JPH1064765A - Method of manufacturing electric double layer capacitor - Google Patents

Method of manufacturing electric double layer capacitor

Info

Publication number
JPH1064765A
JPH1064765A JP8221551A JP22155196A JPH1064765A JP H1064765 A JPH1064765 A JP H1064765A JP 8221551 A JP8221551 A JP 8221551A JP 22155196 A JP22155196 A JP 22155196A JP H1064765 A JPH1064765 A JP H1064765A
Authority
JP
Japan
Prior art keywords
slurry
electric double
layer capacitor
double layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8221551A
Other languages
Japanese (ja)
Other versions
JP3824354B2 (en
Inventor
Manabu Kazuhara
学 数原
Takeshi Morimoto
剛 森本
Kazuya Hiratsuka
和也 平塚
Takeshi Kawasato
健 河里
Manabu Tsushima
学 對馬
Yoshikatsu Kimura
好克 木村
Masanao Kobayashi
真直 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22155196A priority Critical patent/JP3824354B2/en
Publication of JPH1064765A publication Critical patent/JPH1064765A/en
Application granted granted Critical
Publication of JP3824354B2 publication Critical patent/JP3824354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a product having a sufficiently high energy density and permitting the quick charging-discharging by preparing a slurry contg. polyvinylidene fluoride and a water-soluble high molecular substance having a hydroxyl group. SOLUTION: A slurry contg. a C material having a specific surface area of 1500m<2> or more and conductive material for giving conductivity is applied to a metal collector plate and dried to form polar electrodes to be a positive and negative electrodes, these electrodes are wound or laminated through separators and impregnated with a non-aqueous electrolytic liq. to form an element which is housed in a case to produce an electric double layer capacitor. The slurry contains polyvinylidene fluoride 0.1-5wt.% and a water-soluble high molecular substance having a hydroxyl group 0.05-5wt.% and this high molecular substance uses polyvinyl alcohol, cellulose deriv. etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は1F以上のパワー用
途の低抵抗大容量電気二重層キャパシタの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a low-resistance large-capacity electric double layer capacitor for use in power of 1F or more.

【0002】[0002]

【従来の技術】従来のパワー用低抵抗大容量電気二重層
キャパシタは、集電体に活性炭粉末を主体とする薄膜状
分極性電極を担持してなる対向する一対の電極をセパレ
ータを介して巻回し、電解液を含浸させてケースに収容
し、このケースの開口部を電解液が蒸発しないように封
口ゴム又はフェノール樹脂板等からなる封口部材で封口
して構成している。
2. Description of the Related Art A conventional low-resistance large-capacity electric double-layer capacitor for power uses a thin film-like polarizable electrode mainly composed of activated carbon powder supported on a current collector by winding a pair of opposed electrodes through a separator. The case is rotated and impregnated with an electrolytic solution, accommodated in a case, and the opening of the case is sealed with a sealing member made of a sealing rubber or a phenolic resin plate so that the electrolytic solution does not evaporate.

【0003】また、特開平4−154106には、大電
流大容量化を目的として、セパレータを介して電極を多
数積層した素子が組み込まれた電気二重層キャパシタが
提案されている。例えば、矩形に成形された分極性電極
を正極及び負極とし、間にセパレータを配置して交互に
多数積み重ねた素子を、正極と負極の端部に正極リード
部材及び負極リード部材をかしめなどにより接続してア
ルミニウムケースに収容し、電解液を含浸させてアルミ
ニウム上蓋で密閉している。
Further, Japanese Patent Application Laid-Open No. 4-154106 proposes an electric double layer capacitor in which an element in which a number of electrodes are stacked via a separator is incorporated for the purpose of increasing the current and the capacity. For example, a polarizable electrode formed in a rectangular shape is used as a positive electrode and a negative electrode, a separator is interposed therebetween, and a large number of alternately stacked elements are connected to the ends of the positive electrode and the negative electrode by caulking a positive electrode lead member and a negative electrode lead member. And housed in an aluminum case, impregnated with an electrolytic solution, and sealed with an aluminum top lid.

【0004】これらの電気二重層キャパシタを構成する
電極は、従来、正極と負極のいずれもが大きな比表面積
を有する炭素材料を主体として構成されていた。
Conventionally, electrodes constituting these electric double layer capacitors have been mainly composed of a carbon material having a large specific surface area for both a positive electrode and a negative electrode.

【0005】これまで、炭素材料のスラリーを金属集電
体に担持させるためのバインダとしては、ポリテトラフ
ルオロエチレン、ポリフッ化ビニリデン、ポリビニルピ
ロリドン、カルボキシメチルセルロース等が提案されて
いる。このうち、特開平8−55761で提案されてい
るように、ポリフッ化ビニリデンは皮膜形成能に優れ
る。しかし、いずれのバインダを用いても、集電体への
強い密着力、低い直流抵抗、及び大きい静電容量を同時
に満足する分極性電極は見出されていない。
Hitherto, polytetrafluoroethylene, polyvinylidene fluoride, polyvinylpyrrolidone, carboxymethylcellulose and the like have been proposed as a binder for supporting a slurry of a carbon material on a metal current collector. Among them, as proposed in JP-A-8-55761, polyvinylidene fluoride has excellent film-forming ability. However, no polarizable electrode that simultaneously satisfies strong adhesion to the current collector, low DC resistance, and large capacitance has been found using any of the binders.

【0006】[0006]

【発明が解決しようとする課題】活性炭等の炭素材料を
電極として用いた従来の電気二重層キャパシタでは、使
用する溶媒と溶質の選択にもよるが、一素子あたりの通
常の耐電圧が非水系電解液を用いた場合で約2.0〜
2. 8Vである。より多くのエネルギーを急速に取り出
せるように、さらにキャパシタの耐電圧を高め容量密度
を大きくしてエネルギー密度を増大させること、及び内
部抵抗の低減により出力密度を増大させることが望まれ
ている。
In a conventional electric double layer capacitor using a carbon material such as activated carbon as an electrode, the normal withstand voltage per element depends on the selection of a solvent and a solute to be used. About 2.0 ~ when using electrolyte
2.8V. It is desired to increase the energy density by increasing the withstand voltage of the capacitor and increasing the capacitance density so that more energy can be rapidly extracted, and to increase the output density by reducing the internal resistance.

【0007】従来、電気二重層キャパシタの容量を大き
くするため、炭素材料としてより比表面積の大きな活性
炭やポリアセンが用いられてきたが、活性炭やポリアセ
ンの比表面積は約3000m2 /gが限度であり、大比
表面積の炭素材料を用いた電気二重層キャパシタの単位
重量あたりの容量もほぼ限界に近付いている。
Conventionally, in order to increase the capacity of the electric double layer capacitor, activated carbon or polyacene having a larger specific surface area has been used as a carbon material. However, the specific surface area of activated carbon or polyacene is limited to about 3000 m 2 / g. Also, the capacity per unit weight of an electric double layer capacitor using a carbon material having a large specific surface area has almost reached its limit.

【0008】また、10A以上の大電流で充放電できる
電気二重層キャパシタが、電気自動車、回生制動エネル
ギー貯蔵等の用途に有望とされているが、その実用化の
ためにエネルギー密度が充分に高く、かつ急速充放電が
でき、電圧印加時の容量経時低下が少ない高信頼性の低
抵抗電気二重層キャパシタの実現が望まれている。
An electric double layer capacitor capable of charging and discharging with a large current of 10 A or more is expected to be used for electric vehicles, regenerative braking energy storage, etc., but has a sufficiently high energy density for practical use. It has been desired to realize a highly reliable low-resistance electric double-layer capacitor that can perform rapid charge and discharge and has little decrease in capacity with time when voltage is applied.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
すべくなされたものであり、比表面積1500m2 以上
の炭素材料と導電性を付与する導電材とを含むスラリー
を金属集電板上に塗布し、乾燥することにより得られた
分極性電極を正極及び負極とし、該正極と負極をセパレ
ータを介して巻回又は積層して非水系電解液を含浸させ
た素子をケースに収容する電気二重層キャパシタの製造
方法において、前記スラリーがポリフッ化ビニリデンと
水酸基を有する水溶性高分子物質とを含むことを特徴と
する電気二重層キャパシタの製造方法を提供する。
Means for Solving the Problems The present invention has been made to achieve the above object, and a slurry containing a carbon material having a specific surface area of 1500 m 2 or more and a conductive material for imparting conductivity is coated on a metal current collector plate. The polarizable electrodes obtained by coating and drying are used as a positive electrode and a negative electrode, and the element in which the positive electrode and the negative electrode are wound or laminated via a separator and impregnated with a non-aqueous electrolyte is accommodated in a case. A method for manufacturing an electric double layer capacitor, wherein the slurry contains polyvinylidene fluoride and a water-soluble polymer having a hydroxyl group.

【0010】本発明では、電気二重層キャパシタの耐電
圧を高めるため、電解液の溶媒には非水系溶媒が使用さ
れる。プロピレンカーボネート、エチレンカーボネー
ト、ジエチルカーボネート、ジメトキシエタン、ブチレ
ンカーボネート、スルホラン、メチルスルホラン、ジメ
チルカーボネート、エチルメチルカーボネートから選ば
れる1種以上からなる溶媒が、化学的及び電気化学的な
安定性、電気伝導度及び低温特性の点で好ましい。
In the present invention, a non-aqueous solvent is used as a solvent for the electrolytic solution in order to increase the withstand voltage of the electric double layer capacitor. Solvent composed of at least one selected from propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, butylene carbonate, sulfolane, methylsulfolane, dimethyl carbonate, ethyl methyl carbonate has chemical and electrochemical stability and electrical conductivity. And low temperature characteristics.

【0011】電解質としては、R1234+
1234+ (ただし、R1 〜R4 はそれぞれ
炭素数1〜5のアルキル基であり、同じでも異なっても
よい。)等の第4級オニウムカチオンと、BF4 -、N
(CF3 SO22 -、PF6 -、ClO4 -等のアニオンと
を組み合わせた塩を用い、上記の非水系溶媒に溶解させ
た低水分である電解液を使用することが好ましい。具体
的には(C253 (CH3 )NBF4 、(C2
54 NBF4 、(C253 (CH3 )PBF 4
が挙げられる。
As the electrolyte, R1 RTwo RThree RFour N+ ,
R1 RTwo RThree RFour P+ (However, R1 ~ RFour Are each
An alkyl group having 1 to 5 carbon atoms, the same or different
Good. ) And BFFour -, N
(CFThree SOTwo )Two -, PF6 -, ClOFour -With anions such as
Using a salt combining the above, dissolved in the above non-aqueous solvent
It is preferable to use an electrolyte having a low water content. Concrete
Typically (CTwo HFive )Three (CHThree ) NBFFour , (CTwo H
Five )Four NBFFour , (CTwo HFive )Three (CHThree ) PBF Four etc
Is mentioned.

【0012】本発明における分極性電極は、比表面積が
1500m2 /g以上の炭素材料、導電性を付与する導
電材、結合材、水酸基を有する水溶性高分子物質、及び
金属集電板で構成される。この分極性電極は例えば以下
の方法で形成できる。すなわち、活性炭粉末、カーボン
ブラック、ポリフッ化ビニリデン、水溶性高分子物質を
溶媒と混合してスラリーとし、金属集電板に塗布又は浸
漬し、乾燥し、必要に応じてプレスし、集電体と一体化
した分極性電極を得る。
The polarizable electrode of the present invention comprises a carbon material having a specific surface area of 1500 m 2 / g or more, a conductive material for imparting conductivity, a binder, a water-soluble polymer having a hydroxyl group, and a metal current collector. Is done. This polarizable electrode can be formed, for example, by the following method. That is, activated carbon powder, carbon black, polyvinylidene fluoride, and a water-soluble polymer substance are mixed with a solvent to form a slurry, applied or immersed in a metal current collector, dried, pressed as necessary, and pressed with a current collector. Obtain an integrated polarizable electrode.

【0013】本発明でスラリーに含まれるポリフッ化ビ
ニリデンは、皮膜形成能に優れるため、主に結合材とし
て機能する。他に結合材として機能するものとして、カ
ルボキシメチルセルロース類又はそのアルカリ金属塩、
ポリビニルピロリドン、ポリイミド、又はポリテトラフ
ルオロエチレン等を併用することもできる。
The polyvinylidene fluoride contained in the slurry of the present invention has excellent film-forming ability, and thus mainly functions as a binder. Others that function as a binder, carboxymethyl celluloses or alkali metal salts thereof,
Polyvinylpyrrolidone, polyimide, polytetrafluoroethylene, or the like can be used in combination.

【0014】スラリーの溶媒としては、ポリフッ化ビニ
リデンを溶解するか又は均一に分散するものが好まし
く、N−メチルピロリドン、ジメチルホルムアミド、ト
ルエン、キシレン、メチルエチルケトン、酢酸エチル、
酢酸メチル、フタル酸ジメチル、エタノール、メタノー
ル、ブタノール、水等が適宜選択される。
As the solvent for the slurry, those which dissolve or uniformly disperse polyvinylidene fluoride are preferable, and N-methylpyrrolidone, dimethylformamide, toluene, xylene, methyl ethyl ketone, ethyl acetate,
Methyl acetate, dimethyl phthalate, ethanol, methanol, butanol, water and the like are appropriately selected.

【0015】ポリフッ化ビニリデンのスラリー中の濃度
は、0.1〜5重量%が好ましい。0.1重量%未満で
あると、分極性電極層の強度が低下し、また集電体との
密着力が低下するので好ましくない。5重量%超である
と、スラリーの粘度が高くなりすぎて所望の分極性電極
層を形成するのが困難になったり、分極性電極の直流抵
抗が高くなるので好ましくない。より好ましくは0.3
〜2重量%である。
The concentration of polyvinylidene fluoride in the slurry is preferably 0.1 to 5% by weight. If the amount is less than 0.1% by weight, the strength of the polarizable electrode layer is reduced, and the adhesion to the current collector is reduced, which is not preferable. If it exceeds 5% by weight, the viscosity of the slurry becomes too high, making it difficult to form a desired polarizable electrode layer, or the DC resistance of the polarizable electrode is undesirably high. More preferably 0.3
~ 2% by weight.

【0016】本発明では、金属集電板上に分極性電極層
を形成させるスラリーに水酸基を有する水溶性高分子物
質を添加することにより、金属集電板と分極性電極層の
密着性が良く、抵抗が低くかつ静電容量が大きい分極性
電極が得られる。
In the present invention, the adhesion between the metal current collector and the polarizable electrode layer is improved by adding a water-soluble polymer having a hydroxyl group to the slurry for forming the polarizable electrode layer on the metal current collector. Thus, a polarizable electrode having low resistance and large capacitance can be obtained.

【0017】この効果の理由は明らかではないが、水酸
基を有する水溶性高分子物質を添加することにより、炭
素材料微粉末と導電材微粉末のスラリー中での分散性が
向上し、高比表面積の炭素材料微粉末の周囲を導電材微
粉末が均一に被覆することにより、分極性電極層と金属
集電体の密着性を強化し、抵抗を低減できたものと思わ
れる。
Although the reason for this effect is not clear, the dispersibility of the fine carbon material powder and the fine conductive material powder in the slurry is improved by adding a water-soluble polymer having a hydroxyl group, and the high specific surface area is obtained. It is considered that by uniformly covering the periphery of the carbon material fine powder with the conductive material fine powder, the adhesion between the polarizable electrode layer and the metal current collector was enhanced, and the resistance was reduced.

【0018】導電材の粒径は、比表面積1500m2
g以上の炭素材料の平均粒径より小さくすると分極性電
極の直流抵抗を効果的に低減できる。好ましくは該炭素
材料の平均粒径の5分の1以下の平均粒径を有する導電
材粉末が採用される。具体的には、例えば平均粒径1μ
m以下の導電材微粉末が採用される。
The particle size of the conductive material is 1500 m 2 /
When the average particle diameter of the carbon material is not less than g, the DC resistance of the polarizable electrode can be effectively reduced. Preferably, a conductive material powder having an average particle size of 1/5 or less of the average particle size of the carbon material is used. Specifically, for example, an average particle diameter of 1 μm
m or less conductive material fine powder is employed.

【0019】本発明では、ポリフッ化ビニリデンが結合
材としての機能を有するので、金属集電板上に電極層を
形成した後、水酸基を有する水溶性高分子物質が加熱に
より変質しても分極性電極層と金属集電体の密着性、抵
抗、静電容量等の特性は変わらない。したがって、水酸
基を有する水溶性高分子物質は高温で安定でなくてもよ
い。
In the present invention, since polyvinylidene fluoride has a function as a binder, after the electrode layer is formed on the metal current collector, even if the water-soluble polymer substance having a hydroxyl group is transformed by heating, the polarizability is increased. The characteristics such as adhesion, resistance and capacitance between the electrode layer and the metal current collector do not change. Therefore, the water-soluble polymer having a hydroxyl group may not be stable at high temperatures.

【0020】水酸基を有する水溶性高分子物質は、分子
内に他の官能基があってもよいが、カルボン酸、アンモ
ニウム等のイオン解離性の官能基は少ないほうがスラリ
ーの粘性が高くならず固形分濃度の高いスラリーを得や
すいので好ましい。例えば、ポリビニルアルコール、セ
ルロース誘導体等が好ましい。なかでもポリビニルアル
コールが安価で高純度のものを得やすく特性向上効果が
大きいので特に好ましい。
The water-soluble polymer substance having a hydroxyl group may have other functional groups in the molecule, but the smaller the number of ion-dissociative functional groups such as carboxylic acid and ammonium, the higher the viscosity of the slurry and the higher the solid content. This is preferable because it is easy to obtain a slurry having a high concentration of components. For example, polyvinyl alcohol, cellulose derivatives and the like are preferable. Among them, polyvinyl alcohol is particularly preferable because it is inexpensive and easily obtains a high-purity one, and has a large effect of improving properties.

【0021】水酸基を有する水溶性高分子物質の分子量
は、スラリーへの溶解性とスラリーの粘度上昇をきたさ
ないことを考慮して適宜選ばれ、例えば平均分子量で2
000〜100000が好ましい。また、水酸基を有す
る水溶性高分子物質のスラリー中の濃度は0.05〜5
重量%が好ましい。0.05重量%未満であると抵抗低
減及び密着力向上効果が少なくなる。5重量%超である
とスラリーの粘度が高まり、塗膜を均一に形成しにくく
なり、また抵抗の低減効果が少なくなるので好ましくな
い。特に好ましくは0.2〜1.0重量%である。
The molecular weight of the water-soluble polymer having a hydroxyl group is appropriately selected in consideration of solubility in the slurry and not increasing the viscosity of the slurry.
000 to 100,000 is preferred. The concentration of the water-soluble polymer having a hydroxyl group in the slurry is 0.05 to 5%.
% By weight is preferred. When the content is less than 0.05% by weight, the effect of reducing the resistance and improving the adhesion is reduced. If it is more than 5% by weight, the viscosity of the slurry is increased, making it difficult to form a uniform coating film and reducing the effect of reducing the resistance, which is not preferable. Particularly preferably, it is 0.2 to 1.0% by weight.

【0022】本発明では、静電容量を大きくするために
比表面積が1500m2 /g以上の炭素材料を使用す
る。静電容量が大きくかつ低抵抗の電気二重層キャパシ
タを得るためには、比表面積が1500〜3000m2
/gであり、かつ平均粒子径が30μm以下の炭素材料
を使用することがより好ましい。
In the present invention, a carbon material having a specific surface area of 1500 m 2 / g or more is used to increase the capacitance. In order to obtain an electric double layer capacitor having a large capacitance and a low resistance, a specific surface area of 1500 to 3000 m 2 is required.
/ G and a carbon material having an average particle diameter of 30 μm or less is more preferable.

【0023】比表面積が1500m2 以上の炭素材料と
しては、やしがら系活性炭、フェノール系活性炭、石油
コークス系活性炭、ポリアセン等が挙げられる。大きな
静電容量を得られる点で、フェノール系活性炭、石油コ
ークス系活性炭、ポリアセンの使用が好ましい。炭素材
料の賦活処理法としては、水蒸気賦活処理法、溶融KO
H賦活処理等がある。より大きな静電容量を得られる点
で溶融KOH賦活処理法が好ましい。
Examples of the carbon material having a specific surface area of 1500 m 2 or more include activated carbon, phenol-based activated carbon, petroleum coke-based activated carbon, and polyacene. The use of phenol-based activated carbon, petroleum coke-based activated carbon, or polyacene is preferred in that a large capacitance can be obtained. As the activation method of the carbon material, a steam activation method, a molten KO
H activation treatment and the like. The molten KOH activation treatment method is preferable in that a larger capacitance can be obtained.

【0024】導電性を付与する導電材としては、カーボ
ンブラック、天然黒鉛、人造黒鉛、金属ファイバ、酸化
チタン、酸化ルテニウム等を使用でき、少量でも効果の
大きい、カーボンブラックの一種であるケッチェンブラ
ック又はアセチレンブラックの使用が好ましい。分極性
電極中の導電材の配合量は、炭素材料との合量中5〜4
0重量%とするのが好ましい。5重量%未満であると導
電性を付与する効果が不充分であり、40重量%超であ
ると高比表面積の炭素材料の量が減るため静電容量が小
さくなり好ましくない。より好ましくは10〜30重量
%とする。
As a conductive material for imparting conductivity, carbon black, natural graphite, artificial graphite, metal fiber, titanium oxide, ruthenium oxide and the like can be used. Ketjen black, which is a kind of carbon black, is effective even in a small amount. Alternatively, the use of acetylene black is preferred. The amount of the conductive material in the polarizable electrode is 5 to 4 in the total amount with the carbon material.
It is preferably 0% by weight. If it is less than 5% by weight, the effect of imparting conductivity is insufficient, and if it is more than 40% by weight, the amount of the carbon material having a high specific surface area is reduced, and thus the capacitance is undesirably reduced. More preferably, the content is 10 to 30% by weight.

