JPH1081986A - Horizontal double-polarity electrolytic cell - Google Patents

Horizontal double-polarity electrolytic cell

Info

Publication number
JPH1081986A
JPH1081986A JP8252481A JP25248196A JPH1081986A JP H1081986 A JPH1081986 A JP H1081986A JP 8252481 A JP8252481 A JP 8252481A JP 25248196 A JP25248196 A JP 25248196A JP H1081986 A JPH1081986 A JP H1081986A
Authority
JP
Japan
Prior art keywords
electrolytic cell
cathode
anode
plate
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8252481A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Shuhei Wakita
修平 脇田
Takahiro Ashida
高弘 芦田
Masashi Tanaka
正志 田中
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP8252481A priority Critical patent/JPH1081986A/en
Publication of JPH1081986A publication Critical patent/JPH1081986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a horizontal double-polarity electrolytic cell capable of securing the electrode performance due to the discharge of a catholyte, capable of easily and surely applying a current on both electrodes and with the electrolytic cell capable of being scaled up. SOLUTION: Plural units of an electrolytic cell including anodes 13 and 19 and cathodes 10 and 16 are vertically laminated to constitute the horizontal double-polarity electrolytic cell, and each of the units is divided by the double- polarity plate 4 having a corrugated part 6. Consequently, the double-polarity plate ie electrically connected to the electrode and collector with ease through the protrusions of the corrugated part, further the catholyte is held by the recess of the corrugated part, etc., and a smooth current is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生成物を容易に取り出
して効率良く電解操作を行ない得る水平型複極式電解槽
に関し、より詳細には生成物の取り出しの他にも給電及
び部材間の接続を容易に行なえる水平型複極式電解槽に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal type bipolar electrolytic cell capable of easily taking out a product and performing an electrolysis operation efficiently, and more particularly to a power supply and a member between members in addition to taking out a product. The present invention relates to a horizontal type bipolar electrolyzer which can easily perform connection.

【0002】[0002]

【従来技術とその問題点】クロルアルカリ電解を代表と
する電解工業は素材産業として重要な役割を果たしてい
る。このような重要な役割を持つもののクロルアルカリ
電解に要する消費エネルギーが大きく、日本のようにエ
ネルギーコストが高い国ではその省エネルギー化が大き
な問題となる。例えばクロルアルカリ電解では環境問題
の解決とともに省エネルギー化を達成するために、水銀
法から隔膜法を経てイオン交換膜法へと転換され、約25
年で約40%の省エネルギー化を達成してきた。しかしこ
の省エネルギー化でも不十分で、エネルギーである電力
コストが全製造費の50%を占めているが、現行の方法を
使用する限りこれ以上の電力節約は不可能なところまで
来ている。より以上の省エネルギー化を達成するために
は電極反応を修正する等の抜本的な変化を行なわなけれ
ばならない。その例として燃料電池等で採用されている
ガス拡散電極の使用は現在考えられる中で最も可能性が
高く、電力節約が大きい手段である。
2. Description of the Related Art Electrolysis industry represented by chloralkali electrolysis plays an important role as a material industry. Although having such an important role, the energy consumption required for chloralkali electrolysis is large, and energy saving is a major problem in countries with high energy costs such as Japan. For example, in chlor-alkali electrolysis, in order to solve environmental problems and achieve energy saving, the mercury method was switched to the ion exchange membrane method via the diaphragm method, and about 25%.
Annual energy savings of about 40% have been achieved. However, even this energy saving is not enough, and the power cost, which is energy, accounts for 50% of the total manufacturing cost. However, no further power saving is possible if the current method is used. In order to achieve more energy savings, drastic changes must be made, such as correcting the electrode reaction. As an example, the use of a gas diffusion electrode employed in a fuel cell or the like is the most likely and possible means of saving electric power.

【0003】従来の金属電極を使用する陽極反応が、
陽極としてガス拡散電極を使用すると陽極反応に変換
される。 2NaCl+2H2 0→Cl2 +2NaOH+H2 O =2.21V 2NaCl+ 1/2O2 +H2 O→Cl2 +2NaOH EO =0.96V つまり金属電極をガス拡散電極に変換することにより、
電位が2.21Vから0.96Vに減少し、理論的には約65%の
省エネルギー化が可能になる。従ってこのガス拡散電極
の使用によるクロルアルカリ電解の実用化に向けて種々
の検討が成されている。その中に、ガス拡散電極を陰極
側に配し陰極の裏側にガス室を設けた電解方法がある。
該方法に使用されるガス拡散電極は通常半疎水型と称さ
れるもので、前記ガス拡散電極により陰極側に透過する
液状生成物のガス室への透過を阻止する構造を有してい
る。
The anodic reaction using a conventional metal electrode is
When a gas diffusion electrode is used as an anode, it is converted into an anodic reaction. The 2NaCl + 2H 2 0 → Cl 2 + 2NaOH + H 2 E O = 2.21V 2NaCl + 1 / 2O 2 + H 2 O → Cl 2 + 2NaOH E O = 0.96V clogging metal electrodes by converting the gas diffusion electrode,
The potential is reduced from 2.21 V to 0.96 V, and theoretically about 65% energy saving is possible. Therefore, various studies have been made toward the practical use of chloralkali electrolysis by using this gas diffusion electrode. Among them, there is an electrolysis method in which a gas diffusion electrode is arranged on the cathode side and a gas chamber is provided on the back side of the cathode.
The gas diffusion electrode used in the method is generally called a semi-hydrophobic type, and has a structure in which the gas diffusion electrode prevents liquid products permeating to the cathode side from permeating into the gas chamber.

【0004】このタイプのガス拡散電極では供給ガスは
該ガス拡散電極を透過して電解液中に供給され、通常の
縦型電解槽ではその高さ方向によって液圧が異なるた
め、一定量のガスを電解面全体に均一に供給することが
困難であった。高さ1mのパイロット電解槽を作製した
米国のダイアモンドシャムロック社では圧力損失の異な
る幾種類ものガス拡散電極を使用し高さに応じて組み合
わせて液圧の問題に対応したと言われているが、経済性
の面から実用化されなかったものと見られている。これ
に対し米国のオリン社では電極を水平に設置することで
高さを一定にし、高さに応じた液圧の差を生じさせなく
することにより、前記問題点を解決している。ここで
は、ガス室を下側にし、ガス拡散電極とイオン交換膜間
に陰極液を流し、かつイオン交換膜の上部に陽極室を設
けて陽極液を流している。
In this type of gas diffusion electrode, a supply gas passes through the gas diffusion electrode and is supplied into the electrolytic solution. In a normal vertical electrolytic cell, the liquid pressure varies depending on the height direction. Is difficult to supply uniformly over the entire electrolytic surface. It is said that Diamond Shamrock of the United States, which produced a 1 m-high pilot electrolytic cell, used several types of gas diffusion electrodes with different pressure losses and combined them according to the height to solve the problem of hydraulic pressure. However, it is considered that it was not put into practical use from the economical aspect. On the other hand, Olin Corporation of the United States solves the above-mentioned problem by installing the electrodes horizontally to keep the height constant and to prevent a difference in hydraulic pressure according to the height. Here, the catholyte is allowed to flow between the gas diffusion electrode and the ion exchange membrane, and the anolyte is made to flow by providing an anode chamber above the ion exchange membrane.

【0005】この方法では確かにガス圧の問題点は解決
できるが、その反面構造上の問題点が生ずる。第1にイ
オン交換膜に陽極側(上側)から液圧による圧力が掛か
りイオン交換膜が陰極側に押しやられる。すると陽極と
イオン交換膜間に、苛性アルカリと比較して電気伝導度
の低い塩化アルカリ溶液が入り込み、その抵抗により電
圧の上昇が起こり、ガス拡散電極の使用により生ずる電
圧低減の度合いを低めることになる。第2に押しやられ
るイオン交換膜により陰極室の容積が小さくなって陰極
液の流れが阻害され該陰極液の流れを作ることが困難に
なる。
Although this method can certainly solve the problem of gas pressure, it causes a structural problem. First, pressure due to liquid pressure is applied to the ion exchange membrane from the anode side (upper side), and the ion exchange membrane is pushed to the cathode side. Then, between the anode and the ion-exchange membrane, an alkali chloride solution having a lower electrical conductivity than that of caustic enters, and the resistance causes an increase in the voltage, thereby reducing the degree of voltage reduction caused by the use of the gas diffusion electrode. Become. Secondly, the volume of the catholyte compartment is reduced by the pushed-out ion exchange membrane, so that the flow of the catholyte is obstructed and it becomes difficult to create the flow of the catholyte.

【0006】逆にガス室を上側にして電解槽を構成する
と、陰極側からの圧力によりイオン交換膜は陽極に密着
するため陰極液の流れは阻害されず、又該密着により陽
極とイオン交換膜間に食塩水が存在することは殆どなく
なり該食塩水による抵抗増加もなくなる。その反面生成
する塩素ガスがイオン交換膜と食塩水の間、又はイオン
交換膜と陽極の間に残存し、場合によっては電流の流れ
を遮断する恐れが生ずる。電流の遮断がなくても前記塩
素ガスの存在は電解を不安定にする。これを回避するた
めには陽極液を迅速に循環させて該陽極液とともに塩素
ガスを系外に排出する必要があり、これを達成するため
には大型の送液ポンプが必要になるという問題点があ
る。
Conversely, if the electrolytic cell is constructed with the gas chamber facing upward, the flow of the catholyte solution is not hindered by the pressure from the cathode side, so that the flow of the catholyte is not hindered. Almost no saline solution is present in between, and there is no increase in resistance due to the saline solution. On the other hand, the generated chlorine gas remains between the ion exchange membrane and the saline solution or between the ion exchange membrane and the anode, and in some cases, there is a risk of interrupting the flow of current. Even without current interruption, the presence of the chlorine gas makes the electrolysis unstable. In order to avoid this, it is necessary to circulate the anolyte quickly and discharge chlorine gas out of the system together with the anolyte. To achieve this, a large liquid pump is required. There is.

【0007】これらの問題点を解決すること、及び電解
電圧を更に低くする目的で、イオン交換膜と電極を接着
して実質的に陰極室を無くしてしまう方法が提案され、
この方法によると、生成する苛性アルカリ溶液はガス拡
散電極を通ってガス室側に出てくることになる。この方
法を実行するためには、ガス拡散電極のガス拡散層の貫
通孔の大きさ及びその分布を制御した液透過型ガス拡散
電極を使用する。このガス拡散電極は、ガス室に陰極室
の高さ方向の圧力差の影響がなく、かつ大型化しても圧
力分布を考える必要がないこと、陰極液の電気抵抗が最
小になり、これにより槽電圧を最小に維持する等の効果
があるため最も望ましい方法の一つである。しかしなが
らこの方法では、ガス室側に出る苛性アルカリがガス拡
散層の気孔を覆いやすくスムーズな電解の進行に支障を
来すという問題点があり、実験室レベルの小型電解槽で
は大きな問題点が生じない反面、実用槽などの大型電解
槽では電流分布の不均一や槽電圧の上昇という問題点が
生じやすく、大型化へ向けて種々の問題点を検討する必
要が生じている。
[0007] In order to solve these problems and further reduce the electrolysis voltage, a method has been proposed in which an ion exchange membrane and an electrode are bonded to substantially eliminate the cathode chamber.
According to this method, the generated caustic solution comes out to the gas chamber through the gas diffusion electrode. In order to execute this method, a liquid-permeable gas diffusion electrode in which the size and distribution of through holes in the gas diffusion layer of the gas diffusion electrode are controlled is used. This gas diffusion electrode is free from the influence of the pressure difference in the height direction of the cathode chamber in the gas chamber, and it is not necessary to consider the pressure distribution even if it is enlarged, and the electric resistance of the catholyte is minimized. This is one of the most desirable methods because it has the effect of keeping the voltage at a minimum. However, this method has a problem in that caustic alkali flowing into the gas chamber easily covers the pores of the gas diffusion layer and hinders the progress of smooth electrolysis, and a large problem occurs in a laboratory-level small electrolytic cell. On the other hand, problems such as non-uniform current distribution and increase in cell voltage are likely to occur in large electrolytic cells such as a practical cell, and it is necessary to consider various problems for increasing the size.

【0008】[0008]

【発明の目的】本発明は、前述の従来技術の問題点、つ
まり水平型複極式電解槽における種々の問題点を解消し
て、電力原単位が極めて小さく、かつ安定な電解が可能
な前記水平型複極式電解槽を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned problems of the prior art, that is, various problems in the horizontal type bipolar electrolyzer, and to achieve an extremely small power consumption and stable electrolysis. An object of the present invention is to provide a horizontal bipolar electrolytic cell.

【0009】[0009]

【問題点を解決するための手段】本発明に係わる水平型
複極式電解槽は、イオン交換膜を隔膜とし、該イオン交
換膜の片面に陽極を密着させ反対面にガス拡散陰極を密
着させ、陽極室に塩化アルカリ溶液を陰極室に酸素含有
ガスをそれぞれ供給しながら電解して陽極室で塩素を陰
極室で苛性アルカリをそれぞれ得るための電解槽におい
て、前記イオン交換膜により区画された陽極室及び陰極
室を1ユニットとする複数の水平方向を向く電解槽単位
が陰極室を下側にして、凹凸を有する複極板を介して積
層されていることを特徴とする水平型複極式電解槽であ
る。
The horizontal bipolar electrolyzer according to the present invention has an ion exchange membrane as a diaphragm, an anode in close contact with one side of the ion exchange membrane, and a gas diffusion cathode in close contact with the other side. An anode partitioned by the ion-exchange membrane in an electrolytic cell for electrolyzing an alkali chloride solution in the anode chamber while supplying an oxygen-containing gas to the cathode chamber to obtain chlorine in the anode chamber and caustic alkali in the cathode chamber, respectively. A plurality of horizontally oriented electrolytic cell units each having a chamber and a cathode chamber as one unit, the cathode chamber being on the lower side, and stacked via a bipolar plate having irregularities, wherein It is an electrolytic cell.

【0010】以下本発明を詳細に説明する。本発明は、
液透過型ガス拡散電極を有する電解槽単位を、凹凸を有
する複極板を介して縦方向に複数個積層して水平型複極
式電解槽を構成している。液透過型ガス拡散電極の使用
により、陰極室は陰極液室と陰極ガス室を兼ねることに
なり、従来のガス拡散電極使用の電解槽と異なり、電解
槽単位がイオン交換膜で区画された2室のみで構成され
るので構造が簡単になる。この電解槽単位を陰極室を下
にして水平又は水平に近い状態におくと、ガス拡散電極
を透過した陰極液はガス拡散電極表面から液滴として落
下して該ガス拡散電極から速やかに離れる。従って従来
から課題とされた陰極液のガス拡散電極表面からの除去
の問題点が解決できる。
Hereinafter, the present invention will be described in detail. The present invention
A horizontal type bipolar electrolytic cell is constituted by laminating a plurality of electrolytic cell units each having a liquid-permeable gas diffusion electrode via a bipolar plate having irregularities in the vertical direction. By using the liquid permeable gas diffusion electrode, the cathode chamber serves as both the catholyte chamber and the cathode gas chamber. Unlike the conventional electrolytic cell using a gas diffusion electrode, the electrolytic cell unit is divided by an ion exchange membrane. The structure is simplified because it is composed of only a room. When the electrolytic cell unit is placed in a horizontal or nearly horizontal state with the cathode chamber facing down, the catholyte which has passed through the gas diffusion electrode falls as droplets from the gas diffusion electrode surface and quickly leaves the gas diffusion electrode. Therefore, the problem of removing the catholyte from the surface of the gas diffusion electrode, which has been a problem in the past, can be solved.

【0011】電解を進行させるためには、ガス拡散電極
(陰極)とイオン交換膜間のイオン及び電荷の流れが確
保されれば充分で前記ガス拡散電極とイオン交換膜の間
に液が存在すれば良く、陰極室の中に陰極液が充満して
いる必要はない。実際にはガス拡散電極とイオン交換膜
は密着状態で設置され、イオン交換膜を透過してくるイ
オン及び同伴水、及び供給ガス中の湿分により充分に水
分は供給されるため、ガス拡散電極の下側が空間であっ
ても電解に支障が生ずることはなく、むしろガス供給の
均一化と前述した陰極液の円滑な除去のため空間を形成
しないことが必要になる。陽極や陰極及びこれらの集電
体への給電は、電流分布が均一になるように電解面全体
に均一に行なわれることが望ましい。そのためには電解
槽の底板又は裏板自身を給電母材とする複極式電解槽と
することが理想的である。つまり水平型の電解槽単位を
垂直方向に積層し、それらの境界として複極板を使用す
ると給電が極めて容易になりかつ電流分布も均一にな
る。
In order for the electrolysis to proceed, it is sufficient to ensure the flow of ions and charges between the gas diffusion electrode (cathode) and the ion exchange membrane, and it is sufficient if a liquid exists between the gas diffusion electrode and the ion exchange membrane. The cathode chamber need not be filled with catholyte. Actually, the gas diffusion electrode and the ion exchange membrane are installed in close contact with each other, and sufficient water is supplied by ions and accompanying water permeating the ion exchange membrane and moisture in the supply gas. Even if the lower side is a space, there is no problem in electrolysis, but rather it is necessary not to form a space for uniform gas supply and smooth removal of the above-mentioned catholyte. It is desirable that the power supply to the anode, the cathode, and these current collectors be performed uniformly over the entire electrolytic surface so that the current distribution becomes uniform. For that purpose, it is ideal to use a bipolar electrolytic cell in which the bottom plate or the back plate of the electrolytic cell itself is a power supply base material. That is, when horizontal electrolytic cell units are vertically stacked and a bipolar plate is used as a boundary between them, power supply becomes extremely easy and the current distribution becomes uniform.

【0012】複極式電解槽の問題点として電解液を通し
ての漏洩電流の問題がある。本発明では、陰極側では液
流を必要とせず生成物を含む陰極液は系外へ滴下する形
で除去できるため、問題は生じない。又陽極側について
は供給塩濃度を一定にする必要から液の一定の流れが必
要であるが、陽極液の出口で該陽極液を液滴として落下
させれば電流が遮断され、従来のガス拡散電極の場合の
ような陽極液及び陰極液ともに一定の流れが必要な場合
とは大きく異なり、漏洩電流が問題となることは殆どな
くなる。前記複極板の形状は凹凸状、換言すると波形と
する。波形とすることにより凹凸の複極板の凹部あるい
は凸部のない平坦な複極板上に電解液を流し、凸部で電
極や集電体と接続することを可能にし、電解槽を箱型に
する必要がなくなる。凹凸の先端は鋭角状になっていて
も丸く湾曲していても良い。この複極板は陽極側がチタ
ン製で陰極側がニッケル又はステンレススチール製とす
ることが望ましく、陽極側の波形板と陰極側の波形板を
蝋付けで張り合わせても、又銅等の導電性に優れた金属
の網状体や金属フォームを挟んで固定しても良い。なお
電解液を円滑に流すためには電解槽を波形板の溝の方向
に沿って僅かに傾けて設置することが好ましい。これに
より電解液は波形板に沿って流れ、液の滞留等が防止で
きる。この波形板の端部あるいは周囲には他の電解槽構
成部材と接続するためのフランジを有していることが望
ましく、プレスによりフランジと波形板を一体化した電
解槽を構成することにより構造が簡単な電解槽を提供で
きる。
As a problem of the bipolar electrolytic cell, there is a problem of a leakage current through the electrolytic solution. In the present invention, there is no problem since the catholyte containing the product can be removed by dropping out of the system without requiring a liquid flow on the cathode side. On the anode side, a constant flow of the liquid is necessary because the supply salt concentration needs to be constant, but if the anolyte is dropped as droplets at the outlet of the anolyte, the current is shut off, and the conventional gas diffusion This is significantly different from the case where a constant flow is required for both the anolyte and the catholyte as in the case of electrodes, and leakage current hardly causes a problem. The shape of the bipolar plate is an uneven shape, in other words, a waveform. The corrugated shape allows the electrolyte to flow on a flat bipolar plate without any concave or convex portions of the concave / convex bipolar plate, and allows connection to electrodes and current collectors at the convex portions. There is no need to The tip of the unevenness may be acute-angled or rounded. It is desirable that this double pole plate is made of titanium on the anode side and nickel or stainless steel on the cathode side. It may be fixed by sandwiching a metal mesh or metal foam. In order to smoothly flow the electrolytic solution, it is preferable to install the electrolytic cell at a slight inclination along the direction of the groove of the corrugated plate. As a result, the electrolyte flows along the corrugated plate, and the retention of the solution can be prevented. It is desirable to have a flange at the end or periphery of this corrugated plate for connection with other electrolytic cell components, and the structure is formed by forming an electrolytic cell in which the flange and the corrugated plate are integrated by pressing. A simple electrolytic cell can be provided.

【0013】電極又は集電体は前記波形板の凸部に溶接
等により取付けあるいは接続される。該取付けは直接溶
接などで行なっても良いが、イオン交換膜の中心として
その両側に陰極と陽極を隙間なく均一に密着させること
が重要であるため、陽極及び陰極の少なくとも一方の取
付けは弾性体より具体的にはバネ弾性を有する部材を介
して行なうとこのバネ弾性により均一に全面を密着させ
ることが可能になる。例えば陽極の取付け部に小さいな
板バネを予め取り付けておき、その板バネにエクスパン
ドメッシュや多孔板型の電極を溶接すれば良い。陰極は
ガス拡散電極であるため直接溶接することは殆ど行なわ
れず、その取付けはメッシュ状の集電体を予め複極板に
取付けその集電体とイオン交換膜との間にガス拡散電極
を挟み込むようにする。このガス拡散電極を安定させる
ためには適度な力で該ガス拡散電極をイオン交換膜に押
し付けることが望ましく、そのためには集電体の複極板
への取付部に上述のようなバネ弾性を有する部材を介在
させてもあるいは陽極側からバネ弾性を有する部材でイ
オン交換膜を通して押さえつけるようにしても良い。又
集電体とイオン交換膜の間にニッケルやステンレススチ
ール製の細い線材を互いに絡めたような網状体やメッシ
ュの積層体、又は三次元編み物等の導電性で伸縮性のあ
るものを挟んでも良い。このバネ弾性を与えるのは陽極
及び陰極の片側だけでも両側でも良い。更に電解槽の室
枠とイオン交換膜との間に挟むガスケットの締め付けに
よる変形を利用して均一に押さえ付けても良い。バネ弾
性を有する部材の設置箇所及び個数は電解槽や電極の構
造に応じて決定すれば良いが、多過ぎるとその部分の抵
抗による電圧上昇を招く恐れがあるため、通常は陽極又
は陰極の1ヵ所とすることが望ましい。
The electrode or current collector is attached or connected to the projection of the corrugated plate by welding or the like. The attachment may be carried out by direct welding or the like, but since it is important that the cathode and anode are brought into close contact with both sides of the ion exchange membrane uniformly without any gap, at least one of the anode and the cathode is attached to an elastic body. More specifically, if it is performed via a member having spring elasticity, the entire surface can be uniformly brought into close contact by the spring elasticity. For example, a small leaf spring may be attached in advance to the attachment portion of the anode, and an expanded mesh or perforated plate electrode may be welded to the leaf spring. Since the cathode is a gas diffusion electrode, it is hardly directly welded, and its installation is performed by attaching a mesh-like current collector to a bipolar plate in advance and sandwiching the gas diffusion electrode between the current collector and the ion exchange membrane. To do. In order to stabilize the gas diffusion electrode, it is desirable to press the gas diffusion electrode against the ion exchange membrane with an appropriate force, and for this purpose, the above-described spring elasticity is applied to the mounting portion of the current collector to the bipolar plate. A member having the elasticity may be interposed or a member having spring elasticity may be pressed from the anode side through the ion exchange membrane. Also, a conductive and elastic material such as a net-like body or a mesh laminate in which thin wires made of nickel or stainless steel are entangled with each other between the current collector and the ion exchange membrane, or a three-dimensional knitted fabric may be sandwiched. good. Only one side or both sides of the anode and the cathode may be provided with this spring elasticity. Furthermore, the gasket sandwiched between the chamber frame of the electrolytic cell and the ion exchange membrane may be uniformly pressed by utilizing the deformation caused by the tightening. The installation location and the number of members having spring elasticity may be determined according to the structure of the electrolytic cell or the electrode. However, if there is too much, there is a risk of causing a voltage increase due to the resistance of that portion. It is desirable to have two places.

【0014】以上述べたように本発明の水平型複極式電
解槽の電解槽単位は、実質的な電解部分であるイオン交
換膜を中心とし、その上側に接触して陽極(陽極及び陽
極集電体)が、その下側に陰極(陰極及び陰極集電体)
がそれぞれ設置され、陽極室側に電解液が供給される。
該電解液は、クロルアルカリ電解では食塩水や塩化カリ
ウム溶液であり、必要に応じて塩酸を含む酸性の食塩水
が供給される。電解を行なうと、陽極室では液中の塩素
イオンが酸化して塩素ガスとなり液に混合したりガス層
を形成したりすることがある。これらは電気抵抗を増加
させて電解電圧を上昇させる要因となることが多いが、
ガスは液と比較して軽いため上側に抜けやすく、本発明
のような水平型複極式電解槽では電解部分にはガス層が
形成されず、電解電圧の上昇は殆ど起こることがない。
As described above, the unit of the electrolytic cell of the horizontal type bipolar electrolytic cell of the present invention is centered on the ion exchange membrane which is a substantial electrolytic part, and is contacted on the upper side with the anode (the anode and the anode collector). Current collector), the cathode (cathode and cathode current collector) underneath
Are respectively installed, and the electrolytic solution is supplied to the anode chamber side.
The electrolytic solution is a saline solution or a potassium chloride solution in chlor-alkali electrolysis, and an acidic saline solution containing hydrochloric acid is supplied as necessary. When electrolysis is performed, chlorine ions in the liquid are oxidized in the anode chamber to become chlorine gas, which may be mixed with the liquid or form a gas layer. These often increase the electrical resistance by increasing the electrical resistance,
Since the gas is lighter than the liquid, it is easy to escape upward. In the horizontal bipolar electrolyzer according to the present invention, no gas layer is formed in the electrolysis part, and the electrolysis voltage hardly increases.

【0015】両極間に通電すると、陽イオンであるナト
リウムイオンやカリウムイオンは電場によってイオン交
換膜(陽イオン交換膜)を透過して陰極室に達する。こ
の際、電解液濃度に応じてその量は異なるが、通常約4
分子の水が同伴水として前記陽イオンとともに陰極室側
に移行し、陰極液の水分が供給される。陰極では供給ガ
スである酸素と水により水酸イオンが生成し、前記ナト
リウムイオン又はカリウムイオン並びに前記水によって
苛性アルカリ溶液が生じ、これがガス拡散陰極を透過し
て陰極液として取り出される。陰極室ではガス生成がな
くガスによる抵抗損は殆どない。しかも生成した苛性ア
ルカリ溶液は液滴としてガス拡散陰極から下方に抜ける
ため、ガス供給及び排出は殆ど阻害されることなく円滑
に行なうことができる。従ってガス供給の不完全性に起
因する電解電圧の上昇は起こらず、大型の商業用電解槽
においても小型の実験用電解槽と同様の電解電圧が得ら
れる。
When current is applied between the two electrodes, sodium ions and potassium ions, which are cations, pass through an ion exchange membrane (cation exchange membrane) by an electric field and reach the cathode chamber. At this time, the amount varies depending on the concentration of the electrolytic solution, but is usually about 4%.
Molecular water is transferred to the cathode chamber side together with the cations as entrained water, and the water of the catholyte is supplied. At the cathode, hydroxyl ions are generated by the supply gases oxygen and water, and the sodium ion or potassium ion and the water generate a caustic solution, which passes through the gas diffusion cathode and is taken out as a catholyte. In the cathode chamber, there is no gas generation and there is almost no resistance loss due to gas. In addition, since the generated caustic alkali solution drops downward from the gas diffusion cathode as droplets, gas supply and discharge can be smoothly performed with almost no hindrance. Therefore, the electrolysis voltage does not rise due to imperfect gas supply, and the same electrolysis voltage as that of a small experimental electrolyzer can be obtained even in a large commercial electrolyzer.

【0016】添付図面は、本発明に係わる水平型複極式
電解槽で使用可能な複極板と水平型複極式電解槽を例示
するもので、図1a及びbは複極板の一例を示す平面図
及びその側面図、図2は複極板の正面図である。複極板
1は平板を上下からプレスして、額縁状のフレーム2内
に鋭角状の先端部を有する波形部3から形成することに
より製造される。この波形部3は平面状のフレーム2の
上下に突出するように設置されている。
The accompanying drawings illustrate a bipolar plate and a horizontal bipolar electrolytic cell which can be used in a horizontal bipolar electrolytic cell according to the present invention, and FIGS. 1A and 1B show examples of the bipolar plate. FIG. 2 is a plan view and a side view thereof, and FIG. 2 is a front view of a bipolar plate. The bipolar plate 1 is manufactured by pressing a flat plate from above and below to form a corrugated portion 3 having an acute-angled tip in a frame 2 having a frame shape. The corrugated portion 3 is provided so as to protrude up and down of the planar frame 2.

【0017】図3は、図1及び2とは異なった複極板を
使用した本発明に係わる水平型複極式電解槽の一例を示
す縦断正面図である。図3は、1枚の複極板4と2枚の
端末板4aにより挟まれて形成された2ユニットの電解
槽単位を縦方向に積層して成る水平型複極式電解槽であ
る。図中の3枚の複極板4及び端末板4aは、それぞれ
平板をプレスして周囲を額縁状のフレーム5とし、その
中に丸く湾曲した選択を有する凹凸状の波形部6を形成
することによりそれぞれ構成されている。この波形部6
は平面状のフレーム2の上下に突出するように設置され
ている。
FIG. 3 is a vertical sectional front view showing an example of a horizontal bipolar electrolytic cell according to the present invention using a bipolar plate different from those shown in FIGS. FIG. 3 shows a horizontal bipolar electrolytic cell formed by vertically stacking two electrolytic cell units formed between one bipolar plate 4 and two terminal plates 4a. Each of the three bipolar plates 4 and the terminal plate 4a in the figure is formed by pressing a flat plate to form a frame 5 having a frame shape around the flat plate, and forming an uneven corrugated portion 6 having a round and curved selection therein. , Respectively. This waveform part 6
Are installed so as to protrude above and below the planar frame 2.

【0018】下方の端末板4aの上方に湾曲する波形部
6の最上端は3点で第1の陰極集電体9に接触し該複極
板4から給電されるようになっている。該陰極集電体9
上には第1のガス拡散陰極10が密着し更に該ガス拡散陰
極10上には第1のイオン交換膜11が密着している。前述
の下方の端末板4aのフレーム5と前記イオン交換膜11
の周縁部間には第1ガスケット12が配置されている。前
記下方の端末板4aと前記イオン交換膜11の間に形成さ
れる空間が陰極室である。前記イオン交換膜11の上には
多孔性の第1の寸法安定性陽極13が密着状態で設置され
該陽極13には複極板4の下方に湾曲する波形板6の最下
端が2点で接触し該複極板4から前記陽極12に給電され
るようになっている。前記イオン交換膜11の周縁部と複
極板4のフレーム間には第2ガスケット14が配置されて
いる。前記イオン交換膜11から複極板4のフレームとの
間に形成される空間が陽極室である。
The uppermost end of the corrugated portion 6 that curves upwardly of the lower terminal plate 4a contacts the first cathode current collector 9 at three points and is supplied with power from the bipolar plate 4. The cathode current collector 9
The first gas diffusion cathode 10 is in close contact with the first gas diffusion cathode 10, and the first ion exchange membrane 11 is in close contact with the first gas diffusion cathode 10. The frame 5 of the lower terminal plate 4a and the ion exchange membrane 11 described above.
A first gasket 12 is disposed between the peripheral edges of the first gasket. The space formed between the lower terminal plate 4a and the ion exchange membrane 11 is a cathode chamber. A porous first dimensionally stable anode 13 is provided on the ion exchange membrane 11 in close contact with the lower end of the corrugated plate 6 which is curved below the multipolar plate 4 at two points. The contact is made so that power is supplied from the bipolar plate 4 to the anode 12. A second gasket 14 is disposed between the periphery of the ion exchange membrane 11 and the frame of the bipolar plate 4. The space formed between the ion exchange membrane 11 and the frame of the bipolar plate 4 is an anode chamber.

【0019】前記複極板4の上方に湾曲する波形板6の
最上端は3点で第2の陰極集電体15に接触し該複極板4
から給電されるようになっている。該陰極集電体15上に
は第2のガス拡散陰極16が密着し更に該ガス拡散陰極16
上には第2のイオン交換膜17が密着している。前述の複
極板4のフレームと前記イオン交換膜17間には第3ガス
ケット18が配置されている。前記複極板4とイオン交換
膜17の間に形成される空間が陰極室である。前記イオン
交換膜11の上には多孔性の第2の寸法安定性陽極19が密
着状態で設置され該陽極19には上方の端末板4aの下方
に湾曲する波形部6の最下端が2点で接触し前記上方の
端末板4aから前記陽極19に給電されるようになってい
る。前記イオン交換膜17の周縁部と上方の端末板4aの
フレーム間には第4のガスケット20が配置されている。
前記イオン交換膜17から上方の端末板4aとの間に形成
される空間が陽極室である。
The uppermost end of the corrugated plate 6 which curves upwardly of the bipolar plate 4 contacts the second cathode current collector 15 at three points and contacts the second bipolar plate 4.
Power is supplied from. A second gas diffusion cathode 16 is in close contact with the cathode current collector 15 and
A second ion exchange membrane 17 is in close contact with the upper part. A third gasket 18 is arranged between the frame of the bipolar plate 4 and the ion exchange membrane 17. The space formed between the bipolar plate 4 and the ion exchange membrane 17 is a cathode chamber. A porous second dimensionally stable anode 19 is mounted on the ion exchange membrane 11 in close contact with the lower end of the corrugated portion 6 which is curved downward below the upper terminal plate 4a. And the power is supplied to the anode 19 from the upper terminal plate 4a. A fourth gasket 20 is arranged between the peripheral portion of the ion exchange membrane 17 and the frame of the upper terminal plate 4a.
The space formed between the ion exchange membrane 17 and the upper terminal plate 4a is an anode chamber.

【0020】この水平型複極式電解槽の陽極室に陽極液
例えば食塩水を供給しかつ陰極室に酸素含有ガスを供給
しながら両電極10、13、16、19間に複極板4又は端末板
4aから通電すると、イオン交換膜11、17の陰極室側表
面で苛性ソーダが生成し、この苛性ソーダは水溶液とし
てガス拡散陰極10、16を透過してその陰極室側表面に達
する。この陰極表面に達した苛性ソーダ水溶液は自重に
より液的として複極板4及び端末板4a方向に滴下して
複極板や端末板の凹部に達する。この水平型複極式電解
槽を図の前後方向に若干傾斜させておくと、複極板や端
末板に達した陰極液は傾斜に沿って移動して円滑に系外
に取り出される。又複極板や端末板の波形部6の凹凸に
より該波形部6が陰極及び陽極と弾性をもって接触する
ため、通電が確実に行なわれる。
An anolyte, for example, a saline solution is supplied to the anode chamber of the horizontal bipolar electrolytic cell, and the bipolar plate 4 or the bipolar plate 4 or 19 is supplied between the electrodes 10, 13, 16, 19 while supplying an oxygen-containing gas to the cathode chamber. When electricity is supplied from the terminal plate 4a, caustic soda is generated on the cathode chamber side surfaces of the ion exchange membranes 11 and 17, and the caustic soda passes through the gas diffusion cathodes 10 and 16 as an aqueous solution and reaches the cathode chamber side surfaces. The aqueous caustic soda solution that has reached the surface of the cathode is liquefied by its own weight and drops in the direction of the bipolar plate 4 and the terminal plate 4a to reach the concave portions of the bipolar plate and the terminal plate. When the horizontal bipolar electrolytic cell is slightly inclined in the front-rear direction in the figure, the catholyte that has reached the bipolar plate or the terminal plate moves along the inclination and is smoothly taken out of the system. Further, since the corrugated portion 6 is elastically contacted with the cathode and the anode due to the unevenness of the corrugated portion 6 of the bipolar plate or the terminal plate, the current is reliably supplied.

【0021】図4は、本発明に係わる水平型複極式電解
槽の他の例を示す部分拡大図である。この例は陽極12と
複極板4の下方に湾曲する波形部6の接触状況を示すも
ので、前記陽極12の上表面にバネ材21が一端を接着して
固定されている。このバネ材21は前記波形部6に接触し
て該波形部6を上方に変位させる。この変位量dの分だ
けバネ材21に接触している波形部6は陽極12と強く接触
する。このように図示の水平型複極式電解槽を使用して
食塩電解等を行なうと、従来の水平型複極式電解槽の欠
点が解消されて、陰極液の取り出し及び電極への通電を
確実に行なうことが可能になる。
FIG. 4 is a partially enlarged view showing another example of the horizontal type bipolar electrolytic cell according to the present invention. This example shows the state of contact between the anode 12 and the corrugated portion 6 that curves downwardly of the bipolar plate 4, and a spring material 21 is fixed to the upper surface of the anode 12 by bonding one end thereof. The spring member 21 contacts the corrugated portion 6 and displaces the corrugated portion 6 upward. The corrugated portion 6 that is in contact with the spring member 21 by the amount of the displacement d makes strong contact with the anode 12. When salt electrolysis or the like is performed using the illustrated horizontal type bipolar electrolytic cell as described above, the drawbacks of the conventional horizontal type bipolar electrolytic cell are solved, and the removal of the catholyte and the energization of the electrodes are ensured. Can be performed.

【0022】[0022]

【実施例】次に本発明に係わる水平型複極式電解槽及び
該電解槽を使用する電解の実施例を記載するが,該実施
例は本発明を限定するものではない。
EXAMPLES Next, examples of a horizontal bipolar electrolytic cell and electrolysis using the electrolytic cell according to the present invention will be described, but the examples do not limit the present invention.

【0023】[0023]

【実施例1】厚さ1mmのチタンとニッケルのクラッド板
を、凹凸の深さ10mm、凹部の間隔が10mmであり、凹凸の
先端形状が三角形である波板とし、その周辺にフランジ
を形成し、全体の大きさが縦100 mm、横300 mmになるよ
うにプレス加工し、これを複極板を兼ねた電解槽構成部
品とした。この凹凸状の複極板のチタン部分に、厚さ1
mmのエクスパンドメッシュから成る基材上にイリジウム
とルテニウムの酸化物を含む電極物質を被覆した不溶性
金属陽極を溶接して陽極板とした。又前記複極板のニッ
ケル部分には、表面に銀めっきを施した厚さ0.5 mmのニ
ッケル板(見掛け厚3mmの平滑化していないエクスパン
ドメッシュ)を溶接して陰極集電体とした。ニッケルメ
ッシュ表面を手で押さえたところ、僅かに弾性があるこ
とが判った。
EXAMPLE 1 A titanium and nickel clad plate having a thickness of 1 mm was formed into a corrugated plate having a depth of irregularities of 10 mm, an interval between concave portions of 10 mm, and a triangular shape with a triangular tip, and a flange formed around the corrugated plate. Pressing was performed so that the overall size was 100 mm in length and 300 mm in width, and this was used as a component of an electrolytic cell also serving as a bipolar plate. A thickness of 1 is added to the titanium portion of the uneven bipolar plate.
An insoluble metal anode coated with an electrode material containing an oxide of iridium and ruthenium was welded onto a substrate made of expanded mesh of mm to form an anode plate. Further, a nickel plate having a thickness of 0.5 mm (unexpanded expanded mesh having an apparent thickness of 3 mm) having a silver plated surface was welded to the nickel portion of the bipolar plate to form a cathode current collector. When the nickel mesh surface was pressed by hand, it was found to be slightly elastic.

【0024】銀めっきを行なったニッケルフォームにニ
ッケル粉末をPTFE樹脂をバインダーとして充填し一
方面に銀の微粒子から成る電極触媒物質を担持したもの
をガス拡散電極とした。又デュポン社のナフィオン961
をイオン交換膜として使用した。更に厚さ6.5 mmのEP
DMゴムに、液及びガスの供給及び排出用パイプを取り
付けてガスケットとした。なお陽極側ガスケット表面に
はPTFE樹脂の被覆を行ない、塩素による消耗をなく
すようにした。更に、これらの各部材を組み立てて電解
槽とし,電解面全体に均一に圧力を掛けるための端末板
を準備した。これらの部材を次の順序で組み立て電解槽
とした。即ち、下から、陰極側端末板−ニッケル側を上
向きにした複極板−陰極ガスケット−ガス拡散電極−イ
オン交換膜−陽極ガスケット−不溶性陽極−チタンを下
向きとした複極板−(複極板−複極板間を繰り返し)−
陽極側端末板の順に積層し、両端末板間を絶縁加工した
ボルト/ナットにより締め付けた。本実施例では、電解
槽単位が2ユニットの複極型(複極板と端末板が計3
枚)電解槽とした。なおこの電解槽は水平に対して5°
傾けて波状の複極板の波に沿って電解液がスムーズに流
れるようにした。
A nickel diffusion-filled nickel foam was filled with nickel powder using a PTFE resin as a binder, and one surface carrying an electrode catalyst material composed of silver fine particles was used as a gas diffusion electrode. DuPont's Nafion 961
Was used as an ion exchange membrane. 6.5mm thick EP
A pipe for supplying and discharging liquid and gas was attached to DM rubber to form a gasket. The surface of the gasket on the anode side was coated with a PTFE resin so as to eliminate consumption by chlorine. Further, these members were assembled to form an electrolytic cell, and a terminal plate for uniformly applying pressure to the entire electrolytic surface was prepared. These members were assembled in the following order to form an electrolytic cell. That is, from the bottom, a cathode-side terminal plate-a bipolar plate with the nickel side facing upward-a cathode gasket-a gas diffusion electrode-an ion exchange membrane-an anode gasket-an insoluble anode-a bipolar plate with titanium facing downward-(bipolar plate −Repeat between double pole plates) −
The anode side terminal plates were laminated in this order, and were tightened with bolts / nuts insulated between both terminal plates. In the present embodiment, a bipolar type having two electrolytic cells (a bipolar plate and a terminal plate having a total of 3 units) was used.
Sheet) electrolytic cell. In addition, this electrolytic cell is 5 ° to the horizontal.
The electrolytic solution was allowed to flow smoothly along the wave of the inclined bipolar plate.

【0025】この複極型電解槽のそれぞれの陽極側に15
0 g/リットルの食塩水を循環し、陰極側にはPSAに
より酸素富化した空気(酸素濃度90%)を理論酸素消費
量の20%増しとして供給した。電解温度90℃、電流密度
30A/dm2 の条件で電解を行なったところ、槽電圧は下側
の電解槽単位では2.1 V、上側の電解槽単位では2.15V
であり、殆ど差はなかった。陰極側からは32%の苛性ソ
ーダが得られ、10日間以上連続運転しても槽電圧等の変
化はなく安定した電解を継続できた。なお5°の傾斜を
元に戻して垂直にして電解を行なったところ、ガス拡散
電極表面からの電解液の除去が不充分になったためか、
最大電流密度が20A/dm2 となり、槽電圧もそれぞれ2.5
Vまで上昇した。
On each anode side of the bipolar electrolytic cell, 15
A saline solution of 0 g / liter was circulated, and air (enriched in oxygen by 90%) oxygen-enriched with PSA was supplied to the cathode side as a 20% increase in theoretical oxygen consumption. Electrolysis temperature 90 ° C, current density
When electrolysis was performed under the conditions of 30 A / dm 2 , the cell voltage was 2.1 V for the lower electrolytic cell unit and 2.15 V for the upper electrolytic cell unit.
And there was almost no difference. 32% caustic soda was obtained from the cathode side, and stable electrolysis could be continued without any change in cell voltage etc. even after continuous operation for 10 days or more. In addition, when the electrolysis was performed by returning the inclination of 5 ° to the original position and vertical, the removal of the electrolytic solution from the gas diffusion electrode surface became insufficient.
The maximum current density is 20 A / dm 2 and the cell voltage is 2.5
V.

【0026】[0026]

【実施例2】複極板を凸部の先端が丸く湾曲した波状の
凹凸板とし、チタン・ニッケルクラッドの代わりにチタ
ン板とニッケル板を中間に銅の網状体を挟んで固定した
板としたこと以外は実施例1と同一条件で電解槽を構成
しかつ同一条件で電解を行なったところ、槽電圧は平均
で2.1 Vであった。電解を継続したところ、電流密度は
40A/dm2 まで上昇したが、槽電圧は平均2.3 Vであり、
複極板部分からの発熱もなく、電流分布の均一性も保た
れていた。
Example 2 A bipolar plate was formed into a corrugated plate having a convex portion with a rounded tip, and instead of a titanium / nickel clad plate, a titanium plate and a nickel plate were interposed and a copper mesh was fixed therebetween. Except for this, when the electrolytic cell was constructed under the same conditions as in Example 1 and electrolysis was performed under the same conditions, the cell voltage was 2.1 V on average. When the electrolysis was continued, the current density was
Although it increased to 40 A / dm 2 , the cell voltage was 2.3 V on average,
No heat was generated from the bipolar plate portion, and the uniformity of the current distribution was maintained.

【0027】[0027]

【実施例3】陰極集電体を平滑化したニッケルのエクス
パンドメッシュとし、その代わりに陽極の取付部に幅5
mmのチタン板を凹凸状の波板の凸部に沿って溶接しその
板に陽極を溶接することにより陽極側に弾性を与えたこ
と以外は実施例1と同一条件で電解槽を構成しかつ同一
条件で電解を行なったところ、槽電圧は平均で2.05Vで
あった。
Embodiment 3 The cathode current collector was made of a smoothed nickel expanded mesh, and a width of 5 mm was used instead of the anode mounting portion.
An electrolytic cell was constructed under the same conditions as in Example 1 except that a titanium plate of mm was welded along the projections of the corrugated corrugated plate and an anode was welded to the plate to give elasticity to the anode side. When electrolysis was performed under the same conditions, the cell voltage was 2.05 V on average.

【0028】[0028]

【実施例4】陰極集電体を平滑化し、集電体とガス拡散
電極の間に見掛け厚3mmで空孔率約95%のステンレスス
チール製の網状体を介在させたこと以外は実施例1と同
一条件で電解槽を構成しかつ同一条件で電解を行なった
ところ、槽電圧は平均で2.1Vであった。又電流密度を4
0A/dm2 まで上昇させて電解を行なったが発熱電流分布
の異常などは全く見られず、平均の槽電圧は2.25〜2.30
Vで安定した電解が継続できた。
Example 4 Example 1 except that the cathode current collector was smoothed and a stainless steel mesh having an apparent thickness of 3 mm and a porosity of about 95% was interposed between the current collector and the gas diffusion electrode. When the electrolyzer was constructed under the same conditions and electrolysis was performed under the same conditions, the cell voltage was 2.1 V on average. Also set the current density to 4
0A / dm 2 have been shown subjected to electrolysis is raised heating current distribution abnormalities such as not observed at all, cell voltage average from 2.25 to 2.30
At V, stable electrolysis could be continued.

【0029】[0029]

【発明の効果】本発明は、イオン交換膜を隔膜とし、該
イオン交換膜の片面に陽極を密着させ反対面にガス拡散
陰極を密着させ、陽極室に塩化アルカリ溶液を陰極室に
酸素含有ガスをそれぞれ供給しながら電解して陽極室で
塩素を陰極室で苛性アルカリをそれぞれ得るための電解
槽において、前記イオン交換膜により区画された陽極室
及び陰極室を1ユニットとする複数の水平方向を向く電
解槽単位が陰極室を下側にして、凹凸状の複極板を介し
て積層されていることを特徴とする水平型複極式電解槽
である。なお前記複極板は陽極室と陰極室を区画すると
ともに両電極へ給電する機能を有し、例えばチタンとニ
ッケルを接合して製造できる。
According to the present invention, an ion exchange membrane is used as a diaphragm, an anode is adhered to one side of the ion exchange membrane and a gas diffusion cathode is adhered to the other side, an alkali chloride solution is supplied to the anode chamber, and an oxygen-containing gas is supplied to the cathode chamber. In the electrolytic cell for obtaining chlorine in the anode chamber and caustic alkali in the cathode chamber by electrolyzing while supplying respectively, a plurality of horizontal directions in which the anode chamber and the cathode chamber partitioned by the ion exchange membrane are one unit are formed. The horizontal type bipolar electrolytic cell is characterized in that the electrolytic cell units facing each other are stacked with a cathode chamber on the lower side via an uneven bipolar plate. The bipolar plate has a function of partitioning an anode chamber and a cathode chamber and supplying power to both electrodes, and can be manufactured by, for example, joining titanium and nickel.

【0030】この水平型複極式電解槽は、複極板が凹凸
の波形板により構成されているため、該波形板の凸部で
陽極及び陰極との電気的接続を確実に行なうことが可能
になる。更に確実に電解又は集電体と給電用複極板の接
続を行なうためには、電極又はその集電体の少なくとも
一方をバネ材等の弾性体を介して装着すれば良く、該弾
性体により電極や集電体と複極板が弾性的に接触する。
又ガス拡散陰極表面に達した陰極液はその自重で液滴と
して落下するため、陰極液の陰極表面からの取り出しは
問題なく実施できる。
In this horizontal bipolar electrolytic cell, since the bipolar plate is constituted by a corrugated plate having irregularities, it is possible to reliably perform electrical connection between the anode and the cathode at the convex portions of the corrugated plate. become. In order to more reliably connect the electrolytic or current collector to the power supply bipolar plate, at least one of the electrode and the current collector may be mounted via an elastic body such as a spring material. The electrode and the current collector come into elastic contact with the bipolar plate.
Since the catholyte that has reached the gas diffusion cathode surface drops as a droplet under its own weight, the catholyte can be removed from the cathode surface without any problem.

【0031】陰極表面から落下した陰極液は前記波形板
の凹部あるいは複極板の基板の凸部が形成されていない
平坦部分の上に達するが、陰極液は他の部材に阻害され
ることなく円滑に流れ、特に前記電解槽を若干傾斜させ
ておくと、電解液の流れは更に円滑に生じて、系外に取
り出される。従って電解槽を大型化する際の最大の問題
点である液離脱が容易かつ円滑に行なわれ、本発明はガ
ス拡散電極を装着した電解槽の実用化に向けて極めて有
用な発明である。
The catholyte that has fallen from the cathode surface reaches the concave portion of the corrugated plate or the flat portion of the double-pole plate where the convex portion is not formed, but the catholyte is not hindered by other members. If the electrolytic solution flows smoothly, particularly if the electrolytic cell is slightly inclined, the electrolytic solution flows more smoothly and is taken out of the system. Therefore, liquid separation, which is the biggest problem in increasing the size of the electrolytic cell, is easily and smoothly performed, and the present invention is an extremely useful invention for practical use of an electrolytic cell equipped with a gas diffusion electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる水平型複極式電解槽で使用可能
な複極板の一例を示す平面図。
FIG. 1 is a plan view showing an example of a bipolar plate that can be used in a horizontal bipolar electrolytic cell according to the present invention.

【図2】図1の複極板の正面図。FIG. 2 is a front view of the bipolar plate of FIG. 1;

【図3】本発明に係わる水平型複極式電解槽の一例を示
す縦断正面図。
FIG. 3 is a vertical cross-sectional front view showing an example of a horizontal bipolar electrolyzer according to the present invention.

【図4】本発明に係わる水平型複極式電解槽の他の例を
示す部分拡大図。
FIG. 4 is a partially enlarged view showing another example of the horizontal bipolar electrolyzer according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・複極板 2・・・フレーム 3・・・波形部
4・・・複極板 4a・・・端末板 5・・・フレーム
6・・・波形部 9・・・陰極集電体 10・・・ガス
拡散陰極 11・・・イオン交換膜 12・・・ガスケット
13・・・寸法安定性陽極 14・・・ガスケット 15・
・・陰極集電体 16・・・ガス拡散陰極 17・・・イオン交換膜 18・・・ガスケット 19・・・
寸法安定性陽極 20・・・ガスケット 21・・・バネ材
DESCRIPTION OF SYMBOLS 1 ... Double electrode plate 2 ... Frame 3 ... Wave part
DESCRIPTION OF SYMBOLS 4 ... Double electrode plate 4a ... Terminal plate 5 ... Frame 6 ... Waveform part 9 ... Cathode current collector 10 ... Gas diffusion cathode 11 ... Ion exchange membrane 12 ... gasket
13 ・ ・ ・ Dimensionally stable anode 14 ・ ・ ・ Gasket 15 ・
・ ・ Cathode current collector 16 ・ ・ ・ Gas diffusion cathode 17 ・ ・ ・ Ion exchange membrane 18 ・ ・ ・ Gasket 19 ・ ・ ・
Dimensionally stable anode 20 ・ ・ ・ Gasket 21 ・ ・ ・ Spring material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜を隔膜とし、該イオン交換
膜の片面に陽極を密着させ反対面にガス拡散陰極を密着
させ、陽極室に塩化アルカリ溶液を陰極室に酸素含有ガ
スをそれぞれ供給しながら電解して陽極室で塩素を陰極
室で苛性アルカリをそれぞれ得るための電解槽におい
て、前記イオン交換膜により区画された陽極室及び陰極
室を1ユニットとする複数の水平方向を向く電解槽単位
が陰極室を下側にして、凹凸を有する複極板を介して積
層されていることを特徴とする水平型複極式電解槽。
An ion-exchange membrane is used as a membrane, an anode is adhered to one side of the ion-exchange membrane, and a gas diffusion cathode is adhered to the opposite side. An alkali chloride solution is supplied to the anode chamber, and an oxygen-containing gas is supplied to the cathode chamber. In an electrolytic cell for obtaining chlorine in the anode chamber and caustic alkali in the cathode chamber while performing electrolysis, a plurality of horizontally oriented electrolytic cell units each including an anode chamber and a cathode chamber partitioned by the ion exchange membrane. Are stacked with a cathode chamber on the lower side via a bipolar plate having projections and depressions.
【請求項2】 電極又はその集電体の少なくとも一方が
弾性体を介して装着されている請求項1に記載の水平型
複極式電解槽。
2. The horizontal bipolar electrolytic cell according to claim 1, wherein at least one of the electrode and its current collector is mounted via an elastic body.
【請求項3】 複極板がチタンとニッケルを接合した波
状板である請求項1に記載の水平型複極式電解槽。
3. The horizontal bipolar electrolyzer according to claim 1, wherein the bipolar plate is a corrugated plate obtained by bonding titanium and nickel.
JP8252481A 1996-09-03 1996-09-03 Horizontal double-polarity electrolytic cell Pending JPH1081986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8252481A JPH1081986A (en) 1996-09-03 1996-09-03 Horizontal double-polarity electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8252481A JPH1081986A (en) 1996-09-03 1996-09-03 Horizontal double-polarity electrolytic cell

Publications (1)

Publication Number Publication Date
JPH1081986A true JPH1081986A (en) 1998-03-31

Family

ID=17237986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8252481A Pending JPH1081986A (en) 1996-09-03 1996-09-03 Horizontal double-polarity electrolytic cell

Country Status (1)

Country Link
JP (1) JPH1081986A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520828A (en) * 2004-11-19 2008-06-19 ウデノラ・ソチエタ・ペル・アツィオーニ Bipolar plate for electrolytic cell with single wall
US20110147229A1 (en) * 2007-12-06 2011-06-23 Bayer Materialscience Ag Process for production of diaryl carbonate
JP2014210975A (en) * 2013-04-19 2014-11-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Metal coated bimetallic plate-containing cell separator
JP2014210974A (en) * 2013-04-19 2014-11-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Bipolar plate configuration consisting of current distribution members for electrolytic bath integrated together
JP2015522706A (en) * 2012-03-29 2015-08-06 カレラ コーポレイション Electrochemical hydroxide system and method using metal oxidation
US9828313B2 (en) 2013-07-31 2017-11-28 Calera Corporation Systems and methods for separation and purification of products
US9957621B2 (en) 2014-09-15 2018-05-01 Calera Corporation Electrochemical systems and methods using metal halide to form products
US9957623B2 (en) 2011-05-19 2018-05-01 Calera Corporation Systems and methods for preparation and separation of products
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
JP2020506859A (en) * 2017-01-20 2020-03-05 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag A flexible way to control the use of hydrochloric acid from chemical manufacturing
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
CN113818038A (en) * 2021-09-23 2021-12-21 中国华能集团清洁能源技术研究院有限公司 Axial non-equidistant corrugated plate electrode
CN116536687A (en) * 2023-06-30 2023-08-04 中石油深圳新能源研究院有限公司 Electrolytic cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520828A (en) * 2004-11-19 2008-06-19 ウデノラ・ソチエタ・ペル・アツィオーニ Bipolar plate for electrolytic cell with single wall
US20110147229A1 (en) * 2007-12-06 2011-06-23 Bayer Materialscience Ag Process for production of diaryl carbonate
US8518231B2 (en) 2007-12-06 2013-08-27 Bayer Intellectual Property Gmbh Process for production of diaryl carbonate
US9957623B2 (en) 2011-05-19 2018-05-01 Calera Corporation Systems and methods for preparation and separation of products
JP2015522706A (en) * 2012-03-29 2015-08-06 カレラ コーポレイション Electrochemical hydroxide system and method using metal oxidation
JP2017075398A (en) * 2012-03-29 2017-04-20 カレラ コーポレイション Electrochemical hydroxide systems and methods using metal oxidation
JP2014210975A (en) * 2013-04-19 2014-11-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Metal coated bimetallic plate-containing cell separator
JP2014210974A (en) * 2013-04-19 2014-11-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Bipolar plate configuration consisting of current distribution members for electrolytic bath integrated together
US10287223B2 (en) 2013-07-31 2019-05-14 Calera Corporation Systems and methods for separation and purification of products
US9828313B2 (en) 2013-07-31 2017-11-28 Calera Corporation Systems and methods for separation and purification of products
US9957621B2 (en) 2014-09-15 2018-05-01 Calera Corporation Electrochemical systems and methods using metal halide to form products
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10844496B2 (en) 2015-10-28 2020-11-24 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
JP2020506859A (en) * 2017-01-20 2020-03-05 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag A flexible way to control the use of hydrochloric acid from chemical manufacturing
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
US10807927B2 (en) 2018-05-30 2020-10-20 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using lewis acid
CN113818038A (en) * 2021-09-23 2021-12-21 中国华能集团清洁能源技术研究院有限公司 Axial non-equidistant corrugated plate electrode
CN116536687A (en) * 2023-06-30 2023-08-04 中石油深圳新能源研究院有限公司 Electrolytic cell

Similar Documents

Publication Publication Date Title
US4518113A (en) Electrolyzer and process
EP1033419B1 (en) Soda electrolytic cell provided with gas diffusion electrode
JP5031336B2 (en) Oxygen gas diffusion cathode for salt electrolysis
RU2423554C2 (en) Elastic current distributor for percolating cells
CA1258443A (en) Electrolysis apparatus with horizontally disposed electrodes
JPWO2004048643A1 (en) Bipolar zero-gap electrolysis cell
JPH1081986A (en) Horizontal double-polarity electrolytic cell
JPS6353272B2 (en)
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
JPH0125836B2 (en)
JPH08333693A (en) Electrolytic cell
KR100645463B1 (en) Electrode structure
US7363110B2 (en) Gasket with curved configuration at peripheral edge
US6761808B1 (en) Electrode structure
JPH1025587A (en) Liquid permeation type gas diffusion electrode
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
KR20030069871A (en) Ion exchange membrane electrolytic cell
JPS63140093A (en) Electrode structure for gas forming electrolytic cell
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
JP4029944B2 (en) Liquid-permeable gas diffusion cathode structure
JP3677120B2 (en) Liquid-permeable gas diffusion cathode
JPS6147230B2 (en)
KR840002297B1 (en) Electrolysis cell
JP3086854B1 (en) Gas diffusion electrode integrated with gas chamber
CA1236424A (en) Foraminous anode and electrolysis cell