JPH1067585A - Oxidation resistant treatment of carbonaceous material - Google Patents

Oxidation resistant treatment of carbonaceous material

Info

Publication number
JPH1067585A
JPH1067585A JP22654296A JP22654296A JPH1067585A JP H1067585 A JPH1067585 A JP H1067585A JP 22654296 A JP22654296 A JP 22654296A JP 22654296 A JP22654296 A JP 22654296A JP H1067585 A JPH1067585 A JP H1067585A
Authority
JP
Japan
Prior art keywords
powder
silicon
raw material
source
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22654296A
Other languages
Japanese (ja)
Inventor
Tatsuo Morimoto
立男 森本
Takehiko Hirata
武彦 平田
Masayuki Kondo
雅之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22654296A priority Critical patent/JPH1067585A/en
Publication of JPH1067585A publication Critical patent/JPH1067585A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming an SiC coating layer in an oxidation resistant treatment of a carbonaceous raw material, suitable for treating a large-sized mass production product, excellent in adhesion property of an Si source with the raw material under a heat treatment, and not generating a blister and a distortion at the surface of the raw material. SOLUTION: This method of an oxidation resistant treatment of a carbonaceous raw material is to react carbon on the surface of the carbonaceous raw material with silicon for converting the composition of the surface of the carbonaceous raw material to silicon carbide (SiC). In this case, as a source 11 (Si source) for supplying Si necessary for the reaction, a powder of a material containing silicon added with a powder of a ceramic material and further added with a thermosetting resin 12, is used. Also, characteristics of the process are: using a method of applying the powder instead of using a crucible treatment and using a raw material powder consisting of an oxide as a powder of the ceramic material and a powder of silicon nitride (Si3 N4 ) as the Si source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両用ブレー
キ、宇宙往還機の耐熱構造部材やエンジン部材として使
用される炭素繊維強化炭素材料(以下C/C複合材料と
記載)の耐酸化被覆、その他工業用として高温で使用さ
れる炭素質材料の耐酸化被覆に関する。
The present invention relates to an oxidation-resistant coating of a carbon fiber reinforced carbon material (hereinafter referred to as a C / C composite material) used as a heat-resistant structural member or an engine member of a railway vehicle brake, a spacecraft, and the like. It also relates to an oxidation-resistant coating of a carbonaceous material used at high temperature for industrial use.

【0002】[0002]

【従来の技術】黒鉛またはC/C複合材料の高温耐酸化
被覆として、表面を耐酸化性の良い炭化物で被覆する方
法が提案され、なかでも炭化ケイ素(以下SiCと記
載)を主成分とする被覆は、米国の宇宙往還機用耐熱構
造材料などで実用化されている(例えばJ.R.Strife,J.
E.Sheehan,Ceramic Bulletin,Vol.67,No.2,p.369)。
2. Description of the Related Art As a high-temperature oxidation-resistant coating of graphite or a C / C composite material, a method of coating the surface with a carbide having good oxidation resistance has been proposed, in which silicon carbide (hereinafter referred to as SiC) is a main component. The coating has been put to practical use in heat-resistant structural materials for U.S. space planes (for example, JR Strife, J. et al.
E. Sheehan, Ceramic Bulletin, Vol. 67, No. 2, p. 369).

【0003】SiC被覆層を形成する方法としては、化
学蒸着による方法、拡散処理によって素材表面の炭素を
SiC化する方法、または両者の併用等が実用化されて
いる。化学蒸着によりSiC層を形成する手法について
は、緻密で硬質の被膜が形成できる反面、被覆箇所の任
意性に乏しい、成膜速度が遅く生産性が低い、製造コス
トが高く専用の設備を必要とする等の難点を有する。C
/C複合材料に被覆すると、素材とSiC層の熱膨張率
の差によってSiC層に剥離が生じる可能性がある。こ
れを防ぐためには、C/C複合材料表面に拡散処理によ
ってSiC層を形成した後に化学蒸着する方法が採られ
るため、工程が複雑になっている。
As a method of forming a SiC coating layer, a method of chemical vapor deposition, a method of converting carbon on the surface of a material into SiC by a diffusion treatment, a combination of both, and the like have been put to practical use. As for the method of forming a SiC layer by chemical vapor deposition, a dense and hard coating can be formed, but the coating location is poor, the deposition rate is low, the productivity is low, the production cost is high, and dedicated equipment is required. There are difficulties such as doing. C
When the / C composite material is coated, peeling may occur in the SiC layer due to a difference in thermal expansion coefficient between the material and the SiC layer. In order to prevent this, a method of forming a SiC layer on the surface of the C / C composite material by a diffusion process and then performing chemical vapor deposition is adopted, so that the process is complicated.

【0004】拡散処理によりSiC層を形成する手法に
ついては、化学蒸着法に比べて成膜に要する時間が短
く、高温加熱用の炉以外に複雑な専用の設備を必要とし
ない。また、素材の表面をSiC化する処理であるた
め、C/C複合材料に被覆する場合も剥離のおそれが少
ないといった利点がある。拡散処理による方法の代表的
なものとしては、ケイ素等の原料粉末、あるいはそれに
水、有機溶媒を加えたスラリーを容器に満たし、その中
に素材を埋没して熱処理を施す方法(米国特許4,58
5,675号)、ケイ素等の金属粉末に有機溶媒を加え
たスラリーを素材に塗布乾燥して熱処理を施す方法(特
開昭60−195076)等がある。しかし、上記米国
特許4,585,675号では、拡散処理を容器中で行
うために鉄道車両ブレーキのような大型量産品素材の処
理に適しない。一方、上記特開昭60−195076で
は、熱処理中にケイ素を供給する原料(以下Si源と記
載)の粉末と素材との付着性が損なわれ、たとえば、素
材の下面や局面部位でSi源の粉末が溶融流出し、拡散
反応が進行しない事態が懸念されるなど、素材の形状や
処理部位に制約が生じる。また、緻密質の炭素質材料や
C/C複合材料の表面にSiC層を形成する際、反応に
よって体積膨張を起こし、素材表面に膨れや変形が生じ
る場合がある。
[0004] In the technique of forming a SiC layer by a diffusion process, the time required for film formation is shorter than that of the chemical vapor deposition method, and complicated dedicated equipment other than a furnace for high-temperature heating is not required. Further, since the surface of the material is converted into SiC, there is an advantage that even when the material is coated with a C / C composite material, there is little possibility of peeling. A typical method of the diffusion treatment is to fill a container with a raw material powder such as silicon or a slurry obtained by adding water and an organic solvent to the container, bury the material in the container, and perform a heat treatment (US Pat. 58
No. 5,675), a method of applying a slurry obtained by adding an organic solvent to a metal powder of silicon or the like to a material, drying and applying a heat treatment (JP-A-60-195076). However, the above-mentioned U.S. Pat. No. 4,585,675 is not suitable for processing large-scale mass-produced materials such as railcar brakes because the diffusion process is performed in a container. On the other hand, in Japanese Patent Application Laid-Open No. 60-195076, the adhesion between the powder of the raw material for supplying silicon during the heat treatment (hereinafter referred to as Si source) and the material is impaired. There is a restriction on the shape of the material and the processing site, for example, there is a concern that the powder will melt out and the diffusion reaction will not proceed. Further, when forming a SiC layer on the surface of a dense carbonaceous material or a C / C composite material, a reaction may cause a volume expansion, and the material surface may swell or deform.

【0005】[0005]

【発明が解決しようとする課題】本発明は、炭素質材料
の耐酸化処理法において、大型量産品の処理にも適し、
熱処理中のSi源と素材との付着性に優れ、素材表面に
膨れや変形を生じないSiC被覆層形成方法の提供を目
的とする。
SUMMARY OF THE INVENTION The present invention is a method for oxidation-resistant treatment of carbonaceous materials, which is suitable for treating large-scale mass-produced products.
It is an object of the present invention to provide a method for forming a SiC coating layer which has excellent adhesion between a Si source and a material during heat treatment and does not cause swelling or deformation on the surface of the material.

【0006】[0006]

【課題を解決するための手段】本発明は、炭素質材料の
表面の炭素をケイ素と反応させ、該炭素質材料表面の組
成を炭化ケイ素(SiC)に変換することにより炭化物
層を形成する炭素質材料の耐酸化処理法において、反応
に必要なケイ素を供給する原料(Si源)として含ケイ
素材の粉末にセラミックス粉末を加えたものを用い、さ
らに熱硬化性樹脂を加えることを特徴とする炭素質材料
の耐酸化処理法を提供する。また、本発明は、坩堝での
処理でなく、これらを塗布する方法による。また、本発
明は、上記セラミックス粉末が、酸化物からなる原料粉
を用いることを特徴とする炭素質材料の耐酸化処理法を
提供する。さらに、本発明は、上記Si源として、窒化
珪素(以下Si3 4 と記載)粉末を用いることを特徴
とする炭素質材料の炭酸化処理法を提供する。
SUMMARY OF THE INVENTION The present invention relates to a carbon material for forming a carbide layer by reacting carbon on the surface of a carbonaceous material with silicon and converting the composition on the surface of the carbonaceous material to silicon carbide (SiC). In the oxidation-resistant treatment method for a porous material, a material obtained by adding a ceramic powder to a powder of a silicon-containing material is used as a raw material (Si source) for supplying silicon required for the reaction, and a thermosetting resin is further added. Provided is an oxidation-resistant treatment method for a carbonaceous material. In addition, the present invention depends on a method of applying these instead of processing in a crucible. Further, the present invention provides an oxidation-resistant treatment method for a carbonaceous material, wherein the ceramic powder uses a raw material powder composed of an oxide. Further, the present invention provides a method for carbonating a carbonaceous material, wherein silicon nitride (hereinafter referred to as Si 3 N 4 ) powder is used as the Si source.

【0007】[0007]

【発明の実施の形態】本発明は、C/C複合材料を含む
炭素質材料の耐酸化性向上を目的として、炭素質材料
(図1において(1))の表面に炭化ケイ素(以下SiCと
記載)を主成分とする炭化物層(図1において(2))を形
成する方法を提供する。本発明では、拡散処理時のSi
源の粉末に熱硬化性樹脂を加え、反応開始までのSi源
の付着性向上を図っている。また、坩堝での処理でな
く、原料を塗布する方法によっているため、大型材や量
産品の処理を容易としている。さらに、Si源としてS
3 4 を使用することにより、また、Si源としてケ
イ素を供給する原料とともにセラミックス粉末を添加し
たものを使用することにより、反応時にもケイ素原料の
全てを固形分とするか、または多くの固形分を残留させ
て原料の流出を抑止し、素材下面や局面の処理を可能と
している。また、特にセラミックス粉末として酸化物を
使用することで、従来の拡散処理で問題となる、処理材
表面の膨れ、変形の防止を図っている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention aims at improving the oxidation resistance of a carbonaceous material including a C / C composite material, whereby silicon carbide (hereinafter referred to as SiC) is formed on the surface of a carbonaceous material ((1) in FIG. 1). (2) in FIG. 1 is provided. In the present invention, the Si
A thermosetting resin is added to the source powder to improve the adhesion of the Si source until the start of the reaction. In addition, since a method of applying a raw material is used instead of a crucible treatment, treatment of large-sized materials and mass-produced products is facilitated. Further, S as a Si source
By using i 3 N 4 and by adding ceramic powder together with a raw material for supplying silicon as a Si source, it is possible to make all of the silicon raw material solid during the reaction, The solid content remains to prevent the outflow of the raw material, enabling the processing of the lower surface and the surface of the material. In particular, by using an oxide as the ceramic powder, the surface of the treated material is prevented from being swollen and deformed, which is a problem in the conventional diffusion treatment.

【0008】本発明で用いる炭素質材料は、炭素繊維強
化炭素材料(C/C複合材料)を含み、一般の炭素質材
料であって、特に限定されない。具体的には、人造、天
然の黒鉛、ガラス状炭素などが含まれます。
The carbonaceous material used in the present invention is a general carbonaceous material including a carbon fiber reinforced carbon material (C / C composite material), and is not particularly limited. Specifically, it includes artificial, natural graphite, glassy carbon, etc.

【0009】Si源として金属ケイ素粉末を単独で用い
ると、SiC形成反応が生じるまでにケイ素の溶融と流
出が起こり、素材下面の処理や曲面の処理には難点があ
る。これに対して本発明のSi3 4 をSi源として使
用すると、SiC形成反応の開始後も固体として存在
し、固体のSi3 4 と固体の炭素との間で下記の反応
により炭素質の素材表面がSiCとなる。 Si3 4 +3C=3SiC+2N2 従って、Si3 4 をSi源として使用する本発明は、
素材の下面や曲面等の平坦でない部分にSiC層を形成
するのに適する。
When metal silicon powder is used alone as the Si source, melting and outflow of silicon occur before the SiC formation reaction occurs, and there are difficulties in processing the lower surface of the material and processing the curved surface. On the other hand, when the Si 3 N 4 of the present invention is used as a Si source, it exists as a solid even after the start of the SiC formation reaction, and the carbonaceous material is reacted between the solid Si 3 N 4 and the solid carbon by the following reaction. Becomes SiC. Si 3 N 4 + 3C = 3SiC + 2N 2 Therefore, the present invention using Si 3 N 4 as a Si source
It is suitable for forming a SiC layer on an uneven portion such as a lower surface or a curved surface of a material.

【0010】本発明のSi源として、含ケイ素材とセラ
ミックス粉末を使用する場合は、セラミックスが固体で
存在するため、Si3 4 を用いた場合と同様の効果を
示して、平坦でない部分のSiC層形成を容易にする。
ここで用いる含ケイ素材としては、ケイ素、金属ケイ
素、チタンシリコン等のケイ素を含んだ合金等が挙げら
れる。
When a silicon-containing material and a ceramic powder are used as the Si source of the present invention, the same effect as when Si 3 N 4 is used is exhibited because the ceramic exists in a solid state. It facilitates the formation of a SiC layer.
Examples of the silicon-containing material used here include silicon-containing alloys such as silicon, metallic silicon, and titanium silicon.

【0011】本発明のセラミックス粉末として酸化物を
使用することにより、SiC形成反応に際して酸化物が
分解し、発生した酸素の一部と素材の炭素とが反応す
る。そして、一酸化炭素(CO)や二酸化炭素(C
2 )となって表面の炭素を一部消費するため、SiC
形成時の体積増加として相殺して素材表面の膨れや変形
の発生を抑止する。酸化物としては、溶融温度の高い酸
化アルミニウム(以下Al2 3 )、酸化ジルコニウム
(ZrO2 )、酸化ハフニウム(HfO2 )等が好まし
い。なお、酸化物の添加量が多い場合には、使用する酸
化物の種類によりSiCとともに、炭化アルミニウム、
炭化ジルコニウム、炭化ハフニウム等が形成される。炭
化アルミニウム、炭化ジルコニウム、炭化ハフニウム等
は、使用中に酸化されて形成される各々の酸化物が、S
iCの酸化によって表面に形成されるSiO 2 ほど気密
な膜を形成しないため、素材の酸化消耗を抑止する効果
を減殺する。
An oxide is used as the ceramic powder of the present invention.
By use, oxides are formed during the SiC formation reaction.
Decomposes and some of the generated oxygen reacts with the carbon of the material
You. And carbon monoxide (CO) and carbon dioxide (C
OTwo) To partially consume carbon on the surface,
Swelling and deformation of the material surface offset by volume increase during formation
Suppress the occurrence of As oxides, acids with high melting temperatures
Aluminum oxide (hereinafter AlTwoOThree), Zirconium oxide
(ZrOTwo), Hafnium oxide (HfO)Two) Is preferred
No. If the amount of oxide added is large,
Aluminum carbide, along with SiC depending on the type of
Zirconium carbide, hafnium carbide and the like are formed. Charcoal
Aluminum carbide, zirconium carbide, hafnium carbide, etc.
Is that each oxide formed by oxidation during use is S
SiO formed on the surface by oxidation of iC TwoSo airtight
The effect of suppressing the oxidative consumption of the material because it does not form a simple film
To diminish.

【0012】含ケイ素材の粉末、セラミックス粉末のよ
うに本明細書に記載の粉末とは、例えば平均粒径で0.
1〜100μmの粉末であり、望ましくは、凝集しにく
くスラリーになり易い点を考慮して1〜30μmとす
る。
The powder described in the present specification, such as a powder of a silicon-containing material and a ceramic powder, may have a mean particle diameter of, for example, 0.1.
It is a powder of 1 to 100 μm, and desirably 1 to 30 μm in consideration of the fact that the powder is less likely to coagulate and easily becomes a slurry.

【0013】本発明で用いる熱硬化性樹脂としては、特
に限定しないが、フェノール樹脂、フラン樹脂、ポリイ
ミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂が挙
げられる。本発明で用いる熱硬化性樹脂は、Si源の粉
末を素材表面に密着性良く固定するため、複雑な表面形
状にも適用しやすい。さらに、還元雰囲気中の熱処理に
よって樹脂の炭素化が進むとSi源の一部と反応してS
iCとなり、素材表面で緩く焼結することでSi源の粉
末が剥落するのを防ぐ。またSiC安定な雰囲気を形成
するため素材表面のSiC化が安定に進行するのを助長
する。
The thermosetting resin used in the present invention is not particularly limited, but includes phenol resin, furan resin, polyimide resin, polyamide resin and polyamide imide resin. Since the thermosetting resin used in the present invention fixes the powder of the Si source to the material surface with good adhesion, it can be easily applied to a complicated surface shape. Further, when the carbonization of the resin proceeds by the heat treatment in the reducing atmosphere, it reacts with a part of the Si source to form S
It becomes iC and sinters loosely on the material surface to prevent the powder of the Si source from falling off. In addition, a stable atmosphere of SiC is formed to promote stable progress of SiC conversion on the surface of the material.

【0014】本発明において、含ケイ素材の含有ケイ素
分と酸化物の混合の割合は、Siが60〜90重量%、
好ましくは75〜85重量%の範囲であり、酸化物が4
0〜10重量%、好ましくは25〜15重量%の範囲で
ある。また、熱硬化性樹脂の添加量は、Si源粉末に対
して重量比で10〜30%、好ましくは20%とする。
In the present invention, the mixing ratio of the silicon content and the oxide of the silicon-containing material is such that Si is 60 to 90% by weight,
Preferably, it is in the range of 75 to 85% by weight and the oxide is 4%.
It is in the range of 0 to 10% by weight, preferably 25 to 15% by weight. Further, the addition amount of the thermosetting resin is set to 10 to 30% by weight, preferably 20% with respect to the Si source powder.

【0015】以上、本発明のSi源と熱硬化性樹脂との
組合わせにより、従来の拡散処理では、困難な、平坦で
ない部分へのSiC拡散層形成が可能となった。なお、
SiC層の厚さは、使用条件により制御することとし、
例えば10μm〜200μmの範囲とする。
As described above, the combination of the Si source and the thermosetting resin of the present invention makes it possible to form an SiC diffusion layer on a difficult, non-flat portion by the conventional diffusion treatment. In addition,
The thickness of the SiC layer is to be controlled by the use conditions,
For example, the range is 10 μm to 200 μm.

【0016】[0016]

【実施例】以下、本発明を実施例1〜5、参考例1、お
よび比較例1により説明するが、本発明はこれに限定す
るものではない。本発明のSiC形成工程の概略を図2
に示す。基材には、C/C複合材料を使用し、Si源と
しては、表1に示す粉末を使用した。ここで用いる金属
ケイ素は、高純度化学研究所(株)より入手した純度9
9.9%の試薬である。
EXAMPLES Hereinafter, the present invention will be described with reference to Examples 1 to 5, Reference Example 1, and Comparative Example 1, but the present invention is not limited thereto. FIG. 2 schematically shows the SiC forming process of the present invention.
Shown in A C / C composite material was used as a base material, and powders shown in Table 1 were used as a Si source. The metallic silicon used here was 9% pure obtained from Kojundo Chemical Laboratory Co., Ltd.
9.9% reagent.

【表1】 [Table 1]

【0017】予め用意したSi源(11)に熱硬化性樹脂
(12)を加え、有機溶媒としてブチルアルコール(13)
を適量添加した後、十分に攪拌して基材表面全面に塗
布、乾燥させた。150℃に加熱して樹脂を硬化させた
後、窒素雰囲気中で1600℃まで加熱した。比較例1
に用いた基材(比較材)は、金属ケイ素の粉末に有機溶
媒を加えて基材表面に塗布し、乾燥した後窒素雰囲気中
で1600℃に加熱したものであった。参考例1に用い
た基材(参考材)は、Al2 3 の添加量が多いSi源
で処理したものであった。
A thermosetting resin (12) is added to a previously prepared Si source (11), and butyl alcohol (13) is used as an organic solvent.
Was added thereto, and the mixture was sufficiently stirred and applied to the entire surface of the substrate, followed by drying. After heating to 150 ° C. to cure the resin, it was heated to 1600 ° C. in a nitrogen atmosphere. Comparative Example 1
The base material (comparative material) used in Example 1 was obtained by adding an organic solvent to a metal silicon powder, applying the solution to the surface of the base material, drying, and then heating to 1600 ° C. in a nitrogen atmosphere. The substrate (reference material) used in Reference Example 1 was treated with a Si source to which a large amount of Al 2 O 3 was added.

【0018】試験片は全てSiO2 ガラスで封孔処理を
施した後、1100℃で1時間の酸化試験に供した。表
2に拡散処理後並びに酸化試験後の各供試材の外観状
況、分析状況をまとめて示す。
All test pieces were subjected to a sealing treatment with SiO 2 glass and then subjected to an oxidation test at 1100 ° C. for 1 hour. Table 2 summarizes the appearance and analysis of each specimen after the diffusion treatment and after the oxidation test.

【表2】 [Table 2]

【0019】本発明の実施例では、基材の上下面、側面
全てSiC層が形成されており、酸化試験後も外観上の
変化、重量並びに重量変化は認められなかった。しか
し、比較材では、側面、下面のSiC層形成が不十分な
ため、重量減少と酸化による減肉が起きた。参考材で
は、Al2 3 の添加量が多いためにSiCとともに炭
化アルミニウムが形成された。
In the examples of the present invention, the SiC layer was formed on both the upper and lower surfaces and the side surfaces of the base material, and no change in appearance, weight and weight was observed even after the oxidation test. However, in the comparative material, the formation of the SiC layer on the side surface and the lower surface was insufficient, so that weight reduction and wall thinning due to oxidation occurred. In the reference material, aluminum carbide was formed together with SiC because of the large amount of Al 2 O 3 added.

【0020】[0020]

【発明の効果】本発明により低コストで、大型、複雑形
状の炭素質材料表面に任意にSiC層を形成することが
可能となり、炭素質材料の実用性を大幅に向上させるこ
とが可能となる。
According to the present invention, it is possible to arbitrarily form a SiC layer on the surface of a large-sized, complicated-shaped carbonaceous material at low cost, and it is possible to greatly improve the practicality of the carbonaceous material. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐酸化被膜の構成を示す模式図を示
す。
FIG. 1 is a schematic diagram showing a configuration of an oxidation resistant film of the present invention.

【図2】本発明のSiC層形成工程の概略図を示す。FIG. 2 shows a schematic view of a SiC layer forming step of the present invention.

【符号の説明】[Explanation of symbols]

(1)炭素質基材、(2)SiCを主成分とする炭化物
層、(11)Si源、(12)熱硬化性樹脂、(13)有機溶
媒としてブチルアルコール、(14)加熱装置。
(1) a carbonaceous substrate, (2) a carbide layer mainly composed of SiC, (11) a Si source, (12) a thermosetting resin, (13) butyl alcohol as an organic solvent, and (14) a heating device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素質材料の表面の炭素をケイ素と反応
させ、該炭素質材料表面の組成を炭化ケイ素(SiC)
に変換することにより炭化物層を形成する炭素質材料の
耐酸化処理法において、反応に必要なケイ素を供給する
原料として含ケイ素材の粉末にセラミックス粉末を加え
たものを用い、さらに熱硬化性樹脂を加えることを特徴
とする炭素質材料の耐酸化処理法。
1. The method according to claim 1, wherein carbon on the surface of the carbonaceous material is reacted with silicon, and the composition on the surface of the carbonaceous material is changed to silicon carbide (SiC).
In the oxidation-resistant treatment of carbonaceous material that forms a carbide layer by converting to a material, a material containing ceramic powder added to a powder of a silicon-containing material as a raw material for supplying silicon necessary for the reaction, and a thermosetting resin A method for the oxidation-resistant treatment of carbonaceous materials, characterized by adding:
【請求項2】 上記セラミックス粉末が、酸化物からな
る原料粉を用いることを特徴とする請求項1に記載の炭
素質材料の耐酸化処理法。
2. The oxidation-resistant treatment method for a carbonaceous material according to claim 1, wherein the ceramic powder uses a raw material powder composed of an oxide.
【請求項3】 上記ケイ素を供給する原料として、窒化
ケイ素(Si3 4)粉末を用いることを特徴とする請
求項1に記載の炭素質材料の耐酸化処理法。
3. A method according to claim 1, wherein a silicon nitride (Si 3 N 4 ) powder is used as a raw material for supplying said silicon.
JP22654296A 1996-08-28 1996-08-28 Oxidation resistant treatment of carbonaceous material Pending JPH1067585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22654296A JPH1067585A (en) 1996-08-28 1996-08-28 Oxidation resistant treatment of carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22654296A JPH1067585A (en) 1996-08-28 1996-08-28 Oxidation resistant treatment of carbonaceous material

Publications (1)

Publication Number Publication Date
JPH1067585A true JPH1067585A (en) 1998-03-10

Family

ID=16846789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22654296A Pending JPH1067585A (en) 1996-08-28 1996-08-28 Oxidation resistant treatment of carbonaceous material

Country Status (1)

Country Link
JP (1) JPH1067585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211990A (en) * 2001-01-09 2002-07-31 Taiheiyo Cement Corp Heat radiating plate and method of manufacturing for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211990A (en) * 2001-01-09 2002-07-31 Taiheiyo Cement Corp Heat radiating plate and method of manufacturing for the same

Similar Documents

Publication Publication Date Title
JPS5918183A (en) Manufacture of silicon carbide product
Jiang et al. Oxidation protection of graphite materials by single-phase ultra-high temperature boride modified monolayer Si-SiC coating
US4717693A (en) Process for producing beta silicon nitride fibers
JPH0513109B2 (en)
JPH1067585A (en) Oxidation resistant treatment of carbonaceous material
JP2812019B2 (en) Carbon fiber / carbon composite
US20050019567A1 (en) Process for producing silicon carbide fibrils and product
JP2660346B2 (en) Ceramic composite materials
JP3163551B2 (en) Stress relief type oxidation resistant coating construction method
JPH06234573A (en) Preparation of ceramic material wherein thialon is main component
JPH0789776A (en) Production of boron nitride coated carbon material
Ghanem et al. Oxidation behavior of silicon carbide based biomorphic ceramics prepared by chemical vapor infiltration and reaction technique
JPS6332841B2 (en)
AU2004232516B2 (en) Use of a silicon carbide-based ceramic material in aggressive environments
JPH09249455A (en) Production of silicon carbide compact
JPH0782077A (en) Graphite crucible for silicon single crystal pull-up apparatus
JPH03265582A (en) Production of oxidation resistant carbon material
JPH05170577A (en) Method for anti-oxidizing coating of carbon fiber reinforced carbon composite material using coating method
JPH03100160A (en) Production of perforated body of molybdenum silicide
JPS6246965A (en) Sic-si3n4 base composite ceramics and manufacture
JPH08133873A (en) Soldering jig and its production
JPH1095685A (en) High temperature oxidation-resistant carbon composite material
JPS60118685A (en) Manufacture of silicon nitride-coated graphitic refractories
JPH1143782A (en) Method for coating ceramic coating film and coated material
JP2999749B2 (en) Fluorine-containing organosilicon compound and chemically modified ceramic powder and ceramic sintered body using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A02