歴を示す図である。
FIG. 2 is a diagram showing a temperature history of a flange and a web after H-section steel rolling.

【図3】H形鋼の製造ラインを示す説明図である。FIG. 3 is an explanatory view showing a production line for H-section steel.

【図4】リバース圧延後のH形鋼の長手方向のフランジ
温度分布を示す図である。
FIG. 4 is a diagram showing a flange temperature distribution in the longitudinal direction of an H-beam after reverse rolling.

【符号の説明】 1 H形鋼 2 ユニバーサル圧延機 3 仕上圧延機 4 フランジ冷却装置 5 切断機 6 冷却床 7a、7b 冷却ゾーン 8 冷却ブロック 9a、9b 冷却液供給管 10 ノズル 11 センサー[Description of Signs] 1 H-section steel 2 Universal rolling mill 3 Finishing rolling mill 4 Flange cooling device 5 Cutting machine 6 Cooling floor 7a, 7b Cooling zone 8 Cooling block 9a, 9b Coolant supply pipe 10 Nozzle 11 Sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被圧延材のリバース圧延、仕上圧延、フ
ランジ冷却を経て形鋼を製造する方法において、 被圧延材のリバース圧延時における咬み込み速度、圧延
速度、咬み放し速度から、あらかじめ被圧延材のサイ
ズ、パス回数に対する、被圧延材の先端部および後端部
の温度降下量を求めておき、 被圧延材がフランジ冷却装置を通過する時、前記温度降
下量に基づいて該被圧延材の先端部および後端部の冷却
液量を該被圧延材の定常部の冷却液量よりも減少するよ
う制御することを特徴とする形鋼の冷却制御方法。
1. A method for producing a shaped steel through reverse rolling, finish rolling, and flange cooling of a material to be rolled, comprising: The amount of temperature drop at the front end and the rear end of the material to be rolled with respect to the size of the material and the number of passes is determined, and when the material to be rolled passes through the flange cooling device, the material to be rolled is determined based on the temperature drop. Controlling the amount of coolant at the leading end and the trailing end of the material to be less than the amount of coolant at the steady portion of the material to be rolled.
【請求項2】 前記フランジ冷却装置が被圧延材の通過
方向に設けられた複数の冷却ブロックを有し、前記フラ
ンジ冷却装置の入側において該被圧延材の先端部および
後端部の通過を検出し、その先端部が前記冷却ブロック
を通過し終わる時からその冷却ブロックへの冷却液供給
量を増加し、その後端部が前記冷却ブロックに到達する
時からその冷却ブロックへの冷却液供給量を減少するよ
う制御することを特徴とする請求項1記載の形鋼の冷却
制御方法。
2. The flange cooling device has a plurality of cooling blocks provided in a direction in which the material to be rolled passes, and the passage of the leading end portion and the rear end portion of the material to be rolled at the entrance side of the flange cooling device. The amount of coolant supplied to the cooling block is increased from the time when the leading end thereof has passed through the cooling block, and the amount of coolant supplied to the cooling block from the time when the trailing end reaches the cooling block. The method for controlling cooling of a shaped steel according to claim 1, wherein the control is performed so as to reduce the temperature.
JP24018696A 1996-09-11 1996-09-11 Method for controlling cooling of shape Pending JPH1085822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24018696A JPH1085822A (en) 1996-09-11 1996-09-11 Method for controlling cooling of shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24018696A JPH1085822A (en) 1996-09-11 1996-09-11 Method for controlling cooling of shape

Publications (1)

Publication Number Publication Date
JPH1085822A true JPH1085822A (en) 1998-04-07

Family

ID=17055751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24018696A Pending JPH1085822A (en) 1996-09-11 1996-09-11 Method for controlling cooling of shape

Country Status (1)

Country Link
JP (1) JPH1085822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954826B1 (en) 2008-06-26 2010-04-27 현대제철 주식회사 Control cooling method at rolling guide
CN103056175A (en) * 2012-12-21 2013-04-24 山西新泰钢铁有限公司 Alternative cooling control method of hot rolling H-section steel flange
KR101294912B1 (en) * 2011-04-29 2013-08-08 주식회사 포스코 Apparatus of tracking head and tail of plate and plate cooling system using the same
WO2019059105A1 (en) * 2017-09-19 2019-03-28 新日鐵住金株式会社 Device and method for cooling steel material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954826B1 (en) 2008-06-26 2010-04-27 현대제철 주식회사 Control cooling method at rolling guide
KR101294912B1 (en) * 2011-04-29 2013-08-08 주식회사 포스코 Apparatus of tracking head and tail of plate and plate cooling system using the same
CN103056175A (en) * 2012-12-21 2013-04-24 山西新泰钢铁有限公司 Alternative cooling control method of hot rolling H-section steel flange
WO2019059105A1 (en) * 2017-09-19 2019-03-28 新日鐵住金株式会社 Device and method for cooling steel material
JP6515362B1 (en) * 2017-09-19 2019-05-22 日本製鉄株式会社 Steel material cooling device and method
CN111093850A (en) * 2017-09-19 2020-05-01 日本制铁株式会社 Cooling device and cooling method for steel material

Similar Documents

Publication Publication Date Title
KR101395509B1 (en) Hot-rolled steel sheet manufacturing device, and hot-rolled steel sheet manufacturing method
US4785646A (en) Method of cooling hot-rolled steel plate
JP3853428B2 (en) Method and equipment for drawing and rolling steel pipes
JP3642031B2 (en) Hot strip strip cooling system
EP0140592B1 (en) Method and apparatus for cooling steel rod
JPH11347629A (en) Straightening and cooling device for high temperature steel plate and its straightening and cooling method
JP4029865B2 (en) Hot rolled steel sheet manufacturing equipment and hot rolled steel sheet manufacturing method
JPH1085822A (en) Method for controlling cooling of shape
CN110883086B (en) Collinear production method of titanium and titanium alloy section and section steel
KR950009142B1 (en) Method for suppressing fluctation of width in hot rolled strip
JP3460583B2 (en) Thick steel plate manufacturing apparatus and thick steel plate manufacturing method
US9511401B2 (en) Energy-saving device for rolling plant
JP2001300628A (en) Method for cooling joined steel sheet
JPH10202301A (en) Manufacture of t-shape steel
JP2007203317A (en) Thermal crown control device, rolling mill, and metal strip manufacturing method using the rolling mill
KR890002799B1 (en) Method for controlling the temperature of steel strip in the cooling zone of continuous annealing furnace
JPH0671328A (en) Controller for cooling hot rolled steel plate
JP3345776B2 (en) Method and apparatus for cooling U-shaped sheet pile
JP2001314901A (en) Method for rolling hot rolled steel plate and hot rolling apparatus
JP2003320404A (en) Manufacturing method of steel sheet having different sheet thickness in longitudinal direction
JPH05337505A (en) Method for controlling cooling of material to be rolled in hot rolling
JP2000135503A (en) Hot rolling equipment and hot rolling method
JP4432669B2 (en) H-shaped steel cooling method and cooling line equipment
JP2008194733A (en) Cooling device and method for work roll of metal plate rolling mill, and metal plate manufacturing method using the same cooling method
JPH1076308A (en) Device for cooling wide flange shape

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726