【0025】本発明に使用する正極用の金属集電板の材
質は、アルミニウム又はステンレス316Lが耐食性が
高く好ましい。特にアルミニウムは軽く、電気抵抗も低
いので好ましい。集電板の形状は、箔状、エキスパンド
メタル状、繊維焼結体シート状、板状金属発泡体等いず
れも使用でき、20〜100μmの箔状が巻回又は積層
が容易であり比較的安価であるので好ましい。
The material of the metal current collector plate for the positive electrode used in the present invention is preferably aluminum or stainless steel 316L because of its high corrosion resistance. Aluminum is particularly preferred because it is light and has low electric resistance. The shape of the current collector plate can be any of a foil shape, an expanded metal shape, a fiber sintered body sheet shape, a plate-shaped metal foam, and the like. A 20 to 100 μm foil shape is easy to wind or laminate, and is relatively inexpensive. Is preferred.

【0026】負極用集電板の材質は、アルミニウム、ス
テンレス又はニッケルが使用でき、特にアルミニウムは
軽く電気抵抗も低いので好ましい。金属箔を集電板に用
いる場合、表面を化学的、電気化学的又は物理的方法に
より粗面化すると分極製電極層と金属集電体との密着性
が向上し、抵抗も低くできるので特に好ましい。
As the material of the negative electrode current collector plate, aluminum, stainless steel or nickel can be used, and aluminum is particularly preferable because it is light and has low electric resistance. When a metal foil is used for the current collector, if the surface is chemically, electrochemically or physically roughened, the adhesion between the polarized electrode layer and the metal current collector is improved, and the resistance can be reduced. preferable.

【0027】本発明で使用するセパレータとしては、ガ
ラス繊維マット、マニラ麻やクラフトからなるセルロー
ス紙、親水化多孔質ポリテトラフルオロエチレンフィル
ム、ポリプロピレン不織布等が挙げられる。
Examples of the separator used in the present invention include glass fiber mat, cellulose paper made of manila hemp and kraft, hydrophilized porous polytetrafluoroethylene film, and polypropylene nonwoven fabric.

【0028】本発明で分極性電極を収容するケースの材
質としては、アルミニウム、ステンレス、鉄又はその合
金、合成樹脂等が使用できる。特にアルミニウムが軽量
で強度が高いので好ましい。ケースの形状は有底円筒形
又は有底角筒形が好ましい。
In the present invention, as the material of the case accommodating the polarizable electrode, aluminum, stainless steel, iron or its alloy, synthetic resin and the like can be used. Particularly, aluminum is preferable because it is lightweight and has high strength. The shape of the case is preferably a cylindrical shape with a bottom or a rectangular tube with a bottom.

【0029】本発明ではあらかじめ加熱乾燥した箔状分
極性電極をセパレータを介して巻回又は積層して素子と
なし、120〜250℃で真空乾燥して素子の水分等の
揮発分を除去した後、電解液を真空含浸させる。含浸に
際し系を40〜80℃に加温すると電解液の粘度が低下
し、電解液が速やかに活性炭電極に含浸されるので好ま
しい。電解液は、素子をケースに収容した後真空含浸さ
せても、素子をケースに収容する前に含浸させてしかる
後にケースに収容してもよい。
In the present invention, a foil-shaped polarizable electrode which has been previously heated and dried is wound or laminated with a separator in between to form an element, and vacuum-dried at 120 to 250 ° C. to remove volatile components such as moisture of the element. Then, the electrolyte is vacuum impregnated. When the system is heated to 40 to 80 ° C. during the impregnation, the viscosity of the electrolyte decreases, and the electrolyte is quickly impregnated into the activated carbon electrode, which is preferable. The electrolytic solution may be impregnated in vacuum after the element is accommodated in the case, or may be impregnated before accommodating the element in the case and then accommodated in the case.

【0030】[0030]

【実施例】以下、本発明を実施例(例1〜4)及び比較
例(例5〜8)によって具体的に説明するが、本発明は
これらによって限定されない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples (Examples 1 to 4) and Comparative Examples (Examples 5 to 8), but the present invention is not limited thereto.

【0031】[例1]フェノール樹脂をKOH賦活処理
した活性炭粉末(比表面積2200m2 /g、平均粒径
10μm)76重量%、ケッチェンブラックEC14重
量%、ポリフッ化ビニリデン10重量%からなる混合物
にN−メチルピロリドンを添加して混合した固形分20
重量%のスラリーに、5重量%の分子量22000のポ
リビニルアルコール水溶液を添加し混合した。スラリー
中のポリフッ化ビニリデンの含量は1.8重量%、ポリ
ビニルアルコールの含量は0.5重量%であった。
Example 1 A mixture comprising 76% by weight of activated carbon powder (specific surface area: 2200 m 2 / g, average particle size: 10 μm), Ketjen black EC: 14% by weight, and 10% by weight of polyvinylidene fluoride obtained by subjecting a phenol resin to KOH activation treatment. Solid content 20 mixed with N-methylpyrrolidone
A 5% by weight aqueous solution of polyvinyl alcohol having a molecular weight of 22,000 was added to and mixed with the 5% by weight slurry. The content of polyvinylidene fluoride in the slurry was 1.8% by weight, and the content of polyvinyl alcohol was 0.5% by weight.

【0032】このスラリーをドクターブレードを用い、
表面を粗面化した厚さ20μmのアルミニウム箔に塗布
し、180℃で乾燥して厚さ100μmの分極性電極コ
イルを得た。
Using a doctor blade, the slurry is
A 20 μm thick aluminum foil having a roughened surface was applied and dried at 180 ° C. to obtain a 100 μm thick polarizable electrode coil.

【0033】この分極性電極コイルから幅100mm、
長さ4200mmの正極及び負極を作製し、それぞれに
幅5mm、厚さ150μm、長さ50mmのアルミニウ
ムリードを4本ずつ接合し、マニラ麻製の厚さ50μm
のセパレータを介して巻回した。正極負極それぞれのア
ルミニウムリードを、円形のフェノール樹脂製の上蓋に
取り付けられた正極端子と負極端子にリベットにより接
合し、分極性電極と上蓋が一体化した素子を得た。
From this polarizable electrode coil, a width of 100 mm,
A positive electrode and a negative electrode having a length of 4200 mm were prepared, and four aluminum leads each having a width of 5 mm, a thickness of 150 μm, and a length of 50 mm were joined to each other, and a 50 μm thick made of Manila hemp.
And wound through a separator. The aluminum lead of each of the positive electrode and the negative electrode was joined by rivets to a positive electrode terminal and a negative electrode terminal attached to a circular phenol resin upper lid, thereby obtaining an element in which the polarizable electrode and the upper lid were integrated.

【0034】この素子を150℃、16時間真空乾燥
し、揮発性不純分を除去した。その後に1.5mol/
lの(C253 (CH3 )PBF4 を溶解したプロ
ピレンカーボネート電解液をこの素子に乾燥空気雰囲気
下で35℃にて真空含浸した。次いで素子を高さ123
mm、直径51mmのアルミニウムケースに収容し、上
蓋の周囲をゴムリングを介してアルミニウムを折り曲げ
て封口し、防爆弁を取り付けて定格電圧2.5Vの電気
二重層キャパシタを作製した。この電気二重層キャパシ
タの静電容量は1700F、直流抵抗は3mΩであっ
た。
The device was vacuum-dried at 150 ° C. for 16 hours to remove volatile impurities. Then 1.5mol /
This element was vacuum impregnated with a propylene carbonate electrolyte solution in which 1 (C 2 H 5 ) 3 (CH 3 ) PBF 4 was dissolved at 35 ° C. in a dry air atmosphere. Next, the element was moved to a height of 123.
It was housed in an aluminum case having a diameter of 51 mm and a diameter of 51 mm. The periphery of the upper lid was folded and sealed with a rubber ring via a rubber ring. The electric double layer capacitor had a capacitance of 1700 F and a DC resistance of 3 mΩ.

【0035】[例2]フェノール樹脂をKOH賦活処理
するかわりに水蒸気賦活処理した活性炭粉末(比表面積
1800m2 /g、平均粒径8μm)を用い、分子量2
2000のかわりに15000のポリビニルアルコール
水溶液を用いた他は例1と同様にしてスラリーを得た。
スラリー中のポリフッ化ビニリデンの含量は1.68重
量%、ポリビニルアルコールの含量は0.8重量%であ
った。
Example 2 Instead of KOH activation treatment of a phenol resin, activated carbon powder (specific surface area 1800 m 2 / g, average particle size 8 μm) having a water vapor activation treatment was used, and the molecular weight was 2
A slurry was obtained in the same manner as in Example 1, except that 15000 aqueous polyvinyl alcohol solution was used instead of 2000.
The content of polyvinylidene fluoride in the slurry was 1.68% by weight, and the content of polyvinyl alcohol was 0.8% by weight.

【0036】このスラリーをバーコーターを用い、表面
を粗面化した厚さ30μmのアルミニウム箔に塗布し、
180℃で乾燥した後プレスして厚さ110μmの分極
性電極コイルを得た。この分極性電極コイルから幅27
mm、長さ300mmの正極及び負極を作製し、それぞ
れにアルミニウムタブ端子を超音波接合し、親水化多孔
質ポリテトラフルオロエチレン製の厚さ50μmのセパ
レータを介して巻回した。
This slurry was applied to a 30 μm thick aluminum foil having a roughened surface using a bar coater.
After drying at 180 ° C., pressing was performed to obtain a polarizable electrode coil having a thickness of 110 μm. Width 27 from this polarizable electrode coil
A positive electrode and a negative electrode having a thickness of 300 mm and a length of 300 mm were prepared, and aluminum tab terminals were ultrasonically bonded to each of the positive and negative electrodes, and wound around a 50 μm thick separator made of hydrophilic porous polytetrafluoroethylene.

【0037】この素子を180℃、16時間真空乾燥
し、揮発性不純分を除去した。その後に2mol/lの
(C253 (CH3 )NBF4 を溶解したプロピレ
ンカーボネート電解液をこの素子に真空含浸した。次い
で乾燥空気雰囲気下でこの素子のアルミニウムリード端
子にブチルゴム製封口ゴムを挿入し、長さ35mm、直
径18mmのアルミニウムケースに収容し、封口ゴム部
をカールして封口せしめて定格電圧2.5Vの電気二重
層キャパシタを作製した。静電容量は10F、直流抵抗
は70mΩであった。
This device was vacuum-dried at 180 ° C. for 16 hours to remove volatile impurities. Thereafter, a propylene carbonate electrolyte in which 2 mol / l of (C 2 H 5 ) 3 (CH 3 ) NBF 4 was dissolved was vacuum-impregnated into the device. Then, a sealing rubber made of butyl rubber was inserted into the aluminum lead terminal of this element under an atmosphere of dry air, housed in an aluminum case having a length of 35 mm and a diameter of 18 mm, and the sealing rubber portion was curled and sealed. An electric double layer capacitor was manufactured. The capacitance was 10 F and the DC resistance was 70 mΩ.

【0038】[例3]電解液の溶媒としてスルホラン/
エチルメチルカーボネート(1:1)混合溶媒を用いた
他は、例2と同様にして定格電圧3.0Vの電気二重層
キャパシタを作製した。静電容量は10F、直流抵抗は
120mΩであった。
Example 3 As a solvent for the electrolyte, sulfolane /
An electric double layer capacitor having a rated voltage of 3.0 V was produced in the same manner as in Example 2 except that a mixed solvent of ethyl methyl carbonate (1: 1) was used. The capacitance was 10 F and the DC resistance was 120 mΩ.

【0039】[例4]フェノール樹脂を水蒸気賦活処理
した活性炭粉末のかわりに、フェノール性水酸基を有す
る芳香族炭化水素化合物とアルデヒド類との縮合物の熱
処理物でありポリアセン骨格構造を有するポリアセン粉
末(比表面積1800m2 /g、粒径10μm)を用い
た他は例2と同様にして定格電圧2.5Vの円筒形リー
ド線形電気二重層キャパシタを作製した。静電容量は9
F、直流抵抗は80mΩであった。
[Example 4] Instead of activated carbon powder obtained by subjecting a phenolic resin to steam activation, a heat-treated product of a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, and a polyacene powder having a polyacene skeleton structure ( A cylindrical reed linear electric double layer capacitor having a rated voltage of 2.5 V was produced in the same manner as in Example 2 except that the specific surface area was 1800 m 2 / g and the particle size was 10 μm. The capacitance is 9
F, DC resistance was 80 mΩ.

【0040】[例5]ポリビニルアルコール水溶液をス
ラリーに添加しなかった他は例1と同様にして定格電圧
2. 5Vの電気二重層キャパシタを作製した。静電容量
は1650F、直流抵抗は8mΩであった。
Example 5 An electric double layer capacitor having a rated voltage of 2.5 V was produced in the same manner as in Example 1 except that the aqueous solution of polyvinyl alcohol was not added to the slurry. The capacitance was 1650 F and the DC resistance was 8 mΩ.

【0041】[例6]ポリフッ化ビニリデンを用いなか
った他は例2と同様にしてスラリーを作製した。例2と
同様に、表面を粗面化した厚さ30μmのアルミニウム
箔に塗布し、180℃で乾燥したところ、活性炭を主体
とする分極性電極は集電体への密着力が弱いためにアル
ミニウム箔より剥離し、目的とする電極は得られなかっ
た。
Example 6 A slurry was prepared in the same manner as in Example 2 except that polyvinylidene fluoride was not used. In the same manner as in Example 2, the coating was applied to a 30 μm-thick aluminum foil whose surface was roughened and dried at 180 ° C., and the polarizable electrode mainly composed of activated carbon had a weak adhesion to the current collector. It peeled off from the foil, and the desired electrode was not obtained.

【0042】[例7]ポリビニルアルコール水溶液をス
ラリーに添加しなかった他は例3と同様にして定格電圧
3. 0Vの電気二重層キャパシタを作製した。静電容量
は9. 5F、直流抵抗は250mΩであった。
Example 7 An electric double layer capacitor having a rated voltage of 3.0 V was produced in the same manner as in Example 3 except that the aqueous polyvinyl alcohol solution was not added to the slurry. The capacitance was 9.5 F and the DC resistance was 250 mΩ.

【0043】[例8]フェノール樹脂を水蒸気賦活処理
した活性炭粉末(比表面積1800m2 /g、平均粒径
8μm)76重量%、ケッチェンブラックEC14重量
%、分子量15000のポリビニルアルコール10重量
%からなる混合物に水を添加して混合した固形分15重
量%のスラリーを、バーコーターを用い、表面を粗面化
した厚さ30μmのアルミニウム箔に塗布し、180℃
で乾燥した後プレスして厚さ90μmの分極性電極コイ
ルを得た。集電体への分極性電極層の密着性は乏しく、
取り扱い中に一部の電極層が集電体箔より剥離した。
Example 8: Activated carbon powder (specific surface area: 1800 m 2 / g, average particle size: 8 μm) obtained by subjecting a phenol resin to water vapor activation treatment: 76% by weight, 14% by weight of Ketjen Black EC, 10% by weight of polyvinyl alcohol having a molecular weight of 15,000 A slurry having a solid content of 15% by weight mixed by adding water to the mixture was applied to a 30 μm-thick aluminum foil having a roughened surface using a bar coater.
After drying, a polarizable electrode coil having a thickness of 90 μm was obtained. The adhesion of the polarizable electrode layer to the current collector is poor,
Some electrode layers peeled off from the current collector foil during handling.

【0044】この分極性電極コイルを用い、例2と同様
にして定格電圧2.5Vの電気二重層キャパシタを作製
した。静電容量は5F、直流抵抗は700mΩであっ
た。
Using this polarizable electrode coil, an electric double layer capacitor having a rated voltage of 2.5 V was produced in the same manner as in Example 2. The capacitance was 5F and the DC resistance was 700 mΩ.

【0045】[0045]

【発明の効果】本発明によれば、耐電圧が特に2.5V
以上であるため高エネルギー密度であり、内部抵抗が小
さく、静電容量が大きく、かつ分極性電極層と集電体と
の密着力が強い電気二重層キャパシタを得ることができ
る。
According to the present invention, the withstand voltage is particularly 2.5 V.
As described above, an electric double layer capacitor having a high energy density, a small internal resistance, a large capacitance, and a strong adhesion between the polarizable electrode layer and the current collector can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平塚 和也 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 河里 健 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 對馬 学 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 木村 好克 神奈川県藤沢市辻堂新町2丁目2番1号 エルナー株式会社内 (72)発明者 小林 真直 神奈川県藤沢市辻堂新町2丁目2番1号 エルナー株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuya Hiratsuka 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside the Asahi Glass Co., Ltd. (72) Inventor Ken Ken Kawari 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside the Central Research Laboratory Co., Ltd. (72) Manabu Tsushima 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Asahi Glass Central Research Laboratory Co., Ltd. (72) Yoshikatsu Kimura 2-2-1 Tsujido Shinmachi, Fujisawa-shi, Kanagawa Prefecture Erner shares In-company (72) Inventor Masanao Kobayashi 2-2-1 Tsujido Shinmachi, Fujisawa City, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】比表面積が1500m2 以上の炭素材料と
導電性を付与する導電材とを含むスラリーを金属集電板
上に塗布し、乾燥することにより得られた分極性電極を
正極及び負極とし、該正極と負極をセパレータを介して
巻回又は積層して非水系電解液を含浸させた素子をケー
スに収容する電気二重層キャパシタの製造方法におい
て、前記スラリーがポリフッ化ビニリデンと水酸基を有
する水溶性高分子物質とを含むことを特徴とする電気二
重層キャパシタの製造方法。
1. A polarizable electrode obtained by applying a slurry containing a carbon material having a specific surface area of 1500 m 2 or more and a conductive material imparting conductivity to a metal current collector and drying the slurry. In the method for manufacturing an electric double layer capacitor in which the positive electrode and the negative electrode are wound or laminated via a separator and the element impregnated with the non-aqueous electrolyte is accommodated in a case, the slurry has polyvinylidene fluoride and a hydroxyl group. A method for manufacturing an electric double layer capacitor, comprising: a water-soluble polymer substance.
【請求項2】スラリーが、ポリフッ化ビニリデン及び水
溶性高分子物質をそれぞれ0.1〜5重量%及び0.0
5〜5重量%含む請求項1記載の電気二重層キャパシタ
の製造方法。
2. A slurry comprising 0.1 to 5% by weight of polyvinylidene fluoride and 0.1 to 5% by weight of a water-soluble polymer substance, respectively.
2. The method for producing an electric double layer capacitor according to claim 1, comprising 5 to 5% by weight.
【請求項3】水溶性高分子物質がポリビニルアルコール
である請求項1又は2記載の電気二重層キャパシタの製
造方法。
3. The method for producing an electric double layer capacitor according to claim 1, wherein the water-soluble polymer substance is polyvinyl alcohol.
JP22155196A 1996-08-22 1996-08-22 Manufacturing method of electric double layer capacitor Expired - Fee Related JP3824354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22155196A JP3824354B2 (en) 1996-08-22 1996-08-22 Manufacturing method of electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22155196A JP3824354B2 (en) 1996-08-22 1996-08-22 Manufacturing method of electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH1064765A true JPH1064765A (en) 1998-03-06
JP3824354B2 JP3824354B2 (en) 2006-09-20

Family

ID=16768500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22155196A Expired - Fee Related JP3824354B2 (en) 1996-08-22 1996-08-22 Manufacturing method of electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3824354B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2003525522A (en) * 1999-08-18 2003-08-26 マックスウェル エレクトロニック コンポーネンツ グループ インコーポレイテッド Multi-electrode double-layer capacitor with hermetic electrolyte seal
JP2009224343A (en) * 2009-07-08 2009-10-01 Sumitomo Chemical Co Ltd Separator for nonaqueous electrolyte secondary battery
US9608275B2 (en) 2010-09-14 2017-03-28 Toyo Aluminium Kabushiki Kaisha Electrically conductive layer coated aluminum material and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525522A (en) * 1999-08-18 2003-08-26 マックスウェル エレクトロニック コンポーネンツ グループ インコーポレイテッド Multi-electrode double-layer capacitor with hermetic electrolyte seal
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2009224343A (en) * 2009-07-08 2009-10-01 Sumitomo Chemical Co Ltd Separator for nonaqueous electrolyte secondary battery
US9608275B2 (en) 2010-09-14 2017-03-28 Toyo Aluminium Kabushiki Kaisha Electrically conductive layer coated aluminum material and method for manufacturing the same

Also Published As

Publication number Publication date
JP3824354B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP3496338B2 (en) Electric double layer capacitor
KR101046895B1 (en) Electrode manufacturing method, electrode manufactured by the method and supercapacitor comprising the electrode
US9496090B2 (en) Method of making graphene electrolytic capacitors
US6038123A (en) Electric double layer capacitor, and carbon material and electrode therefor
JPWO2013073526A1 (en) Electrode for electricity storage device, electricity storage device, and method for producing electrode for electricity storage device
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
JPH11329904A (en) Nonaqueous electric double layer capacitor and method of producing cell using the same
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
US6830594B2 (en) Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
KR101635763B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP3721642B2 (en) Manufacturing method of large-capacity electric double layer capacitor
JPH1097956A (en) Electric double-layer capacitor
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP3824354B2 (en) Manufacturing method of electric double layer capacitor
WO2008018326A1 (en) Nonaqueous electrolyte solution for electric double layer capacitor and electric double layer capacitor using the same
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR101860755B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JPH09270370A (en) Electric double layer capacitor and its manufacturing method
KR102343771B1 (en) Electrolyte of supercapacitor, high voltage supercapacitor using the same and method of manufacturing thereof
JP2003297695A (en) Electric double layer capacitor
JP3896384B2 (en) Manufacturing method of electric double layer capacitor
JP4017299B2 (en) Electric double layer capacitor and electrode material therefor
JPH06204085A (en) Electric double layer capacitor and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees