JP4423810B2 - Electrophoresis device - Google Patents

Electrophoresis device Download PDF

Info

Publication number
JP4423810B2
JP4423810B2 JP2001130521A JP2001130521A JP4423810B2 JP 4423810 B2 JP4423810 B2 JP 4423810B2 JP 2001130521 A JP2001130521 A JP 2001130521A JP 2001130521 A JP2001130521 A JP 2001130521A JP 4423810 B2 JP4423810 B2 JP 4423810B2
Authority
JP
Japan
Prior art keywords
reservoir
sample
analysis
electrophoresis
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001130521A
Other languages
Japanese (ja)
Other versions
JP2002323477A (en
Inventor
徹 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001130521A priority Critical patent/JP4423810B2/en
Publication of JP2002323477A publication Critical patent/JP2002323477A/en
Application granted granted Critical
Publication of JP4423810B2 publication Critical patent/JP4423810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Electrostatic Separation (AREA)
  • Peptides Or Proteins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はライフサイエンスの分野において、電気泳動により分離されたDNAや蛋白質などの高分子物質試料の所定の断片部分を分取する装置に関するものである。
【0002】
【従来の技術】
例えば遺伝子工学の分野では、標準試料と対象試料とをゲル電気泳動させ、両試料の泳動パターンを比較してその相違を検証するとともに、相違している部分の分子配列を決定する必要がある。そのためには、対象試料の泳動パターンのうち、標準試料の泳動パターンと相違する部分を分取する必要がある。
【0003】
従来は、ゲル電気泳動した対象試料のパターンのうち分取すべき断片部分のゲルを直接手動でメスによって切り出すか、その展開した泳動パターンをいったんナイロンメンブレンに転写した後、そのナイロンメンブレンをはさみやメスで切り出すことによって分取している。
【0004】
【発明が解決しようとする課題】
しかしながら、従来は泳動パターンを別の認識装置で光学的に認識し、その情報に基づいて所定の部分を切り出すが、泳動パターンの認識と切り出し作業とは別の装置による独立した作業であるため、泳動パターン認識装置で切り出すべき部分を決めても、切出しの際にはその位置を再確認することが必要である。またメスなどを用いて手動により行なう切出し作業は煩雑である。
【0005】
また、最近、ゲル電気泳動に代わって、分析の高速化、装置の小型化が期待できる形態として、2枚の基材を接合して形成された電気泳動用チップが提案されている(D. J. Harrison et al. /Anal. Chem. 1993,283,361-366)。この電気泳動用チップは、一対の透明板状の無機材料からなる基材からなり、半導体フォトリソグラフィー技術及びエッチング技術、又はマイクロマシニング技術により、一方の基材の表面に互いに交差する泳動用キャピラリー溝を形成し、他方の基材にはその溝の端に対応する位置に貫通孔をアノードリザーバ、カソードリザーバ、サンプルリザーバ、ウエストリザーバとして設けたものである。
この電気泳動用チップを用いれば、微量サンプルの取り扱いが可能であり、泳動サンプルの分取も容易にできることが考えられる。
そこで、本発明は、電気泳動用チップを利用した新規な分取装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するため、板状部材に少なくとも一つの分析流路と、該分析流路の両端に接続するサンプル及び廃液リザーバーと、該両リザーバーに収容される電極と、該分析流路の下流側に配置される検出器とを備えてなる電気泳動装置において、該分析流路の検出器位置より下流側に該分析流路から分岐した複数の分岐流路と、その終端に電極を収容したリザーバーを設け、分離済みの各々のサンプルを該複数の分岐流路のリザーバーに目的成分ごとに選択的に分取することを特徴とする電気泳動装置である。
【0007】
ここで、板状部材とは例えば各種ガラス、石英もしくはSi基板が用いられ、それらの厚みは例えば0.2〜1mm程度が好ましい。この板状部材に、例えばフォトファブリケーション技術により溝(流路およびリザーバー)が形成される。フォトファブリケーション技術とは、フォトマスクのパターンを転写して複製を作製する技術をいい、一般にはフォトレジストまたはレジストと呼ばれる感光性材料をメタルマスクを介し基板表面に塗布し、光でパターンを転写する。そして、転写した平面的なパターンからエッチングなどによりある程度の立体的な形に加工するものである。
使用するフォトレジスト(またはレジスト)は、例えば東京応化社製OFPR5000、シプレイ・ファーイースト社製マイクロポジットS1400、OMR83−100cpを用いることができるが、これらに限定されず、後のエッチング工程に耐え得るものであれば特に限定されない。また、その厚さは後のエッチング工程に耐える厚みが必要であり、1〜2μmの厚みが一般的である。
【0008】
マスクパターンの転写は、一般の集積回路の場合のようにレジストを塗布した基板にフォトマスクを密着する密着露光やステッパ(縮小投影露光装置)などを用いる投影露光が行われる。また、ホログラフィック露光であっても良い。なお、露光の際に使用する光源としては、例えば、超高圧水銀ランプのg線(436nm)を用いることができ、露光条件はレジスト材とレジストの厚みに依存する。マスクパターンが転写されてメタルが露出すると、メタルマスクのパターニングを行い、基板表面を出す。メタルマスクのパターニングは、例えばメタルとして金を用いた場合は、王水により行う。
【0009】
エッチングの方法は、各種ガラスや石英をエッチングする場合は、ウエットエッチングが挙げられる。そのエッチャントは、各種ガラスや石英がエッチングされる溶液であれば特に限定されるものではないが、例えば、弗酸系の溶液が使用されるのが一般的である。また、Si基板にエッチングする方法としては、ウエットエッチング(異方性エッチング)が挙げられる。異方性エッチングに用いるエッチャントは、KOH水溶液、TMAH(テトラメチルアンモニウムハイドライド)、ヒドラジンなどこの分野で使用されているエッチャントであれば、特に限定されるものではない。
【0010】
板状部材は、一枚で用いても、溝を内側にして貼り合わせて用いても良い。一枚の場合は流路は開放系になる。板状部材を貼り合わせる場合、一方の板状部材には、例えば、テーパ状の貫通孔を形成する。ここで、ガラスや石英基板に貫通孔を形成する方法は、特に限定されるものではないが、超音波加工を用いるのが一般的である。貫通孔の大きさは、特に限定されるものでないが、例えば開口直径は0. 1〜数mm程度が望ましい。
板状部材の張り合わせは、溝を内側にして重ね合わせて行う。2枚の板状部材の張り合わせ(接合)手段は特に限定されるものではないが、本発明の場合は微量分析装置ゆえ、接着剤は使用せず板状部材同士を直接接合するのが望ましい。ガラス同士の接合には、真空中もしくは窒素置換雰囲気中で600〜900℃程度に加熱することで、2枚のガラスを融着する手段が望ましい。また石英の接合には、例えば、少なくとも一方の基板接合面にガラスをスパッタ成膜した後に、上記と同様に加熱する手段が望ましい。さらにガラスとシリコンを接合する場合は、例えば、400℃程度に加熱してガラス側に−1kV程度の負電圧を印加して接合する陽極接合法を用いても良い。
