JPH1066949A - Decomposing method of organic metallic complex - Google Patents

Decomposing method of organic metallic complex

Info

Publication number
JPH1066949A
JPH1066949A JP8226217A JP22621796A JPH1066949A JP H1066949 A JPH1066949 A JP H1066949A JP 8226217 A JP8226217 A JP 8226217A JP 22621796 A JP22621796 A JP 22621796A JP H1066949 A JPH1066949 A JP H1066949A
Authority
JP
Japan
Prior art keywords
complex
acid
solution
alkali
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8226217A
Other languages
Japanese (ja)
Inventor
Kenji Seki
建司 関
Kazuaki Mori
和亮 森
Satoshi Takamizawa
聡 高見澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8226217A priority Critical patent/JPH1066949A/en
Publication of JPH1066949A publication Critical patent/JPH1066949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To decompose and recover an organic metallic complex having excellent chemical material adsorptivity and capable of regenerating by bringing the organic metallic complex having a specific structure into contact with water or a complex decomposing agent containing an acid or an alkali and water. SOLUTION: The organic metallic complex having primary channel structure is decomposed by bringing it into contact with the complex decomposing agent. The complex decomposing agent is preferably water or an aq. solution of the alkali or the acid. As the alkali aq. solution, an aq. solution of sodium hydroxide or potassium hydroxide is preferably used. As the acid aq. solution, an aq. solution of hydrochloric acid, nitric acid or the like is preferable. When the acid or alkali aq. solution is used in the case of recovering the raw material, complex is dissociated into a metallic ion and an organic ligand. Since the metallic ion sometimes stays in the complex containing water, the decomposition by water is not preferable and the acid or alkali aq. solution is preferably used. Thus, the organic metallic complex is decomposed into the metallic ion and the organic ligand to be regenerated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化学物質吸着能力
を有し、1次元チャンネル構造を有する有機金属錯体の
分解方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing an organometallic complex having a one-dimensional channel structure having a chemical substance adsorption ability.

【0002】[0002]

【従来の技術】化学物質を吸着する能力を有する材料と
しては、従来、活性炭、ゼオライト、シリカゲル等の材
料が知られている。これらの材料であって、吸着能力が
低下したものを廃棄する場合は、焼却、埋め立て等の一
般の産業廃棄物として処理する以外に方法はなかった。
2. Description of the Related Art Activated carbon, zeolite, silica gel, and other materials have been known as materials capable of adsorbing chemical substances. When discarding those materials having reduced adsorption capacity, there is no other method than treating them as general industrial waste such as incineration and landfill.

【0003】[0003]

【発明が解決しようとする課題】しかし、近年産業廃棄
物の処理は、埋め立て地の確保が困難であることや、埋
め立てた産業廃棄物よりの有害物質の大気中への揮散、
あるいは地下水中への浸出による環境汚染が問題視され
ており、再生、再利用可能な化学物質吸着材が要求され
ている。本発明の目的は、化学物質吸着能力に優れ、し
かも再生可能な有機金属錯体の分解方法を提供すること
にある。
However, in recent years, the disposal of industrial waste has been difficult due to the difficulty in securing landfill sites, the volatilization of harmful substances from landfilled industrial waste into the atmosphere, and the like.
Alternatively, environmental pollution due to leaching into groundwater has been regarded as a problem, and there is a demand for a reusable and reusable chemical substance adsorbent. An object of the present invention is to provide a method for decomposing an organic metal complex which is excellent in the ability to adsorb a chemical substance and which can be regenerated.

【0004】[0004]

【課題を解決するための手段】本発明による有機金属錯
体の分解方法は、1次元チャンネル構造を有する有機金
属錯体の分解方法であって、前記有機金属錯体を水、又
は酸若しくはアルカリと水を含む錯体分解試薬と接触さ
せることを特徴とするものである。このような方法によ
り1次元チャンネル構造を有する有機金属錯体は速やか
に分解して、チャンネル構造を有しない錯体、若しくは
錯体を構成する金属イオンと有機配位子に分解する。分
解により、有機金属錯体に吸着していた化学物質が迅速
に脱着、放出されるとともに、金属イオン、有機配位子
は個別に回収することができるため、再度錯体を合成す
ることが可能となる。その結果、ゼオライト等の吸着材
のように埋め立て処分をする必要がなく、何度でも再生
することができる。
The method for decomposing an organometallic complex according to the present invention is a method for decomposing an organometallic complex having a one-dimensional channel structure, wherein the organometallic complex is converted to water or an acid or alkali and water. And a complex decomposition reagent. By such a method, the organometallic complex having a one-dimensional channel structure is rapidly decomposed and decomposed into a complex having no channel structure, or a metal ion and an organic ligand constituting the complex. By decomposition, the chemical substance adsorbed on the organometallic complex is quickly desorbed and released, and the metal ion and the organic ligand can be individually recovered, so that the complex can be synthesized again. . As a result, it is not necessary to perform landfill disposal like an adsorbent such as zeolite, and the material can be regenerated many times.

【0005】ここに1次元チャンネル構造とは、金属イ
オンとこれに配位する有機配位子によりつくられる格子
空間が1次元的に、規則的に連続して形成される構造を
言う。
Here, the one-dimensional channel structure refers to a structure in which a lattice space formed by a metal ion and an organic ligand coordinated thereto is one-dimensionally and regularly formed.

【0006】本発明において有機金属錯体の分解に使用
する前記水、又は酸若しくはアルカリと水を含む錯体分
解試薬は、水、又は酸若しくはアルカリの水溶液である
ことが好ましい態様である。かかる試薬は本発明の有機
金属錯体を容易に、かつ迅速に分解することが可能であ
り、火災の危険性もなく、安価である。さらに、錯体形
成成分である金属イオン、有機配位子の回収も容易であ
る。
In a preferred embodiment of the present invention, the water or a complex-decomposing reagent containing an acid or an alkali and water used for decomposing an organometallic complex is water or an aqueous solution of an acid or an alkali. Such a reagent is capable of easily and rapidly decomposing the organometallic complex of the present invention, has no risk of fire, and is inexpensive. Further, it is easy to recover the metal ion and the organic ligand which are the complex forming components.

【0007】[0007]

【発明の実施の形態】1次元チャンネル構造を有する有
機金属錯体は、そのチャンネル構造中に化学物質を吸着
する機能を有し、単位体積当たりの吸着量は極めて大き
く、常温で気体の物質の吸着剤として優れたものであ
る。発明者は、この吸着剤である金属錯体にこれを分解
する第2の化学物質を接触させると、錯体が急速に分解
して、構成成分である金属イオンと有機配位子に分解す
ることを見出し、本発明を完成した。
BEST MODE FOR CARRYING OUT THE INVENTION An organometallic complex having a one-dimensional channel structure has a function of adsorbing a chemical substance in the channel structure, has an extremely large amount of adsorption per unit volume, and adsorbs a gaseous substance at ordinary temperature. It is an excellent agent. The inventor of the present invention has found that when the metal complex serving as the adsorbent is brought into contact with a second chemical substance that decomposes the metal complex, the complex is rapidly decomposed and decomposed into the constituent metal ion and the organic ligand. Heading, the present invention has been completed.

【0008】本発明において使用できる1次元チャンネ
ル構造を有する有機金属錯体は、分子内の点対称位置に
配置された2個のカルボキシル基を有するジカルボン酸
と金属イオンにより形成される錯体であることが好まし
い。これらの錯体は、それらが有する1次元チャンネル
構造に基づき多くの化学物質を吸着する能力を有すると
ともに、分解試薬との接触により急速に分解して構成成
分である金属イオンと有機配位子に分解する。
The organometallic complex having a one-dimensional channel structure which can be used in the present invention is a complex formed by a dicarboxylic acid having two carboxyl groups and a metal ion having two carboxyl groups arranged at point symmetry positions in a molecule. preferable. These complexes have the ability to adsorb many chemicals based on their one-dimensional channel structure, and rapidly decompose into metal ions and organic ligands as a component by contact with a decomposition reagent. I do.

【0009】本発明において使用できる1次元チャンネ
ル構造を有する有機金属錯体としては、前述の、分子内
の点対称位置に配置された2個のカルボキシル基を有す
るジカルボン酸と金属イオンにより形成される錯体であ
ることが好ましく、これらの錯体は、有機配位子の溶液
と原料である金属塩の溶液を混合、反応させることによ
り得られる。
The organometallic complex having a one-dimensional channel structure which can be used in the present invention includes the above-mentioned complex formed by a dicarboxylic acid having two carboxyl groups and a metal ion having two carboxyl groups arranged at point symmetry positions in a molecule. These complexes are preferably obtained by mixing and reacting a solution of an organic ligand and a solution of a metal salt as a raw material.

【0010】本発明に好適な有機金属錯体はX線回折の
パターンの解析より、1次元チャンネル構造を有してい
ることが確認できる。例えばテレフタル酸銅を例にとっ
て説明すると、銅は平面4配位であり、2個の銅イオン
をテレフタル酸4分子が90°ごとに囲むようにして配
置し、カルボキシル基の2個の酸素原子はそれぞれ別の
銅イオンに配位している。即ち、テレフタル酸分子は格
子状に配列し、その格子点に2個の銅イオンが存在す
る。そして、銅イオンとジカルボン酸より形成される層
が積層された形で結晶が構成されている。その結果、格
子が積層されて1次元チャンネルが形成される。
From the analysis of the X-ray diffraction pattern, it can be confirmed that the organometallic complex suitable for the present invention has a one-dimensional channel structure. For example, taking copper terephthalate as an example, copper has a four-coordinate plane, and two copper ions are arranged so that four molecules of terephthalic acid surround every 90 °, and two oxygen atoms of a carboxyl group are different. Is coordinated to the copper ion. That is, terephthalic acid molecules are arranged in a lattice, and two copper ions exist at the lattice points. And the crystal | crystallization is comprised in the form in which the layer formed from a copper ion and a dicarboxylic acid was laminated | stacked. As a result, the lattices are stacked to form a one-dimensional channel.

【0011】本発明の錯体を構成する有機配位子であ
る、分子内の点対称位置に配置された2個のカルボキシ
ル基を有するジカルボン酸としては、テレフタル酸、フ
マル酸、1,4−トランス−シクロヘキサンジカルボン
酸、4,4’−ビフェニルジカルボン酸が例示される。
また、金属イオンとしては、銅イオン、クロムイオン、
モリブデンイオン、ロジウムイオン、パラジウムイオ
ン、タングステンイオン、が例示でき、前記ジカルボン
酸と組み合わせて錯体が形成される。
The dicarboxylic acid having two carboxyl groups arranged at point symmetry positions in the molecule, which is an organic ligand constituting the complex of the present invention, includes terephthalic acid, fumaric acid, 1,4-trans -Cyclohexanedicarboxylic acid and 4,4'-biphenyldicarboxylic acid.
In addition, as metal ions, copper ions, chromium ions,
Examples thereof include molybdenum ion, rhodium ion, palladium ion and tungsten ion, and a complex is formed in combination with the dicarboxylic acid.

【0012】これらの有機金属錯体の製造は、有機配位
子の溶液と原料の金属塩の溶液を準備してこれらを混合
し、反応させることにより行う。使用される溶剤は有機
配位子、金属イオンと反応したり錯体を形成するもので
なければ特に制限されない。また、金属イオンの対イオ
ンもその金属塩の溶剤への溶解性、生成する錯体の1次
元チャンネル構造の形成を阻害するものでなければ特に
限定されない。本発明の錯体の製造においては、ジカル
ボン酸の溶液に有機酸を添加してpHを調整することが
好ましく、ギ酸、酢酸、トリフルオロ酢酸、プロピオン
酸等が使用できる。これらの分解試薬の水溶液の濃度は
特に制限はないが、分解を確実に行なうために1重量%
以上であることが好ましい。
The production of these organometallic complexes is carried out by preparing a solution of an organic ligand and a solution of a metal salt as a raw material, mixing these, and reacting them. The solvent used is not particularly limited as long as it does not react with an organic ligand or a metal ion or form a complex. The counter ion of the metal ion is not particularly limited as long as it does not inhibit the solubility of the metal salt in the solvent and the formation of the one-dimensional channel structure of the resulting complex. In the production of the complex of the present invention, it is preferable to adjust the pH by adding an organic acid to a solution of dicarboxylic acid, and formic acid, acetic acid, trifluoroacetic acid, propionic acid and the like can be used. The concentration of the aqueous solution of these decomposing reagents is not particularly limited, but is preferably 1% by weight to ensure the decomposition.
It is preferable that it is above.

【0013】有機金属錯体を分解し、構成成分である金
属イオン、並びに有機配位子を回収する方法において、
前記有機金属錯体と反応させる錯体分解試薬としては、
水、アルカリもしくは酸の水溶液が好ましく、アルカリ
水溶液としては、水酸化ナトリウム、水酸化カリウム等
のアルカリ金属の水酸化物を含む無機系のアルカリの水
溶液、テトラメチルアンモニウムヒドロキシド等の有機
系アルカリの水溶液の使用が好ましく、酸の水溶液とし
ては、塩酸、硝酸、過塩素酸、塩素酸等の無機酸、ベン
ゼンスルホン酸、トルエンスルホン酸、トリフルオロ酢
酸等の有機酸の水溶液の使用が好ましい。
In a method for decomposing an organometallic complex and recovering a metal ion and an organic ligand as constituents,
As the complex decomposition reagent to be reacted with the organometallic complex,
An aqueous solution of water, an alkali or an acid is preferable. As the aqueous alkaline solution, an aqueous solution of an inorganic alkali containing a hydroxide of an alkali metal such as sodium hydroxide or potassium hydroxide, or an aqueous solution of an organic alkali such as tetramethylammonium hydroxide is used. The use of an aqueous solution is preferable, and the aqueous solution of an acid is preferably an aqueous solution of an inorganic acid such as hydrochloric acid, nitric acid, perchloric acid, or chloric acid, or an organic acid such as benzenesulfonic acid, toluenesulfonic acid, or trifluoroacetic acid.

【0014】本発明の分解方法において、原料物質を回
収する場合は酸またはアルカリ水溶液を使用することが
好ましく、これにより錯体は金属イオンと有機配位子、
ここではジカルボン酸にまで解離する。水により分解し
た場合は、金属イオンは水を含む錯体に止まる場合があ
る。
In the decomposition method of the present invention, when recovering the raw material, it is preferable to use an aqueous acid or alkali solution, whereby the complex can be formed with a metal ion and an organic ligand,
Here, it dissociates to a dicarboxylic acid. When decomposed by water, the metal ion may remain as a complex containing water.

【0015】原料物質の回収法について以下に説明す
る。 ・アルカリ水溶液にて分解すると金属イオン、例えば銅
イオンは水酸化物である水酸化銅として沈殿し、ジカル
ボン酸は使用したアルカリに応じて、例えばナトリウム
塩として溶解する。従って、原料物質の回収は、水酸化
銅の濾過等による分離回収と、分離後の水溶液の中和に
よりジカルボン酸を析出させて分離する方法が例示でき
る。 ・酸の水溶液により錯体を分解した場合は、金属イオン
は水溶液中に溶解し、ジカルボン酸が析出する。従っ
て、先にジカルボン酸を分離し、次いでイオン交換樹脂
を使用して金属イオンを分離することが例示できる。
The method of recovering the raw material will be described below. -When decomposed in an aqueous alkali solution, metal ions, for example, copper ions, precipitate as copper hydroxide, which is a hydroxide, and dicarboxylic acid dissolves as, for example, a sodium salt depending on the alkali used. Accordingly, examples of the method of recovering the raw material include a method of separating and recovering copper hydroxide by filtration and the like, and a method of precipitating and separating dicarboxylic acid by neutralizing the aqueous solution after the separation. -When the complex is decomposed by an aqueous solution of an acid, the metal ions dissolve in the aqueous solution, and the dicarboxylic acid precipitates. Therefore, separation of a dicarboxylic acid first, and then separation of a metal ion using an ion exchange resin can be exemplified.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。 (有機金属錯体製造例1)メタノール100cm3 、ギ
酸14cm3 の混合溶媒に1,4−トランス−シクロヘ
キサンジカルボン酸2.53gを溶解し、常温に冷却す
る。得られた1,4−トランス−シクロヘキサンジカル
ボン酸溶液に、攪拌下に、ギ酸銅3.3gをメタノール
100cm3 に溶解した溶液を滴下し、得られた溶液を
室温にて一夜静置した。この静置溶液中に生成した固体
を水、エタノールにて十分洗浄し、100℃にて4時間
乾燥した。得られた固形物をX線回折等により分析した
結果、金属錯体は1,4−トランス−シクロヘキサンジ
カルボン酸銅であり、比表面積は480m2 /g、細孔
径は4.7Åであった。
Embodiments of the present invention will be described below. (Organometallic complex prepared in Example 1) methanol 100 cm 3, a mixed solvent of formic acid 14cm 3 1,4 trans - dissolving cyclohexanedicarboxylic acid 2.53 g, and cooled to room temperature. To the obtained 1,4-trans-cyclohexanedicarboxylic acid solution, a solution in which 3.3 g of copper formate was dissolved in 100 cm 3 of methanol was added dropwise with stirring, and the obtained solution was allowed to stand at room temperature overnight. The solid formed in the standing solution was sufficiently washed with water and ethanol, and dried at 100 ° C. for 4 hours. As a result of analyzing the obtained solid by X-ray diffraction or the like, the metal complex was copper 1,4-trans-cyclohexanedicarboxylate, the specific surface area was 480 m 2 / g, and the pore diameter was 4.7 °.

【0017】(有機金属錯体製造例2)ジメチルホルム
アミド(DMF)90cm3 、ギ酸0.5cm3 の混合
溶媒にビフェニルジカルボン酸0.25gを溶解した。
室温下においてこの溶液にギ酸銅0.5gをメタノール
25cm3 に溶解した溶液を攪拌しつつ滴下し、得られ
た溶液を室温にて一夜静置した。この静置溶液中に生成
した固体を水、エタノールにて十分洗浄し、100℃に
て4時間乾燥した。得られた固形物をX線回折等により
分析した結果、有機金属錯体はビフェニルジカルボン酸
銅であり、比表面積は1200m2 /g、細孔径は7.
8Åであった。
[0017] (organometallic complex Production Example 2) dimethylformamide (DMF) 90cm 3, was dissolved biphenyl dicarboxylic acid 0.25g in a mixed solvent of formic acid 0.5 cm 3.
At room temperature, a solution of 0.5 g of copper formate dissolved in 25 cm 3 of methanol was added dropwise to this solution with stirring, and the resulting solution was allowed to stand at room temperature overnight. The solid formed in the standing solution was sufficiently washed with water and ethanol, and dried at 100 ° C. for 4 hours. The obtained solid was analyzed by X-ray diffraction or the like, and as a result, the organometallic complex was copper biphenyldicarboxylate, the specific surface area was 1200 m 2 / g, and the pore size was 7.
It was 8Å.

【0018】(有機金属錯体製造例3)フマル酸1.2
gをメタノール100cm3 とギ酸12cm3 の溶液に
溶解し、このフマル酸溶液を常温に冷却後、攪拌しつつ
ギ酸銅3.38gをメタノール100cm3 に溶解した
溶液を滴下し、室温にて1日間静置した。生成した沈殿
物を吸引濾過し、洗浄後120℃にて4時間乾燥した。
得られた結晶は1.37gであって、X線回折等により
分析した結果、この結晶はフマル酸銅であり、その比表
面積は450g/cm3 、細孔径は5.4Åであった。 (炭酸ガス吸着錯体の分解試験)有機金属錯体製造例3
にて得られたフマル酸銅を、粉末状態、およびバインダ
ーを使用して顆粒状に成形した状態の2種の状態で、圧
力10kg/cm2 の圧力下で炭酸ガスを吸着させ、そ
の後この炭酸ガスを吸着したフマル酸銅に5mlの水を
注いだところ、フマル酸銅は直ちに分解し、炭酸ガスの
発生が認められた。また、水溶液の分析の結果、銅イオ
ンはチャンネル構造を有しない別の錯体として存在し、
フマル酸が析出していることが判明した。銅イオン、フ
マル酸は上述のように、排水中に混入することなく分離
して回収することができ、特にフマル酸は減圧蒸留等の
常法により純粋な成分として再生することができる。従
って、銅イオンとフマル酸より、有機金属錯体製造例3
に従い、新たなフマル酸銅を製造することが可能であ
る。
(Production example 3 of organometallic complex) fumaric acid 1.2
The g was dissolved in a solution of methanol 100 cm 3 and formic acid 12cm 3, after cooling the fumaric acid solution to room temperature, the stirring Gisando 3.38g was added dropwise a solution of methanol 100 cm 3, 1 day at room temperature It was left still. The precipitate formed was filtered by suction, washed and dried at 120 ° C. for 4 hours.
The obtained crystals weighed 1.37 g and were analyzed by X-ray diffraction or the like. As a result, the crystals were copper fumarate, the specific surface area was 450 g / cm 3 , and the pore diameter was 5.4 °. (Decomposition test of carbon dioxide adsorption complex) Production example 3 of organometallic complex
The copper fumarate obtained in the above step is adsorbed under a pressure of 10 kg / cm 2 in two kinds of states, a powder state and a state where the copper fumarate is formed into granules using a binder. When 5 ml of water was poured into the gas-adsorbed copper fumarate, the copper fumarate was immediately decomposed, and generation of carbon dioxide gas was recognized. Also, as a result of analysis of the aqueous solution, copper ions exist as another complex having no channel structure,
It was found that fumaric acid was precipitated. As described above, copper ions and fumaric acid can be separated and recovered without being mixed in the wastewater. In particular, fumaric acid can be regenerated as a pure component by a conventional method such as distillation under reduced pressure. Accordingly, organometallic complex production example 3 was obtained from copper ion and fumaric acid.
, It is possible to produce new copper fumarate.

【0019】[0019]

【発明の効果】上述のように本発明によれば、従来の活
性炭やゼオライト等の吸着剤と比較して優れた化学物質
吸着能力を有する、1次元チャンネル構造を有する有機
金属錯体を容易に分解し、その構成成分である金属イオ
ン、有機配位子とすることができる。また、これらの成
分を回収し、再利用することにより吸着能力の低下した
吸着剤やその構成成分を廃棄することがなくなり、環境
汚染が防止できる。
As described above, according to the present invention, it is possible to easily decompose an organometallic complex having a one-dimensional channel structure, which has an excellent ability to adsorb a chemical substance as compared with conventional adsorbents such as activated carbon and zeolite. In addition, it can be a metal ion or an organic ligand as a component. Further, by collecting and reusing these components, the adsorbent having reduced adsorption capacity and its constituent components are not discarded, and environmental pollution can be prevented.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】1次元チャンネル構造を有する有機金属錯
体の分解方法であって、前記有機金属錯体を水、又は酸
若しくはアルカリと水を含む錯体分解試薬と接触させる
ことを特徴とする有機金属錯体分解方法。
1. A method for decomposing an organometallic complex having a one-dimensional channel structure, wherein the organometallic complex is brought into contact with water or a complex decomposing reagent containing an acid or an alkali and water. Disassembly method.
【請求項2】前記水、又は酸若しくはアルカリと水を含
む錯体分解試薬が、水、又は酸若しくはアルカリの水溶
液である請求項1に記載の有機金属錯体分解方法。
2. The method for decomposing an organometallic complex according to claim 1, wherein the water or the complex decomposing reagent containing an acid or an alkali and water is water or an aqueous solution of an acid or an alkali.
JP8226217A 1996-08-28 1996-08-28 Decomposing method of organic metallic complex Pending JPH1066949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8226217A JPH1066949A (en) 1996-08-28 1996-08-28 Decomposing method of organic metallic complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8226217A JPH1066949A (en) 1996-08-28 1996-08-28 Decomposing method of organic metallic complex

Publications (1)

Publication Number Publication Date
JPH1066949A true JPH1066949A (en) 1998-03-10

Family

ID=16841737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8226217A Pending JPH1066949A (en) 1996-08-28 1996-08-28 Decomposing method of organic metallic complex

Country Status (1)

Country Link
JP (1) JPH1066949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534348A (en) * 2006-04-18 2009-09-24 ビーエーエスエフ ソシエタス・ヨーロピア Organometallic framework material composed of aluminum fumarate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534348A (en) * 2006-04-18 2009-09-24 ビーエーエスエフ ソシエタス・ヨーロピア Organometallic framework material composed of aluminum fumarate

Similar Documents

Publication Publication Date Title
García et al. Metal-organic frameworks: Applications in separations and catalysis
Hu et al. Novel functionalized metal-organic framework MIL-101 adsorbent for capturing oxytetracycline
Wu et al. Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder
Xu et al. Highly efficient and selective recovery of Au (III) by a new metal-organic polymer
CN108479712B (en) Modified carbon nanotube film material capable of adsorbing and degrading tetrabromobisphenol A and application method thereof
US20140021139A1 (en) Method for producing an organic-inorganic hybrid sorbent by impregnating an oxide into nanopores of activated carbone and use thereof in water treatment
JPH10218617A (en) Production of ion-exchanged substance
US5668079A (en) Chemically active ceramic compositions with an hydroxyquinoline moiety
JP2006348359A (en) Metal recovery method
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
Obeso et al. Al (iii)-based MOF for the selective adsorption of phosphate and arsenate from aqueous solutions
JPH1066949A (en) Decomposing method of organic metallic complex
CN1043311C (en) Zeolite adsorbing agent for carbon monoxide with high selectivity
JPH07155587A (en) Highly adsorptive carbon material and its production
JP5114704B2 (en) Method for separating metal and method for recovering metal
CN112823139B (en) Ammonia chemical species desorption method, ammonia chemical species supply agent, and ammonia chemical species adsorption/desorption apparatus using carbon dioxide
JP2008029985A (en) Apparatus for regenerating anion adsorbent and method of regenerating anion adsorbent using the same
JP4617476B2 (en) Method for removing potassium ions
JP2006328468A (en) Method for separating and recovering metal
CN112759026A (en) Water treatment method for absorbing humic acid in water by using metal organic framework HKUST-1
CN115216022B (en) Thiolated Zr-based metal organic framework, and preparation method and application thereof
Sukatis et al. Process variables optimization for synthesizing novel calcium-based metal-organic frameworks for feasible synthetic estrogen adsorption
Desilets Green Synthesis of a Metal-Organic Framework Selective Towards the Binding of Methylene Blue
Yuan et al. Selective scandium ion capture via coordination templating in a covalent organic framework
Liu et al. Base-functionalized metal− organic frameworks for highly efficient removal of organic acid pollutants from water