JPH1076142A - Method for denitrating low temperature waste gas - Google Patents

Method for denitrating low temperature waste gas

Info

Publication number
JPH1076142A
JPH1076142A JP8233735A JP23373596A JPH1076142A JP H1076142 A JPH1076142 A JP H1076142A JP 8233735 A JP8233735 A JP 8233735A JP 23373596 A JP23373596 A JP 23373596A JP H1076142 A JPH1076142 A JP H1076142A
Authority
JP
Japan
Prior art keywords
catalyst
sulfate
denitration
waste gas
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8233735A
Other languages
Japanese (ja)
Inventor
Toshio Inoue
俊夫 井上
Masaru Miwa
勝 三輪
Shigeru Nojima
野島  繁
Hiroshi Suzumura
鈴村  洋
Yuji Tanaka
裕士 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP8233735A priority Critical patent/JPH1076142A/en
Publication of JPH1076142A publication Critical patent/JPH1076142A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove NOx from waste gas with high efficiency by bringing the waste gas and ammonia into catalytic reaction in the presence of a catalyst carrying nickel sulfate, iron sulfate, etc., in a low temp. region. SOLUTION: An active substance such as nickel sulfate, iron sulfate or cobalt sulfate is carried by about 0.3-50 pts.wt. on 100pts.wt. porous material such as titania or alumina as a carrier to obtain a catalyst, and waste gas contg. NOx and ammonia are brought into catalytic reaction in the presence of the catalyst in the temp. region of 10-200 deg.C. Since the active substance forms a double salt with a coordinated ammonium ion in the reactive atmosphere, the low temp. activity is high, the substance has high acidity because of its sulfate form and ammonia is activated and adsorbed at a low temp. The catalyst ensures a high rate of denitration in the low temp. region and has stable activity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排ガス中の窒素酸化
物(以下、NOx と略称する)を低温において高い効率
で除去できるNOx 含有排ガスの脱硝方法に関する。
The present invention is nitrogen oxides in the exhaust gas BACKGROUND OF THE INVENTION (hereinafter, abbreviated as NO x) about the denitration method of the NO x containing exhaust gas can be removed with high efficiency at low temperature.

【0002】[0002]

【従来の技術】排ガス中のNOx を除去する方法とし
て、NOx とアンモニア(NH3 )とを接触的に反応さ
せて窒素と水に分解する接触アンモニア還元法が広く用
いられている。この方法には反応を促進するための脱硝
触媒が必要であり、これまで多くの面から触媒開発の研
究がなされてきたが、これまでは主に約270℃以上の
温度におけるボイラ等の煙道排ガス用の脱硝触媒の開発
が主であった。
As a method of removing NO x of the Related Art in the exhaust gas, NO x and ammonia (NH 3) and the catalytically reacted nitrogen and water decomposing catalytic ammonia reduction method is widely used. This method requires a denitration catalyst for accelerating the reaction, and research on catalyst development has been carried out from many aspects so far, but until now, chiefly a flue such as a boiler at a temperature of about 270 ° C or higher. Development of denitration catalysts for exhaust gas was the main.

【0003】最近、広温度域、とりわけ200℃以下の
低温域での脱硝処理のニーズが高まっており、例えば、
200℃以下で脱硝が必要とされる用途として下記プロ
セスが提案されている。
Recently, there has been an increasing need for denitration treatment in a wide temperature range, especially in a low temperature range of 200 ° C. or less.
The following processes have been proposed as applications requiring denitration at 200 ° C. or lower.

【0004】ごみ焼却炉等の排ガス処理で、電気集塵
器で粉体や夾雑物を除去したあと脱硝を行うプロセスに
使用。(脱硝温度:130〜200℃)、湿式脱硫装
置の前に脱硝装置を設置しNox の等量以上にアンモニ
アを添加する脱硝プロセスに使用。(脱硝温度:70〜
150℃)(なお、このプロセスを採用すると脱硝プロ
セスでの未反応アンモニアは湿式脱硫装置の脱硫吸収液
に溶解し、脱硫性能向上に利用できる。)、トンネル
排ガス中等の低温度NOx (NOx 濃度:1〜5pp
m)の脱硝プロセスに使用。(脱硝温度:10〜50
℃)及び船用等のディーゼルエンジン排ガスからの脱
硝。(脱硝温度:150〜200℃)
[0004] Used in exhaust gas treatment of refuse incinerators and the like, in which dust and debris are removed by an electrostatic precipitator before denitration. (Denitration Temperature: 130 to 200 ° C.), using the denitration process of adding ammonia denitration device over an equal volume of the installed No x in front of the wet desulfurization system. (Denitration temperature: 70-
(If this process is adopted, unreacted ammonia in the denitration process is dissolved in the desulfurization absorbing solution of the wet desulfurization device and can be used to improve desulfurization performance.), And low temperature NO x (NO x ) in tunnel exhaust gas etc. Concentration: 1-5pp
m) Used for denitration process. (Denitration temperature: 10 to 50
C) and denitration from exhaust gas of diesel engines for marine use. (Denitration temperature: 150-200 ° C)

【0005】しかしながら、これまでは上記プロセスに
適用できる低温用の脱硝触媒及び方法は存在しなかっ
た。
However, there has been no denitration catalyst and method for low temperature applicable to the above process.

【0006】[0006]

【発明が解決しようとする課題】すなわち、これまでに
は低温でNOx を高い効率で除去できる排ガス浄化方法
は確立されておらず、200℃以下の排ガスの脱硝は触
媒の性能が低いため、再加熱により排ガス温度を上昇さ
せるなどの工夫がなされていた。本発明は上記技術水準
に鑑み、低温でNOx を高い効率で除去できるNOx
有排ガスの脱硝方法を提供しようとするものである。
[SUMMARY OF THE INVENTION That is, this does not exhaust gas purifying method capable of removing with a high efficiency NO x at low temperatures is established by, for the denitration of 200 ° C. or less of the exhaust gas is low performance of the catalyst, Some measures have been taken, such as raising the exhaust gas temperature by reheating. In view of the above prior art, is intended to provide a denitration process of the NO x containing exhaust gas which can remove NO x with a high efficiency at low temperatures.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意低温用
脱硝触媒を探索した結果、特定の物質が有効であるとの
知見を得、その知見に基づいて本発明を完成するに至っ
た。すなわち、本発明は(1)10〜200℃の温度域
で、硫酸ニッケル、硫酸鉄、硫酸コバルト、硫酸マンガ
ン及び硫酸亜鉛よりなる群から選ばれた少なくとも1種
の活性物質を担持してなる触媒の存在下で、NOx を含
有する排ガスとアンモニアを接触反応させることを特徴
とする低温排ガスの脱硝方法及び(2)前記担体がチタ
ニア、アルミナ、シリカ、ジルコニア、シリカライト及
びメタロシリケートよりなる群から選ばれた少なくとも
1種の物質であることを特徴とする上記(1)記載の低
温排ガスの脱硝方法である。
Means for Solving the Problems As a result of intensively searching for a denitration catalyst for low temperature, the present inventors have found that a specific substance is effective, and have completed the present invention based on the knowledge. . That is, the present invention provides (1) a catalyst which supports at least one active substance selected from the group consisting of nickel sulfate, iron sulfate, cobalt sulfate, manganese sulfate and zinc sulfate in a temperature range of 10 to 200 ° C. (2) a method for denitration of low-temperature exhaust gas, which comprises reacting an exhaust gas containing NO x with ammonia in the presence of NOx; and (2) a group consisting of titania, alumina, silica, zirconia, silicalite and metallosilicate. The method for denitration of low-temperature exhaust gas according to the above (1), wherein the method is at least one substance selected from the group consisting of:

【0008】[0008]

【発明の実施の形態】本発明の活性物質を担持する担体
としては、一般に多孔質材料ならば何れのものも使用で
きるが、特にチタニア、アルミナ、シリカ、ジルコニ
ア、シリカライト及びメタロシリケートなどが好まし
い。また、一般的に採用される活性物質(各硫酸塩)/
担体の量比は、担体:100部(重量部)に対し活性物
質:0.3〜50部(重量部)の範囲が好ましい。この
範囲が好ましい理由は、担体100重量部に対する活性
物質が0.3重量部未満では活性物質が担体上にまばら
に担持されるため触媒性能が低くなり、また、活性物質
が50重量部を超えると活性物質の分散性が悪くなり大
きな粒子を形成し、担体の細孔閉塞や比表面積の低下を
もたらすためである。
BEST MODE FOR CARRYING OUT THE INVENTION As the carrier for supporting the active substance of the present invention, generally any porous material can be used, but titania, alumina, silica, zirconia, silicalite, metallosilicate and the like are particularly preferable. . In addition, commonly used active substances (sulfates) /
The amount ratio of the carrier is preferably in the range of 0.3 to 50 parts (parts by weight) of the active substance to 100 parts (parts by weight) of the carrier. The reason that this range is preferable is that if the active substance is less than 0.3 parts by weight based on 100 parts by weight of the carrier, the active substance is sparsely supported on the carrier, so that the catalytic performance is lowered, and the active substance exceeds 50 parts by weight. This is because the dispersibility of the active substance deteriorates and large particles are formed, resulting in blockage of pores in the carrier and reduction in specific surface area.

【0009】(作用)硫酸ニッケル、硫酸鉄、硫酸コバ
ルト、硫酸マンガン、硫酸亜鉛が低温域で高い脱硝性能
を示す理由は未だ明確ではないが、下記の理由が因子の
一つとして考えられる。すなわち、上記触媒は低温域の
反応雰囲気下ではアンモニウムイオンを配位した複塩を
形成する。すなわち上記触媒は各々(NH4 2 Ni
(SO4 2 ・6H2 O、Fe(NH4 2 (SO4
2 ・6H2 O、Co(NH4 2 (SO42 、Mn
(NH4 2 (SO4 2 ・6H2 O、(NH4 2
n(SO4 2 を有し、全てタットン塩として類似の結
晶構造を形成する。この複塩が脱硝反応の活性種であ
り、低温域で安定に形成できるために低温活性が高いと
考えられる。また、上記触媒はSOx が共存する場合の
方がない場合より高性能であり、SOx の共存が上記複
塩の安定な形成に有効に作用していると考えられる。
(Action) Nickel sulfate, iron sulfate, koba sulfate
L, manganese sulfate, and zinc sulfate have high denitration performance at low temperatures
Is not clear yet, but the following reasons
Considered as one. That is, the above catalyst is used in a low temperature region.
Under the reaction atmosphere, a double salt coordinated with ammonium ion
Form. That is, each of the above catalysts is (NHFour)TwoNi
(SOFour)Two・ 6HTwoO, Fe (NHFour)Two(SOFour)
Two・ 6HTwoO, Co (NHFour)Two(SOFour)Two, Mn
(NHFour)Two(SOFour)Two・ 6HTwoO, (NHFour)TwoZ
n (SOFour) TwoAll have similar results as Tutton salt
Form a crystalline structure. This double salt is the active species for the denitration reaction.
High activity at low temperatures because it can be formed stably at low temperatures.
Conceivable. Further, the catalyst is SOxWhen coexist
Is better than withoutxCoexistence
It is considered that this is effectively acting on the stable formation of salt.

【0010】また、上記触媒は硫酸塩を有しているた
め、強い酸性度をもち、NH3 を低温で活性化吸着させ
ることができる。すなわち、下式に示す脱硝反応を低温
で容易に起こすことが可能である。
Further, since the above-mentioned catalyst has a sulfate, it has a strong acidity and can adsorb and activate NH 3 at a low temperature. That is, it is possible to easily cause the denitration reaction represented by the following formula at a low temperature.

【0011】[0011]

【化1】4NO+4NH3 +O2 →4N2 +6H2 O また、上記触媒は前記(2)で示す高比表面積担体上に
担持することにより、より高分散に配位されるため性能
も向上する。
Embedded image 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O The above catalyst is supported on the high specific surface area support described in the above (2), so that it is coordinated in a higher dispersion and the performance is also improved.

【0012】さらに、本触媒は副反応である下式で示す
SO2 酸化反応は抑制されるため、副生成物であり触媒
被毒物質となる硫酸アンモニウムまたは酸性硫酸アンモ
ニウム堆積は軽減される特徴を有する。
Further, since the present catalyst suppresses the SO 2 oxidation reaction represented by the following formula, which is a side reaction, the accumulation of ammonium sulfate or ammonium ammonium sulfate, which is a by-product and becomes a catalyst poisoning substance, is reduced.

【化2】2SO2 +O2 →2SO3 Embedded image 2SO 2 + O 2 → 2SO 3

【0013】[0013]

【実施例】以下、本発明の具体的をあげ本発明の効果を
明らかにする。
EXAMPLES The effects of the present invention will be clarified below with reference to specific examples of the present invention.

【0014】(例1)硫酸ニッケル(NiSO4 ・6H
2 O)水溶液にγ−アルミナ粉末(住友化学製:AC−
11K)を添加して攪拌しながら110℃で蒸発乾固さ
せて、γ−アルミナ担体あたりにNiSO4 を10wt
%担持した粉末触媒を調製した。この粉末触媒を加圧成
型し1mmφ中にて整粒したペレット触媒を触媒1とし
た。
[0014] (Example 1) Nickel sulfate (NiSO 4 · 6H
The 2 O) aqueous solution of γ- alumina powder (Sumitomo Chemical Co.: AC-
11K), evaporate to dryness at 110 ° C. with stirring, and add 10 wt% of NiSO 4 per γ-alumina carrier.
% Supported powder catalyst was prepared. This powder catalyst was molded under pressure, and the pellet catalyst sized at 1 mmφ was designated as catalyst 1.

【0015】(例2)触媒1のγ−アルミナ粉末の代わ
りにチタニア粉末(石原産業製:MC−50)、ジルコ
ニア(日揮化学製)、シリカ(富士ディビソン社製)、
シリカライト及びメタロシリケート〔組成式:H2
(0.2Fe2 3 ・0.8Al2 3・0.25Ca
O)・25SiO2 〕を用いて例1と同様の方法で触媒
を調製し、各担体あたりNiSO4 を10wt%担持し
て1mmφに整粒したペレット触媒を各々触媒2、3、
4、5、6とした。
(Example 2) Instead of γ-alumina powder of catalyst 1, titania powder (MC-50, manufactured by Ishihara Sangyo), zirconia (manufactured by JGC Chemicals), silica (manufactured by Fuji Divison),
Silicalite and metallosilicate [Composition formula: H 2 O
(0.2Fe 2 O 3 · 0.8Al 2 O 3 · 0.25Ca
O) .25SiO 2 ] to prepare a catalyst in the same manner as in Example 1, and pelletized catalysts having 10 wt% of NiSO 4 per support and sized to 1 mmφ were used as catalysts 2, 3, and 2, respectively.
4, 5, and 6.

【0016】(例3)触媒1の硫酸ニッケル(NiSO
4 ・6H2 O)水溶液の代わりに硫酸鉄(FeSO4
7H2 O)、硫酸コバルト(CoSO4 ・7H2 O)、
硫酸マンガン(MnSO4 ・7H2 O)、硫酸亜鉛(Z
nSO4 ・7H2 O)の各水溶液を用いて例1と同様の
方法でγ−アルミナ担体に、各金属硫酸塩を10wt%
担持した。1mmφに整粒たペレット触媒を各々触媒
7、8、9、10とした。
(Example 3) Nickel sulfate (NiSO
4 · 6H 2 O) aqueous solution of iron sulfate in place of (FeSO 4 ·
7H 2 O), cobalt sulfate (CoSO 4 .7H 2 O),
Manganese sulfate (MnSO 4 · 7H 2 O) , zinc sulfate (Z
nSO 4 .7H 2 O) and 10 wt% of each metal sulfate on a γ-alumina support in the same manner as in Example 1.
Carried. The pellet catalysts sized to 1 mmφ were designated as catalysts 7, 8, 9, and 10, respectively.

【0017】例1〜3にて調製した触媒1〜10を用い
て脱硝評価活性試験を行った。活性評価条件は表1のと
おり。
Using the catalysts 1 to 10 prepared in Examples 1 to 3, a denitration evaluation activity test was performed. The activity evaluation conditions are as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】ガス供給10時間後、50時間後の脱硝率
を表2に示す。なお、脱硝率の定義は下記式にて表わさ
れる。
Table 2 shows the denitration rates after 10 hours and 50 hours of gas supply. The denitration rate is defined by the following equation.

【0020】[0020]

【数1】 (Equation 1)

【0021】[0021]

【表2】 [Table 2]

【0022】(比較例1)従来の脱硝触媒として検討さ
れている酸化物系触媒として、チタニア担体にCr2
3 を担持した触媒を触媒11(比較触媒1)とし、ま
た、200℃以上の中高温用脱硝触媒として適用されて
いるチタニア担体にV2 5 を担持した触媒を触媒12
(比較触媒2)も例1と同様に1mmφに整粒し、表1
に示す活性評価条件にて脱硝試験を行った。結果を表2
に併記した。
(Comparative Example 1) As an oxide-based catalyst which has been studied as a conventional denitration catalyst, Cr 2 O was added to a titania carrier.
The catalyst carrying 3 was designated as catalyst 11 (comparative catalyst 1), and the catalyst carrying V 2 O 5 on a titania carrier used as a denitration catalyst for medium to high temperatures of 200 ° C. or higher was designated as catalyst 12.
(Comparative catalyst 2) was also sized to 1 mmφ in the same manner as in Example 1;
A denitration test was performed under the activity evaluation conditions shown in Table 1. Table 2 shows the results
It was also described in.

【0023】表2に示す結果より触媒1〜10に示す硫
酸塩含有触媒を用いることにより、90℃の低温で高い
脱硝率を安定に有することを確認した。一方、比較触媒
1は10時間後までの活性は高いが50時間後には大き
く活性が低下し、さらに、比較触媒2は初期活性におい
ても触媒1〜10より大きく下廻ることがわかった。
From the results shown in Table 2, it was confirmed that the use of the sulfate-containing catalysts shown in Catalysts 1 to 10 stably provided a high denitration ratio at a low temperature of 90 ° C. On the other hand, it was found that the activity of Comparative Catalyst 1 was high up to 10 hours later, but the activity was significantly reduced after 50 hours, and that Comparative Catalyst 2 was much lower in initial activity than Catalysts 1 to 10.

【0024】(例5)触媒1を用いて表1に示す活性評
価条件を基準に各反応条件変化試験を実施した。表1の
条件をベースに各パラメータとして、反応温度、NH3
濃度、SO2濃度、O2 濃度の影響として温度:70
℃、130℃、ガス組成としてNH3 :1000pp
m、SO2 :400ppm、1200ppm、O2 :2
%で活性評を行い他の条件に固定した場合の活性価結果
(ガス供給10時間後)を表3に示す。
(Example 5) Using the catalyst 1, a test for changing each reaction condition was carried out based on the activity evaluation conditions shown in Table 1. Based on the conditions in Table 1, the reaction temperature, NH 3
Temperature: 70 as the effect of concentration, SO 2 concentration and O 2 concentration
° C, 130 ° C, NH 3 : 1000 pp as gas composition
m, SO 2 : 400 ppm, 1200 ppm, O 2 : 2
Table 3 shows the activity value results (after 10 hours of gas supply) when the activity was evaluated in% and fixed under other conditions.

【0025】[0025]

【表3】 上記結果より、広範囲な低温排ガス条件において高い脱
硝率を有することを確認した。
[Table 3] From the above results, it was confirmed that the denitration ratio was high under a wide range of low-temperature exhaust gas conditions.

【0026】[0026]

【発明の効果】実施例にて示したように硫酸塩を活性金
属として各種担体上に担持した触媒を使用する本発明方
法は90℃付近の低温域で高い脱硝率を有し、さらに広
範囲の排ガス条件で安定な活性を有することがわかっ
た。
As shown in the examples, the method of the present invention using a catalyst in which a sulfate is supported as an active metal on various supports has a high denitration rate in a low temperature range around 90 ° C. It was found to have stable activity under exhaust gas conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 32/00 B01D 53/36 ZAB 102H (72)発明者 三輪 勝 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社技術開発本部電気 利用技術研究所内 (72)発明者 野島 繁 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 鈴村 洋 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 田中 裕士 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B01J 32/00 B01D 53/36 ZAB 102H (72) Inventor Masaru Miwa Odaka, Midori-ku, Nagoya-shi, Aichi Prefecture 20-1, Kita-Sanzan, town character Chubu Electric Power Co., Inc., Electricity Utilization Research Laboratory (72) Inventor Shigeru Nojima 4--22 Kanonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Hiroshima Research Laboratory Mitsubishi Heavy Industries, Ltd. (72) Inventor Hiroshi Suzumura 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside the Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. Inside

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 10〜200℃の温度域で、硫酸ニッケ
ル、硫酸鉄、硫酸コバルト、硫酸マンガン及び硫酸亜鉛
よりなる群から選ばれた少なくとも1種の活性物質を担
持してなる触媒の存在下で、窒素酸化物を含有する排ガ
スとアンモニアを接触反応させることを特徴とする低温
排ガスの脱硝方法。
1. The method according to claim 1, wherein a catalyst carrying at least one active substance selected from the group consisting of nickel sulfate, iron sulfate, cobalt sulfate, manganese sulfate and zinc sulfate in a temperature range of 10 to 200 ° C. A method for denitrifying low-temperature exhaust gas, comprising contacting an exhaust gas containing nitrogen oxides with ammonia.
【請求項2】 前記担体がチタニア、アルミナ、シリ
カ、ジルコニア、シリカライト及びメタロシリケートよ
りなる群から選ばれた少なくとも1種の物質であること
を特徴とする請求項1記載の低温排ガスの脱硝方法。
2. The method according to claim 1, wherein the carrier is at least one substance selected from the group consisting of titania, alumina, silica, zirconia, silicalite and metallosilicate. .
JP8233735A 1996-09-04 1996-09-04 Method for denitrating low temperature waste gas Withdrawn JPH1076142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8233735A JPH1076142A (en) 1996-09-04 1996-09-04 Method for denitrating low temperature waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8233735A JPH1076142A (en) 1996-09-04 1996-09-04 Method for denitrating low temperature waste gas

Publications (1)

Publication Number Publication Date
JPH1076142A true JPH1076142A (en) 1998-03-24

Family

ID=16959761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8233735A Withdrawn JPH1076142A (en) 1996-09-04 1996-09-04 Method for denitrating low temperature waste gas

Country Status (1)

Country Link
JP (1) JPH1076142A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104914A (en) * 2006-10-24 2008-05-08 Tosoh Corp Nitrogen oxide purification catalyst and method
JP2014176808A (en) * 2013-03-14 2014-09-25 Mitsubishi Heavy Ind Ltd Nitrous oxide treatment catalyst and purification method of exhaust gas using the nitrous oxide treatment catalyst
CN105642308A (en) * 2016-01-01 2016-06-08 重庆大学 Supported cobalt manganese oxide catalyst for low-temperature flue gas denitration and preparation method thereof
CN108579408A (en) * 2018-04-04 2018-09-28 江苏华本环境科技有限公司 A kind of low-temperature catalyzed denitration method for flue gas
CN112844423A (en) * 2021-01-12 2021-05-28 上海大学 High-sulfur-resistance metal sulfate denitration catalyst and preparation method thereof
CN116272334A (en) * 2022-12-26 2023-06-23 杭州尚善若水环保科技有限公司 Coupling desulfurization and denitrification medicament, preparation method and use method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104914A (en) * 2006-10-24 2008-05-08 Tosoh Corp Nitrogen oxide purification catalyst and method
JP2014176808A (en) * 2013-03-14 2014-09-25 Mitsubishi Heavy Ind Ltd Nitrous oxide treatment catalyst and purification method of exhaust gas using the nitrous oxide treatment catalyst
CN105642308A (en) * 2016-01-01 2016-06-08 重庆大学 Supported cobalt manganese oxide catalyst for low-temperature flue gas denitration and preparation method thereof
CN108579408A (en) * 2018-04-04 2018-09-28 江苏华本环境科技有限公司 A kind of low-temperature catalyzed denitration method for flue gas
CN112844423A (en) * 2021-01-12 2021-05-28 上海大学 High-sulfur-resistance metal sulfate denitration catalyst and preparation method thereof
CN116272334A (en) * 2022-12-26 2023-06-23 杭州尚善若水环保科技有限公司 Coupling desulfurization and denitrification medicament, preparation method and use method thereof
CN116272334B (en) * 2022-12-26 2023-08-15 杭州尚善若水环保科技有限公司 Coupling desulfurization and denitrification medicament, preparation method and use method thereof

Similar Documents

Publication Publication Date Title
EP0643991B1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
CN109012759A (en) MnO2/TiF catalyst and preparation method thereof
JPH1076142A (en) Method for denitrating low temperature waste gas
JPH09201531A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
US8048393B2 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and method of removing nitrogen oxides using the same
JPH0587291B2 (en)
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3507538B2 (en) Exhaust gas purification catalyst and purification method
JP2896912B2 (en) Catalyst regeneration method
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
JPH1157469A (en) Denitrification catalyst
JPS6043170B2 (en) Catalyst for removing nitrogen oxides
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JPH06154601A (en) Catalyst for decomposition of ozone
JPH0833843A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JP2001129406A (en) Low temperature denitration catalyst
CN117258816A (en) Catalyst for synergistic catalytic purification of NOx and CVOCs, and preparation method and application thereof
JPH07323225A (en) Catalyst for reductive-removing nitrogen oxides in waste combustion gas
CN110833832A (en) Preparation method of ferrochromium-based catalyst for normal-temperature normal-pressure efficient treatment of nitric oxide, product and application thereof
CN110918083A (en) Vanadium-free SCR catalyst for flue gas denitration and preparation method thereof
JP2004298760A (en) Method for regenerating spent denitrification catalyst
JPH07313843A (en) Method for determining optimum quantity of reducing agent in denitrification equipment
JPS6040895B2 (en) How to regenerate denitrification catalyst

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104