JP3952823B2 - Combustion exhaust gas purification catalyst and exhaust gas purification method - Google Patents

Combustion exhaust gas purification catalyst and exhaust gas purification method Download PDF

Info

Publication number
JP3952823B2
JP3952823B2 JP2002091000A JP2002091000A JP3952823B2 JP 3952823 B2 JP3952823 B2 JP 3952823B2 JP 2002091000 A JP2002091000 A JP 2002091000A JP 2002091000 A JP2002091000 A JP 2002091000A JP 3952823 B2 JP3952823 B2 JP 3952823B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
combustion exhaust
gas purification
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002091000A
Other languages
Japanese (ja)
Other versions
JP2003284956A (en
Inventor
正史 杉山
健吾 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002091000A priority Critical patent/JP3952823B2/en
Publication of JP2003284956A publication Critical patent/JP2003284956A/en
Application granted granted Critical
Publication of JP3952823B2 publication Critical patent/JP3952823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラー、ディーゼルエンジン発電機、またはディーゼルエンジン自動車からの排ガスのような、酸素濃度の高い燃焼排ガス中に含まれる窒素酸化物の除去に有効な燃焼排ガス浄化用触媒に関する。
【0002】
【従来の技術】
工場、発電設備、自動車等から排出される各種の燃焼排ガス中には、燃焼生成物である水や二酸化炭素と共に、一酸化窒素や二酸化窒素などの窒素酸化物(NOx)が含まれている。NOxは人体、特に呼吸器系に悪影響を及ぼすばかりでなく、地球環境保全の上から問題視される酸性雨の原因の1つとなっている。そのため、これら各種の燃焼排ガスから窒素酸化物を効率よく除去する技術の開発が望まれている。
【0003】
従来、酸素過剰雰囲気下でNOxを還元除去する方法としては、V−TiO触媒を用い、アンモニア(NH)を還元剤として還元除去する方法がよく知られている。しかし、この方法においては、臭気が強く有害なアンモニアを用いるため、取り扱いが容易でなく、また未反応のアンモニアの排出を防ぐために特別な装置を必要とし、設備が大型化することから、小規模な排ガス発生源や移動型発生源への適用には不向きである上、経済性もよくなかった。
【0004】
近年、酸素過剰の希薄燃焼排ガス中に残存する未燃焼の炭化水素を還元剤として用いることにより、NOxの還元反応を促進させることができるという報告がなされた。それ以来、この反応を促進するための触媒が種々開発され、例えば、アルミナやアルミナに遷移金属を担時した触媒が、炭化水素を還元剤として用いるNOxの還元反応に有効であるとする数多くの報告がある。
【0005】
【発明が解決しようとする課題】
このような炭化水素を還元剤として酸素過剰の燃焼排ガス中の窒素酸化物を還元除去する触媒の具体例として、特開平4−284848号公報には、0.1〜4重量%のCu、Fe、Cr、Zn、Ni、又はVを含有するアルミナ若しくはシリカ−アルミナからなる還元触媒が報告されている。
【0006】
また、Ptをアルミナに担時した触媒を用いると、NOxの還元反応が200〜300℃程度の低温領域で進行することが、特開平4−267946号公報、特開平5−68855号公報、特開平5−103949号公報などに報告されている。しかしながら、これらの貴金属担持触媒は、還元剤である炭化水素の燃焼反応が過度に促進されたり、地球温暖化の原因物質の1つと言われているNOが多量に副生し、無害なNへの還元反応を選択的に進行させることが困難であるといった欠点を有していた。
【0007】
更に、特開平4−281844号公報には、アルミナなどに銀を担持した触媒が、酸素過剰雰囲気下で炭化水素を還元剤として、NOxの還元反応を選択的に進行させることが開示されている。その後、銀を含有する触媒を用いる類似のNOxの還元除去方法が、特開平4−354536号公報、特開平5−92124号公報、特開平5−92125号公報、及び特開平6−277454号公報などに開示されている。
【0008】
しかし、これら従来のアルミナに銀を担持した触媒においては、硫黄酸化物を含む燃焼排ガス中ではNOxの除去性能が低下しやすく、実用的な耐久性が不十分であるという問題があった。また、300℃〜400℃程度の比較的低温の場合、NOxの除去性能が比較的低いという問題もあった。
【0009】
本発明は、このような従来の事情に鑑み、炭化水素を還元剤として酸素過剰の燃焼排ガス中の窒素酸化物を還元除去する触媒であって、硫黄酸化物を含む燃焼排ガスにおいても優れたNOxの除去性能と耐久性を有し、燃焼排ガス温度が300℃〜400℃程度の比較的低温でも有効な燃焼排ガス浄化用触媒を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する触媒は、硫黄酸化物を含む酸素過剰の燃焼排ガス中の窒素酸化物を、炭化水素を還元剤として還元除去する触媒であって、βゼオライトに銀を1〜6重量%担持させたことを特徴とする。
【0011】
また、本発明が提供する燃焼排ガスの浄化方法は、硫黄酸化物を含む酸素過剰の燃焼排ガスを、βゼオライトに銀を1〜6重量%担持させた触媒に接触させ、メタノールを還元剤として燃焼排ガス中の窒素酸化物を還元除去することを特徴とする。
【0012】
【発明の実施の形態】
本発明における燃焼排ガス浄化用触媒は、βゼオライトを担体とし、これに銀を1〜6重量%含有させたものであり、還元剤としてメタノールを用いることにより燃焼排ガス中から窒素酸化物を効率良く除去することができ、排ガス中に硫黄酸化物が含まれていても窒素酸化物の除去性能が低下せず、且つ300〜400℃の比較的低温でも優れた除去性能を有している。
【0013】
βゼオライトに担持させる銀の量は、触媒全体に対して元素換算で1〜6重量%の範囲が好ましく、1.5〜2.5重量%の範囲が更に好ましい。上記銀の担持量が1重量%よりも少ない場合には、硫黄酸化物を含む排ガスにおける窒素酸化物の除去性能が時間と伴に低下しやすく、充分な耐久性の触媒が得られない。また、塩素イオンの添加量が6重量%を超えても、その増量に応じた添加効果が得られないばかりか、逆に窒素酸化物の除去性能が低下する傾向にある。
【0014】
βゼオライトに銀を担持させる方法は、特に制限されないが、例えばAgの水溶性塩の溶液をアルカリでpH調整し、βゼオライト粉末を投入し、撹拌してイオン交換させた後、濾過及び水洗を行い、乾燥・焼成するなどの方法を用いることができる。
【0015】
上記触媒調整時の乾燥温度は、特に限定されるものではないが、通常は80〜120℃程度で乾燥する。また、その後の焼成温度は300〜900℃が好ましく、400〜700℃程度が更に好ましい。焼成時の雰囲気は特に限定されないが、触媒組成に応じて空気中、不活性ガス中、酸素中、水蒸気中などの各雰囲気を適宜選択すればよく、また各雰囲気を一定時間毎に交互に代えてもよい。
【0016】
本発明の触媒は、従来知られている成形方法によって、球状、ハニカム状、ペレット状などの種々の形状に成形できる。これらの形状、大きさなどは使用条件に応じて任意に選択すればよい。また、排ガスの流れ方向に対して多数の貫通孔を有する耐火性一体構造の支持基体の表面に、ウォッシュコート法などにより被覆することもできる。
【0017】
本発明の触媒を用いて排ガス中の窒素酸化物を還元除去する方法においては、還元剤として特にメタノールの使用が好ましい。排ガス中に添加するメタノールの量は、操業上求められる脱硝率やランニングコストに応じて適宜選択すればよいが、一般的には窒素酸化物に対してモル比で0.5〜5倍程度が好ましい。
【0018】
燃焼排ガスを浄化する際のガス空間速度(SV)については、特に限定されるものではないが、1000/時間以上で100000/時間以下とすることが好ましい。また、燃焼排ガスの温度が300〜400℃程度の比較的低温であっても、窒素酸化物の優れた除去性能が得られる。
【0019】
【実施例】
(1)触媒の調整
100gのイオン交換水に硝酸銀1.6gを溶解させ、アンモニアでpH10に調整して、銀アンモニア錯体溶液を得た。この溶液にβゼオライト粉末20gを分散させ、温度を60℃に維持して3時間撹拌した。その後、濾過及び水洗を行い、110℃で通風乾燥した後、空気中にて500℃で3時間焼成して触媒1を得た。尚、この触媒1において、銀担持量は元素換算で触媒全体の2.5重量%である。
【0020】
上記と同様にして触媒を調整する際に、銀担持量を0.5重量%とした触媒2、1.5重量%とした触媒3、5.0重量%とした触媒4、及び8.0重量%とした触媒5をそれぞれ作製した。また、同様に触媒を調整する際に、βゼオライトに代えてモルデナイトを担体として用い且つ銀担持量を2.2重量%とした触媒6と、ZSM−5を担体として用い且つ銀担持量を2.8重量%とした触媒7も作製した。
【0021】
(2)触媒の評価
上記した触媒1〜7を用いて、以下のごとく脱硝性能を評価した。即ち、それぞれの触媒を加圧成型した後、粉砕して粒度を350〜500μmに整粒し、得られた触媒粒子を内径15mmのステンレス製反応管に充填し、これを常圧固定床流通反応装置に装着した。
【0022】
この反応管内に、モデル排ガスとして、NO:1000ppm、O:10%、HO:10%、SO:100ppm、メタノール:2000ppm、残部:Nからなる混合ガスを、空間速度50000/hの条件で供給して、脱硝率を測定した。その際、ガス温度を300℃、350℃、400℃と変化させた。
【0023】
尚、反応管の出口ガス組成の分析については、NO濃度は化学発光式NOx計で測定し、NO濃度はPorapack Qカラムを装着したガスクロマトグラフ・熱伝導度検出器を用いて測定した。脱硝率は下記の数式1に従って算出した。尚、反応管の出口ガス中に、NO及びNOは殆ど認められなかった。
【0024】
【数1】

Figure 0003952823
【0025】
各触媒について、ガス温度ごとの脱硝率を下記表1に示した。表1から分るように、実施例である触媒1及び3〜4では、硫黄酸化物が共存する比較的低温の排ガスにおいても、比較例である触媒2及び5〜7に比べて、NOx除去活性が優れている。
【0026】
【表1】
Figure 0003952823
【0027】
(3)触媒の耐久性評価
上記した本発明例の触媒1及び比較例の触媒2を用い、以下のごとく耐久性を評価した。尚、触媒の整粒方法及び評価に用いた反応装置は、上記(2)触媒の評価に記載したものと同様である。
【0028】
反応管内に、モデル排ガスとして、NO:1000ppm、O:10%、HO:10%、SO:1000ppm、メタノール:2000ppm、残部:Nからなる混合ガスを、ガス温度350℃、空間速度50000/hの条件で20時間供給した。その後、SO濃度を100ppmとした以外は上記組成と同じモデル排ガスを供給して、脱硝率を測定した。
【0029】
得られた結果を下記表2に示した。この結果から分るように、高濃度のSOを含む排ガスによる20時間の耐久試験後においても、本発明例の触媒1は比較例の触媒2に比べて高い活性を維持し、耐久性に優れている。
【0030】
【表2】
Figure 0003952823
【0031】
【発明の効果】
本発明によれば、硫黄酸化物を含む燃焼排ガスにおいても優れた窒素酸化物NOxの除去性能と耐久性を有し、燃焼排ガス温度が300℃〜400℃程度の比較的低温でも有効な燃焼排ガス浄化用触媒を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for purifying combustion exhaust gas that is effective for removing nitrogen oxides contained in combustion exhaust gas having a high oxygen concentration, such as exhaust gas from a boiler, diesel engine generator, or diesel engine automobile.
[0002]
[Prior art]
Various combustion exhaust gases discharged from factories, power generation facilities, automobiles, and the like contain nitrogen oxides (NOx) such as nitrogen monoxide and nitrogen dioxide together with water and carbon dioxide as combustion products. NOx not only adversely affects the human body, particularly the respiratory system, but is also one of the causes of acid rain that is regarded as a problem from the viewpoint of protecting the global environment. Therefore, development of a technique for efficiently removing nitrogen oxides from these various combustion exhaust gases is desired.
[0003]
Conventionally, as a method for reducing and removing NOx in an oxygen-excessive atmosphere, a method using a V 2 O 5 —TiO 2 catalyst and reducing and removing ammonia (NH 3 ) as a reducing agent is well known. However, since this method uses ammonia with strong odor and harmful, it is not easy to handle and requires special equipment to prevent the discharge of unreacted ammonia. In addition, it is not suitable for application to various exhaust gas generation sources and mobile generation sources, and is not economical.
[0004]
In recent years, it has been reported that the reduction reaction of NOx can be promoted by using unburned hydrocarbon remaining in oxygen-rich lean combustion exhaust gas as a reducing agent. Since then, various catalysts for accelerating this reaction have been developed. For example, there are many catalysts that are effective for NOx reduction reaction using hydrocarbon as a reducing agent, such as alumina or a catalyst that carries transition metal on alumina. There is a report.
[0005]
[Problems to be solved by the invention]
As a specific example of a catalyst for reducing and removing nitrogen oxides in oxygen-excess combustion exhaust gas using such a hydrocarbon as a reducing agent, JP-A-4-284848 discloses 0.1 to 4% by weight of Cu, Fe. A reduction catalyst composed of alumina or silica-alumina containing Cr, Zn, Ni, or V has been reported.
[0006]
Further, when a catalyst in which Pt is supported on alumina is used, the reduction reaction of NOx proceeds in a low temperature region of about 200 to 300 ° C., as disclosed in JP-A-4-267946 and JP-A-5-68855. This is reported in, for example, Kaihei 5-103949. However, these noble metal-supported catalysts are harmless because the combustion reaction of hydrocarbon as a reducing agent is excessively promoted or a large amount of N 2 O, which is said to be one of the causative substances of global warming, is by-produced. There was a drawback that it was difficult to selectively proceed the reduction reaction to N 2 .
[0007]
Further, JP-A-4-281844 discloses that a catalyst having silver supported on alumina or the like allows NOx reduction reaction to proceed selectively using hydrocarbon as a reducing agent in an oxygen-excess atmosphere. . Thereafter, similar NOx reduction and removal methods using a silver-containing catalyst are disclosed in JP-A-4-354536, JP-A-5-92124, JP-A-5-92125, and JP-A-6-277454. And the like.
[0008]
However, these conventional catalysts in which silver is supported on alumina have a problem in that NOx removal performance tends to be lowered in combustion exhaust gas containing sulfur oxides, and practical durability is insufficient. Further, when the temperature is relatively low such as about 300 ° C. to 400 ° C., there is a problem that the NOx removal performance is relatively low.
[0009]
In view of such conventional circumstances, the present invention is a catalyst that reduces and removes nitrogen oxides in combustion exhaust gas containing excess oxygen using hydrocarbon as a reducing agent, and is excellent in combustion exhaust gas containing sulfur oxide. An object of the present invention is to provide a catalyst for purifying combustion exhaust gas that has an excellent removal performance and durability, and is effective even at a relatively low temperature of the combustion exhaust gas temperature of about 300 ° C to 400 ° C.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the catalyst provided by the present invention is a catalyst for reducing and removing nitrogen oxides in an oxygen-excess combustion exhaust gas containing sulfur oxides using hydrocarbons as reducing agents. Is supported by 1 to 6% by weight.
[0011]
Also, the present invention provides a method for purifying combustion exhaust gas, which comprises contacting sulfur-containing oxygen-rich combustion exhaust gas with a catalyst in which 1 to 6% by weight of silver is supported on β zeolite and combusting methanol as a reducing agent. It is characterized by reducing and removing nitrogen oxides in exhaust gas.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst for purifying combustion exhaust gas in the present invention uses β zeolite as a carrier and contains 1 to 6% by weight of silver. By using methanol as a reducing agent, nitrogen oxides can be efficiently removed from the combustion exhaust gas. Even if sulfur oxides are contained in the exhaust gas, the nitrogen oxide removal performance does not decrease, and it has excellent removal performance even at a relatively low temperature of 300 to 400 ° C.
[0013]
The amount of silver supported on the β zeolite is preferably in the range of 1 to 6% by weight, more preferably in the range of 1.5 to 2.5% by weight, in terms of elements with respect to the whole catalyst. When the amount of silver supported is less than 1% by weight, the removal performance of nitrogen oxides in the exhaust gas containing sulfur oxide tends to decrease with time, and a sufficiently durable catalyst cannot be obtained. Moreover, even if the addition amount of chlorine ions exceeds 6% by weight, not only the addition effect corresponding to the increase is obtained, but conversely, the nitrogen oxide removal performance tends to be lowered.
[0014]
The method for supporting silver on β zeolite is not particularly limited. For example, pH of a solution of a water-soluble salt of Ag is adjusted with alkali, β zeolite powder is added, stirred and ion exchanged, and then filtered and washed with water. The method of performing, drying and baking can be used.
[0015]
Although the drying temperature at the time of catalyst preparation is not particularly limited, it is usually dried at about 80 to 120 ° C. Further, the subsequent firing temperature is preferably 300 to 900 ° C, more preferably about 400 to 700 ° C. The atmosphere at the time of firing is not particularly limited, but each atmosphere such as air, inert gas, oxygen, and water vapor may be appropriately selected according to the catalyst composition, and each atmosphere is alternately replaced at regular intervals. May be.
[0016]
The catalyst of the present invention can be formed into various shapes such as a spherical shape, a honeycomb shape, and a pellet shape by a conventionally known forming method. These shapes, sizes, etc. may be arbitrarily selected according to the use conditions. In addition, the surface of the support base having a fireproof integrated structure having a large number of through holes in the flow direction of the exhaust gas can be coated by a wash coat method or the like.
[0017]
In the method of reducing and removing nitrogen oxides in exhaust gas using the catalyst of the present invention, it is particularly preferable to use methanol as the reducing agent. The amount of methanol added to the exhaust gas may be appropriately selected according to the denitration rate and running cost required for operation, but generally it is about 0.5 to 5 times in molar ratio to nitrogen oxide. preferable.
[0018]
Although it does not specifically limit about the gas space velocity (SV) at the time of purifying combustion exhaust gas, It is preferable to set it as 1000 / hour or more and 100000 / hour or less. Moreover, even if the temperature of the combustion exhaust gas is a relatively low temperature of about 300 to 400 ° C., excellent removal performance of nitrogen oxides can be obtained.
[0019]
【Example】
(1) Preparation of catalyst 1.6 g of silver nitrate was dissolved in 100 g of ion-exchanged water, and adjusted to pH 10 with ammonia to obtain a silver ammonia complex solution. In this solution, 20 g of β zeolite powder was dispersed, and the mixture was stirred for 3 hours while maintaining the temperature at 60 ° C. Then, after filtering and washing with water and drying by ventilation at 110 ° C., the catalyst 1 was obtained by calcining in air at 500 ° C. for 3 hours. In this catalyst 1, the amount of silver supported is 2.5% by weight of the whole catalyst in terms of elements.
[0020]
In preparing the catalyst in the same manner as described above, the catalyst 2 with a silver loading of 0.5% by weight, the catalyst 3 with 1.5% by weight, the catalyst 4 with 5.0% by weight, and 8.0 Catalysts 5% by weight were prepared. Similarly, when preparing the catalyst, instead of β zeolite, catalyst 6 using mordenite as a carrier and silver loading of 2.2% by weight, ZSM-5 as a carrier and silver loading of 2 Catalyst 7 having a content of 0.8% by weight was also produced.
[0021]
(2) Evaluation of catalyst Using the above-described catalysts 1 to 7, the denitration performance was evaluated as follows. That is, after each catalyst is pressure-molded, it is pulverized and the particle size is adjusted to 350 to 500 μm, and the obtained catalyst particles are filled in a stainless steel reaction tube having an inner diameter of 15 mm. Attached to the device.
[0022]
In this reaction tube, as a model exhaust gas, a mixed gas composed of NO: 1000 ppm, O 2 : 10%, H 2 O: 10%, SO 2 : 100 ppm, methanol: 2000 ppm, and the balance: N 2 was used at a space velocity of 50000 / h. The denitration rate was measured under the conditions described above. At that time, the gas temperature was changed to 300 ° C., 350 ° C., and 400 ° C.
[0023]
Regarding the analysis of the outlet gas composition of the reaction tube, the NO concentration was measured with a chemiluminescent NOx meter, and the N 2 O concentration was measured using a gas chromatograph / thermal conductivity detector equipped with a Porapak Q column. The denitration rate was calculated according to the following formula 1. N 2 O and NO 2 were hardly recognized in the outlet gas of the reaction tube.
[0024]
[Expression 1]
Figure 0003952823
[0025]
For each catalyst, the denitration rate at each gas temperature is shown in Table 1 below. As can be seen from Table 1, in the catalysts 1 and 3 to 4 as examples, NOx removal is also achieved in the relatively low temperature exhaust gas in which sulfur oxides coexist compared to the catalysts 2 and 5 to 7 as comparative examples. Excellent activity.
[0026]
[Table 1]
Figure 0003952823
[0027]
(3) Durability Evaluation of Catalyst Using the catalyst 1 of the present invention example and the catalyst 2 of the comparative example, durability was evaluated as follows. The catalyst sizing method and the reactor used for the evaluation are the same as those described in the above (2) Evaluation of catalyst.
[0028]
In the reaction tube, as a model exhaust gas, a mixed gas composed of NO: 1000 ppm, O 2 : 10%, H 2 O: 10%, SO 2 : 1000 ppm, methanol: 2000 ppm, the balance: N 2 , gas temperature 350 ° C., space It was supplied for 20 hours under the condition of a speed of 50000 / h. Thereafter, except for the SO 2 concentration of 100 ppm, the same model exhaust gas as the above composition was supplied, and the denitration rate was measured.
[0029]
The obtained results are shown in Table 2 below. As can be seen from this result, even after 20 hours of endurance test using exhaust gas containing high concentration of SO 2 , the catalyst 1 of the present invention maintains higher activity than the catalyst 2 of the comparative example, and the durability is improved. Are better.
[0030]
[Table 2]
Figure 0003952823
[0031]
【The invention's effect】
According to the present invention, combustion exhaust gas having excellent nitrogen oxide NOx removal performance and durability even in combustion exhaust gas containing sulfur oxide, and effective even at a relatively low temperature of about 300 ° C. to 400 ° C. A purification catalyst can be provided.

Claims (1)

硫黄酸化物を含む酸素過剰の燃焼排ガスを、βゼオライトに銀を1〜6重量%担持させた触媒に接触させ、メタノールを還元剤として燃焼排ガス中の窒素酸化物を還元除去することを特徴とする燃焼排ガスの浄化方法 A feature of contacting sulfur-containing oxygen-excess combustion exhaust gas with a catalyst in which 1 to 6% by weight of silver is supported on β zeolite, and reducing and removing nitrogen oxides in the combustion exhaust gas using methanol as a reducing agent. A method for purifying combustion exhaust gas .
JP2002091000A 2002-03-28 2002-03-28 Combustion exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP3952823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091000A JP3952823B2 (en) 2002-03-28 2002-03-28 Combustion exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091000A JP3952823B2 (en) 2002-03-28 2002-03-28 Combustion exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2003284956A JP2003284956A (en) 2003-10-07
JP3952823B2 true JP3952823B2 (en) 2007-08-01

Family

ID=29236193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091000A Expired - Fee Related JP3952823B2 (en) 2002-03-28 2002-03-28 Combustion exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3952823B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119069A1 (en) * 2014-02-07 2015-08-13 日立造船株式会社 Catalyst and method for purifying combustion exhaust gas

Also Published As

Publication number Publication date
JP2003284956A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JP2007175654A (en) Catalyst for deoxidizing nitrogen oxide selectively
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JPH09313946A (en) Catalyst for cleaning nox-containing exhaust gas and cleaning method
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method
JP2000325780A (en) Nitrogen oxide and/or sulfur oxide adsorbent
JP2007216082A (en) Catalyst for decomposing ammonia and method for treating ammonia
JP3362401B2 (en) Exhaust gas purification catalyst
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JP2006346642A (en) Catalyst for decomposing ammonia and method for treating ammonia
JP2004261754A (en) Exhaust gas purifying catalyst and purifying method
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JP3291316B2 (en) Exhaust gas purification catalyst
JPH0833843A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JPH07323225A (en) Catalyst for reductive-removing nitrogen oxides in waste combustion gas
JPH0824657A (en) Preparation of highly heat resistant catalyst for purifying nitrogen oxide
JP2003340284A (en) Exhaust gas cleaning catalyst and catalyst coated structure thereof and exhaust gas cleaning method
JPH06210137A (en) Denitration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees