JPH1073568A - Capillary electrophoresis device - Google Patents

Capillary electrophoresis device

Info

Publication number
JPH1073568A
JPH1073568A JP8230655A JP23065596A JPH1073568A JP H1073568 A JPH1073568 A JP H1073568A JP 8230655 A JP8230655 A JP 8230655A JP 23065596 A JP23065596 A JP 23065596A JP H1073568 A JPH1073568 A JP H1073568A
Authority
JP
Japan
Prior art keywords
groove
laser beam
stage
electrophoresis
electrophoresis chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8230655A
Other languages
Japanese (ja)
Inventor
Akihiro Arai
昭博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8230655A priority Critical patent/JPH1073568A/en
Publication of JPH1073568A publication Critical patent/JPH1073568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capillary electrophoresis device which can automatically make optical axis alignment. SOLUTION: A movable stage 3 is moved so that a laser beam can traverse an electrophoresis groove 2 on an electrophoresis chip 1. Since the laser beam has a diameter of about 10m and the groove 2 has a width of 30m and an inverted trapezoidal cross section, the scattered light of the laser beam becomes the maximum when the laser beam hits the side face of the groove 2 and minimum when the laser beam hits the central part. The scattered light reaches a photomultiplier 11 through an interference filter 9. A CPU 14 stores the position (of the stage 3) at which the first peak is detected by moving the stage 3 and the position (of the stage 3) at which the second peak is detected by further moving the stage 3. Then the CPU 14 returns the stage 3 so that the laser beam can be positioned to the middle of the two positions by sending a drive signal to a pulse motor driving circuit 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極微量のタンパク
や核酸などを、高速かつ高分解能に分析する場合に利用
される電気泳動装置に関し、さらに詳しくは、板状部材
に形成した溝をキャピラリーとして用いるキャピラリー
電気泳動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophoresis apparatus used for analyzing very small amounts of proteins and nucleic acids at high speed and with high resolution. More specifically, the present invention relates to a capillary formed with grooves formed in a plate-like member. The present invention relates to a capillary electrophoresis apparatus used as a device.

【0002】[0002]

【従来の技術】従来より極微量のタンパクや核酸などを
分析する場合には、電気泳動装置が用いられており、そ
の代表的な装置としてキャピラリ−電気泳動装置があ
る。この泳動装置は、内径50μm程度もしくはそれ以
下のガラスキャピラリー内に泳動バッファを充填し、一
方の端に試料を導入した後、キャピラリー両端に高電圧
を印加して、分析対象物をキャピラリー内で展開させる
もので、ガラスキャピラリー内が容積に対して表面積が
大きい、すなわち冷却効率が高いことより、高電圧の印
加が可能となり、DNAなどの極微量試料を高速かつ高
分解能にて分析することができる。
2. Description of the Related Art Conventionally, an electrophoresis apparatus has been used for analyzing a very small amount of proteins, nucleic acids, and the like, and a typical example thereof is a capillary electrophoresis apparatus. In this electrophoresis apparatus, after filling an electrophoresis buffer in a glass capillary with an inner diameter of about 50 μm or less, introducing a sample into one end, a high voltage is applied to both ends of the capillary, and an analyte is developed in the capillary. Since the surface area of the inside of the glass capillary is large relative to the volume, that is, the cooling efficiency is high, it is possible to apply a high voltage, and it is possible to analyze a very small amount of sample such as DNA at high speed and with high resolution. .

【0003】また、前記したガラスキャピラリーを用い
たものは、使用するキャピラリー外径が100〜数10
μm程度と細く破損し易いため、ユーザが行うべきキャ
ピラリー交換時の取扱いが容易でない課題を有する。そ
のため、D.J. Harrison et al. / Anal. Chim. Acta 28
3 (1993) 361-366に記されているように、2枚の基板を
接合して形成された、キャピラリ電気泳動チップが提案
されている。この電気泳動チップの例を図3に示す。こ
れは一対の透明基板(ガラス板)51、52からなり、
一方の透明基板52の表面に泳動用のキャピラリ溝5
4、55を形成し、他方の透明基板51のその溝54、
55の端に対応する位置にリザーバ53を設けたもので
ある。
In the case of using the above-mentioned glass capillary, the outer diameter of the capillary used is 100 to several tens.
There is a problem that it is not easy to handle when replacing the capillary, which should be performed by the user, because it is so thin as to be about μm and easily broken. Therefore, DJ Harrison et al. / Anal. Chim. Acta 28
3 (1993) 361-366, there has been proposed a capillary electrophoresis chip formed by bonding two substrates. FIG. 3 shows an example of this electrophoresis chip. It consists of a pair of transparent substrates (glass plates) 51, 52,
Capillary grooves 5 for electrophoresis are formed on the surface of one transparent substrate 52.
4 and 55, and the grooves 54 of the other transparent substrate 51,
The reservoir 53 is provided at a position corresponding to the end of the reservoir 55.

【0004】この装置の使用は、両透明基板51、52
を図3(c)に示すように重ね、いずれかのリザーバ5
3から泳動液を溝54、55の中に注入する。そして短
い方の溝54の両端のリザーバ53に電極を差し込んで
所定時間だけ高電圧を印加する。これにより、試料は溝
54の中に分散される。次に長い方の溝55の両端のリ
ザーバに電極を差し込み、泳動電圧を印加する。これに
より、両溝54、55の交差部分56に存在する試料が
溝55内を電気泳動する。そして、溝55の適当な位置
に光入射口を設け、そこにレーザー光を照射して蛍光検
出を行う。
[0004] The use of this apparatus is based on both transparent substrates 51 and 52.
3c as shown in FIG.
From step 3, the electrophoresis running solution is injected into the grooves 54 and 55. Then, the electrodes are inserted into the reservoirs 53 at both ends of the shorter groove 54 and a high voltage is applied for a predetermined time. As a result, the sample is dispersed in the groove 54. Next, electrodes are inserted into the reservoirs at both ends of the longer groove 55, and a migration voltage is applied. Thus, the sample existing at the intersection 56 between the two grooves 54 and 55 electrophoreses in the groove 55. Then, a light incident port is provided at an appropriate position of the groove 55, and a laser beam is irradiated to the light incident port to perform fluorescence detection.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
キャピラリ−電気泳動チップでは、チップ平面上の幅数
10μmの流路にレーザビーム等の光軸を合わせる場合
には、先ず顕微鏡とチップを固定し、位置の微調整が可
能な光学ステージを使用して、目視にたよっているの
が、現状である。これでは装置は大掛かりな上、操作が
煩雑となる。
However, in the conventional capillary electrophoresis chip, when aligning the optical axis of a laser beam or the like with a flow path having a width of several tens μm on the chip plane, the microscope and the chip are first fixed. At present, an optical stage capable of finely adjusting the position is used to visually check the position. In this case, the device is large and the operation is complicated.

【0006】そこで、本発明は上記課題を解決するた
め、光軸合せを自動化したキャピラリー電気泳動装置を
提供することを目的とする。
Accordingly, an object of the present invention is to provide a capillary electrophoresis apparatus in which optical axis alignment is automated in order to solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するため、一対の板状部材を備え、少なくとも一方の
板状部材の表面に液が流れる溝を、他方の板状部材に該
溝に略対応する位置に貫通孔を各々設け、これら板状部
材が溝を内側にして張り合わされて成るキャピラリー電
気泳動チップと、該電気泳動チップの液溝の一部に光を
照射する光源と、該光源の対向する位置に配設された検
出器とからなるキャピラリー電気泳動装置において、前
記電気泳動チップを光源からの光が横切られる方向に移
動させる移動部と、該移動部による電気泳動チップの移
動により生ずる複数の散乱光のピークを前記検出器で検
出してピーク値の中間位置を算出する算出部と、前記ピ
ーク値の中間位置に基づき前記移動部の移動を制御する
制御部とを備えたことを特徴とする。
In order to solve the above-mentioned problems, the present invention comprises a pair of plate-like members, wherein a groove through which a liquid flows on the surface of at least one plate-like member is provided on the other plate-like member. A through hole is provided at a position substantially corresponding to the groove, a capillary electrophoresis chip in which these plate-shaped members are bonded together with the groove inside, and a light source that irradiates a part of the liquid groove of the electrophoresis chip with light. A moving part for moving the electrophoresis chip in a direction in which light from the light source is traversed, and a electrophoresis chip by the moving part. A calculating unit that detects a plurality of peaks of the scattered light generated by the movement with the detector and calculates an intermediate position of the peak value, and a control unit that controls the movement of the moving unit based on the intermediate position of the peak value. Equipped And wherein the door.

【0008】ここで、板状部材とは例えば各種ガラス、
石英もしくはSi基板が用いられ、それらの厚みは例え
ば0.2〜1mm程度が好ましい。この板状部材にフォ
トファブリケーション技術により溝が形成される。フォ
トファブリケーション技術とは、フォトマスクのパター
ンを転写して複製を作製する技術をいい、一般にはフォ
トレジストまたはレジストと呼ばれる感光性材料を基板
表面に塗布し、光でパターンを転写する。そして、転写
した平面的なパターンからエッチングなどによりある程
度の立体的な形に加工するものである。
Here, the plate member is, for example, various kinds of glass,
A quartz or Si substrate is used, and their thickness is preferably, for example, about 0.2 to 1 mm. A groove is formed in this plate-like member by photofabrication technology. The photofabrication technique refers to a technique for transferring a pattern of a photomask to produce a copy, and generally applies a photoresist or a photosensitive material called a resist to a substrate surface and transfers the pattern with light. Then, the transferred planar pattern is processed into a certain three-dimensional shape by etching or the like.

【0009】使用するフォトレジスト(またはレジス
ト)は、例えば東京応化社製OFPR5000、シプレ
イ・ファーイースト社製マイクロポジットS1400、
OMR83−100cpを用いることができるが、これ
らに限定されず、後のエッチング工程に耐え得るもので
あれば特に限定されない。また、その厚さは後のエッチ
ング工程に耐える厚みが必要であり、1〜2μmの厚み
が一般的である。
The photoresist (or resist) used is, for example, OFPR5000 manufactured by Tokyo Ohka Co., Ltd., Microposit S1400 manufactured by Shipley Far East Co., Ltd.
OMR83-100 cp can be used, but is not limited thereto, and is not particularly limited as long as it can withstand the subsequent etching step. In addition, the thickness must be large enough to withstand the subsequent etching step, and is generally 1 to 2 μm.

【0010】マスクパターンの転写は、一般の集積回路
の場合のようにレジストを塗布した基板にフォトマスク
を密着する密着露光やステッパ(縮小投影露光装置)な
どを用いる投影露光が行われる。また、ホログラフィッ
ク露光であっても良い。なお、露光の際に使用する光源
としては、例えば、超高圧水銀ランプのg線(436n
m)を用いることができ、露光条件はレジスト材とレジ
ストの厚みに依存する。 エッチングの方法は、各種ガ
ラスや石英をエッチングする場合は、ウエットエッチン
グが挙げられる。そのエッチャントは、各種ガラスや石
英がエッチングされる溶液であれば特に限定されるもの
ではないが、例えば、弗酸系の溶液が使用されるのが一
般的である。また、Si基板にエッチングする方法とし
ては、ウエットエッチング(異方性エッチング)が挙げ
られる。異方性エッチングに用いるエッチャントは、K
OH水溶液、TMAH(テトラメチルアンモニウムハイ
ドライド)、ヒドラジンなどこの分野で使用されている
エッチャントであれば、特に限定されるものではない。
The transfer of the mask pattern is performed by contact exposure in which a photomask is brought into close contact with a substrate coated with a resist as in the case of a general integrated circuit, or projection exposure using a stepper (reduction projection exposure apparatus) or the like. Also, holographic exposure may be used. In addition, as a light source used at the time of exposure, for example, a g-line (436n
m) can be used, and the exposure conditions depend on the resist material and the thickness of the resist. As an etching method, when various kinds of glass or quartz are etched, wet etching is used. The etchant is not particularly limited as long as it is a solution for etching various glasses or quartz, but for example, a hydrofluoric acid-based solution is generally used. Further, as a method for etching the Si substrate, wet etching (anisotropic etching) can be used. The etchant used for anisotropic etching is K
There is no particular limitation on the etchant used in this field, such as an OH aqueous solution, TMAH (tetramethylammonium hydride), and hydrazine.

【0011】一方の板状部材には、例えば、テーパ状の
貫通孔を形成する。ここで、ガラスや石英基板に貫通孔
を形成する方法は、特に限定されるものではないが、超
音波加工を用いるのが一般的である。貫通孔の大きさ
は、特に限定されるものでないが、例えば開口直径は
0. 1〜数mm程度が望ましい。
In one of the plate-like members, for example, a tapered through hole is formed. Here, the method of forming the through hole in the glass or quartz substrate is not particularly limited, but it is general to use ultrasonic processing. Although the size of the through hole is not particularly limited, for example, the opening diameter is desirably about 0.1 to several mm.

【0012】板状部材の張り合わせは、溝を内側にして
重ね合わせて行う。2枚の板状部材の張り合わせ(接
合)手段は特に限定されるものではないが、本発明の場
合は微量分析装置ゆえ、接着剤は使用せず板状部材同士
を直接接合するのが望ましい。ガラス同士の接合には、
真空中もしくは窒素置換雰囲気中で600〜900℃程
度に加熱することで、2枚のガラスを融着する手段が望
ましい。また石英の接合には、例えば、少なくとも一方
の基板接合面にガラスをスパッタ成膜した後に、上記と
同様に加熱する手段が望ましい。さらにガラスとシリコ
ンを接合する場合は、例えば、400℃程度に加熱して
ガラス側に−1kV程度の負電圧を印加して接合する陽
極接合法を用いても良い。
The lamination of the plate-like members is performed with the grooves inward. The means for bonding (joining) the two plate members is not particularly limited, but in the case of the present invention, it is desirable to directly join the plate members without using an adhesive because of the microanalysis device. For joining glass,
It is desirable to use a means for fusing two glasses by heating to about 600 to 900 ° C. in a vacuum or a nitrogen-substituted atmosphere. For the bonding of quartz, for example, it is desirable to use a method in which glass is formed by sputtering on at least one substrate bonding surface and then heated in the same manner as described above. Further, in the case of bonding glass and silicon, for example, an anodic bonding method in which heating is performed to about 400 ° C. and a negative voltage of about −1 kV is applied to the glass side to perform bonding may be used.

【0013】光源としては、例えばレーザー、重水素ラ
ンプ、タングステンランプなどを用いることができる
が、レーザーが好ましい。レーザーとしては、He−C
dレーザー、アルゴンイオンレーザー等を用いることが
できるが、これらに限定されない。検出器は、例えば光
電管、光電子増倍管、シリコンホトセル、フォトダイオ
ードなどを用いることができる。検出器の位置は、光源
と対向する位置ならば特に限定されないが、散乱光を検
出するためにも光源と垂直位置が好ましい。
As a light source, for example, a laser, a deuterium lamp, a tungsten lamp or the like can be used, but a laser is preferable. As a laser, He-C
A d laser, an argon ion laser, or the like can be used, but is not limited thereto. As the detector, for example, a phototube, a photomultiplier, a silicon photocell, a photodiode, or the like can be used. The position of the detector is not particularly limited as long as it is a position facing the light source. However, a vertical position with respect to the light source is also preferable for detecting scattered light.

【0014】移動部としては、例えば電気泳動チップを
載置し、X−Y方向に駆動できる平板状ステージを挙げ
ることができ、X−Y方向駆動は、パルスモータ、ラッ
ク・ピニオン機構等によって行うことができる。なお、
駆動方向は、電気泳動チップを光源からの光を横切る方
向に移動させることができれば特に限定されず、また、
三次元方向でもよい。移動部の移動は、後述する制御部
で制御される。
The moving section may be, for example, a flat stage on which an electrophoresis chip is mounted and which can be driven in the X and Y directions. The driving in the X and Y directions is performed by a pulse motor, a rack and pinion mechanism, or the like. be able to. In addition,
The driving direction is not particularly limited as long as the electrophoresis chip can be moved in a direction crossing the light from the light source.
It may be in a three-dimensional direction. The movement of the moving unit is controlled by a control unit described later.

【0015】算出部は、例えば、前記検出器で検出した
電気泳動チップの移動により生ずる散乱光のピーク値の
位置を記憶し、その中間位置を算出する演算回路を備え
たものが該当する。制御部は、算出部により算出された
散乱光のピーク値の中間位置に電気泳動チップが来るよ
うに移動部を制御するもので、算出部をも兼ねてCPU
により構成することもできる。
The calculating unit corresponds to, for example, a unit having an arithmetic circuit for storing the position of the peak value of the scattered light generated by the movement of the electrophoresis chip detected by the detector and calculating the intermediate position. The control unit controls the moving unit so that the electrophoresis chip is located at an intermediate position between the peak values of the scattered light calculated by the calculation unit, and the CPU also functions as the calculation unit.
Can also be configured.

【0016】なお、試料溶液の注入は、電気泳動チップ
の貫通孔よりマイクロシリンジなどの公知の注入器を用
いて行う。試料溶液の注入後、貫通孔に針状電極(例え
ば白金ワイヤー電極)を挿入し、電圧を印加して泳動を
行う。
The injection of the sample solution is performed using a well-known injector such as a micro syringe through the through hole of the electrophoresis chip. After the injection of the sample solution, a needle-like electrode (for example, a platinum wire electrode) is inserted into the through hole, and electrophoresis is performed by applying a voltage.

【0017】[0017]

【発明の実施の形態】本発明のキャピラリー電気泳動装
置の一実施例を図1に基づいて説明する。図1中1は電
気泳動チップを示し、チップ中に泳動溝2が形成されて
いる。電気泳動チップ全体の概略は前述した図3と同様
のもので、断面形状は図2(イ)に示す。なお、図2
(イ)中、1aはカバープレート、1bはベースプレー
トであり、これら一対の板状部材のサイズは、例えば縦
10mm、横20mm、厚さ0.5mmであり、泳動溝
2は幅30μm、深さ10μmである。泳動溝2の形状
は、逆台形の形状をしている。3は、電気泳動チップを
X−Y−Z方向に移動させる移動ステージで、X−Y方
向へはパルスモータ4により移動され、Z方向へは図示
しない駆動機構により移動される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the capillary electrophoresis apparatus of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes an electrophoresis chip, in which a migration groove 2 is formed. The outline of the entire electrophoresis chip is the same as that of FIG. 3 described above, and the cross-sectional shape is shown in FIG. Note that FIG.
In (a), 1a is a cover plate, 1b is a base plate, and the size of the pair of plate members is, for example, 10 mm in length, 20 mm in width, and 0.5 mm in thickness, and the migration groove 2 has a width of 30 μm and a depth of 10 μm. The migration groove 2 has an inverted trapezoidal shape. Reference numeral 3 denotes a moving stage for moving the electrophoresis chip in the XYZ directions, which is moved in the XY directions by the pulse motor 4 and moved in the Z direction by a drive mechanism (not shown).

【0018】5はレーザーで、例えばアルゴンイオンレ
ーザー(488nm、8mW)を用いる。レーザー5の
ビームは、ダイクロイックミラー(510nm以上を透
過)6で反射され、集光レンズ(40倍、開口径0.5
5)7を通して、電気泳動チップ1の泳動溝2に照射さ
れる。なお、8は450〜490nmの光を透過させる
干渉フィルタである。11はフォトマルであり、泳動溝
2へのレーザーの照射により生じた蛍光等を前述した集
光レンズ7、ダイクロイックミラー6を透過させた後、
受光する。なお、9は530nmより長波長側の光を透
過させる干渉フィルタ、10はφ1.0のピンホールを
有する空間フィルタである。フォトマル11の信号が増
幅器12で増幅された後、A/Dコンバータ13で変換
され、CPU14に入る。CPU14は、フォトマル1
1で検出した電気泳動チップ1の移動により生ずる散乱
光のピーク値の位置(移動ステージの位置)を記憶し、
中間位置を算出し、算出された散乱光のピーク値の中間
位置に電気泳動チップが来るように移動ステージ3の駆
動信号を発する。駆動信号は、パルモータ駆動回路15
に送られ、パルスモータ4を駆動させる。
Reference numeral 5 denotes a laser, for example, an argon ion laser (488 nm, 8 mW). The beam of the laser 5 is reflected by a dichroic mirror (transmission of 510 nm or more) 6 and is collected by a condenser lens (40 times, aperture diameter 0.5).
5) Through 7 is applied to the migration groove 2 of the electrophoresis chip 1. Reference numeral 8 denotes an interference filter that transmits light of 450 to 490 nm. Reference numeral 11 denotes a photomultiplier, which transmits fluorescence or the like generated by irradiating the electrophoresis groove 2 with the laser through the above-described condenser lens 7 and dichroic mirror 6, and
Receive light. Reference numeral 9 denotes an interference filter that transmits light having a wavelength longer than 530 nm, and reference numeral 10 denotes a spatial filter having a pinhole of φ1.0. After the signal of the photomultiplier 11 is amplified by the amplifier 12, the signal is converted by the A / D converter 13 and enters the CPU 14. CPU 14 is a photomultiplier 1
The position of the peak value of the scattered light generated by the movement of the electrophoresis chip 1 detected at 1 (the position of the moving stage) is stored,
An intermediate position is calculated, and a drive signal for the moving stage 3 is issued such that the electrophoresis chip comes to an intermediate position between the calculated peak values of the scattered light. The drive signal is output from the pulse motor drive circuit 15.
To drive the pulse motor 4.

【0019】以上の構成で、本装置の動作は次の様に行
う。先ず、移動ステージ3をレーザービームに対して直
光方向(X方向)に移動させ、電気泳動チップ1上の泳
動溝2をビームが横切るようにする。レーザービーム径
は約10μmであり、泳動溝2は幅30μmで、断面形
状が図2(イ)に示す形をしているので、レーザービー
ムが当たる位置によって散乱光が生じる。すなわち、泳
動溝2にレーザービームが当たるとき(図2(イ)の
b)は、散乱光は干渉フィルタ9を透過してフォトマル
11に達する。一方、レーザービームが泳動溝2の中央
部に当たるとき(図2(イ)のa)は散乱光は最も小さ
い。さらに、レーザービームが泳動溝2のもう一方の側
面に当たるとき(図2(イ)のc)は、図2(イ)のb
と同様に壁面で反射してできる散乱光がフォトマル11
に入り、バックグランドを上昇させる。
With the above configuration, the operation of the present apparatus is performed as follows. First, the moving stage 3 is moved in the direct light direction (X direction) with respect to the laser beam so that the beam crosses the migration groove 2 on the electrophoresis chip 1. Since the laser beam diameter is about 10 μm, the width of the migration groove 2 is 30 μm, and the cross-sectional shape is as shown in FIG. 2A, scattered light is generated depending on the position where the laser beam hits. In other words, when the laser beam impinges on the migration groove 2 (b in FIG. 2A), the scattered light passes through the interference filter 9 and reaches the photomultiplier 11. On the other hand, when the laser beam hits the center of the migration groove 2 (a in FIG. 2A), the scattered light is the smallest. Further, when the laser beam hits the other side surface of the migration groove 2 (c in FIG. 2A), b in FIG.
The scattered light generated by reflection on the wall in the same manner as
And raise the background.

【0020】図2(イ)のa〜cの現象をフォトマル1
1の信号として見た場合、図2(ロ)に示すような2つ
のピークが得られる。したがって、ピークの中間位置に
電気泳動チップ1とレーザービームの位置関係がくるよ
うにすればよい。
The phenomena a to c in FIG.
When viewed as one signal, two peaks are obtained as shown in FIG. Therefore, the positional relationship between the electrophoresis chip 1 and the laser beam may be located at an intermediate position between the peaks.

【0021】そのため、移動ステージ3を移動させて、
第1のピークが検出されるときの位置(移動ステージ3
の位置)をCPU14で記憶し、さらに移動ステージ3
を移動させ、第2のピークが検出されるときの位置(移
動ステージ3の位置)をCPU14で記憶させる。これ
らの2点の中間にレーザービームが来るように、パルス
モータ駆動回路15にCPU14より駆動信号が送ら
れ、移動ステージ3が戻される。
Therefore, the moving stage 3 is moved to
Position at which the first peak is detected (moving stage 3
Of the moving stage 3
Is moved, and the position (position of the moving stage 3) at which the second peak is detected is stored in the CPU 14. A drive signal is sent from the CPU 14 to the pulse motor drive circuit 15 so that the laser beam comes between the two points, and the moving stage 3 is returned.

【0022】レーザービームがピークの中間位置(泳動
溝2の中央)に来れば、図示しないZ方向への駆動機構
により、移動ステージ3をZ方向へ移動させ、検出信号
が最大となる位置を調節する。以上の動作で、レーザー
ビームの光軸調整が終了したので、電気泳動チップ1上
の泳動溝2に試料を注入して電圧を印加し、電気泳動を
行う。
When the laser beam reaches the middle position of the peak (the center of the migration groove 2), the moving stage 3 is moved in the Z direction by a driving mechanism in the Z direction (not shown) to adjust the position where the detection signal becomes maximum. I do. Since the optical axis adjustment of the laser beam has been completed by the above operation, the sample is injected into the migration groove 2 on the electrophoresis chip 1 and a voltage is applied to perform electrophoresis.

【0023】[0023]

【発明の効果】本発明によれば、目視にたよらず自動的
に光源の光軸合わせが可能となるので、従来の煩雑さか
ら開放される。また、電気泳動チップの交換時期も簡単
にわかるので、交換することによる検出信号のバラツキ
も軽減される。
According to the present invention, the optical axis of the light source can be automatically adjusted without the need for visual observation, thereby eliminating the conventional complexity. In addition, since the replacement time of the electrophoresis chip can be easily known, the variation of the detection signal due to the replacement can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のキャピラリー電気泳動装置の一実施例
FIG. 1 is a diagram showing one embodiment of a capillary electrophoresis apparatus of the present invention.

【図2】(イ)電気泳動チップの断面図 (ロ)散乱光
のピーク位置の説明図
2A is a cross-sectional view of an electrophoresis chip. FIG. 2B is an explanatory diagram of peak positions of scattered light.

【図3】キャピラリー電気泳動チップの概略図FIG. 3 is a schematic diagram of a capillary electrophoresis chip.

【符号の説明】[Explanation of symbols]

1:電気泳動チップ 2:泳動溝 3:移動ステージ 4:パルスモータ 5:レーザー 11:フォトマル 14:CPU 1: electrophoresis chip 2: migration groove 3: moving stage 4: pulse motor 5: laser 11: photomultiplier 14: CPU

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の板状部材を備え、少なくとも一方
の板状部材の表面に液が流れる溝を、他方の板状部材に
該溝に略対応する位置に貫通孔を各々設け、これら板状
部材が溝を内側にして張り合わされて成るキャピラリー
電気泳動チップと、該電気泳動チップの液溝の一部に光
を照射する光源と、該光源の対向する位置に配設された
検出器とからなるキャピラリー電気泳動装置において、 前記電気泳動チップを光源からの光が横切られる方向に
移動させる移動部と、該移動部による電気泳動チップの
移動により生ずる複数の散乱光のピークを前記検出器で
検出して、ピーク値の中間位置を算出する算出部と、前
記ピーク値の中間位置に基づき前記移動部の移動を制御
する制御部とを備えたことを特徴とするキャピラリー電
気泳動装置。
1. A plate comprising a pair of plate-like members, wherein at least one plate-like member is provided with a groove through which a liquid flows, and the other plate-like member is provided with a through hole at a position substantially corresponding to the groove. Capillary electrophoresis chip in which the shape member is bonded with the groove inside, a light source that irradiates a part of the liquid groove of the electrophoresis chip with light, and a detector disposed at a position facing the light source In a capillary electrophoresis apparatus comprising: a moving portion for moving the electrophoresis chip in a direction in which light from a light source crosses, and a plurality of scattered light peaks generated by the movement of the electrophoresis chip by the moving portion are detected by the detector. A capillary electrophoresis apparatus comprising: a calculating unit that detects and calculates an intermediate position of a peak value; and a control unit that controls movement of the moving unit based on the intermediate position of the peak value.
JP8230655A 1996-08-30 1996-08-30 Capillary electrophoresis device Pending JPH1073568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8230655A JPH1073568A (en) 1996-08-30 1996-08-30 Capillary electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8230655A JPH1073568A (en) 1996-08-30 1996-08-30 Capillary electrophoresis device

Publications (1)

Publication Number Publication Date
JPH1073568A true JPH1073568A (en) 1998-03-17

Family

ID=16911215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8230655A Pending JPH1073568A (en) 1996-08-30 1996-08-30 Capillary electrophoresis device

Country Status (1)

Country Link
JP (1) JPH1073568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033475B2 (en) 2000-10-25 2006-04-25 Shimadzu Corporation Electrophoretic apparatus
JP2007212449A (en) * 2006-01-16 2007-08-23 Hitachi High-Technologies Corp Capillary electrophoresis apparatus and electrophoresis method
JP2009014407A (en) * 2007-07-02 2009-01-22 Sharp Corp Capillary movable appliance and capillary electrophoretic apparatus using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033475B2 (en) 2000-10-25 2006-04-25 Shimadzu Corporation Electrophoretic apparatus
JP2007212449A (en) * 2006-01-16 2007-08-23 Hitachi High-Technologies Corp Capillary electrophoresis apparatus and electrophoresis method
JP2009014407A (en) * 2007-07-02 2009-01-22 Sharp Corp Capillary movable appliance and capillary electrophoretic apparatus using it

Similar Documents

Publication Publication Date Title
JP2790067B2 (en) Electrophoresis device
US7105354B1 (en) Analyzer
US5959728A (en) Method of bonding substrates, detector cell produced according to this method and optical measuring apparatus having this detector cell
US6900889B2 (en) Submersible light-directing member for material excitation in microfluidic devices
JP3670631B2 (en) Absorption detection system for love-on-chip
JP4463228B2 (en) Optical alignment method and apparatus for capillary electrophoresis apparatus
JPH09218149A (en) Detection meter cell and optical measuring device
JPH11248678A (en) Capillary electrophoresis chip
JPH07500418A (en) Apparatus and method for aligning capillary separation tubes and detection optics
JP3866183B2 (en) Biochip
JP4423810B2 (en) Electrophoresis device
JPH1073568A (en) Capillary electrophoresis device
JP2002214194A (en) Electrophoretic device
JP2006322707A (en) Fluorescence detection device and inspection chip
JP2000002675A (en) Capillary photothermal conversion analyzer
JPH08327593A (en) Capillary electrophoretic device
JP3882220B2 (en) Capillary electrophoresis chip
JPH09210960A (en) Capillary electrophoretic device
JP3417150B2 (en) Capillary electrophoresis device
JPH11183437A (en) Electrophoresis member and electrophoresis device using same
JP3999292B2 (en) Surface plasmon sensor
Shao et al. Fabrication of a Fabry-Pe/spl acute/rot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates
TW200523681A (en) Device manufacturing method and device manufactured thereby
JP3265738B2 (en) Capillary electrophoresis device
JP4483469B2 (en) Electrophoresis device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926