JPH1064895A - Composition for formation of insulating film, coating liquid for formation of insulating film and formation method of insulating film for semiconductor device using it as well as semiconductor device - Google Patents

Composition for formation of insulating film, coating liquid for formation of insulating film and formation method of insulating film for semiconductor device using it as well as semiconductor device

Info

Publication number
JPH1064895A
JPH1064895A JP8215679A JP21567996A JPH1064895A JP H1064895 A JPH1064895 A JP H1064895A JP 8215679 A JP8215679 A JP 8215679A JP 21567996 A JP21567996 A JP 21567996A JP H1064895 A JPH1064895 A JP H1064895A
Authority
JP
Japan
Prior art keywords
insulating film
composition
forming
semiconductor device
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8215679A
Other languages
Japanese (ja)
Inventor
Tadashi Nakano
野 正 中
Naomi Mura
直 美 村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8215679A priority Critical patent/JPH1064895A/en
Publication of JPH1064895A publication Critical patent/JPH1064895A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form an insulating film whose burying property and flatness are enhanced, whose permeability is reduced and whose degradation is reduced with reference to an oxygen plasma, by a method wherein a composition is provided with a structure wherein a plurality of phosphorus atoms of phosphonoimide whose main chain is specific are bridged by a specific siloxane bond. SOLUTION: A composition is constituted of a polymer provided with a structure wherein a plurality of phosphorus atoms of phosphonoimide whose main chain is expressed by Formula I are cross-linked by a siloxane bond which is expressed by Formula II. In Formula I, (n) represents an integer of 3 or higher, and Formula II expresses a composition such as dimethyldioxosilicon ((CH3 )2 Si(O-)2 ), monomethyltrioxosilicon ((CH3 )Si(O-)3 ) or tetraoxosilicon (Si(O-)4 ). Thereby, it is possible to form an insulating film whose burying property and flatness are excellent whose dielectric constant is small and whose degradation is small with reference to an oxygen plasma.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路を
構成する絶縁膜の形成に用いられる絶縁膜形成用組成
物、絶縁膜形成用塗布液およびこれを用いた半導体装置
用絶縁膜の形成方法ならびにそれによって得られた半導
体装置に関する。
The present invention relates to a composition for forming an insulating film used for forming an insulating film constituting a semiconductor integrated circuit, a coating solution for forming an insulating film, and a method for forming an insulating film for a semiconductor device using the same. And a semiconductor device obtained thereby.

【0002】[0002]

【従来の技術】近年の半導体集積回路の微細化および多
層化に伴い、配線を構成する金属パターンはますます細
くなるとともに、パターン間ギャップのサイズの縮小と
ギャップのアスペクト(縦横比)の増大が著しい傾向に
ある。さらに、光リソグラフィーの解像力微細化の要求
を満たすために、露光の際の焦点深度が浅くなってきて
いる。従って、半導体回路基板の製造に当たっては、多
層配線における各配線層に絶縁膜を形成した後での表面
の平坦化がますます強く要求されている。加えて、トラ
ンジスタの微細化によって配線の信号遅延がトランジス
タのスイッチング遅延を上回るようになり、微細化によ
る動作速度の向上というメリットを活かすために、配線
遅延を支配する配線間容量の低減が強く要求されてい
る。このように、半導体装置を構成する絶縁膜に対し
て、金属配線パターン間への完全な埋め込みの達成、配
線層の平坦化、および低誘電率化という3つの課題が課
せられている。
2. Description of the Related Art With the recent miniaturization and multi-layering of semiconductor integrated circuits, metal patterns constituting wiring have become increasingly thinner, and the size of gaps between patterns and the aspect (aspect ratio) of gaps have increased. There is a remarkable tendency. Further, in order to satisfy the demand for miniaturizing the resolution of optical lithography, the depth of focus at the time of exposure has been reduced. Therefore, in the manufacture of semiconductor circuit boards, there is an increasing demand for flattening the surface after forming an insulating film on each wiring layer in a multilayer wiring. In addition, the miniaturization of transistors allows the signal delay of wiring to exceed the switching delay of transistors, and in order to take advantage of the improvement in operating speed due to miniaturization, there is a strong demand for a reduction in the capacitance between wirings that controls wiring delay. Have been. As described above, three problems are imposed on the insulating film constituting the semiconductor device, such as achieving complete embedding between metal wiring patterns, flattening the wiring layer, and reducing the dielectric constant.

【0003】上記課題に答えるため、層間絶縁膜の形成
技術として各種の新しい技術が開発されている。例え
ば、金属配線パターン間への完全な埋め込みの達成とい
う課題に対しては、化学的気相成長法(CVD)によっ
て形成する新技術として、アスペクトの高いギャップを
埋め込み可能なO3 −TEOS常圧CVD法、高密度プ
ラズマバイアスCVD法等が開発されている。しかし、
これらの新しいCVD法によってギャップの埋め込みと
いう課題に対しては一応の解決が見られるものの、平坦
化に対しては効果がないため、平坦化は別のプロセスに
委ねなければならない。しかも、O3 −TEOS常圧C
VD法は、膜質の悪さ、パーティクルの発生、下地の材
質やパターン形状に対する強い依存性などの数々の欠点
がある。また、高密度プラズマバイアスCVD法にも、
同様にパーティクルの発生、スループットの低下、大口
径化の困難性等の欠点がある。
In order to meet the above-mentioned problems, various new techniques have been developed as techniques for forming an interlayer insulating film. For example, for the problem of achieving complete embedding between metal wiring patterns, as a new technology formed by chemical vapor deposition (CVD), an O 3 -TEOS normal pressure capable of embedding a high aspect gap can be used. A CVD method, a high-density plasma bias CVD method, and the like have been developed. But,
Although the problem of filling the gap is tentatively solved by these new CVD methods, it has no effect on the planarization, so the planarization must be left to another process. Moreover, O 3 -TEOS normal pressure C
The VD method has a number of drawbacks, such as poor film quality, generation of particles, and a strong dependence on the underlying material and pattern shape. In addition, high density plasma bias CVD method,
Similarly, there are disadvantages such as generation of particles, reduction in throughput, and difficulty in increasing the diameter.

【0004】一方、配線層の平坦化の方法として、フォ
トレジストや塗布ガラス膜(SOG)のエッチバック法
や化学的機械的研磨(CMP)等の技術が開発されてい
る。これらの技術は平坦化方法としては優れたものでは
あるが、配線間の溝の埋め込みについては他の方法を併
用する必要がある。従って、上記技術とは異なる機構で
作用しうる、溝の埋め込みと平坦化を同時に達成しうる
ような技術が現在切望されている。
On the other hand, as a method of flattening a wiring layer, techniques such as an etch-back method of a photoresist or a coated glass film (SOG) and a chemical mechanical polishing (CMP) have been developed. Although these techniques are excellent as flattening methods, it is necessary to use another method for embedding trenches between wirings. Therefore, there is a strong need for a technology that can operate by a mechanism different from the above-described technology and that can simultaneously achieve the filling and flattening of the groove.

【0005】上記両要求に応える層間絶縁膜の形成方法
の候補として、絶縁膜を塗布形成することにより平坦化
する各種技術が研究されている。エッチバックに用いら
れていたSOGの炭素含有量を上げて流れ性を良くし、
そのまま絶縁膜として利用する方法、あるいは有機物質
のポリマーをSOGのように回転塗布する方法などであ
る。これらの方法によれば、溝の埋め込みを実現し、か
つ平坦性を向上させることが可能である。しかし、これ
らの炭素あるいは有機物質を多く含むSOGなどの物質
には、酸素プラズマに対して脆弱で、変質を被るという
致命的な欠点がある。酸素プラズマ照射は絶縁膜形成
後、ヴィアホール加工時のレジストアッシング工程にお
いて用いられており、現実的に不可避であるため、その
耐性の向上は絶縁膜形成用塗布材料に対し、強く求めら
れていた。
[0005] As a candidate for a method of forming an interlayer insulating film that satisfies both of the above-mentioned requirements, various techniques for flattening by applying and forming an insulating film have been studied. Increase the carbon content of SOG used for etch back to improve flowability,
A method of directly using the film as an insulating film or a method of spin-coating an organic polymer like SOG is used. According to these methods, it is possible to realize the filling of the groove and improve the flatness. However, these substances, such as SOG, which contain a large amount of carbon or organic substances, have a fatal defect that they are vulnerable to oxygen plasma and undergo deterioration. Oxygen plasma irradiation is used in the resist ashing process at the time of via-hole processing after the formation of an insulating film, and since it is practically unavoidable, improvement of its resistance has been strongly demanded of coating materials for forming an insulating film. .

【0006】酸素プラズマに強い塗布材料は、基本的に
は炭素の含有量が少ない無機質に近いものであることが
予想されるが、従来材料としては、−O−Si−O−あ
るいは−O−SiH−Oの基本骨格からなるオリゴマー
材料が知られている。これらの材料は、確かに耐酸素プ
ラズマ性が高く、埋め込み性にも優れているという長所
があるものの、塗布後の熱処理工程における収縮が大き
いために、平坦性を向上させようとして厚く塗布すると
簡単に破損する、すなわちクラック耐性が非常に低い、
という欠点があった。しかも、水を吸収しやすく誘電率
が4.5以上と非常に大きいという欠点もあった。
It is expected that a coating material resistant to oxygen plasma is basically an inorganic material having a low carbon content, but conventional materials include -O-Si-O- or -O-. An oligomer material having a basic skeleton of SiH-O is known. Although these materials have the advantage of high oxygen plasma resistance and excellent embedding properties, they are easily shrinkable in a heat treatment step after application, so it is easy to apply them thickly to improve flatness. Damage, that is, very low crack resistance,
There was a disadvantage. In addition, there is also a drawback that water is easily absorbed and the dielectric constant is extremely large at 4.5 or more.

【0007】上記従来型無機塗布材料のこれらの欠点
は、材料中に多数存在するシラノール基(−Si−O
H)が加熱によって縮合を受けて体積収縮すること、加
熱後も残存する−Si−OHが、水分子の吸着サイトと
して働くためであると推察されている。
[0007] These disadvantages of the above-mentioned conventional inorganic coating materials are caused by the large number of silanol groups (-Si-O
It is presumed that H) undergoes condensation by heating to cause volume contraction, and that -Si-OH remaining after heating serves as an adsorption site for water molecules.

【0008】上記欠点を除くため、−Si−O−Si−
以外の構造を有する無機高分子材料を用いることが提案
されている。熱や大気に対して安定で有望視されている
無機高分子材料としては、主鎖に−P=N−P=結合を
有するホスホノイミド(ホスファゼン)系の材料が知ら
れている。−P=N−P=鎖におけるリン原子Pに2つ
のフェノキシ基(−OC6 5)やフェニルアミノ基(−
NHC6 5)が結合したものが代表的なものであり、重
量平均分子量が数十万のものが絶縁膜形成用材料として
提案されている(特開昭64−45149号公報参
照)。ただし、これら従来の材料は、基本骨格が直鎖構
造であるため、ゴム状物質となり、形態の安定した緻密
な膜を塗布法で形成するのは困難であり、加えて側鎖に
フェニル基(−C6 5)などの有機基を含むため、酸素
プラズマ耐性にも乏しいものであった。
[0008] In order to eliminate the above disadvantages, -Si-O-Si-
It is suggested to use inorganic polymer materials with structures other than
Have been. Stable and promising against heat and air
As the inorganic polymer material, -P = NP-bond is attached to the main chain.
Known phosphonoimide (phosphazene) -based materials
Have been. -P = NP = two phosphorus atoms P in the chain
Phenoxy group (-OC6H Five) Or phenylamino group (-
NHC6HFive) Are typical,
Materials with a number-average molecular weight of hundreds of thousands are used as insulating film forming materials
Has been proposed (see JP-A-64-45149).
See). However, in these conventional materials, the basic skeleton has a linear structure.
Because of its structure, it becomes a rubber-like substance,
It is difficult to form a simple film by the coating method.
Phenyl group (-C6HFive)
The plasma resistance was also poor.

【0009】上記ホスファゼン系重合体のゴム弾性をな
くすためには、−N=P−N=の直鎖分子相互を他の結
合基を用いて連結・架橋させる方法をとることが有効で
ある。一例を挙げると、−CH2 −CH2 −や−CH
(C6 5)−CH2 −で−P=N−P=結合を相互に架
橋することによって弾性を低下させ、緻密な重合体とす
ることが可能であることが報告されている。しかし、こ
れらの結合基は有機基であるため、架橋体の酸素プラズ
マ耐性は乏しいものであった。
In order to eliminate the rubber elasticity of the phosphazene-based polymer, it is effective to take a method of linking and cross-linking -N = PN = linear molecules with each other using another bonding group. By way of example, -CH 2 -CH 2 - or -CH
It has been reported that a (C 6 H 5 ) —CH 2 — can reduce the elasticity by cross-linking the —PNNP— bond with each other, thereby forming a dense polymer. However, since these bonding groups are organic groups, the crosslinked product has poor oxygen plasma resistance.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、埋め
込み性と平坦性に優れ、誘電率が小さく、かつ酸素プラ
ズマに対して劣化が少ない絶縁膜を形成することのでき
る重合体を含有する絶縁膜形成用組成物、該組成物を用
いた絶縁膜形成用塗布液および該塗布液を用いた半導体
装置用絶縁膜の形成方法ならびに該絶縁膜を用いた半導
体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polymer containing a polymer capable of forming an insulating film which is excellent in embedding property and flatness, has a small dielectric constant, and is less deteriorated by oxygen plasma. An object of the present invention is to provide a composition for forming an insulating film, a coating solution for forming an insulating film using the composition, a method for forming an insulating film for a semiconductor device using the coating solution, and a semiconductor device using the insulating film.

【0011】[0011]

【課題を解決するための手段】本発明は、上記問題点を
克服すべく鋭意努力した結果、塗布膜材料中に含まれる
多量の炭素が酸素プラズマ耐性に対し悪影響を及ぼすこ
とを知見し、また、炭素の含有量が少ないか全く含まな
いような塗布形成可能な無機質高分子材料を探索した結
果、主鎖が下記式(a)により表される構造から構成さ
れるホスホノイミドの複数のリン原子相互を、下記式
(b)により表されるシロキサン結合によって架橋した
構造を有する重合体が埋め込み性と平坦性に優れ、誘電
率が小さく、かつ酸素プラズマに対して劣化が少ない絶
縁膜形成用組成物を提供するものである。
The present invention has made intensive efforts to overcome the above problems, and as a result, has found that a large amount of carbon contained in a coating film material has an adverse effect on oxygen plasma resistance. As a result of searching for an inorganic polymer material which can be applied and formed so as to have a small or no carbon content, a plurality of phosphorus atoms of a phosphonoimide having a main chain having a structure represented by the following formula (a) are obtained. Is a polymer having a structure crosslinked by a siloxane bond represented by the following formula (b), which is excellent in embedding and flatness, has a small dielectric constant, and is less deteriorated by oxygen plasma. Is provided.

【0012】すなわち、主鎖が下記式(a)から構成さ
れるホスホノイミドの複数のリン原子相互を、下記式
(b)で表されるシロキサン結合によって架橋した構造
を有する重合体からなる絶縁膜形成用組成物を提供する
ものである。
That is, an insulating film formed of a polymer having a structure in which a plurality of phosphorus atoms of a phosphonoimide having a main chain represented by the following formula (a) are cross-linked by a siloxane bond represented by the following formula (b): To provide a composition for use.

【化2】 (上記式(a)において、nは3以上の整数である。)Embedded image (In the above formula (a), n is an integer of 3 or more.)

【0013】ここで、前記式(b)が、ジメチルジオキ
ソケイ素((CH3 2 Si(O−)2)、モノメチルト
リオキソケイ素((CH3)Si(O−)3)、テトラオキ
ソケイ素(Si(O−)4)であるのが好ましい。
Here, the above formula (b) is represented by dimethyldioxosilicon ((CH 3 ) 2 Si (O—) 2 ), monomethyltrioxosilicon ((CH 3 ) Si (O—) 3 ), tetraoxo Preferably, it is silicon (Si (O-) 4 ).

【0014】また、本発明は、前記絶縁膜形成用組成物
を極性有機溶媒に溶解する絶縁膜形成用塗布液を提供す
るものである。
The present invention also provides an insulating film forming coating solution in which the insulating film forming composition is dissolved in a polar organic solvent.

【0015】また、本発明は、半導体基板上に前記絶縁
膜形成用塗布液を塗布し、加熱乾燥して絶縁膜を得る半
導体装置用絶縁膜の形成方法を提供するものである。
Another object of the present invention is to provide a method for forming an insulating film for a semiconductor device, in which the coating liquid for forming an insulating film is applied on a semiconductor substrate and dried by heating to obtain an insulating film.

【0016】さらに、本発明は、絶縁膜の一部あるいは
全部が前記絶縁膜形成用組成物によって構成されている
半導体集積回路装置を提供するものである。
Further, the present invention provides a semiconductor integrated circuit device in which part or all of an insulating film is constituted by the composition for forming an insulating film.

【0017】[0017]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明による絶縁膜形成用組成物は、主鎖が上記
式(a)で表される構造から構成されるホスホノイミド
の複数のリン原子P−相互を、上記式(b)で表される
シロキサン結合によって架橋した構造を有する重合体か
らなる。該重合体は、上述の式(a)、(b)により表
される繰り返し単位に加え、下記式により表される末端
構造により構成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The composition for forming an insulating film according to the present invention is characterized in that a plurality of phosphorus atoms P- of a phosphonoimide having a main chain composed of a structure represented by the above formula (a) are bonded to each other by a siloxane bond represented by the above formula (b). And a polymer having a crosslinked structure. The polymer is composed of a terminal structure represented by the following formula in addition to the repeating units represented by the above formulas (a) and (b).

【0018】[0018]

【化3】 Embedded image

【0019】上記式において、X1 、X2 は水酸基もし
くは有機基である。X1 とX2 は同一でも異なっていて
もよい。Yは水酸基もしくは有機基である。Z1 〜Z3
は水酸基もしくは低級アルキル基である。Z1 〜Z3
同一でも異なっていてもよい。
In the above formula, X 1 and X 2 are a hydroxyl group or an organic group. X 1 and X 2 may be the same or different. Y is a hydroxyl group or an organic group. Z 1 to Z 3
Is a hydroxyl group or a lower alkyl group. Z 1 to Z 3 may be the same or different.

【0020】本発明の絶縁膜形成用組成物の特徴は、前
記式(a)で表される主鎖の架橋構造と側鎖に前記式
(b)で表されるシロキサン結合を用いることである。
本発明の絶縁膜形成用組成物における構造においては、
ホスファゼンのP−相互の架橋構造中に炭素を含まない
ため、酸素プラズマに対する耐性は著しく高い。架橋に
寄与しないPは残存しないこと、すなわち全てのPが架
橋によって−O−Si−O−と結合されていることが望
ましいが、少量であれば、任意の置換基を置換させるこ
ともできる。任意の置換基は有機基を含まない水酸基が
望ましいが、若干の耐酸素プラズマ性の低下を度外視す
れば、フェノキシ基やフェニルアミノ基でもよい。ま
た、前記式(a)で表される主鎖の構造は、2重結合を
含む構造であるので本発明の絶縁膜形成用組成物を用い
て形成される半導体装置用絶縁膜の誘電率を下げるとい
う効果を持つ。
The feature of the composition for forming an insulating film of the present invention is to use a crosslinked structure of the main chain represented by the above formula (a) and a siloxane bond represented by the above formula (b) in a side chain. .
In the structure of the composition for forming an insulating film of the present invention,
Since the phosphazene contains no carbon in the crosslinked structure of P-interactions, the resistance to oxygen plasma is remarkably high. It is desirable that P not contributing to crosslinking does not remain, that is, all Ps are bonded to -O-Si-O- by crosslinking, but any small number of substituents can be substituted. The optional substituent is preferably a hydroxyl group containing no organic group, but may be a phenoxy group or a phenylamino group if slight decrease in oxygen plasma resistance is not considered. Further, since the structure of the main chain represented by the formula (a) is a structure including a double bond, the dielectric constant of the insulating film for a semiconductor device formed using the insulating film forming composition of the present invention is Has the effect of lowering.

【0021】前記式(b)で表される架橋に用いられる
シロキサン結合は、1つのSiに少なくとも2つの酸素
原子が結合する構造を持ち、さらに酸素原子Oもしくは
メチル基が置換することが好ましい。このシロキサン結
合による架橋構造は、本発明の絶縁膜形成用組成物を用
いて形成される半導体装置用絶縁膜に機械的強度を与え
るとともに、半導体基板上の金属配線を固定できるとい
う効果を与える。該シロキサン結合の構造として、全く
炭素を含まない4官能性のテトラオキソケイ素(Si
(O−)4)であることが最も好ましい。テトラオキソケ
イ素を用いる場合は、1つのSiに対して4本のホスフ
ァゼン鎖が酸素を介して架橋の結合が形成される。テト
ラオキソケイ素だけを用いて架橋した膜は非常に緻密に
なる。しかし、テトラオキソケイ素だけを用いて架橋し
た膜は架橋密度から判断してシロキサン結合末端に遊離
の水酸基を若干含むことが不可避になるため、加熱によ
る収縮が発生する。このため、クラックに対する耐性が
若干低下する傾向がある。また、ジメチルジオキソケイ
素((CH3)2 Si(O−)2)、モノメチルトリオキソケ
イ素((CH3)Si(O−)3)なども架橋用のシロキサン
結合を与えるために好適に用いられる。これらのメチル
基が置換したシロキサン結合を架橋に用いた場合、炭素
含有量は上昇し、若干酸素プラズマ耐性が低下するもの
の、膜に柔軟性が与えられ、良好な耐クラック性、平坦
性が得られる。なお、本発明の絶縁膜形成用組成物の架
橋には、テトラオキソケイ素、モノメチルトリオキソケ
イ素、ジメチルジオキソケイ素の1種もしくは2種以上
を組み合わせて用いてもよい。
The siloxane bond used for crosslinking represented by the above formula (b) has a structure in which at least two oxygen atoms are bonded to one Si, and it is preferable that the oxygen atom O or a methyl group is further substituted. The crosslinked structure formed by the siloxane bond gives the mechanical strength to the insulating film for a semiconductor device formed by using the insulating film forming composition of the present invention, and also has the effect that the metal wiring on the semiconductor substrate can be fixed. As the structure of the siloxane bond, tetrafunctional silicon (Si) containing no carbon is used.
Most preferably (O-) 4 ). When tetraoxosilicon is used, four phosphazene chains for one Si form a crosslinked bond via oxygen. A film cross-linked using only tetraoxosilicon becomes very dense. However, a film cross-linked using only tetraoxosilicon is inevitable to contain some free hydroxyl groups at the siloxane bond terminal, as judged from the cross-linking density, so that shrinkage due to heating occurs. For this reason, the resistance to cracks tends to decrease slightly. Further, dimethyl-dioxo silicon ((CH 3) 2 Si ( O-) 2), also preferably used to provide a siloxane bond for crosslinking such as monomethyl methyltrioxorhenium silicon ((CH 3) Si (O- ) 3) Can be When these methyl-substituted siloxane bonds are used for crosslinking, the carbon content increases and the oxygen plasma resistance slightly decreases, but the film is given flexibility and good crack resistance and flatness are obtained. Can be In the crosslinking of the composition for forming an insulating film of the present invention, one or a combination of two or more of tetraoxosilicon, monomethyltrioxosilicon, and dimethyldioxosilicon may be used.

【0022】本発明の絶縁膜形成用組成物においてPと
Siの組成比は、P:Si=1:1〜2:1であるのが
好ましい。PのSiに対する比が上記範囲よりも大きい
と架橋構造が形成出来ないので好ましくなく、小さいと
該絶縁膜形成用組成物を用いて形成される半導体装置用
絶縁膜の誘電率が大きくなるので好ましくない。本発明
の絶縁膜形成用組成物の重量平均分子量は、5,000
〜20,000である。5,000未満であるとクラッ
ク耐性不良となり、20,000超であると膜形成困難
であるので好ましくない。
In the composition for forming an insulating film of the present invention, the composition ratio of P and Si is preferably P: Si = 1: 1 to 2: 1. When the ratio of P to Si is larger than the above range, a crosslinked structure cannot be formed, which is not preferable. When the ratio is small, the dielectric constant of a semiconductor device insulating film formed using the insulating film forming composition increases, which is preferable. Absent. The weight average molecular weight of the composition for forming an insulating film of the present invention is 5,000.
~ 20,000. If it is less than 5,000, crack resistance becomes poor, and if it exceeds 20,000, it is difficult to form a film, which is not preferable.

【0023】本発明の絶縁膜形成用組成物の主鎖である
ホスファゼン鎖をシロキサン結合により架橋するための
製造方法は特に限定されないが、一例を挙げれば、シク
ロクロロホスファゼントリマー(NPCl2)3 を熱で開
環重合させた重量平均分子量約10,000の直鎖状ク
ロロホスファゼンオリゴマーとテトラメトキシシランな
どのアルコキシシラン、あるいはメチルトリエトキシシ
ランなどのアルキルアルコキシシランとを混合し、水を
加えたピリジンやジエチルアニリン等の活性水素を持た
ないアミンと反応させる等の方法がある。シクロクロロ
ホスファゼントリマーの未反応のClは、アンモニア水
と反応させて水酸基とするか、アニリンやナトリウムフ
ェノキシドと置換させて一部を有機基として安定化させ
ることもできる。本発明の絶縁膜形成用組成物の上記合
成反応は、窒素雰囲気下で行っても大気下で行ってもよ
い。
The production method for crosslinking the phosphazene chain which is the main chain of the composition for forming an insulating film of the present invention by a siloxane bond is not particularly limited. For example, cyclochlorophosphazene trimer (NPCl 2 ) 3 is used. A pyridine obtained by mixing a linear chlorophosphazene oligomer having a weight-average molecular weight of about 10,000 subjected to ring-opening polymerization with heat with an alkoxysilane such as tetramethoxysilane or an alkylalkoxysilane such as methyltriethoxysilane, and adding water. For example, reaction with an amine having no active hydrogen such as diethylaniline or diethylaniline. Unreacted Cl of the cyclochlorophosphazene trimer can be reacted with aqueous ammonia to form a hydroxyl group, or substituted with aniline or sodium phenoxide to partially stabilize it as an organic group. The above synthesis reaction of the composition for forming an insulating film of the present invention may be performed in a nitrogen atmosphere or in the atmosphere.

【0024】本発明の絶縁膜形成用組成物を用いて、本
発明の絶縁膜形成用塗布液を形成するには、任意の溶媒
に任意の濃度で溶解すればよいが、溶解性の観点から、
溶媒は極性有機溶媒が好適に用いられる。このような極
性有機溶媒としては、例えば、ジメチルアセトアミド、
ジメチルスルホキシド等が挙げられる。該塗布液中に
は、本発明の絶縁膜形成用組成物を5〜25重量%溶解
したものが好適に用いられる。5重量%以下であると連
続した塗布膜が形成されず、25重量%超であると粘度
が高くなりすぎて塗布ムラが発生するので好ましくな
い。
In order to form the coating liquid for forming an insulating film of the present invention using the composition for forming an insulating film of the present invention, the composition may be dissolved in any solvent at any concentration. ,
As the solvent, a polar organic solvent is suitably used. Such polar organic solvents include, for example, dimethylacetamide,
Dimethyl sulfoxide and the like. In the coating solution, a solution in which the composition for forming an insulating film of the present invention is dissolved in an amount of 5 to 25% by weight is suitably used. If it is less than 5% by weight, a continuous coating film is not formed, and if it is more than 25% by weight, the viscosity becomes too high and coating unevenness occurs, which is not preferable.

【0025】本発明の絶縁膜形成用塗布液を用いた半導
体装置用絶縁膜の形成方法は、通常のカップを装備した
スピンコータを用い、例えばシリコン基板上に形成され
た配線パターン上に本発明の絶縁膜形成用塗布液を滴下
し、回転数1,000〜6,000回転/分で拡げ、溶
媒を自然乾燥後、100〜250℃に加熱したホットプ
レート上で完全に乾燥させる方法である。乾燥後の熱処
理は、一般に不要であるが、脱ガスを最小限とするため
に、最高450℃、好ましくは350〜400℃の範囲
において窒素中で最大1時間、好ましくは30分間キュ
ア処理を行うのが望ましい。こうして、絶縁膜の一部あ
るいは全部が、本発明の絶縁膜形成用組成物からなる半
導体装置用絶縁膜である半導体集積回路装置を製造する
ことができる。
The method of forming an insulating film for a semiconductor device using the coating liquid for forming an insulating film of the present invention uses a spin coater equipped with a usual cup, and for example, the present invention is applied to a wiring pattern formed on a silicon substrate. This is a method in which a coating liquid for forming an insulating film is dropped, spread at 1,000 to 6,000 rpm, and the solvent is naturally dried, and then completely dried on a hot plate heated to 100 to 250 ° C. Heat treatment after drying is generally not required, but to minimize outgassing, cure in nitrogen up to 450 ° C, preferably 350-400 ° C for up to 1 hour, preferably 30 minutes. It is desirable. In this manner, a semiconductor integrated circuit device in which part or all of the insulating film is a semiconductor device insulating film made of the composition for forming an insulating film of the present invention can be manufactured.

【0026】[0026]

【実施例】以下に、本発明を実施例に基づいてさらに具
体的に説明するが、本発明はこれらの実施例に限定され
るものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0027】1.重合体の合成 (実施例1)三ツ口フラスコに、シクロヘキサクロロト
リスホスホノニトリル(シクロクロロホスファゼントリ
マー(NPCl2)3)30g、溶媒として1,2−ジクロ
ロベンゼン30g、触媒としてジメチルジチオカルバミ
ン酸亜鉛0.5gを仕込み、0.5Torr(66.6
6Pa)で1時間真空脱気後、窒素気流下で24時間還
流して、直鎖状のクロロホスファゼンポリマーを得た。
生成物をn−ヘプタンで沈殿させ、テトラヒドロフラン
で再溶解して精製後、メタノールに分散させ、クロロホ
スファゼンポリマーの懸濁液(A)を得た。クロロホス
ファゼンポリマーの懸濁液(A)の合成とは別に、テト
ラメトキシシランの1%メタノール溶液20gを氷冷
し、0.1mol/dm3 のリン酸約2gを撹拌しつつ
徐々にこれに加え加水分解することによって、テトラヒ
ドロキシシラン(オルトケイ酸)の溶液22g(B)を
調整した。(B)を作成後、ただちに前記(A)に撹拌
しつつ加えた。撹拌を続けながら0.1mol/dm3
のN,N−ジメチルアニリンを徐々に加え、pHを9.
0に調整した。ついで200℃に加熱しながら24時間
還流を行ってテトラヒドロキシシランによるクロロホス
ファゼンポリマーの架橋反応を完了させた。架橋反応完
了後、15%テトラメチルアンモニウム水溶液200g
を加え余剰の塩素基を全て水酸基に置換した。生成物を
濾過、水洗して目的の重合体(C)を得た。核磁気共鳴
法によって重合体(C)の構造を解析したところ、下記
式(1)に示すシロキサン結合で架橋された重合体が生
成していることを確認した。なお、収率は45%であっ
た。また、サイズ排除クロマトグラフィーによって重合
体(C)の重量平均分子量を測定したところ、約8,0
00であった。
1. Synthesis of Polymer (Example 1) In a three- necked flask, 30 g of cyclohexachlorotrisphosphononitrile (cyclochlorophosphazene trimer (NPCl 2 ) 3 ), 30 g of 1,2-dichlorobenzene as a solvent, and 0.5 g of zinc dimethyldithiocarbamate as a catalyst. 5 g, and 0.5 Torr (66.6)
After deaeration under vacuum at 6 Pa) for 1 hour, the mixture was refluxed for 24 hours under a nitrogen stream to obtain a linear chlorophosphazene polymer.
The product was precipitated with n-heptane, redissolved in tetrahydrofuran, purified, and then dispersed in methanol to obtain a suspension (A) of a chlorophosphazene polymer. Separately from the synthesis of the chlorophosphazene polymer suspension (A), 20 g of a 1% methanol solution of tetramethoxysilane is ice-cooled, and about 2 g of 0.1 mol / dm 3 phosphoric acid is gradually added thereto with stirring. By hydrolysis, 22 g (B) of a solution of tetrahydroxysilane (orthosilicic acid) was prepared. Immediately after preparing (B), it was added to (A) with stirring. 0.1 mol / dm 3 with continuous stirring
Of N, N-dimethylaniline was gradually added to adjust the pH to 9.
Adjusted to zero. Then, the mixture was refluxed for 24 hours while heating to 200 ° C. to complete the crosslinking reaction of the chlorophosphazene polymer with tetrahydroxysilane. After the completion of the crosslinking reaction, 200 g of a 15% aqueous solution of tetramethylammonium
Was added to replace all excess chlorine groups with hydroxyl groups. The product was filtered and washed with water to obtain the desired polymer (C). When the structure of the polymer (C) was analyzed by a nuclear magnetic resonance method, it was confirmed that a polymer crosslinked by a siloxane bond represented by the following formula (1) was formed. The yield was 45%. When the weight average molecular weight of the polymer (C) was measured by size exclusion chromatography, it was found to be about 8.0.
00.

【0028】[0028]

【化4】 Embedded image

【0029】(実施例2)(B)を合成する際、テトラ
メトキシシランに代えてメチルトリメトキシシランを用
いた他は実施例1と同一の方法で目的の重合体(C')を
得た。核磁気共鳴法によって重合体(C')の構造を解析
したところ、下記式(2)に示すシロキサン結合で架橋
された重合体が生成していることを確認した。なお、収
率は45%であった。また、サイズ排除クロマトグラフ
ィーによって重合体(C)の重量平均分子量を測定した
ところ、約6,000であった。
Example 2 The desired polymer (C ') was obtained in the same manner as in Example 1 except that methyltrimethoxysilane was used in place of tetramethoxysilane when synthesizing (B). . When the structure of the polymer (C ′) was analyzed by a nuclear magnetic resonance method, it was confirmed that a polymer crosslinked by a siloxane bond represented by the following formula (2) was formed. The yield was 45%. The weight average molecular weight of the polymer (C) measured by size exclusion chromatography was about 6,000.

【0030】[0030]

【化5】 Embedded image

【0031】(実施例3)(B)を合成する際、テトラ
メトキシシランに代えてジメチルジメトキシシランを用
いた他は実施例1と同一の方法で目的の重合体(C'')
を得た。核磁気共鳴法によって重合体(C'')の構造を
解析したところ、下記式(3)に示すシロキサン結合で
架橋された重合体が生成していることを確認した。な
お、収率は45%であった。また、サイズ排除クロマト
グラフィーによって重合体(C)の重量平均分子量を測
定したところ、約4,000であった。
Example 3 The desired polymer (C ″) was synthesized in the same manner as in Example 1 except that dimethyldimethoxysilane was used instead of tetramethoxysilane when synthesizing (B).
I got When the structure of the polymer (C ″) was analyzed by a nuclear magnetic resonance method, it was confirmed that a polymer crosslinked by a siloxane bond represented by the following formula (3) was formed. The yield was 45%. The weight average molecular weight of the polymer (C) measured by size exclusion chromatography was about 4,000.

【0032】[0032]

【化6】 Embedded image

【0033】2.塗布液の作成 生成した架橋重合体(C)10gをジメチルアセトアミ
ド90gに加熱溶解し、固形分10%に相当する塗布液
を得た。同様にして(C')、(C'')を用いて塗布液を
作成した。
2. Preparation of Coating Liquid 10 g of the produced crosslinked polymer (C) was heated and dissolved in 90 g of dimethylacetamide to obtain a coating liquid corresponding to a solid content of 10%. Similarly, a coating liquid was prepared using (C ′) and (C ″).

【0034】3.半導体装置用絶縁膜の形成 シリコンウェーハをスピンコータに取付け、通常の回転
塗布法によって上記塗布液(C)、(C')、(C'')を
各々ウェーハに塗布した。100℃、150℃、200
℃で各1分ベークして溶媒を乾燥させた後、炉に入れて
400℃で30分加熱してキュアを完了し、絶縁膜を形
成した。
3. Formation of Insulating Film for Semiconductor Device A silicon wafer was mounted on a spin coater, and the above-mentioned coating solutions (C), (C ′), and (C ″) were applied to the wafer by a normal spin coating method. 100 ° C, 150 ° C, 200
After baking for 1 minute each at ℃ to dry the solvent, it was placed in a furnace and heated at 400 ° C. for 30 minutes to complete the curing and form an insulating film.

【0035】4.絶縁膜の特性の測定 得られた絶縁膜について、誘電率、酸素プラズマに対す
る耐性、耐熱性、耐クラック性を下記の方法により測
定、評価した。 誘電率 形成した膜の誘電率は、膜厚方向にAl電極を形成して
1MHzにおいて測定した。 酸素プラズマに対する耐性 酸素プラズマに対する耐性の評価方法は、水の透過性の
変化を測定する方法によった。すなわち、水の透過性の
測定は、3000ÅのPSG(リンドープSiO2 膜)
の上に上記絶縁膜を3000Åの厚さに堆積し、そのま
ま80℃の重水中に24時間浸漬後、PSGに到達した
重水素量をSIMS(二次イオン質量分析法)により測
定した。酸素アッシャに室温で1分暴露する前と後の水
の透過性を上述の方法で測定し、その変化を酸素プラズ
マ耐性として評価した。 耐熱性 耐熱性は、熱天秤を用いて、上記重合体の粉末を窒素中
で加熱し、重量減少が3%を超える温度を測定し、比
較、評価した。 耐クラック性 耐クラック性は、絶縁膜を塗布形成後、クラックの発生
しない塗布膜厚の限界値を計測することにより測定し
た。
4. Measurement of Characteristics of Insulating Film For the obtained insulating film, the dielectric constant, resistance to oxygen plasma, heat resistance, and crack resistance were measured and evaluated by the following methods. Dielectric constant The dielectric constant of the formed film was measured at 1 MHz by forming an Al electrode in the film thickness direction. Resistance to Oxygen Plasma The method for evaluating the resistance to oxygen plasma was based on a method of measuring a change in water permeability. In other words, the measurement of water permeability is performed using a 3000 ° PSG (phosphorus-doped SiO 2 film).
The above insulating film was deposited to a thickness of 3000 ° on the substrate, immersed in heavy water at 80 ° C. for 24 hours, and then the amount of deuterium reaching PSG was measured by SIMS (secondary ion mass spectrometry). Water permeability before and after exposure to an oxygen asher for 1 minute at room temperature was measured by the above-described method, and the change was evaluated as oxygen plasma resistance. Heat resistance The heat resistance was determined by heating the above polymer powder in nitrogen using a thermobalance, measuring the temperature at which the weight loss exceeded 3%, and comparing and evaluating the temperature. Crack resistance The crack resistance was measured by measuring the limit value of the coating film thickness in which cracks did not occur after forming the insulating film.

【0036】表1に評価を行った塗布膜の膜特性を掲げ
た。なお、表1には比較例として下記式(4)の構造を
有する無機SOG、下記式(5)の構造を有する有機S
OG、下記式(6)の構造を有するポリイミド樹脂、お
よび下記式(7)の構造を有するフェニルアミノホスフ
ァゼンポリマーの特性も併せて掲げた。
Table 1 shows the film properties of the coating films evaluated. Table 1 shows, as comparative examples, inorganic SOG having a structure of the following formula (4) and organic S having a structure of the following formula (5).
Properties of OG, a polyimide resin having the structure of the following formula (6), and a phenylaminophosphazene polymer having a structure of the following formula (7) are also listed.

【0037】[0037]

【化7】 Embedded image

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように、実施例1、2、
3に示される、本発明による主鎖が前記式(a)から構
成されるホスホノイミドの複数のリン原子相互を、前記
式(b)で表されるシロキサン結合によって架橋した構
造を有する重合体からなる絶縁膜形成用組成物は、著し
く高い膜性能を有していることが実証された。
As is clear from Table 1, Examples 1, 2,
3, a main chain according to the present invention comprises a polymer having a structure in which a plurality of phosphorus atoms of a phosphonoimide composed of the formula (a) are cross-linked by a siloxane bond represented by the formula (b). It was proved that the composition for forming an insulating film had remarkably high film performance.

【0040】[0040]

【発明の効果】以上詳述したように、本発明によれば、
他の絶縁膜形成用材料と比べて耐クラック性が著しく高
く、誘電率も、例えば、3.0未満と十分に低い絶縁膜
を形成することができる。また、本発明によれば、酸素
プラズマ照射に対しても劣化が全く見られないという特
徴を有する。すなわち、本発明によれば、厚塗り平坦化
が可能であり、高速動作が可能な絶縁膜を形成するのに
極めて有利であるばかりか、後続のヴィア加工のアッシ
ングに対しても高い抵抗力を発揮する。
As described in detail above, according to the present invention,
Crack resistance is remarkably higher than other insulating film forming materials, and an insulating film having a sufficiently low dielectric constant of, for example, less than 3.0 can be formed. Further, according to the present invention, there is a feature that no deterioration is observed even with oxygen plasma irradiation. That is, according to the present invention, thick coating flattening is possible, which is extremely advantageous for forming an insulating film capable of high-speed operation, and also has high resistance to ashing in subsequent via processing. Demonstrate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】主鎖が下記式(a)から構成されるホスホ
ノイミドの複数のリン原子相互を、下記式(b)で表さ
れるシロキサン結合によって架橋した構造を有する重合
体からなる絶縁膜形成用組成物。 【化1】 (上記式(a)において、nは3以上の整数である。)
An insulating film is formed of a polymer having a structure in which a plurality of phosphorus atoms of a phosphonoimide having a main chain represented by the following formula (a) are cross-linked by a siloxane bond represented by the following formula (b): Composition. Embedded image (In the above formula (a), n is an integer of 3 or more.)
【請求項2】前記式(b)が、ジメチルジオキソケイ素
((CH3 2 Si(O−)2 )、モノメチルトリオキ
ソケイ素((CH3 )Si(O−)3 )、テトラオキソ
ケイ素(Si(O−)4 )であることを特徴とする請求
項1に記載の絶縁膜形成用組成物。
2. The compound represented by the formula (b) is dimethyldioxosilicon ((CH 3 ) 2 Si (O—) 2 ), monomethyltrioxosilicon ((CH 3 ) Si (O—) 3 ), tetraoxosilicon. The composition for forming an insulating film according to claim 1, wherein the composition is (Si (O-) 4 ).
【請求項3】請求項1または2に記載の絶縁膜形成用組
成物を極性有機溶媒に溶解することを特徴とする絶縁膜
形成用塗布液。
3. A coating solution for forming an insulating film, comprising dissolving the composition for forming an insulating film according to claim 1 in a polar organic solvent.
【請求項4】半導体基板上に請求項3に記載の絶縁膜形
成用塗布液を塗布し、加熱乾燥して絶縁膜を得ることを
特徴とする半導体装置用絶縁膜の形成方法。
4. A method for forming an insulating film for a semiconductor device, comprising applying the coating liquid for forming an insulating film according to claim 3 onto a semiconductor substrate, and heating and drying to obtain an insulating film.
【請求項5】絶縁膜の一部あるいは全部が請求項1また
は2に記載の絶縁膜形成用組成物によって構成されてい
ることを特徴とする半導体装置。
5. A semiconductor device, wherein a part or all of an insulating film is constituted by the composition for forming an insulating film according to claim 1.
JP8215679A 1996-08-15 1996-08-15 Composition for formation of insulating film, coating liquid for formation of insulating film and formation method of insulating film for semiconductor device using it as well as semiconductor device Withdrawn JPH1064895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215679A JPH1064895A (en) 1996-08-15 1996-08-15 Composition for formation of insulating film, coating liquid for formation of insulating film and formation method of insulating film for semiconductor device using it as well as semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215679A JPH1064895A (en) 1996-08-15 1996-08-15 Composition for formation of insulating film, coating liquid for formation of insulating film and formation method of insulating film for semiconductor device using it as well as semiconductor device

Publications (1)

Publication Number Publication Date
JPH1064895A true JPH1064895A (en) 1998-03-06

Family

ID=16676373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215679A Withdrawn JPH1064895A (en) 1996-08-15 1996-08-15 Composition for formation of insulating film, coating liquid for formation of insulating film and formation method of insulating film for semiconductor device using it as well as semiconductor device

Country Status (1)

Country Link
JP (1) JPH1064895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160139504A (en) * 2015-05-27 2016-12-07 주성엔지니어링(주) Method for manufacturing of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160139504A (en) * 2015-05-27 2016-12-07 주성엔지니어링(주) Method for manufacturing of semiconductor device

Similar Documents

Publication Publication Date Title
KR101610978B1 (en) Low-k dielectrics obtainable by twin polymerization
US7504470B2 (en) Polyorganosiloxane dielectric materials
JP7053139B2 (en) Polymers, organic film compositions, and pattern forming methods
US20060293482A1 (en) Organo functionalized silane monomers and siloxane polymers of the same
US20050090570A1 (en) Composition for forming dielectric film and method for forming dielectric film or pattern using the composition
EP1760774A1 (en) Laminated body and semiconductor device
JP3015104B2 (en) Semiconductor device and manufacturing method thereof
US7357961B2 (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7514709B2 (en) Organo-silsesquioxane polymers for forming low-k dielectrics
KR101810610B1 (en) Monomer, organic layer composition, organic layer, and method of forming patterns
TWI283254B (en) Film-forming composition containing carbosilane-based polymer and film obtained from the same
JPH1064895A (en) Composition for formation of insulating film, coating liquid for formation of insulating film and formation method of insulating film for semiconductor device using it as well as semiconductor device
JP4344903B2 (en) Materials for forming interlayer insulation film for semiconductor elements
US8216647B2 (en) Insulating film, process for producing the same and electronic device using the same
KR102015404B1 (en) Composition for forming silica layer, method for manufacturing silica layer, and electric device includimg silica layer
TWI824696B (en) Hardmask composition, hardmask layer, and method of forming patterns
KR20170100987A (en) Composition for forming silica layer, method for manufacturing silica layer, and silica layer
JPH11217440A (en) Fluoroalkyl-containing polysiloxane, low-permittivity resin composition, and article
JP4324786B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, INSULATING FILM AND SEMICONDUCTOR DEVICE
TWI836565B (en) Hardmask composition, hardmask layer, and method of forming patterns
KR20190075581A (en) Organic layer composition, and method of forming patterns
KR20230029051A (en) Hardmask composition, hardmask layer and method of forming patterns
JP2004292767A (en) Insulation film-forming material and insulation film using the same
KR20230101485A (en) Hardmask composition, hardmask layer and method of forming patterns
JP4596099B2 (en) Film forming composition and insulating film forming material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104