JPH1085583A - Method for producing fine powder - Google Patents

Method for producing fine powder

Info

Publication number
JPH1085583A
JPH1085583A JP26382296A JP26382296A JPH1085583A JP H1085583 A JPH1085583 A JP H1085583A JP 26382296 A JP26382296 A JP 26382296A JP 26382296 A JP26382296 A JP 26382296A JP H1085583 A JPH1085583 A JP H1085583A
Authority
JP
Japan
Prior art keywords
gas
film flow
liquid film
nozzle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26382296A
Other languages
Japanese (ja)
Other versions
JP4014239B2 (en
Inventor
Yukihiro Matsuda
行弘 松田
Yuichi Ishikawa
雄一 石川
Kazumasa Tezuka
和正 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Iron Powder Co Ltd
Original Assignee
Dowa Iron Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Iron Powder Co Ltd filed Critical Dowa Iron Powder Co Ltd
Priority to JP26382296A priority Critical patent/JP4014239B2/en
Publication of JPH1085583A publication Critical patent/JPH1085583A/en
Application granted granted Critical
Publication of JP4014239B2 publication Critical patent/JP4014239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To granulate or pulverize in a high yield by forming a molten body of a powdery substance in the form of a liquid film flow of a specified thickness and carrying out the collision of the liquid film flow with a gas film flow of sufficient amount for shearing the liquid film flow at the specified gas flow velocity in a manner of crossing both film flows each other. SOLUTION: A molten body 9 or slurry of a powdery substance in a vessel 8 is passed through a stopper 10 and fed from a hot molten material injection opening or a jet outlet 7 onto a central section of a rotating desk surface 3 to form a liquid film flow. If necessary, the rotating desk 1 is heated in a non- contact manner by a high-frequency induction heating coil 4, and also a hot molten material injection nozzle or a jet nozzle 6 is heated similarly by a high- frequency induction coil 5. On the other hand, inactive gas fed from a gas feed source is jetted in the state of annular film encircling the rotating desk 1 from an annular nozzle 2 set close to the periphery of the rotating desk 1. The collision of the liquid film flow with the gas film flow is generated by the crossing of both film flows all over the circumference of the rotating desk 1 by the above constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はペイント用の顔料や
射出成形に適する金属微粉体や無機物または有機物微粉
体の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a pigment for paint, a metal fine powder suitable for injection molding, or an inorganic or organic fine powder.

【0002】[0002]

【従来の技術】ペイント用顔料や射出成形に使用する材
料は粒径が10〜20μm程度の微粉体である。目的と
する粉体物質が金属である場合、該物質の溶湯を10〜
20μmに微粉化することは通常のガスアトマイザ−で
可能ではあるが、製品の僅か一部分にすぎず、非能率で
実用的ではない。数百気圧に加圧した水ジェットアトマ
イザーでは平均粒径が10μm以下の微粉も可能である
が、酸化されて品質が劣化する。
2. Description of the Related Art Paint pigments and materials used for injection molding are fine powders having a particle size of about 10 to 20 .mu.m. If the intended powdery substance is a metal, the molten
Although pulverization to 20 μm is possible with a conventional gas atomizer, it is only a small part of the product and is inefficient and impractical. With a water jet atomizer pressurized to several hundred atmospheres, fine powder having an average particle size of 10 μm or less is possible, but the quality is deteriorated due to oxidation.

【0003】一方、無機物、有機物のなかには凝集した
状態でもせいぜい1μm程度のものが多く、該物質をペ
イント用顔料または射出成形に適する微粉体にするには
10〜20μmまで造粒する必要がある。このための在
来工法として転動造粒法とスプレ−ドライヤ−法ががあ
り、中でも微粉造粒に適するとされるスプレ−ドライヤ
−法でも数十μmまでが限度で、しかも歩留りが悪い。
スプレ−ドライヤ−法は更に代表的な二つの処理法に区
分され、その一つは液またはスラリ−を回転円盤に滴下
して遠心力で飛散させる方法、他はノズルから流下する
液またはスラリ−にガスを吹き付けて飛散させる方法で
ある。
On the other hand, many of inorganic and organic substances are at most about 1 μm even in an agglomerated state, and it is necessary to granulate the substance to 10 to 20 μm in order to make the substance into a pigment for paint or a fine powder suitable for injection molding. Conventional methods for this purpose include a rolling granulation method and a spray-dryer method. Among them, the spray-dryer method, which is suitable for fine powder granulation, has a limit of up to several tens of μm, and the yield is poor.
The spray dryer method is further divided into two typical treatment methods, one of which is a method in which a liquid or slurry is dropped on a rotating disk and scattered by centrifugal force, and the other is a method in which a liquid or slurry flowing down from a nozzle is sprayed. Is a method in which gas is blown to the air to be scattered.

【0004】[0004]

【発明が解決しようとする課題】遠心力を利用する微粉
化では、回転デスク径、回転数、溶湯またはスラリ−分
散媒の表面張力と粘性および回転体表面への濡れ性等の
因子が関係する。特に回転デスク径と回転数は第一義的
な要因であり、大きい遠心力程微細化に有利なことは勿
論であるが、さりとて40,000〜50,000 rpmという高速回
転で、しかも径が10cm以上もあるような回転デスクの
採用は遠心力に対抗する材質強度やモ−タ−への負荷の
大きさに制限されて実用的ではないとされている。一方
ガスの吹付けも噴射後、ガスは急速に3次元的に拡散す
るから柱状に流下する溶湯またはスラリ−に対して厚さ
方向の剪断力が足りず、特に粘性や表面張力が大きい溶
融金属については本発明が意図する粒度への微粉化が不
十分な状況にある。現時点では上記何れの方法も数十μ
mが限度とされている。
In the pulverization using centrifugal force, factors such as the diameter of a rotating disk, the number of rotations, the surface tension of a molten metal or a slurry-dispersing medium, viscosity, and wettability to the surface of a rotating body are related. . In particular, the diameter of the rotating desk and the number of rotations are primary factors. Of course, a larger centrifugal force is advantageous for miniaturization, but it is a high-speed rotation of 40,000 to 50,000 rpm, and the diameter is more than 10 cm. The adoption of such a rotating desk is not practical because it is limited by the strength of the material against the centrifugal force and the magnitude of the load on the motor. On the other hand, after the gas is sprayed, the gas diffuses rapidly and three-dimensionally, so the shearing force in the thickness direction is not sufficient for the molten metal or slurry flowing down in a columnar shape, and especially the molten metal with high viscosity and surface tension Is in a situation where pulverization to the particle size intended by the present invention is insufficient. At present, each of the above methods is tens of μ
m is the limit.

【0005】本発明はペイント用顔料や射出成形に適す
る金属微粉体および無機物または有機物微粉体の製造に
関して在来技術の問題点を解決し、本発明が意図する粒
度の微粒子を作製する方法とそのための装置を提供す
る。ここで、本発明が言う微粉化は使用目的に適した粒
度への微粉体化を意味し、しがって或る種の無機物、有
機物に対しては造粒となり、溶融金属等に対しては微粉
砕になる。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional art with respect to the production of paint pigments, metal fine powders and inorganic or organic fine powders suitable for injection molding, and a method for producing fine particles having a particle size intended by the present invention. Device is provided. Here, the pulverization referred to in the present invention means pulverization to a particle size suitable for the purpose of use.Therefore, certain inorganic substances and organic substances become granulated, and molten metals and the like become granulated. Is pulverized.

【0006】[0006]

【課題を解決するための手段】本発明によればその目的
は下記のようにして達成される。すなわち、
According to the present invention, the object is achieved as follows. That is,

【0007】(1)目的とする粉体物質の融体を膜厚1
000μm以下の液膜流とし、この液膜流に対して該液
膜流が剪断されるに十分な量のガス膜流をガス速度10
0 m/sec以上のもとで両膜流同志が交差するように衝突
させること、
(1) A melt of a desired powdery substance is coated with a film thickness of 1
And a gas film flow of an amount sufficient to shear the liquid film flow with a gas velocity of 10 μm or less.
Collapsing the two membrane streams so that they cross each other at 0 m / sec or more;

【0008】(2)その際、目的とする粉体物質の融体
が金属溶湯からなり、その液膜流が粒径200μm以下
の液滴の集合からなる液滴膜流であり、この液滴膜流と
好ましくは90°ないし90°に近い角度で交差するよ
うにガスを膜状に噴射させること、
(2) At this time, the melt of the target powdery substance is composed of a molten metal, and the liquid film flow is a droplet film flow composed of a collection of droplets having a particle size of 200 μm or less. Injecting the gas into a film so as to intersect the film flow, preferably at an angle close to 90 ° to 90 °;

【0009】(3)また、目的とする粉体物質が1μ
m、もしくは1μm以下の超微粉体の場合は該物質を適
切な分散媒に懸濁させてスラリ−とし、該スラリ−を膜
厚1000μm以下の液膜流もしくは液滴の集合からな
る液滴膜流とし、この液膜流もしくは液滴膜流に対し該
液膜流もしくは液滴膜流が剪断されるに十分な量のガス
膜流をガス流速100 m/sec以上、好ましくは1000
m/sec 以上の速度で両膜流同志を90°ないし90o
近い角度で交差するように衝突させること、
(3) The target powdery substance is 1 μm.
In the case of an ultrafine powder of m or 1 μm or less, the substance is suspended in an appropriate dispersion medium to form a slurry, and the slurry is a liquid film stream having a film thickness of 1000 μm or less or a droplet composed of droplets. A gas film flow having a gas flow rate of 100 m / sec or more, preferably 1000 m or more, which is sufficient to shear the liquid film flow or the droplet film flow with respect to the liquid film flow or the droplet film flow.
no 90 ° both film flow comrades in m / sec or faster to be collision so as to intersect at an angle close to 90 o,

【0010】(4)そのための装置として、目的とする
粉体物質の融体もしくはスラリ−を貯留する容器と、こ
の容器に取り付けられノズルと、このノズルから吐出す
る該融体もしくはスラリ−の吐出流をその中心部で受け
るように配置された回転デスクと、この回転デスクを取
り巻くように配置されたガス噴射用の環状ノズルとから
なる微粉体の製造装置を使用すること。
(4) As an apparatus therefor, a container for storing a melt or slurry of a target powder material, a nozzle attached to the container, and discharge of the melt or slurry discharged from the nozzle. The use of an apparatus for producing fine powder, comprising a rotating desk arranged to receive a flow at its center and an annular nozzle for gas injection arranged surrounding the rotating desk.

【0011】[0011]

【発明の実施の形態】衝突によるガス運動量変化の時間
に対する微分が液膜または液滴に及ぼすガスの力であ
り、その液膜または液滴面への垂直分力をガスによる液
膜の剪断力とすれば同一のガス流速ではガスが膜流へ90
°の角度で噴射される時、最大の剪断力が得られる。し
かし、ノズルから離れたガスはノズルの構造により、ま
たガス自体においても3次元的に急速に拡散するのでガ
スが液膜または液滴と接触している間も時間的、局所的
に変化し、微粉化に有効な実際の剪断力はこのような局
所的に作用するガス運動量の変化の差、即ち衝突力の差
に依存すると考えられる。しかしその力はガスノズルか
らの距離の3乗に半比例して減衰すると推定されるの
で、融体もしくはスラリ−分散媒の物性に応じた膜厚と
ノズル位置が選択されねばならない。
DETAILED DESCRIPTION OF THE INVENTION The differential of gas momentum change due to collision with respect to time is the force of gas exerted on a liquid film or droplet, and the vertical component force on the liquid film or droplet surface is the shearing force of the gas by the gas. At the same gas flow rate, 90
When injected at an angle of °, maximum shear is obtained. However, the gas distant from the nozzle is rapidly and three-dimensionally diffused depending on the structure of the nozzle and also in the gas itself, so that it changes temporally and locally even while the gas is in contact with the liquid film or droplet, It is considered that the actual shearing force effective for pulverization depends on such a difference in change in locally acting gas momentum, that is, a difference in collision force. However, since the force is estimated to be attenuated in half proportion to the cube of the distance from the gas nozzle, the film thickness and the nozzle position must be selected according to the physical properties of the melt or the slurry dispersion medium.

【0012】またこの場合、ガスの流量と流速が過大に
なると衝突で微細化した液滴が撥ね飛ばされ、飛散した
液滴がガスの噴射ノズルや融体またはスラリ−の注湯口
もしくは吐出口に沈積してトラブルの原因になる。この
状況はガス噴射の条件および膜流に対する噴射の角度を
90°から適宜偏倚させることで調節し、更に別途ノズル
を用意してガスを吹き付け、強制的に進路を変更させる
こともある。ガスは不活性ガスを使用し、通常は溶融金
属の微粉化でも 7〜8 kgf/cm2 程度の圧力の噴射で足り
るが、対象となる融体、スラリ−の物性で調節される。
この場合、ガス圧が高い程、微粉化する。
In this case, if the flow rate and the flow rate of the gas become excessive, the fine droplets are repelled by the collision, and the scattered droplets are injected into the gas injection nozzle or the melt or slurry pouring port or the discharge port. Deposits may cause trouble. This situation depends on the conditions of gas injection and the angle of injection with respect to the film flow.
Adjustment may be made by appropriately deviating from 90 °, and a separate nozzle may be prepared to blow gas to forcibly change the course. As the gas, an inert gas is used. In general, the injection of a pressure of about 7 to 8 kgf / cm 2 is sufficient even in the pulverization of the molten metal, but it is adjusted by the physical properties of the target melt and slurry.
In this case, the higher the gas pressure, the finer the powder.

【0013】融体またはスラリ−を周端から膜状もしく
は液滴膜状に放出させ、しかもその厚さまで制御するに
は回転デスクのサイズ, 回転数, 材質等関係する多くの
要因の中で、特に融体もしくはスラリ−がデスク周端近
くを或る角度を持って上昇し、重力の影響を受けながら
周端をデスクの接線方向に離れる時の角度が15°を中
心にして±5°の範囲において水平方向より上向きにあ
るように調節することが大切である。しかし、場合によ
っては、デスクの接線方向を水平より下側にすること
で、ガスとの交差角度を90oに近くすることも可能で
あり、液膜や液滴流とガスノズルとの距離を近づけるこ
とにより、より微粉化を進行させることができる。
In order to discharge the melt or slurry from the peripheral edge in the form of a film or a droplet film, and to control the thickness up to the thickness, among many factors related to the size, number of revolutions, material, etc. of the rotating desk, In particular, the angle at which the melt or slurry rises at a certain angle near the periphery of the desk and leaves the periphery in the tangential direction of the desk under the influence of gravity is ± 5 ° around 15 °. It is important to adjust the range so that it is above horizontal. However, in some cases, by making the tangential direction of the desk lower than the horizontal, the intersection angle with the gas can be made close to 90 ° , and the distance between the liquid film or the droplet flow and the gas nozzle can be reduced. Thereby, pulverization can be further advanced.

【0014】回転デスクの断面構造は凹凸何れでも良
く、形状を限定するものではないが、前記の条件を満た
すものとして図1及び図2のそれぞれ3で示すような周
端に傾斜が付いた「つば」を持つ薄皿状の回転デスクが
推奨される。膜流の厚さの制御は生産すべき粉体の材質
と粒径に関連し、いかなる材質のいかなる粒径を求める
かで決まる。水または有機溶媒系の分散媒を使用するス
ラリ−では厚さ1000μm以上の液膜でも可能である
が、粘性や表面張力が1桁以上も違う溶融金属塩や溶融
金属等の場合には200μmもしくはそれ以下の程度ま
で回転デスクで予備粉砕された液滴膜流であることが望
ましい。膜厚の制御は融体またはスラリ−の供給量制御
と回転デスクの回転数制御とによって行われるが、この
制御が同時に回転デスク周辺を離れる原料の融体または
スラリ−の速度を決め、またそれによって液膜と液滴膜
の違いを生ずる。
The cross-sectional structure of the rotating desk may be either uneven or irregular, and the shape is not limited. However, assuming that the above conditions are satisfied, the peripheral end is inclined as shown by 3 in FIGS. 1 and 2. A dish-shaped rotating desk with a "spit" is recommended. The control of the thickness of the film flow is related to the material and particle size of the powder to be produced and is determined by the desired particle size of any material. A slurry using water or an organic solvent-based dispersion medium can be a liquid film having a thickness of 1000 μm or more. However, in the case of a molten metal salt or a molten metal having a viscosity or surface tension that differs by one digit or more, a 200 μm or It is desirable that the droplet film flow be pre-ground on a rotating desk to a degree less than that. The film thickness is controlled by controlling the supply amount of the melt or slurry and controlling the number of revolutions of the rotating desk, and this control simultaneously determines the speed of the melt or slurry of the raw material leaving the periphery of the rotating desk. This causes a difference between the liquid film and the droplet film.

【0015】図1は本発明を実施するのに好適な装置を
示すものである。図1において、容器8内の融体もしく
はスラリ−9はストッパ−10を経て注湯口または吐出
口7から回転デスク面3の中心部に供給される。高周波
誘導加熱コイル4によって回転デスク1を非接触的に加
熱してデスク上での溶融金属の凝固を防ぐ手段も採用さ
れる。また注湯ノズル6も同様、5の高周波誘導加熱コ
イルで加熱できるので凝固による詰まりを防ぎながら注
湯口を回転デスク直上まで延ばすことができ、滴下によ
って起こる飛散を抑制できる。
FIG. 1 shows an apparatus suitable for carrying out the present invention. In FIG. 1, a melt or slurry 9 in a container 8 is supplied from a pouring port or a discharge port 7 to a central portion of the rotating desk surface 3 via a stopper 10. Means for heating the rotating desk 1 in a non-contact manner by the high-frequency induction heating coil 4 to prevent solidification of the molten metal on the desk is also employed. Similarly, the pouring nozzle 6 can be heated by the high-frequency induction heating coil 5 so that the pouring port can be extended to just above the rotating desk while preventing clogging due to coagulation, and scattering caused by dripping can be suppressed.

【0016】回転デスク1は適当な回転手段(図示せ
ず)によって回転軸の回りに回転され、「つば」をもっ
た薄皿状の回転面3の中心部に供給された対象となる粉
体の融体またはスラリ−はデスク回転の遠心力でデスク
周端から放出される。デスクは必要に応じて高周波誘導
加熱4で加熱することもできる。デスク周辺を取り巻い
て高圧ガス用の気室があり、ガス供給源(図示せず)か
ら該気室に送られたガスは、回転デスク周辺に接近して
置かれたノズル2から噴射され、該噴射流がデスクから
の液もしくは液滴の膜流と好ましくは90°ないしそれ
に近い角度で交差するようにする。ノズルは環状ノズル
で、ガスは回転デスクを取り巻くリング状の膜状態で噴
射されるから、回転デスクの全円周にわたって前記両膜
流の交差による該膜流間の衝突が実施される。
The rotating desk 1 is rotated around a rotation axis by a suitable rotating means (not shown), and powder to be supplied to the center of a thin plate-shaped rotating surface 3 having a "collar" is provided. Is discharged from the periphery of the desk by the centrifugal force of the rotation of the desk. The desk can be heated by high-frequency induction heating 4 as needed. There is an air chamber surrounding the desk for high-pressure gas, and gas sent from a gas supply source (not shown) to the air chamber is jetted from a nozzle 2 placed close to the rotating desk. The jets should intersect the film flow of liquid or droplets from the desk, preferably at an angle of 90 ° or closer. Since the nozzle is an annular nozzle, and the gas is injected in a ring-like film state surrounding the rotating disk, collision between the film flows due to the intersection of the two film flows is performed over the entire circumference of the rotating disk.

【0017】本発明実施に必要な上記各条件は図1の装
置によリ、下記のような試験結果から決定されたもので
ある。
The above-mentioned conditions necessary for carrying out the present invention are determined from the following test results using the apparatus shown in FIG.

【0018】(試験例1)Sn−37%Pb組成の合金
をアルミナ容器8内に高周波誘導加熱で溶解、300℃
で注湯ノズル6から、図1に3で示す表面形状のチタン
からなる50mmφ回転デスク中心部へ流下した。環状
ノズルからガス噴射することなく、デスクから空間に放
出された粒子について各粒径の比率を注湯量とデスク回
転数をパラメ−タとして試験した。デスク周端から放出
される金属粒子はデスク回転数 30,000 rpm において、
注湯量1〜2kg/minのとき(条件Aと言う)、100μ
m以下が86%を占めた。上記以上の注湯量および 30,
000 rpm 以下のデスク回転数(条件Bと言う)において
は−100μmの比率は減少し、注湯量3kg/min、デス
ク回転数 20,000 rpm では−100μmの比率は37%
であった。
Test Example 1 An alloy having a composition of Sn-37% Pb was melted in an alumina container 8 by high-frequency induction heating, and the temperature was 300 ° C.
1 and flowed down from the pouring nozzle 6 to the center of a 50 mmφ rotating desk made of titanium having a surface shape indicated by 3 in FIG. With respect to particles discharged from the desk into the space without gas injection from the annular nozzle, the ratio of each particle size was tested using the pouring amount and the disk rotation speed as parameters. The metal particles emitted from the edge of the desk at a desk rotation speed of 30,000 rpm
When the pouring amount is 1-2 kg / min (referred to as condition A), 100 μ
m or less accounted for 86%. More pouring volume than above and 30,
At a desk rotation speed of 000 rpm or less (referred to as condition B), the ratio of -100 μm decreases, and at a pouring rate of 3 kg / min and a desk rotation speed of 20,000 rpm, the ratio of -100 μm is 37%.
Met.

【0019】次に液滴膜流から2mm下方の位置にノズ
ル先端を置いて、窒素を噴射し、噴射速度を変えて試験
した。200μm以下が大部分を占める液滴膜流の放出
条件、即ち注湯量2kg/min、デスク回転数 30,000 rpm
(前記の条件A)において、膜流の水平に対する上向き
角度を略17°、ガス量を2Nm3/minのもとで、ガス流
速を400〜2000m/sec の範囲で試験した。結果を
表1に示した。800〜2000m/sec のガス速度で好
結果が得られた。とくにガス流速が1000m/sec を越
えると微粉の飛散が始まり、2000m/sec では更に微
粉化が進む結果、−45μm粒子の収量は78%になっ
た。以上の結果からガス流速は800〜2000m/sec
の範囲とし、好ましくは1000m/sec 以上であること
が判明した。1000m/sec における−45μm粒子の
歩留りは62%、その部分の平均粒径は12μmであっ
た。
Next, the nozzle was placed at a position 2 mm below the droplet film flow, nitrogen was injected, and the test was performed while changing the injection speed. The discharge condition of the droplet film flow that occupies most of 200 μm or less, ie, pouring rate 2 kg / min, desk rotation speed 30,000 rpm
Under (condition A), the film flow was tested at a gas flow rate of 400 to 2000 m / sec under an upward angle of about 17 ° with respect to the horizontal and a gas amount of 2 Nm 3 / min. The results are shown in Table 1. Good results have been obtained with gas velocities between 800 and 2000 m / sec. In particular, when the gas flow rate exceeded 1000 m / sec, scattering of fine powders started, and at 2000 m / sec, further pulverization progressed. As a result, the yield of -45 µm particles was 78%. From the above results, the gas flow rate is 800 to 2000 m / sec
And it was found that it was preferably at least 1000 m / sec. At 1000 m / sec, the yield of -45 µm particles was 62%, and the average particle size at that portion was 12 µm.

【0020】一方、100μmを越える液滴が多い条
件、即ち、注湯量3kg/min、デスク回転数 20,000 rpm
(前記の条件B)ではガス流速1000m/sec でも−4
5μm粒子の歩留りが悪かった。そこで、回転デスク周
端から放出されるときの液滴を100μm以下、ガス速
度は主に1000m/sec を保持しながら、ガス流量の影
響を検討した。その結果を表2に示した。表2にはガス
噴射なしの比較例も挙げたが、−45μm粒子は殆んど
生成しない。表2に見られるように、条件Bでもガス流
量が多いほど、微粉化が歩留りよく製造できる。
On the other hand, when there are many droplets exceeding 100 μm, that is, at a pouring rate of 3 kg / min and a disk rotation speed of 20,000 rpm
(Condition B), even at a gas flow velocity of 1000 m / sec, -4
The yield of 5 μm particles was poor. Thus, the effect of the gas flow rate was examined while maintaining the droplets discharged from the peripheral end of the rotating desk at 100 μm or less and the gas velocity mainly at 1000 m / sec. The results are shown in Table 2. Table 2 also shows a comparative example without gas injection, but hardly produced -45 μm particles. As can be seen from Table 2, even under the condition B, as the gas flow rate increases, the pulverization can be manufactured with a higher yield.

【0021】図4は、これらの一連の試験において、形
成した液滴径と製造された粉体の粒径との関係を、ガス
速度1000m/sec の場合について整理したものであ
る。
FIG. 4 summarizes the relationship between the diameter of the formed droplets and the particle size of the produced powder in a series of these tests for a gas velocity of 1000 m / sec.

【0022】[0022]

【表2】 [Table 2]

【0023】次に、ノズル先端の設置位置を検討した。
膜流から1、5、10、20または50mm下方に離れ
た位置にノズル先端を設置し、上方の液滴膜流に向けて
窒素を噴射した。その結果を、前記2mm位置の結果も
含めて、表3に示した。液滴径100μm以下、ガス流
速1000m/sec 、その他は総て上記条件のもとで試験
したところ、1〜10mmの範囲は−45μm粒子の歩
留りが略60%であるが、1mmでは膜流の多少の変動
も厳格に管理する必要がり、10mmの場合はその平均
粒径がやや増加する傾向にある。50mm位置まで可能
であるが、20、50mm位置の採用はそれを必要とす
る場合に限られる。
Next, the installation position of the tip of the nozzle was examined.
The nozzle tip was set at a position separated from the film flow by 1, 5, 10, 20 or 50 mm below, and nitrogen was jetted toward the droplet film flow above. The results are shown in Table 3 including the results at the 2 mm position. When the droplet diameter was 100 μm or less, the gas flow rate was 1000 m / sec, and the other conditions were all tested under the above conditions, the yield of -45 μm particles was about 60% in the range of 1 to 10 mm. It is necessary to strictly manage some fluctuations, and in the case of 10 mm, the average particle diameter tends to increase slightly. Although it is possible to reach the 50 mm position, the adoption of the 20 and 50 mm positions is limited only when it is necessary.

【0024】なお、この試験で窒素ボンベの圧力調節弁
の指示は7〜8kgf/cm2 であり、ガス流速2000m/se
c 、ガス流量3Nm3/min、また1000m/sec 、ガス流
量4N/minの場合でも圧力調節弁の指示は10kgf/cm2
に過ぎなかった。
In this test, the indication of the pressure control valve of the nitrogen cylinder was 7 to 8 kgf / cm 2 , and the gas flow rate was 2000 m / se.
c, even when the gas flow rate is 3 Nm 3 / min, and the gas flow rate is 4 N / min, the indication of the pressure regulating valve is 10 kgf / cm 2.
It was only.

【0025】[0025]

【表3】 [Table 3]

【0026】(試験例2)凝集してしている状態で約1
μmの酸化銅を水で70wt%のスラリ−とし、分散剤お
よび造粒剤としてアクリル系樹脂を1wt%加えてパ−ル
ミルで均一に混合した。このスラリ−を断面形状が図1
の3と同じ50mmφ、SUS製の回転デスクの中心部
へ流下した。スラリ−の供給量を1〜5kg/minの範囲
で、デスク回転数を変え、デスク周端から放出される液
膜の状況を環状噴射ノズルを取り外して側面から高速度
撮影した。結果を表4に示す。
(Test Example 2) About 1
μm copper oxide was made into a 70 wt% slurry with water, 1 wt% of an acrylic resin was added as a dispersant and a granulating agent, and the mixture was uniformly mixed with a par mill. Fig. 1 shows the cross section of this slurry.
Flowed down to the center of a 50 mmφ SUS rotating desk, which was the same as 3 above. The rotational speed of the desk was changed while the amount of slurry supplied was in the range of 1 to 5 kg / min, and the state of the liquid film discharged from the peripheral edge of the desk was photographed at high speed from the side by removing the annular jet nozzle. Table 4 shows the results.

【0027】[0027]

【表4】 [Table 4]

【0028】表4に見られるように、デスク回転数4000
〜7000rpm の範囲、およびスラリ−の供給量2〜3kg/m
inの条件下でスラリ−は液膜状となり、膜厚は1000
μm以下であった。前記範囲以下の回転数、または前記
以上のスラリ−供給量では膜厚は1000μmを越え
た。また、前記範囲以上のデスク回転数およぴ前記以下
のスラリ−供給量ではデスク周端からのスラリ−放出は
液膜流から液滴膜流に変化した。
As can be seen from Table 4, the desk rotation number 4000
~ 7000rpm range and slurry supply 2-3kg / m
Under the condition of in, the slurry becomes a liquid film and the film thickness is 1000
μm or less. The film thickness exceeded 1000 μm when the rotation speed was lower than the above range or the slurry supply amount was higher than the above range. Further, when the number of rotations of the desk was higher than the above range and the slurry supply amount was lower than the above range, the slurry discharge from the peripheral end of the desk changed from the liquid film flow to the droplet film flow.

【0029】次に、ガス噴射ノズルの先端をスラリ−液
膜流または液滴膜流から10mmおよび5mm下方に慣
れた位置に置き、デスク周端から15°、水平より上向
きに放出された膜流に窒素を流速50〜2000m/sec
の範囲で噴射した。膜厚1000μmの液膜流、液滴膜
流の条件において、200℃に保持されたホッパ−内に
放出された45μm以下の粒子の歩留りとその平均粒径
を表5に示した。
Next, the tip of the gas injection nozzle is placed at a familiar position 10 mm and 5 mm below the slurry liquid film flow or the droplet film flow, and the film flow discharged upward from the horizontal by 15 ° from the peripheral edge of the desk. Nitrogen at a flow rate of 50 to 2000 m / sec
Injected in the range. Table 5 shows the yield and the average particle size of particles of 45 μm or less discharged into a hopper maintained at 200 ° C. under the conditions of a liquid film flow and a droplet film flow having a film thickness of 1000 μm.

【0030】[0030]

【表5】 [Table 5]

【0031】表5に見られるように、ノズル位置10m
mおよび5mmの二箇所ともガス流速100m/sec 以上
で−45μm粒子が回収され、ガス流速の増加につれて
歩留りも増加した。ガス流速1000m/sec では−45
μm粒子の歩留りは60%以上となった。液膜厚が10
00μmを越えると微粉化が進まず、−45μmの収量
は40%程度に低下した。以上の状況はノズル位置10
mm、5mmともに同じであるが、ガス流速1000m/
sec を越えると、5mmのノズル位置の方が粒子の微細
化効果が良好であった。この結果から、スラリ−の場合
は、厚さ1000μm以下の液膜流、もしくは液滴の集
合からなる液滴膜流とし、ガス流速100以上m/sec の
範囲、好ましくは1000m/sec 以上が望ましい。
As shown in Table 5, the nozzle position is 10 m
At both locations of m and 5 mm, -45 μm particles were recovered at a gas flow rate of 100 m / sec or more, and the yield increased as the gas flow rate increased. -45 at gas flow velocity 1000m / sec
The yield of μm particles was 60% or more. Liquid film thickness is 10
Above 00 μm, pulverization did not proceed, and the yield of −45 μm was reduced to about 40%. The above situation is for nozzle position 10
mm and 5mm are the same, but the gas flow rate is 1000m /
Beyond sec, the effect of finer particles was better at the nozzle position of 5 mm. From these results, in the case of a slurry, a liquid film flow having a thickness of 1000 μm or less or a droplet film flow composed of a collection of droplets is used, and the gas flow velocity is in the range of 100 or more m / sec, preferably 1000 m / sec or more. .

【0032】以上は、本発明は回転デスクの周端から放
出された膜流と交差するように回転デスク1を取り巻く
環状ノズル2から不活性ガスを膜状に噴射させるもので
あるが、同じ条件は容器の側壁に設けたスリットから噴
出する膜流とそれに交差するガス流によって実現するこ
とも出来る。またスリットの代わりにスリットのように
配列した多数の微細な孔により、その孔径を調節するこ
とによって求めることも出来る。更に円錐形の吐出口か
ら円錐状の膜流を噴射させ、吐出口の周囲に配設した環
状ガスノズルによっても実現できる。いずれの場合もガ
スノズルの先端位置が大切で、先端から液膜流までの距
離は好ましくは50mm 以下とし、これより大きいと微
粉の粒径分布は粗大化の傾向をとる。なお,使用するガ
スとしては窒素ガスや空気の他にも各種のものが適用可
能である。
As described above, in the present invention, the inert gas is jetted in a film form from the annular nozzle 2 surrounding the turntable 1 so as to intersect with the film flow discharged from the peripheral end of the turntable. Can be realized by a film flow ejected from a slit provided in a side wall of the container and a gas flow crossing the film flow. In addition, it can be determined by adjusting the diameter of a large number of fine holes arranged like slits instead of slits. Furthermore, a conical film flow can be jetted from a conical discharge port, and this can also be realized by an annular gas nozzle disposed around the discharge port. In any case, the position of the tip of the gas nozzle is important. The distance from the tip to the liquid film flow is preferably 50 mm or less, and if it is larger than this, the particle size distribution of the fine powder tends to become coarse. Various gases can be used as the gas to be used, in addition to nitrogen gas and air.

【0033】[0033]

【実施例】 (実施例1)図1の装置によってSn−37%Pb組成
の合金をアルミナ容器8内で高周波誘導加熱して溶融さ
せ、融点183℃より約150℃高い330℃に保持し
た。注湯ノズル6は内径3mm、外径8mm、長さ10
cmのSUS製パイプを断熱材で被覆し、その上に高周
波誘導加熱用コイル5を巻いたものである。環状ガスノ
ズル2は回転デスク1を取り巻いて設置し、1000m/
sec の流速でノズル先端から2mm上方の位置にある液
滴膜流に略垂直に窒素を噴射した。ガス流量は2Nm3/m
inとした。デスクは50mmφで、ジルコニアのプラズ
マ溶射膜を付けたTi製で、図1の3と同型の周辺に
「つば」のある薄皿型構造のものを高周波誘導加熱コイ
ル4で約300℃に予熱した。デスクから10mmの距離
に注湯口7を置いて溶融金属が流下する際のデスクから
の飛散を防止した。注湯用ノズル6を高周波誘導加熱で
300℃とし、金属溶湯をアルミナ容器の底部にある2
mmφの孔からストッパ−10を経て2kg/minで注湯し
た。デスク1は30,000rpm に設定してデスク周辺から水
平方向より略15°上向きに約100μm以下の液滴の
集合からなる厚さ約1000μmの膜状で放出し、これ
をガス噴射で更に微粉化した。
Example 1 An alloy having a composition of Sn-37% Pb was melted by high-frequency induction heating in an alumina container 8 using the apparatus shown in FIG. 1 and maintained at 330 ° C., which was about 150 ° C. higher than the melting point of 183 ° C. The pouring nozzle 6 has an inner diameter of 3 mm, an outer diameter of 8 mm, and a length of 10
cm SUS pipe is covered with a heat insulating material, and a high-frequency induction heating coil 5 is wound thereon. The annular gas nozzle 2 is installed around the rotating desk 1 and has a speed of 1000 m /
At a flow rate of sec, nitrogen was injected substantially perpendicular to the droplet film flow at a position 2 mm above the nozzle tip. Gas flow rate is 2Nm 3 / m
in. The desk is made of Ti having a diameter of 50 mm and coated with a plasma sprayed film of zirconia. A thin dish-shaped structure having a "brim" around the same shape as 3 in FIG. 1 was preheated to about 300 ° C. by the high-frequency induction heating coil 4. . The pouring port 7 was placed at a distance of 10 mm from the desk to prevent the molten metal from scattering from the desk when flowing down. The pouring nozzle 6 is heated to 300 ° C. by high-frequency induction heating, and the molten metal is placed at the bottom of the alumina container 2.
Pouring was performed at a rate of 2 kg / min from a hole of mmφ through a stopper-10. The desk 1 was set at 30,000 rpm and emitted upward from the periphery of the desk at about 15 ° above the horizontal direction in the form of a film having a thickness of about 1000 μm and composed of droplets of about 100 μm or less, which was further pulverized by gas injection. .

【0034】上記条件で作製した合金粉は−45μmの
粒子の歩留りが62%で、その平均粒径は12μmであ
った。
The alloy powder produced under the above conditions had a particle yield of −45 μm of 62% and an average particle diameter of 12 μm.

【0035】(実施例2)表6の各金属を高周波誘導加
熱でアルミナ容器内に溶融し、それぞれ各金属の融点よ
り100℃高く保持した。注湯ノズル6は内径3mm、
外径8mm、長さ10cmのカ−ボンパイプを断熱材で被
覆し、高周波誘導加熱用コイルを巻いて対応するそれぞ
れの金属の融点より100℃高い温度に加熱した。注湯
速度を1kg/minに、ガス噴射ノズル先端の位置を液滴膜
流から5mm離れた下方に設定した以外は実施例1と同
じ条件である。表6にその実施結果を示した。
Example 2 Each of the metals shown in Table 6 was melted in an alumina container by high-frequency induction heating and kept at 100 ° C. higher than the melting point of each metal. The pouring nozzle 6 has an inner diameter of 3 mm,
A carbon pipe having an outer diameter of 8 mm and a length of 10 cm was covered with a heat insulating material, and a coil for high-frequency induction heating was wound thereon and heated to a temperature 100 ° C. higher than the melting point of the corresponding metal. The conditions were the same as in Example 1 except that the pouring speed was set to 1 kg / min, and the position of the tip of the gas injection nozzle was set to be below 5 mm away from the droplet film flow. Table 6 shows the results.

【0036】[0036]

【表6】 [Table 6]

【0037】(実施例3)凝集して平均粒径が約1μm
である酸化銅を水に加えて70wt% のスラリ−とし、分
散剤および造粒剤としてアクリル系樹脂を1wt% 加えて
パ−ルミル(図示せず)で均一に混合した。このスラリ
−をテフロンコ−トしたSUS製容器の底から1mmφ
の孔を通して3 kg/min で、プロパンを燃焼して200
℃の雰囲気に保つ回転デスク上に滴下した。デスク断面
は実施例1と同型の50mmφのSUS製、回転数は
6,000 rpm, 水平方向に対し約12°上向きに放出され
た膜流に、デスクを取り巻く環状ノズルから空気をスラ
リ−膜流に対し10mm離れた下方の位置から略90°
の角度で噴射した。ガス流量は3 Nm3/min、ガス流速が
1000m/sec の条件で−45μm粒子の歩留りは64
%、その部分の平均粒径は14μmであった。
(Example 3) Agglomerated to have an average particle size of about 1 μm
Was added to water to make a 70% by weight slurry, and 1% by weight of an acrylic resin was added as a dispersing agent and a granulating agent, followed by uniform mixing with a par mill (not shown). 1 mmφ from the bottom of a SUS container made of Teflon-coated slurry
Burning propane at 3 kg / min
The solution was dropped on a rotating desk kept in an atmosphere of ° C. The cross section of the desk is made of SUS of 50 mmφ of the same type as in Example 1, and the rotation speed is
At 6,000 rpm, about 12 ° to the horizontal direction, air is discharged upward from the annular nozzle surrounding the desk at approximately 12 ° with respect to the horizontal direction.
Fired at an angle. At a gas flow rate of 3 Nm 3 / min and a gas flow rate of 1000 m / sec, the yield of -45 μm particles is 64.
%, And the average particle size in that portion was 14 μm.

【0038】[0038]

【発明の効果】本発明は膜状に広がる液膜または液滴膜
を作る第1段階とこの膜流に対し高速で不活性ガスを衝
突させる第2段階の二つの過程から成り、それによって
従来工法では得られない粒度範囲の微粉体を高収率で作
製することができる。第1段階の膜流の作成に消費する
エネルギ−は少なく、例えば遠心力も少なくて済むので
回転デスクの大きさ、材質に対する制限は大幅に軽減出
来るとともにモ−タ−の負担も軽くなる。しかも第1段
階によって第2段階は非常に効率化され、ガスの噴射圧
が10kgf/cm2 以下という低い圧力でも微粉体の粒度を
下げるとともに製品の歩留りを上げることがきる。
The present invention comprises two processes, a first stage for forming a liquid film or a droplet film spreading in a film form, and a second stage for impinging an inert gas at a high speed on the film flow. Fine powder having a particle size range that cannot be obtained by the method can be produced in high yield. The energy consumed in the first stage of creating the membrane flow is small, for example, the centrifugal force is also small, so that the limitation on the size and material of the rotating desk can be greatly reduced and the load on the motor can be reduced. In addition, the first step greatly enhances the efficiency of the second step, so that even at a low gas injection pressure of 10 kgf / cm 2 or less, the particle size of the fine powder can be reduced and the product yield can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するのに好適な装置の略断
面図である。
FIG. 1 is a schematic cross-sectional view of an apparatus suitable for performing the method of the present invention.

【図2】図1の装置における回転デスクおよび環状ノズ
ル部分を示す略断面図である。
FIG. 2 is a schematic sectional view showing a rotating disk and an annular nozzle portion in the apparatus of FIG. 1;

【図3】図2の略平面図である。FIG. 3 is a schematic plan view of FIG.

【図4】本発明法に従って形成した液膜の液滴径と、得
られた粉体の平均粒径の関係(ガス速度1000m/s
ecでガス噴射した場合)を示す図である。
FIG. 4 shows the relationship between the droplet diameter of a liquid film formed according to the method of the present invention and the average particle diameter of the obtained powder (gas velocity: 1000 m / s)
It is a figure which shows the case (gas injection by ec).

【符号の説明】[Explanation of symbols]

1 回転デスク 2 環状ガス噴射ノズル 3 頭の開いたV型回転デスク面 4 回転デスク加熱用高周波誘導コイル 5 注湯ノズル加熱用高周波誘導コイル 6 融体またはスラリ−導入用ノズル 7 融体またはスラリ−吐出口 8 融体またはスラリ−容器 9 融体またはスラリ− 10 ストッパ− REFERENCE SIGNS LIST 1 rotating desk 2 annular gas injection nozzle 3 open V-shaped rotating desk surface 4 high-frequency induction coil for heating rotary desk 5 high-frequency induction coil for pouring nozzle heating 6 nozzle for introducing melt or slurry 7 melt or slurry Discharge port 8 Melt or slurry container 9 Melt or slurry 10 Stopper

【表1】 [Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 目的とする粉体物質の融体を膜厚100
0μm以下の液膜流とし、この液膜流に対して該液膜流
を剪断するに十分な量のガス膜流をガス速度100 m/s
ec以上のもとで両膜流同志が交差するように衝突させる
ことからなる微粉体の作製法。
1. A melt of a target powdery substance having a thickness of 100
A liquid film flow of 0 μm or less, and a gas film flow of an amount sufficient to shear the liquid film flow with respect to the liquid film flow is applied at a gas velocity of 100 m / s.
A method for producing fine powder consisting of colliding two membrane flows under ec or more.
【請求項2】 目的とする粉体物質の融体が金属溶湯か
らなり、その液膜流が粒径200μm以下の液滴の集合
からなる液滴膜流である請求項1に記載の微粉体の作製
法。
2. The fine powder according to claim 1, wherein the melt of the target powder material is a molten metal, and the liquid film flow is a droplet film flow composed of a collection of droplets having a particle size of 200 μm or less. Method of manufacturing.
【請求項3】 目的とする粉体物質を分散媒に懸濁させ
てなるスラリ−を膜厚1000μm以下の液膜流、もし
くは液滴の集合からなる液滴膜流とし、この膜流に対し
て該膜流が剪断されるに十分な量のガス膜流をガス速度
100 m/sec以上のもとで両膜流同志が交差するように
衝突させることからなる造粒された微粉体の作製法。
3. A slurry obtained by suspending a target powdery substance in a dispersion medium is formed into a liquid film flow having a thickness of 1000 μm or less or a liquid film flow composed of a collection of liquid droplets. Producing a granulated fine powder comprising impinging a sufficient amount of gas film flow such that the film flow is sheared at a gas velocity of 100 m / sec or more so that both film flows intersect. Law.
【請求項4】 目的とする粉体物質の融体もしくはスラ
リ−を貯留する容器と、この容器に取り付けられたノズ
ルと、このノズルから吐出する該融体もしくはスラリ−
の吐出流をその中心部で受けるように配置された回転デ
スクと、この回転デスクを取り巻くように配置されたガ
ス噴射用環状ノズルとからなる微粉体の製造装置。
4. A container for storing a melt or slurry of a target powder substance, a nozzle attached to the container, and the melt or slurry discharged from the nozzle.
And an annular nozzle for gas injection arranged so as to receive the discharge flow at the center thereof and an annular nozzle for gas injection arranged so as to surround the rotary desk.
JP26382296A 1996-09-13 1996-09-13 Fine powder production method Expired - Lifetime JP4014239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26382296A JP4014239B2 (en) 1996-09-13 1996-09-13 Fine powder production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26382296A JP4014239B2 (en) 1996-09-13 1996-09-13 Fine powder production method

Publications (2)

Publication Number Publication Date
JPH1085583A true JPH1085583A (en) 1998-04-07
JP4014239B2 JP4014239B2 (en) 2007-11-28

Family

ID=17394717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26382296A Expired - Lifetime JP4014239B2 (en) 1996-09-13 1996-09-13 Fine powder production method

Country Status (1)

Country Link
JP (1) JP4014239B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317212A (en) * 2001-04-17 2002-10-31 Sanei Kasei Kk Method for producing micro spherical metallic grain
JP2002353025A (en) * 2001-05-28 2002-12-06 Sanei Kasei Kk Plastic magnet
JP2012136781A (en) * 2012-03-05 2012-07-19 Napra Co Ltd Method of manufacturing microspherical metal particle
KR101400315B1 (en) * 2013-02-27 2014-06-30 현대제철 주식회사 Apparatus for slag granulation
KR101435170B1 (en) * 2013-02-27 2014-09-02 현대제철 주식회사 Apparatus for slag granulation
WO2020153779A1 (en) * 2019-01-25 2020-07-30 한국지질자원연구원 System for leaching valuable metals from waste de-nox catalyst through alkali fusion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317212A (en) * 2001-04-17 2002-10-31 Sanei Kasei Kk Method for producing micro spherical metallic grain
JP2002353025A (en) * 2001-05-28 2002-12-06 Sanei Kasei Kk Plastic magnet
JP2012136781A (en) * 2012-03-05 2012-07-19 Napra Co Ltd Method of manufacturing microspherical metal particle
KR101400315B1 (en) * 2013-02-27 2014-06-30 현대제철 주식회사 Apparatus for slag granulation
KR101435170B1 (en) * 2013-02-27 2014-09-02 현대제철 주식회사 Apparatus for slag granulation
WO2020153779A1 (en) * 2019-01-25 2020-07-30 한국지질자원연구원 System for leaching valuable metals from waste de-nox catalyst through alkali fusion

Also Published As

Publication number Publication date
JP4014239B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
KR101426008B1 (en) Multiplex atomization nozzle and manufacturing apparatus of powder for the same
EP2300139B1 (en) Method for atomising molten slag
Fritsching et al. Hybrid gas atomization for powder production
US4435342A (en) Methods for producing very fine particle size metal powders
US6481638B1 (en) Method and device for producing fine powder by atomizing molten material with gases
KR20180025260A (en) Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process
US5738705A (en) Atomizer with liquid spray quenching
AU2003206894B2 (en) Method for producing particle-shaped material
JPS5910961B2 (en) Youyukinzokuobiriyukasuruhouhou Oyobi Souchi
EP3085475B1 (en) Powder manufacturing apparatus and powder forming method
JP4014239B2 (en) Fine powder production method
KR20210101086A (en) fluid spraying nozzle assembly
US5855642A (en) System and method for producing fine metallic and ceramic powders
KR100370863B1 (en) method and apparatus for producing fine powder from molten liquid by high-pressure spray
US4701289A (en) Method and apparatus for the rapid solidification of molten material in particulate form
US4780130A (en) Process to increase yield of fines in gas atomized metal powder using melt overpressure
US5482532A (en) Method of and apparatus for producing metal powder
JP3270713B2 (en) Method and apparatus for producing metal powder
JP3511082B2 (en) Manufacturing method of metal fine powder
JP2672056B2 (en) Method and apparatus for producing metal powder
JP2003512280A (en) Method and apparatus for producing powder formed from substantially spherical particles
JP3118055B2 (en) Fine particle coating method and apparatus and spray nozzle
EP0134808A1 (en) Method for making ultrafine metal powder.
JP2003268419A (en) Method for manufacturing impalpable powder of sintered material with high melting point, and apparatus therefor
RU2741879C1 (en) Method of obtaining disperse powder of ferrosilicon weighting agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140921

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term