【0011】
分析流路の数は1つでも複数でもどちらでもよい。分岐流路は、分析流路と同じ内径が好ましく、分岐流路は1つの分析流路より複数分岐する構造が好ましい。
分析流路の両端および分岐流路の終端には、リザーバーが設けられており、リザーバー内には泳動バッファー、電極が入れられ、流路が電気導通可能となる。泳動バッファーとしては、例えばトリスEDTA、リン酸バッファーなどを用いることができるが、これらに限定されない。
【0012】
分析流路の下流側には検出器が配置される。検出器は、光源と受光器から光検出器、電気化学検出器などを用いることができる。光検出器を用いる場合、光入出射溝の内面には、例えばスパッタリングによりアルミニウムなどを蒸着してもよい。光入射溝に光源からの光を入射させ、光は泳動用溝を通過後、光出射溝により反射して検出手段に至る。光源としては、紫外・可視域の光源、例えばHe−Cd半導体レーザー、重水素ランプ、タングステンランプを用い、検出器としては、例えば光電子増倍管、シリコンホトダイオードを用いるが、これらに限定されない。
複数の分岐流路の切換は、例えば検出器の信号に応じて分岐流路のリザーバーへの通電を切り換えることにより行うことができる。
【0013】
【発明の実施の形態】
本発明の電気泳動装置を図面に基づいて説明する。図1は、一実施例を示す平面図である。1は例えばガラス又はシリコンからなる1枚の平板で、平板1の寸法は例えば10〜30mm、幅が30〜120mmである。平板1の表面には、円筒状の凹部からなるサンプルリザーバー2、廃液リザーバー3、分取セルd1〜d4が形成されている。
各々のリザーバーには電気浸透流媒体としてのバッファーが収容されており、それらの寸法は、例えばサンプルリザーバー2と廃液リザーバー3は、直径1〜5mm、深さ1〜3mm、分取セルd1〜d4は、直径0.5〜3mm、深さ1〜3mmである。
【0014】
サンプルリザーバー2と廃液リザーバー3間は、平板1表面に形成された泳動路(分析流路)4により連通している。泳動路4は、例えば幅50〜100μm、深さが50〜100μmである。また泳動路4の下流側には4本の分岐流路(分取用パス)f1〜f4が分岐しており、これら分取用パスf1〜f4は分取セルd1〜d4に連通する。分取用パスf1〜f4は、例えば幅30〜100μm、深さが30〜100μmである。
【0015】
サンプルリザーバー2と分取用パスf1〜f4の間の位置であって、泳動路4上に検出器5が配設される。検出器5は例えば光源と光検出器からなり、検出器5の信号は図示しない制御部に送られる。
また、各々のリザーバー2、3及び分取セルd1〜d4には電極e1〜e6が浸されており、この電極への電圧印加も図示しない制御部で制御される。
【0016】
以上の構成で例えばマイナスに荷電したサンプルの泳動及び分取は次のように行う。
まず、各々のリザーバー2、3及び分取セルd1〜d4に例えばトリスEDTA(TE)バッファーなどの泳動バッファーを、泳動路4にリニアポリアクリルアミドなどの分離用のゲルを詰める。
次に図2(A)の様に、サンプルリザーバー2の電極e1をマイナスに、廃液リザーバー3の電極e2をプラスに荷電する事により、サンプルリザーバー2内のサンプルSは廃液リザーバー3の方へと泳動を始める。泳動路4の途中にある検出器5がサンプルSの通過を確認した後、廃液リザーバー3の電極e2をOFFにし、例えば分取セルd1の電極をプラスに荷電する。図2(B)の様にサンプルSは分取セルd1に向かって移動し分取を行うことができる。
同様に分取セルd2〜d4の荷電を順次切り換えることにより、各々のセルにサンプルの分取が可能となる。
【0017】
なお、本発明は上記構成に限定されず、例えば目的成分とは泳動スピードの異なる不要な成分を分取し除去することも可能である。また、複数のバンドの中から目的のバンド成分を分取する場合、バンド数が既知の場合、検出器を通過するバンド数から流路を切り替え目的成分の分取が行える。さらに、バンド数が未知の場合、目的成分を挟み込むマーカー物質を同時に泳動するなどして、目的成分の選択的な分取も可能である。
【0018】
【発明の効果】
本発明によれば、荷電を切り替えるだけで目的産物の分取および泳動スピードの異なる夾雑物の除去が自動で行える。
【図面の簡単な説明】
【図1】本発明の電気泳動装置の一実施例図
【図2】サンプルの分取例
【符号の説明】
1:平板
2:サンプルリザーバー
3:廃液リザーバー
4:泳動路(分析流路)
5:検出器
d1〜d4:分取セル
f1〜f4:分取用パス(分岐流路)
[0001]
BACKGROUND OF THE INVENTION
In the field of life science, the present invention relates to an apparatus for sorting a predetermined fragment portion of a sample of a polymer substance such as DNA or protein separated by electrophoresis.
[0002]
[Prior art]
For example, in the field of genetic engineering, it is necessary to perform gel electrophoresis between a standard sample and a target sample, compare the migration patterns of both samples, verify the difference, and determine the molecular sequence of the difference. For this purpose, it is necessary to sort out a portion of the migration pattern of the target sample that is different from the migration pattern of the standard sample.
[0003]
Conventionally, the gel of the fragment to be separated from the pattern of the target sample subjected to gel electrophoresis is directly cut out manually with a scalpel, or the developed migration pattern is transferred to a nylon membrane and then the nylon membrane is sandwiched between scissors. Sorting by cutting with a scalpel.
[0004]
[Problems to be solved by the invention]
However, conventionally, the electrophoresis pattern is optically recognized by another recognition device, and a predetermined portion is cut out based on the information, but the electrophoresis pattern recognition and the cutting work are independent work by a device, Even if the portion to be cut out is determined by the electrophoresis pattern recognition device, it is necessary to reconfirm the position when cutting out. Moreover, the manual cutting operation using a knife or the like is complicated.
[0005]
Recently, instead of gel electrophoresis, an electrophoresis chip formed by joining two substrates has been proposed as a form that can be expected to speed up analysis and reduce the size of the apparatus (DJ Harrison). et al./Anal. Chem. 1993, 283, 361-366). This electrophoresis chip consists of a base material made of a pair of transparent plate-like inorganic materials, and capillary grooves for electrophoresis that cross each other on the surface of one base material by semiconductor photolithography technology and etching technology or micromachining technology. The other base material is provided with through holes at positions corresponding to the ends of the grooves as an anode reservoir, a cathode reservoir, a sample reservoir, and a waist reservoir.
If this electrophoresis chip is used, it is possible that a very small amount of sample can be handled and the electrophoresis sample can be easily separated.
Therefore, an object of the present invention is to provide a novel sorting apparatus using an electrophoresis chip.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides at least one analysis channel in a plate-shaped member, a sample and waste liquid reservoir connected to both ends of the analysis channel, electrodes accommodated in both reservoirs, and the analysis In an electrophoresis apparatus comprising a detector disposed on the downstream side of a flow path, a plurality of branch flow paths branched from the analysis flow path downstream from the detector position of the analysis flow path, and at the end thereof The electrophoresis apparatus is characterized in that a reservoir containing an electrode is provided, and each separated sample is selectively separated into the reservoirs of the plurality of branch channels for each target component .
[0007]
Here, for example, various glass, quartz or Si substrates are used as the plate-like member, and the thickness thereof is preferably about 0.2 to 1 mm, for example. Grooves (flow paths and reservoirs) are formed in the plate member by, for example, photofabrication technology. Photofabrication technology refers to a technology that creates a replica by transferring a photomask pattern. Generally, a photosensitive material called photoresist or resist is applied to the surface of a substrate through a metal mask, and the pattern is transferred by light. To do. Then, the transferred planar pattern is processed into a certain three-dimensional shape by etching or the like.
As the photoresist (or resist) to be used, for example, OFPR5000 manufactured by Tokyo Ohka Co., Ltd., Microposit S1400 manufactured by Shipley Far East Co., Ltd., OMR83-100cp can be used, but not limited thereto, and can withstand a subsequent etching process. If it is a thing, it will not specifically limit. Moreover, the thickness needs to be able to withstand a later etching process, and a thickness of 1 to 2 μm is common.
[0008]
For the transfer of the mask pattern, as in the case of a general integrated circuit, contact exposure for bringing a photomask into close contact with a substrate coated with a resist or projection exposure using a stepper (reduced projection exposure apparatus) is performed. Moreover, holographic exposure may be used. In addition, as a light source used in the exposure, for example, g-line (436 nm) of an ultrahigh pressure mercury lamp can be used, and the exposure condition depends on the thickness of the resist material and the resist. When the mask pattern is transferred and the metal is exposed, the metal mask is patterned to expose the substrate surface. The patterning of the metal mask is performed with aqua regia, for example, when gold is used as the metal.
[0009]
The etching method includes wet etching when various types of glass and quartz are etched. The etchant is not particularly limited as long as it is a solution in which various types of glass and quartz are etched. For example, a hydrofluoric acid type solution is generally used. Moreover, wet etching (anisotropic etching) is mentioned as a method for etching the Si substrate. The etchant used for anisotropic etching is not particularly limited as long as it is an etchant used in this field, such as a KOH aqueous solution, TMAH (tetramethylammonium hydride), or hydrazine.
[0010]
The plate-like member may be used singly or may be used by being bonded with the groove inside. In the case of a single sheet, the flow path is an open system. When the plate members are bonded together, for example, a tapered through hole is formed in one plate member. Here, the method of forming the through hole in the glass or quartz substrate is not particularly limited, but ultrasonic processing is generally used. The size of the through hole is not particularly limited. For example, the opening diameter is preferably about 0.1 to several mm.
Lamination of the plate-like members is performed with the grooves facing inward. The means for joining (joining) the two plate-like members is not particularly limited, but in the case of the present invention, it is desirable to directly join the plate-like members without using an adhesive because of the microanalyzer. For joining the glasses, a means for fusing the two glasses by heating to about 600 to 900 ° C. in a vacuum or in a nitrogen substitution atmosphere is desirable. In addition, for quartz bonding, for example, a means for heating in the same manner as described above after sputtering glass on at least one substrate bonding surface is desirable. Further, when glass and silicon are bonded, for example, an anodic bonding method may be used in which heating is performed at about 400 ° C. and a negative voltage of about −1 kV is applied to the glass side for bonding.
[0011]
The number of analysis channels may be one or more. The branch channel preferably has the same inner diameter as the analysis channel, and the branch channel preferably has a structure in which a plurality of branch channels branch from one analysis channel.
Reservoirs are provided at both ends of the analysis flow path and at the end of the branch flow path. Electrophoresis buffers and electrodes are placed in the reservoirs, and the flow paths can be electrically connected. As the electrophoresis buffer, for example, Tris EDTA, phosphate buffer or the like can be used, but is not limited thereto.
[0012]
A detector is disposed downstream of the analysis flow path. As the detector, a light detector, a light detector, a photodetector, an electrochemical detector, or the like can be used. When a photodetector is used, aluminum or the like may be deposited on the inner surface of the light incident / exit groove by, for example, sputtering. The light from the light source is incident on the light incident groove, and the light passes through the migration groove and is reflected by the light exit groove to reach the detection means. As the light source, an ultraviolet / visible light source, for example, a He—Cd semiconductor laser, a deuterium lamp, or a tungsten lamp is used. As the detector, for example, a photomultiplier tube or a silicon photodiode is used.
The switching of the plurality of branch channels can be performed by switching energization to the reservoirs of the branch channels according to the signal from the detector, for example.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The electrophoresis apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing an embodiment. 1 is a single flat plate made of, for example, glass or silicon, and the flat plate 1 has dimensions of, for example, 10 to 30 mm and a width of 30 to 120 mm. On the surface of the flat plate 1, a sample reservoir 2, a waste liquid reservoir 3, and sorting cells d1 to d4 each formed of a cylindrical recess are formed.
Each reservoir contains a buffer as an electroosmotic flow medium. For example, the sample reservoir 2 and the waste liquid reservoir 3 have a diameter of 1 to 5 mm, a depth of 1 to 3 mm, and sorting cells d1 to d4. Is 0.5 to 3 mm in diameter and 1 to 3 mm in depth.
[0014]
The sample reservoir 2 and the waste liquid reservoir 3 communicate with each other through an electrophoresis path (analysis channel) 4 formed on the surface of the flat plate 1. The migration path 4 has, for example, a width of 50 to 100 μm and a depth of 50 to 100 μm. Further, four branch flow paths (sorting paths) f1 to f4 are branched on the downstream side of the migration path 4, and the sorting paths f1 to f4 communicate with the sorting cells d1 to d4. The sorting paths f1 to f4 have, for example, a width of 30 to 100 μm and a depth of 30 to 100 μm.
[0015]
A detector 5 is disposed on the migration path 4 at a position between the sample reservoir 2 and the sorting paths f1 to f4. The detector 5 includes, for example, a light source and a photodetector, and a signal from the detector 5 is sent to a control unit (not shown).
Further, electrodes e1 to e6 are immersed in each of the reservoirs 2 and 3 and the sorting cells d1 to d4, and voltage application to these electrodes is also controlled by a control unit (not shown).
[0016]
In the above configuration, for example, electrophoresis and fractionation of a negatively charged sample are performed as follows.
First, each of the reservoirs 2 and 3 and the sorting cells d1 to d4 are packed with an electrophoresis buffer such as Tris EDTA (TE) buffer, and the separation path such as linear polyacrylamide is packed into the electrophoresis path 4.
Next, as shown in FIG. 2A, the electrode e1 of the sample reservoir 2 is negatively charged and the electrode e2 of the waste liquid reservoir 3 is positively charged, so that the sample S in the sample reservoir 2 is moved toward the waste liquid reservoir 3. Start electrophoresis. After the detector 5 in the middle of the migration path 4 confirms the passage of the sample S, the electrode e2 of the waste liquid reservoir 3 is turned off, and for example, the electrode of the sorting cell d1 is positively charged. As shown in FIG. 2B, the sample S moves toward the sorting cell d1 and can be sorted.
Similarly, by sequentially switching the charge of the sorting cells d2 to d4, the sample can be sorted into each cell.
[0017]
In addition, this invention is not limited to the said structure, For example, it is also possible to fractionate and remove the unnecessary component in which electrophoresis speed differs from a target component. Further, when a target band component is separated from a plurality of bands, if the number of bands is known, the flow path is switched from the number of bands passing through the detector, and the target component can be separated. Further, when the number of bands is unknown, the target component can be selectively separated by simultaneously running a marker substance that sandwiches the target component.
[0018]
【The invention's effect】
According to the present invention, it is possible to automatically collect a target product and remove contaminants having different migration speeds by simply switching the charge.
[Brief description of the drawings]
FIG. 1 shows an example of an electrophoresis apparatus according to the present invention. FIG. 2 shows an example of sample collection.
1: Flat plate 2: Sample reservoir 3: Waste liquid reservoir 4: Migration path (analysis flow path)
5: Detectors d1 to d4: Sorting cells f1 to f4: Sorting path (branch flow path)

Claims (2)

板状部材に少なくとも一つの分析流路と、該分析流路の両端に接続するサンプル及び廃液リザーバーと、該リザーバーに収容される電極と、該分析流路の下流側に配置される検出器とを備えてなる電気泳動装置において、該分析流路の検出器位置より下流側に該分析流路から分岐した複数の分岐流路と、その終端に電極を収容したリザーバーを設け、分離済みの各々のサンプルを該複数の分岐流路のリザーバーに目的成分ごとに選択的に分取することを特徴とする電気泳動装置。At least one analysis channel in a plate-like member, and the sample and waste reservoir to be connected to both ends of the analysis channels, the electrodes which are accommodated in said two reservoir, detector disposed downstream of the analysis channel A plurality of branched flow channels branched from the analysis flow channel downstream from the detector position of the analysis flow channel, and a reservoir containing electrodes at the end thereof , An electrophoresis apparatus, wherein each sample is selectively dispensed into a reservoir of the plurality of branch channels for each target component . 請求項1記載の電気泳動装置であって、検出器の信号に応じて分岐流路のリザーバーへの通電を切り換える制御部を設けてなる請求項1記載の電気泳動装置。2. The electrophoretic device according to claim 1, further comprising a control unit that switches energization to the reservoir of the branch channel in accordance with a signal from the detector.
JP2001130521A 2001-04-27 2001-04-27 Electrophoresis device Expired - Fee Related JP4423810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001130521A JP4423810B2 (en) 2001-04-27 2001-04-27 Electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001130521A JP4423810B2 (en) 2001-04-27 2001-04-27 Electrophoresis device

Publications (2)

Publication Number Publication Date
JP2002323477A JP2002323477A (en) 2002-11-08
JP4423810B2 true JP4423810B2 (en) 2010-03-03

Family

ID=18978879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001130521A Expired - Fee Related JP4423810B2 (en) 2001-04-27 2001-04-27 Electrophoresis device

Country Status (1)

Country Link
JP (1) JP4423810B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458525B2 (en) * 2004-06-29 2010-04-28 株式会社エンプラス Electrophoresis device
JP2006038535A (en) * 2004-07-23 2006-02-09 Sharp Corp Method of detecting substance, and separator for separating substance
US20070187251A1 (en) * 2006-02-14 2007-08-16 Anthony Ward Variable geometry electrophoresis chips, modules and systems
CN101069668B (en) * 2006-05-09 2010-07-28 赵子甫 Multifunction paper trousers
WO2008041718A1 (en) * 2006-10-04 2008-04-10 National University Corporation Hokkaido University Microchip, and microchip electrophoresis device
US8361299B2 (en) 2008-10-08 2013-01-29 Sage Science, Inc. Multichannel preparative electrophoresis system
CA2738049C (en) * 2008-10-08 2017-06-13 Sage Science, Inc. Multichannel preparative electrophoresis system
WO2014059188A1 (en) 2012-10-12 2014-04-17 Sage Science, Inc. Side-eluting molecular fractionator
JP2014240065A (en) * 2013-05-15 2014-12-25 公立大学法人大阪府立大学 Flow channel structure and production method of flow channel structure
CA2964487C (en) 2014-10-15 2024-03-19 Sage Science, Inc. Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation
CN108699101B (en) 2015-11-20 2022-04-19 塞奇科学股份有限公司 Preparative electrophoresis method for targeted purification of genomic DNA fragments
AU2018250330A1 (en) 2017-04-07 2019-09-19 Sage Science, Inc. Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification

Also Published As

Publication number Publication date
JP2002323477A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP4423810B2 (en) Electrophoresis device
US5757482A (en) Module for optical detection in microscale fluidic analyses
US7790116B2 (en) Microfluidic device with controlled substrate conductivity
KR100413535B1 (en) Absorbance detection system for lab-on-a-chip
CA2595840C (en) Electrokinetic concentration device and methods of use thereof
JP5236110B2 (en) Nanochannel arrays for high-throughput macromolecular analysis and their preparation and use
US8426209B2 (en) Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network
US6440645B1 (en) Production of microstructures for use in assays
US20040035701A1 (en) Entropic trapping and sieving of molecules
US10274461B2 (en) Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US5858194A (en) Capillary, interface and holder
JP4462099B2 (en) Total organic carbon measuring device
WO2004092403A1 (en) Microwell arrays with nanoholes
Schlautmann et al. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers
JPWO2005022169A1 (en) Tip
JP2005230006A (en) Device for sorting particles in parallel and method for the same
Lin et al. Micro/extended-nano sampling interface from a living single cell
JP2004151041A (en) Biochip and biochip manufacturing method
JPH11248678A (en) Capillary electrophoresis chip
JP2000002675A (en) Capillary photothermal conversion analyzer
JP4387624B2 (en) Sample preparation device
JPH08327593A (en) Capillary electrophoretic device
JP3882220B2 (en) Capillary electrophoresis chip
Tsai et al. Development of a microchip for 2-dimensional capillary electrophoresis
CN115786460A (en) Preparation method and device of single cell sequencing sample based on microfluidic technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R151 Written notification of patent or utility model registration

Ref document number: 4423810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees