JPH1062096A - Heat exchange member - Google Patents

Heat exchange member

Info

Publication number
JPH1062096A
JPH1062096A JP21651596A JP21651596A JPH1062096A JP H1062096 A JPH1062096 A JP H1062096A JP 21651596 A JP21651596 A JP 21651596A JP 21651596 A JP21651596 A JP 21651596A JP H1062096 A JPH1062096 A JP H1062096A
Authority
JP
Japan
Prior art keywords
heat exchange
thermal conductivity
metal
alloy
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21651596A
Other languages
Japanese (ja)
Inventor
Yasuhiro Murayama
靖洋 村山
Atsushi Funakoshi
淳 船越
Takashi Nishi
隆 西
Akira Kosaka
晃 小阪
Ryutaro Motoki
龍太郎 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21651596A priority Critical patent/JPH1062096A/en
Publication of JPH1062096A publication Critical patent/JPH1062096A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a whole number conduct a uniform heat exchange, differing from the case of in the 1 conventional structure wherein lines of tubes are provided in the member or wherein fins are formed or provided, to enlarge remarkably the area of heat transfer with a heat exchange medium for a unit volume, in addition, and thereby to enhance a heat exchange performance to a great degree, by a method wherein uniform and abundant minute pores which a porous metal singer has is made passage of a fluid. SOLUTION: At least a part of a member is formed of a porous metal sinter (metal porous body) and minute through holes distributed uniformly and abundantly in the porous body are made passages of a medium for heat exchange. The metal porous body is preferably a hot isostatic pressing sinter having a porosity of 7-50% and a pore size of 500μm or less and having a pore distribution wherein a pore size D5 in the cumulative frequency of 5% on an integrated distribution curve of the pore size, a pore size D50 in the cumulative frequency of 50% and a pore size D95 in the cumulative frequency of 95% satisfy a formula (D95 -D5 )/D50 <=2.5. For the porous body, a mixed-phase sinter of the kind of metal material (iron ally, Ni alloy, Co alloy or the like) having low thermal conductivity and of the kind of metal material (A1 alloy, Cu alloy or the like) having high thermal conductivity is used according to a request.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質金属焼結体
を構成要素とし、該焼結体内に均一豊富に分布する微細
孔を熱交換用媒体の流通路として熱交換性能を高め、か
つ多孔体であることによる断熱性をも帯有させた熱交換
用部材に関する。
BACKGROUND OF THE INVENTION The present invention relates to a porous metal sintered body as a constituent element, and to improve heat exchange performance by using micropores uniformly and abundantly distributed in the sintered body as a flow path of a heat exchange medium. The present invention relates to a heat exchange member having heat insulation due to being a porous body.

【0002】[0002]

【従来の技術】部材の熱交換性を高めるため手段とし
て、部材内に管を設置し、管内にガス,水,湯等の流体
なしい被熱交換流体を流通させるようにした構造が採用
され、あるいは部材表面に、薄肉のフィンを形成し伝熱
面積を大きくすることにより熱交換性を高めることも行
われている。
2. Description of the Related Art As a means for enhancing the heat exchange property of a member, a structure is adopted in which a tube is provided in the member and a heat exchange fluid such as gas, water, hot water or the like is passed through the tube. Alternatively, a heat exchange property is enhanced by forming a thin fin on a member surface to increase a heat transfer area.

【0003】[0003]

【発明が解決しようとする課題】部材内に管路を設けて
流体を流通させる構造の場合、その管路は部材全体から
みれば部材のごく一部に過ぎずない。このため、管路の
近傍と管路から離れた部分の温度分布にむらが生じ、精
密な熱交換を要する部材の熱交換構造として十分に機能
させることができない。管路を分散増設することは、温
度分布のむらをある程度低減するのに役立つが、部材の
形状・構造等により、管路の設置部位やそのサイズ・本
数等の制約を受ける場合も多く、かつ管路の増設にとも
なう構造の複雑化・メンテナンスの増大等の不利を余儀
なくされる。部材にフィンを形設する構造の場合も、部
材の形状・サイズ等により、部材表層領域と深い部位と
の間の温度勾配等のむらを十分に解消することは困難で
あり、またフィン構造とすることによる構造の大型化を
免れない。本発明は部材の熱交換構造に関する上記問題
を解決するための改良された熱交換性部材を提供するも
のである。
In the case of a structure in which a fluid path is provided by providing a conduit in a member, the conduit is only a small part of the member when viewed from the whole member. For this reason, unevenness occurs in the temperature distribution in the vicinity of the pipe and in the part distant from the pipe, and the member cannot function sufficiently as a heat exchange structure of a member requiring precise heat exchange. Adding and distributing pipes helps to reduce temperature distribution unevenness to some extent.However, depending on the shape and structure of the members, there are many cases where restrictions are imposed on the installation location of pipes, their size and number, etc. The disadvantage of complicating the structure and increasing maintenance due to the addition of roads is inevitable. Even in the case of a structure in which fins are formed on a member, it is difficult to sufficiently eliminate unevenness such as a temperature gradient between a member surface layer region and a deep portion due to the shape and size of the member. It is inevitable that the structure will be enlarged. The present invention provides an improved heat exchange member for solving the above-mentioned problems relating to the heat exchange structure of the member.

【0004】[0004]

【課題を解決するための手段】本発明の熱交換用部材
は、その少なくとも一部が、多孔質金属焼結体からな
り、該多孔質金属焼結体の貫通孔を熱交換用媒体の流通
路としたことを特徴としている。上記多孔質金属焼結体
(以下「金属多孔質体」とも称する)として、気孔率7
〜50%,気孔径500μm以下、および気孔径の積算
分布曲線における累積頻度5%の気孔径D5 同50%の
気孔径D50 同95%の気孔径D95が、次式: (D95−D5 )/D50 ≦ 2.5 …〔1〕 を満たす気孔分布を有するものが好ましく使用される。
また、上記金属多孔質体は、所望により、熱伝導率の異
なる複数種の金属粒子が均一に分散混在した熱間静水圧
加圧焼結体であって、低い熱伝導率(κA ) を有する金
属材種と高い熱伝導率(κB ) を有する金属材種との熱
伝導率の比(κ B / κA ) が2以上であるものが使用さ
れる。
Means for Solving the Problems The heat exchange member of the present invention
Is at least partially made of a porous metal sintered body.
Through the through-holes of the porous metal sintered body,
It is characterized by a road. The above porous metal sintered body
(Hereinafter also referred to as “metal porous body”), having a porosity of 7
5050%, pore size 500 μm or less, and pore size integration
Pore diameter D with cumulative frequency of 5% in distribution curveFive50% of the same
Pore diameter D50 95% pore diameter D95Is the following equation: (D95-DFive) / D50 ≤ 2.5 ... those having a pore distribution satisfying [1] are preferably used.
In addition, the metal porous body may have a different heat conductivity if desired.
Hydrostatic pressure in which several kinds of metal particles are uniformly dispersed and mixed
Pressed sintered body with low thermal conductivity (κA) With gold
Metal species and high thermal conductivity (κB)
Conductivity ratio (κ B/ κA) Is 2 or more
It is.

【0005】[0005]

【発明の実施の形態】本発明の熱交換用部材は多孔質金
属焼結体(以下「金属多孔質体」とも称する)を構成要
素とし、その多孔質体内に均一豊富に分布する微細孔を
熱交換用媒体の流通路としている。このため、部材内に
管路を設ける構造やフィンの形設構造と異なって、部材
全体に亘る一様な熱交換を行わせることができ、しかも
単位体積当たりの熱交換用媒体との伝熱面積が著しく増
大することにより、熱交換性能が飛躍的に高められる。
BEST MODE FOR CARRYING OUT THE INVENTION The heat exchange member of the present invention comprises a porous metal sintered body (hereinafter also referred to as "metal porous body") as a constituent element, and has fine pores uniformly and abundantly distributed in the porous body. It is a flow passage for the heat exchange medium. Therefore, unlike the structure in which the pipe is provided in the member or the fin-shaped structure, uniform heat exchange can be performed over the entire member, and heat transfer with the heat exchange medium per unit volume can be performed. Due to the remarkable increase in the area, the heat exchange performance is dramatically improved.

【0006】上記金属多孔質体は、気孔率が7〜50%
で、気孔径500μm以下であるのが好ましい。気孔率
が7%に満たないと、金属多孔質体(焼結体)内部の気
孔の多くが閉気孔となり、流体の流通に必要な開気孔
(貫通孔)の分布が少なく熱交換効率が低くなるからで
あり、他方気孔率が50%を超えると、金属多孔質体の
機械強度,剛性が乏しく、機械加工が困難になる等の不
具合をきたすからである。また、気孔径500μmまで
の比較的大きな気孔が分布することは、流体の流通を容
易にし、高い熱交換性の確保を容易にする。しかし、こ
れを超える粗大な気孔を分布させると、気孔率が50%
以下に制限されていても、金属多孔質体の強度,剛性の
低下が大きくなる。このため、500μmを気孔径の上
限とするのが好ましい。
The metal porous body has a porosity of 7 to 50%.
It is preferable that the pore diameter is 500 μm or less. If the porosity is less than 7%, many of the pores inside the metal porous body (sintered body) become closed pores, and the distribution of open pores (through holes) necessary for fluid flow is small, resulting in low heat exchange efficiency. On the other hand, if the porosity exceeds 50%, the mechanical strength and rigidity of the porous metal body are poor, which causes problems such as difficulty in machining. Further, the distribution of relatively large pores having a pore diameter of up to 500 μm facilitates the flow of a fluid and facilitates securing a high heat exchange property. However, when coarse pores exceeding this are distributed, the porosity becomes 50%.
Even if it is limited to the following, the strength and rigidity of the porous metal body are greatly reduced. Therefore, it is preferable that the upper limit of the pore diameter is 500 μm.

【0007】更に、上記金属多孔質体、好ましくはその
気孔径の分布に関して、積算分布曲線(図1参照)にお
ける累積頻度5%,50%,および95%に対応する気
孔径D5 ,D50,およびD95が、前記〔1〕式の関係を
満たす気孔分布が与えられる。(D95−D5 )/D50
すなわち気孔径D50(平均気孔径)に対する、気孔径D
5 とD95の幅の比を、2.5以下に制限することによ
り、多孔特性の改善に実質的な寄与をなさない極く微細
な気孔や、多孔体の強度低下を助長するような粗大な気
孔径をもつ気孔の混在が制限される。その値は、より好
ましくは1.5以下である。上記のように、気孔率(7
〜50%)と気孔径(500μm以下)の規定と併せ
て、気孔径分布に関する〔1〕式を満たすことにより、
各種用途における構造部材や機能部材として必要な機械
性質を保持しつつ、熱交換性を大きく高めることができ
る。
Further, regarding the metal porous body, preferably the pore diameter distribution thereof, the pore diameters D 5 and D 50 corresponding to the cumulative frequencies of 5%, 50% and 95% in the integrated distribution curve (see FIG. 1). , And D 95 are given a pore distribution that satisfies the relationship of the above formula [1]. (D 95 -D 5) / D 50,
That is, the pore diameter D with respect to the pore diameter D 50 (average pore diameter)
5 and the ratio of the width of D 95, by limiting 2.5 or less, very and fine pores does not make substantial contributions to the improvement of the porosity characteristics, coarse that promotes reduction in strength of the porous body The mixture of pores having a large pore diameter is restricted. Its value is more preferably 1.5 or less. As described above, the porosity (7
5050%) and the pore diameter (500 μm or less), and by satisfying the expression [1] regarding the pore diameter distribution,
The heat exchange property can be greatly improved while maintaining the mechanical properties required for structural members and functional members in various applications.

【0008】また、上記金属多孔質体は、所望により、
熱伝導率の異なる2種以上の金属粒子が均一に分散混在
した混相焼結体として形成される。複数材種の混合効果
として、部材の冷却性と断熱性とを具備させることが可
能となる。混相焼結体を形成する複数の金属材種は、高
い熱伝導率を有する材種と、低い熱伝導率を有する材種
とに類別される。高い熱伝導率を有する材種の例として
は、アルミニウム(κ: 210 W/m・K, 300℃)、もしく
はアルミニウム合金、例えばAl-Mg-Si合金(κ:150 W/
m ・K, 100℃)、銅(κ:390 W/m・K, 300℃)、もし
くは銅合金、例えば、Cu-Zn 合金(κ:200 W/m ・K, 1
00℃)等が好ましい例として挙げられ、低い熱伝導率を
有する材種の例としては、鉄(κ:73 W/m・K, 300
℃)、もしくは鉄系合金、例えばSUS 304 スレンレス鋼
(κ:19 W/m・K,300℃) 、12Crステンレス鋼(κ:2
4W/m ・K, 100℃)、コバルト(κ:69W/m ・K, 100
℃)、もしくはコバルト合金、例えばステライト♯6
(κ:15W/m ・K, 20 ℃)、ステライト♯12(κ:15W/
m ・K, 20 ℃)、ニッケル(κ:90 W/m・K, 300℃)、
もしくはニッケル合金、例えばIn 625(κ:12W/m ・K,
400℃)、Nimonic (κ:13W/m ・K, 100℃)等が挙げ
られる。
[0008] Further, the above-mentioned metal porous body may be, if desired,
It is formed as a mixed phase sintered body in which two or more kinds of metal particles having different thermal conductivity are uniformly dispersed and mixed. As a mixing effect of a plurality of material types, it is possible to provide cooling and heat insulating properties of the member. The plurality of metal species forming the mixed phase sintered body are classified into a grade having a high thermal conductivity and a grade having a low thermal conductivity. Examples of the grade having a high thermal conductivity include aluminum (κ: 210 W / m · K, 300 ° C.) or an aluminum alloy such as an Al-Mg-Si alloy (κ: 150 W /
m · K, 100 ° C), copper (κ: 390 W / m · K, 300 ° C), or copper alloy, for example, Cu-Zn alloy (κ: 200 W / m · K, 1
00 ° C) and the like, and an example of a material having a low thermal conductivity is iron (κ: 73 W / m · K, 300
° C) or an iron alloy, for example, SUS 304 stainless steel (κ: 19 W / m · K, 300 ° C), 12Cr stainless steel (κ: 2
4W / m ・ K, 100 ℃, Cobalt (κ: 69W / m ・ K, 100)
° C) or a cobalt alloy such as Stellite ♯6
(Κ: 15W / m · K, 20 ° C), Stellite No. 12 (κ: 15W / m
m · K, 20 ° C), nickel (κ: 90 W / m · K, 300 ° C),
Alternatively, a nickel alloy, for example, In 625 (κ: 12 W / m · K,
400 ° C.) and Nimonic (κ: 13 W / m · K, 100 ° C.).

【0009】上記複数種の混相焼結体を形成する場合
は、その混相効果を十分ならしめるために、低い熱伝導
率(κA )を有する材種と高い熱伝導率(κB )を有す
る材種は、両者の比(κB /κA )が2以上であるよう
な材種の組み合わせが有利である。熱伝導率の低い材種
および高い材種の一方または両者を複数種併用する場合
は、それらの粉末の配合比率を考慮した合成則により、
各グループの平均熱伝導率を算出して平均熱伝導率の比
を求める。例えば、低い熱伝導率(κA ) の材種が粉末
Pa1 (熱伝導率: κA1)および粉末Pa2 (同: κA2)、
高い熱伝導率(κ B ) の材種が粉末Pb1 (同: κB1)お
よび粉末Pb2 (同: κB2)であって、それらの配合量
(体積率)がvA1, A2, B1, B2(vA1+vA2+v
B1+vB2=100 )である場合、低い熱伝導率のグループ
の平均熱伝導率(A)は、A=(κA1・vA1+κA2・v
A2)/(vA1+vA2)、高い熱伝導率のグループの平均
熱伝導率(B)は、B=(κB1・vB1+κB2・vB2)/
(vB1+vB2)として与えられる。その平均熱伝導率の
比(B/A)が2以上となるように材種の選択・組合せ
を行えばよい。また、混相焼結体における高い熱伝導率
を有する材種の占める比率(体積率)は、約5%以上で
あるのが好ましい。それより低い比率では、その配合効
果としての熱交換性の向上効果に乏しいからである。ま
た、熱伝導率の低い材種が比較的高い機械強度を有する
のに対し、高い熱伝導率を有するグループに属する材種
は機械強度が低いので、混相焼結体に占める比率が余り
高くなると、構造部材・機能部材としの有用性が損なわ
れる場合があり、このためにその比率(体積率)は約9
5%までとするのがよい。
In the case of forming the above-mentioned plural kinds of mixed phase sintered bodies
Has a low thermal conductivity in order to fully
Rate (κA) And high thermal conductivity (κBHave)
Grade is the ratio of both (κB/ ΚA) Is 2 or more
A combination of different grades is advantageous. Grade with low thermal conductivity
When using one or both of high grade and multiple grades
Is based on a synthesis rule that takes into account the mixing ratio of these powders.
Calculate the average thermal conductivity of each group and calculate the ratio of the average thermal conductivity.
Ask for. For example, low thermal conductivity (κA) Is powder
Pa1(Thermal conductivity: κA1) And powder PaTwo(Id .: κA2),
High thermal conductivity (κ B) Is powder Pb1(Id .: κB1)
And powder PbTwo(Id .: κB2) And their amounts
(Volume ratio) is vA1,vA2,vB1,vB2(VA1+ VA2+ V
B1+ VB2= 100), the group with low thermal conductivity
Average thermal conductivity (A) is A = (κA1・ VA1+ ΚA2・ V
A2) / (VA1+ VA2), High thermal conductivity group average
The thermal conductivity (B) is given by B = (κB1・ VB1+ ΚB2・ VB2) /
(VB1+ VB2). Of its average thermal conductivity
Selection and combination of grades so that the ratio (B / A) is 2 or more
Should be performed. In addition, high thermal conductivity in mixed phase sintered body
The ratio (volume ratio) occupied by the grade having
Preferably it is. At lower ratios,
This is because the effect of improving heat exchange properties as a result is poor. Ma
Also, grades with low thermal conductivity have relatively high mechanical strength
In contrast, the grades belonging to the group with high thermal conductivity
Has a low mechanical strength, so its proportion in the mixed phase
If it becomes too high, its usefulness as a structural member or functional member will be impaired.
Therefore, the ratio (volume ratio) is about 9
It is better to be up to 5%.

【0010】本発明の熱交換用部材は、好ましくは熱間
静水圧加圧処理(HIP処理)による焼結体として製造
される。HIP処理によれば、静水圧媒体の均一な加圧
作用の効果として、金属多孔質体の形状・サイズの如何
に拘らず、多孔質体に均質な気孔分布,機械性質を帯有
させることが容易である。その具体的な製造プロセスと
して、例えば焼結原料粉末混合物をカプセルに充填し、
脱気密封して熱間等方加圧処理(HIP処理)する方
法、または焼結原料粉末混合物を、加圧成形加工により
圧粉成形体としたうえ、HIP処理する方法等が適用さ
れる。
The heat exchange member of the present invention is preferably manufactured as a sintered body by hot isostatic pressing (HIP). According to the HIP treatment, as an effect of the uniform pressurizing action of the hydrostatic medium, the porous body has a uniform pore distribution and mechanical properties regardless of the shape and size of the metal porous body. Easy. As a specific production process, for example, a sintering raw material powder mixture is filled in a capsule,
A method of performing hot isostatic pressing (HIP processing) by degassing and sealing, or a method of performing a HIP processing after a sintering raw material powder mixture is formed into a green compact by press molding.

【0011】また、焼結原料粉末として使用される金属
粉末の粒度構成は、得られる金属多孔質体の気孔分布に
影響する。その気孔分布を前記〔1〕式を満たす気孔分
布に制御するための原料粉末として、下記〔2〕式で示
される粒度分布を有するものが好ましく使用される。 (R95−R5 )/R50 ≦ 2.5 …〔2〕 式中のR5 ,R50,およびR95は、それぞれ粒径積算分
布曲線(重量基準)における累積頻度5%,50%,お
よび95%に対応する粒子径である。粒子径R 50(平均
粒径)に対する、粒子径R95とR5 の幅の比「(R95
5 )/R50」の値が大きい粒径分布を示す粉末を使用
した場合は、粒子間に粗大な空隙を生じ易く、また粒子
間の空隙に微細粒子が侵入することによる空隙の閉塞を
生じ易い。前者は、多孔体(焼結体)内における粗大な
気孔の分布を増大させ、後者は開気孔の分布を減少させ
る。また、粉末の粒径R50は、約10〜1000μmの
範囲が適当である。気孔径の比較的小さい開気孔が豊富
に分布したものを望む場合は、粒径R50約10〜75μ
m程度の比較的小径の粉末の使用が有利であり、他方気
孔径の大きい開気孔が豊富に分布したものを望む場合
は、粒径R50約300〜1000μmの粗粒粉末が有利
に使用される。
Further, a metal used as a sintering raw material powder
The particle size composition of the powder depends on the pore distribution of the resulting porous metal body.
Affect. The pore distribution satisfying the above equation (1)
As a raw material powder for controlling the cloth, the following formula [2] is used.
Those having the particle size distribution described below are preferably used. (R95-RFive) / R50 ≤ 2.5 ... [2] R in the formulaFive, R50, And R95Is the integrated particle size
Cumulative frequency in cloth curve (weight basis) 5%, 50%,
And a particle size corresponding to 95%. Particle size R 50(average
Particle size) to particle size R95And RFiveWidth ratio of "(R95
RFive) / R50Use a powder with a large particle size distribution
In this case, coarse voids are likely to occur between the particles,
Blockage due to intrusion of fine particles into gaps between
Easy to occur. In the former case, coarse particles in a porous body (sintered body)
Increase the distribution of pores, the latter decrease the distribution of open pores
You. Also, the particle size R of the powder50Is about 10 to 1000 μm
The range is appropriate. Abundant open pores with relatively small pore size
Is desired, the particle size R50About 10-75μ
It is advantageous to use a powder having a relatively small diameter of about
When you want a large distribution of large open pores
Is the particle size R50Advantageously coarse powder of about 300-1000 μm
Used for

【0012】本発明の熱交換用部材の製造法として、焼
結原料粉末をカプセルに充填密封してHIP処理するプ
ロセスを適用する場合のHIP処理条件は、高緻密性の
焼結体を目的とする通常の処理と異なって、低温・低圧
のHIP条件が適用される。その処理温度は約0.35
mp〜0.85mpK〔mpK: 焼結原料粉末の融点(絶対温度表
示),複数種の混合の場合は、低融点の金属粉末の融
点〕、加圧力は約5〜150MPaの範囲が適当であ
る。それより高温・高圧条件では、原料粉末の粒子同士
の融着が過度に進行し、多孔性に富む焼結体を得ること
が困難となり、他方それより低温・低圧条件では、粒子
同士の結合力の不足により、ハンドリングに耐え得る焼
結体の形成が困難となるからである。上記HIP処理に
より製造される金属多孔質体は、所望により、温度約
0.6〜0.95mpK(mpKは前記と同義)の熱処理が
施される。この熱処理は、焼結体の気孔分布を損なわず
に、焼結体の粒子間結合を強め、焼結体の機械強度等を
高めるのに有効である。
[0012] As a method of manufacturing the heat exchange member of the present invention, when applying a process of filling and sealing a sintering raw material powder into a capsule and performing an HIP treatment, the HIP treatment conditions are intended for a highly dense sintered body. Unlike ordinary processing, low temperature and low pressure HIP conditions are applied. The processing temperature is about 0.35
mp to 0.85 mpK [mpK: melting point of sintering raw material powder (indicated in absolute temperature), melting point of low melting metal powder in case of mixing plural kinds], pressure range of about 5 to 150 MPa is appropriate. Under high temperature and high pressure conditions, the fusion of the particles of the raw material powder proceeds excessively, and it becomes difficult to obtain a porous sintered body. On the other hand, under low temperature and low pressure conditions, the bonding force between the particles is low. This is because it is difficult to form a sintered body that can withstand handling due to the shortage. The porous metal body manufactured by the above HIP treatment is subjected to a heat treatment at a temperature of about 0.6 to 0.95 mpK (mpK is as defined above), if desired. This heat treatment is effective for strengthening the interparticle bonding of the sintered body and improving the mechanical strength and the like of the sintered body without impairing the pore distribution of the sintered body.

【0013】他方、焼結原料粉末を加圧成形した後、H
IP処理する工程を採用する場合において、粉末の加圧
成形には、一軸プレス,押出成形,冷間静水圧加圧成形
(CIP成形)等が適用されるが、CIP成形法は、サ
イズ・形状の如何に拘らず、圧粉成形体に良好な均質性
を付与するのに有効である。また、圧粉成形体のHIP
処理は、これをカプセルに密封せず、そのまま(カプセ
ル・フリー)で行ってよい。カプセルフリーのHIP処
理においては、圧粉成形体の粒子間隙内に圧力媒体が侵
入し、圧粉成形体の外側表面と内部とから静水圧媒体の
加圧力が作用する効果として、圧粉成形体の多孔性を保
持しつつ、焼結反応による粒子間結合を強化することが
可能である。そのHIP処理は、温度約0.7mp〜0.
95mpK(mpKは前記と同義)、加圧力約50〜120
MPaの処理条件下に好適に達成される。
On the other hand, after pressing the sintering raw material powder under pressure,
In the case of adopting the step of IP treatment, uniaxial pressing, extrusion molding, cold isostatic pressing (CIP molding), etc. are applied for powder molding, but the CIP molding method has a size / shape. Regardless of the above, it is effective to impart good homogeneity to the green compact. In addition, the HIP of the green compact
The treatment may be performed as is (capsule free) without sealing the capsule. In the capsule-free HIP treatment, a pressure medium penetrates into the particle gap of the green compact, and the pressing force of the hydrostatic medium acts from the outer surface and the inside of the green compact. While maintaining the porosity, it is possible to strengthen the interparticle bonding by the sintering reaction. The HIP process is performed at a temperature of about 0.7 mp to 0.1 mp.
95 mpK (mpK is as defined above), pressing force about 50-120
It is preferably achieved under the treatment conditions of MPa.

【0014】本発明の金属多孔質体を適用して形成され
る熱交換体は、その全体を本発明の金属多孔質体で構成
され、また金属多孔質体の単体構造では機械強度等が不
足するような用途では、その機械強度を補償するための
補助部材として鋳造もしくは単圧金属材料、その他の部
材をバックアップ材とする積層構造体等として構成され
る。なお、金属多孔質体の多孔質微細孔に流通させる流
体は、水、湯,液体炭酸ガス、液体窒素等であり、熱交
換用部材の用途・使用条件等に応じて適宜選択使用され
る。
The heat exchanger formed by applying the metal porous body of the present invention is entirely composed of the metal porous body of the present invention, and the simple structure of the metal porous body has insufficient mechanical strength and the like. In such an application, it is configured as a cast or single-pressure metal material as an auxiliary member for compensating the mechanical strength, or as a laminated structure using other members as a backup material. The fluid flowing through the porous micropores of the metal porous body is water, hot water, liquid carbon dioxide, liquid nitrogen, or the like, and is appropriately selected and used depending on the use and use conditions of the heat exchange member.

【0015】[0015]

【実施例】【Example】

〔1〕金属多孔質体の製造:一種もしくは複数種の金属
粉末を焼結原料として金属多孔質体を得る。表1は原料
粉末の供試材の組成配合および製造条件、表2は得られ
た金属多孔質体の諸特性を示している。
[1] Production of a porous metal body: A porous metal body is obtained by using one or more kinds of metal powder as a sintering raw material. Table 1 shows the composition and production conditions of the test material of the raw material powder, and Table 2 shows various properties of the obtained porous metal body.

【0016】(1)原料粉末 表1中、粉末材種・配合欄の記号は次のとおりである
(Pa1, a2, a3, P a4, Pa5:低い熱伝導率のグル
ープに属する材種、Pb1, b2:高い熱伝導率のグルー
プに属する材種)。 Pa1:SUS 304 ステンレス鋼(κ19 W/m・K, at300℃) 粒度 500/1000 μm Pa2:In 625(κ 12 W/m ・K, at400℃) 粒度 200/500μm Pa3:ステライト♯12(κ 15 W/m ・K, at20 ℃) 粒度 150/300μm Pa4:SUS 630 ステンレス鋼(κ19 W/m・K, at300℃) 粒度 -150μm Pa5:SKD 61工具鋼(κ 28 W/m ・K, at 20℃) 粒度 -150 μm、 Pb1:銅(κ 390 W/m・K, at300℃) 粒度 100/200μm(供試材No.1〜4) 粒度 -100 μm( 供試材No.5) Pb2:アルミニウム(κ 233 W/m・K, at300℃) 粒度 100/200μm(供試材No.3, No.4) 粒度 -100 μm( 供試材No.6)
(1) Raw material powder In Table 1, the symbols in the powder material type / combination column are as follows.
(Pa1,Pa2,Pa3, P a4, Pa5: Low thermal conductivity glue
Grade belonging to the group, Pb1,Pb2: High thermal conductivity glue
Grade belonging to the group). Pa1: SUS 304 stainless steel (κ19 W / m ・ K, at300 ℃) Particle size 500/1000 μm Pa2: In 625 (κ 12 W / m K, at 400 ° C) Particle size 200/500 μm Pa3: Stellite No.12 (κ 15 W / m ・ K, at20 ℃) Particle size 150 / 300μm Pa4: SUS 630 stainless steel (κ19 W / m ・ K, at300 ℃) Particle size -150μm Pa5: SKD 61 tool steel (κ 28 W / m · K, at 20 ℃) Particle size -150 μm, Pb1: Copper (κ 390 W / m ・ K, at300 ℃) Particle size 100 / 200μm (Sample No.1 ~ 4) Particle size -100μm (Sample No.5) Pb2: Aluminum (κ 233 W / m ・ K, at300 ℃) Particle size 100 / 200μm (Sample No.3, No.4) Particle size -100 μm (Sample No.6)

【0017】(2)製造工程 表1中、製造工程欄の記号A, Bは次のとおりである。 A工程:原料粉末混合物をカプセル(軟鋼製)に充填
し、脱気密封(1×10 -2Torr)したうえ、HIP処理
する。ついで、カプセルを除去し、焼結体の粒子間結合
を強化するための熱処理を施したうえ(もしくは施すこ
となく)機械加工を加え、直方体の多孔質焼結体(100
×100 ×50,mm )を得る。 B工程:原料粉末混合物を、ゴム型に充填しCIP処理
により圧粉体を成形したうえ、HIP処理(カプセル・
フリー)に付す。処理後、機械加工を加え、矩形状の多
孔質焼結体(形状・サイズは上記と同じ)を得る。
(2) Manufacturing Process In Table 1, symbols A and B in the manufacturing process column are as follows. Step A: Fill the capsule (mild steel) with the raw material powder mixture
And degassed (1 × 10 -2Torr) and HIP processing
I do. Next, the capsule is removed, and the interparticle bonding of the sintered body is performed.
Heat treatment (or
Machine work was performed, and a rectangular porous sintered body (100
× 100 × 50, mm). Step B: The raw material powder mixture is filled in a rubber mold and subjected to CIP treatment.
And then HIP treatment (capsule
Free). After processing, add machining
A porous sintered body (shape and size are the same as above) is obtained.

【0018】(3)多孔質焼結体の特性 強度:3点曲げ試験による曲げ強度(MPa) 耐摩耗性:大越式迅速摩耗試験による比摩耗量の比率 ガス抜き性:ガス圧力0.2 kgf/cm2 における試験片(厚
さ5mm)の通過ガス流量(cc/min・cm2
(3) Properties of the porous sintered body Strength: bending strength (MPa) by three-point bending test Wear resistance: ratio of specific wear amount by Ogoshi type quick wear test Outgassing property: gas pressure 0.2 kgf / cm passing gas flow rate of the test piece in 2 (thickness 5mm) (cc / min · cm 2)

【0019】発明例の多孔質焼結体は、高透過性を有す
ると共に、原料粉末材種の配合効果として、多孔質であ
りながら、機械強度や耐摩耗性が高く、かつ良好な熱伝
導性を有している。
The porous sintered body of the invention has a high permeability and a high mechanical strength and abrasion resistance, and a good thermal conductivity, despite being porous, due to the mixing effect of the raw material powder. have.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明の熱交換用部材は、多孔質金属焼
結体の有する均一豊富な微細気孔を流体の流通路として
いることにより、部材内に管路を設ける構造やフィンの
形設する従来の構造と異なって、部材全体に亘る一様な
熱交換を行わせることができ、しかも単位体積当たりの
熱交換用媒体との伝熱面積が著しく増大することによ
り、熱交換性能を飛躍的に高めることができる。また、
その微細気孔に対する流体の流通を中断した状態におい
ては、多孔質体であることによる良好な断熱性を発揮す
るので、実機使用において良好な熱交換性と断熱性の相
反する両特性を要求される機器・装置における熱交換体
の構成部材として有用である。
The heat exchange member of the present invention has a structure in which a pipe is provided in the member and the fins are formed by using uniform and abundant fine pores of the porous metal sintered body as a fluid flow passage. Unlike the conventional structure, heat exchange can be performed uniformly over the entire member, and the heat transfer area with the heat exchange medium per unit volume is significantly increased, resulting in a significant increase in heat exchange performance. Can be increased. Also,
In a state in which the flow of the fluid through the micropores is interrupted, the porous body exhibits good heat insulating properties, and therefore, it is required to have both good heat exchange properties and good heat insulating properties in actual use. It is useful as a component of a heat exchanger in equipment and devices.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小阪 晃 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 元木 龍太郎 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Kosaka 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Inside Kubota Hirakata Factory Co., Ltd. (72) Inventor Ryutaro Motoki 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture No. 1 Inside Kubota Hirakata Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 部材の少なくとも一部が、多孔質金属焼
結体からなり、該多孔質金属焼結体の貫通孔を熱交換用
媒体の流通路としたことを特徴とする熱交換用部材。
1. A heat exchange member, wherein at least a part of the member is made of a porous metal sintered body, and a through hole of the porous metal sintered body is used as a flow passage of a heat exchange medium. .
【請求項2】 多孔質金属焼結体は、気孔率7〜50
%,気孔径500μm以下、および気孔径の積算分布曲
線における累積頻度5%の気孔径D5 , 同50%の気孔
径D50, 同95%の気孔径D95が、次式〔1〕: (D95−D5 )/D50 ≦ 2.5 …〔1〕 を満たす気孔分布を有する熱間静水圧加圧焼結体である
ことを特徴とする請求項1に記載の熱交換用部材。
2. The porous metal sintered body has a porosity of 7 to 50.
%, Pore diameter 500μm or less, and the cumulative frequency of 5% pore diameter D 5 at the cumulative distribution curve of pore diameter, the 50% of the pore diameter D 50, the 95% of the pore diameter D 95 is, the following equation (1): The heat exchange member according to claim 1, wherein the member is a hot isostatic pressing sintered body having a pore distribution satisfying (D 95 −D 5 ) / D 50 ≦ 2.5 (1). .
【請求項3】 多孔質金属焼結体は、熱伝導率の異なる
複数種の金属粒子が均一に分散混在した混相焼結体であ
り、低い熱伝導率(κA ) を有する金属材種と高い熱伝
導率(κB ) を有する金属材種との熱伝導率の比(κB
/ κA ) が2以上であることを特徴とする請求項1また
は請求項2に記載の熱交換用部材。
3. The porous metal sintered body is a mixed phase sintered body in which a plurality of types of metal particles having different thermal conductivity are uniformly dispersed and mixed, and a metal material having a low thermal conductivity (κ A ) is used. the ratio of the thermal conductivity of the metal material species having a high thermal conductivity and (κ B) B
3. The heat exchange member according to claim 1, wherein / κ A ) is 2 or more.
【請求項4】 熱伝導率の低い金属粒子は、鉄もしくは
鉄合金、ニッケルもしくはニッケル合金、またはコバル
トもしくはコバルト合金であり、熱伝導率の高い金属粒
子は、銅もしくは銅合金、アルミニウムもしくはアルミ
ニウム合金であることを特徴とする請求項3に記載の熱
交換用部材。
4. The metal particles having low thermal conductivity are iron or iron alloy, nickel or nickel alloy, or cobalt or cobalt alloy, and the metal particles having high thermal conductivity are copper or copper alloy, aluminum or aluminum alloy. The member for heat exchange according to claim 3, wherein:
【請求項5】 高い熱伝導率の金属粒子の占める体積率
が、5〜95%であることを特徴とする請求項3または
請求項4に記載の熱交換用部材。
5. The heat exchange member according to claim 3, wherein a volume ratio of the metal particles having a high thermal conductivity is 5 to 95%.
JP21651596A 1996-08-19 1996-08-19 Heat exchange member Pending JPH1062096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21651596A JPH1062096A (en) 1996-08-19 1996-08-19 Heat exchange member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21651596A JPH1062096A (en) 1996-08-19 1996-08-19 Heat exchange member

Publications (1)

Publication Number Publication Date
JPH1062096A true JPH1062096A (en) 1998-03-06

Family

ID=16689653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21651596A Pending JPH1062096A (en) 1996-08-19 1996-08-19 Heat exchange member

Country Status (1)

Country Link
JP (1) JPH1062096A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056327A1 (en) * 2005-11-07 2007-05-18 3M Innovative Properties Company Thermal transfer coating
US7360581B2 (en) 2005-11-07 2008-04-22 3M Innovative Properties Company Structured thermal transfer article
US8842327B2 (en) 2008-12-26 2014-09-23 Canon Kabushiki Kaisha Print control apparatus, print control method, and storage medium storing computer-executable program
JP2019095087A (en) * 2017-11-20 2019-06-20 国立研究開発法人産業技術総合研究所 Heat exchanger, manufacturing method thereof and cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056327A1 (en) * 2005-11-07 2007-05-18 3M Innovative Properties Company Thermal transfer coating
US7360581B2 (en) 2005-11-07 2008-04-22 3M Innovative Properties Company Structured thermal transfer article
US7695808B2 (en) 2005-11-07 2010-04-13 3M Innovative Properties Company Thermal transfer coating
US8842327B2 (en) 2008-12-26 2014-09-23 Canon Kabushiki Kaisha Print control apparatus, print control method, and storage medium storing computer-executable program
JP2019095087A (en) * 2017-11-20 2019-06-20 国立研究開発法人産業技術総合研究所 Heat exchanger, manufacturing method thereof and cooling device

Similar Documents

Publication Publication Date Title
US20040071374A1 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
CN111357100B (en) Radiating plate and manufacturing method thereof
RU2724771C2 (en) Hard alloy having a viscosity increasing structure
JP2006519928A5 (en)
JP2017534552A (en) Carbon composite and method for producing the same
CN103189155A (en) Method for producing a sintered composite body
CN105945291A (en) Bicrystal gradient hard alloy cutter material and preparation method thereof
JPH1062096A (en) Heat exchange member
JPWO2006087973A1 (en) Method for producing porous metal body, porous metal body and porous metal body structure
CN102016094A (en) Magnesium-based composite material having Ti particles dispersed therein, and method for production thereof
CN108315629A (en) A kind of preparation method of Al/SiC ceramic-metal composites
JP3803694B2 (en) Nitrogen-containing sintered hard alloy
JPH0938750A (en) Porous die material having excellent heat exchangeability
JP5275292B2 (en) Method for producing high-density solidified molded body
JP4968636B2 (en) Method for producing high-density solidified article with controlled continuous phase and dispersed phase
CN106893915A (en) The porous effective sintered-carbide die material of microchannel aluminium alloy flat of one kind extruding
US11111563B2 (en) High strength and erosion resistant powder blends
Huadong et al. Decreasing the sintering temperature of diamond-bit matrix material by the addition of the element P
CN103231054B (en) Sintering-brazing method of metal matrix diamond segments
JP2562445B2 (en) Abrasion resistant composite roll
JP3066571B2 (en) WC-Fe alloy using iron-carbon as binder and method for producing the same
JP2001059147A (en) Composite member made of steel, having wear resistant sintered outer layer
JPH0952231A (en) Mold with excellent heat exchangeability
DE10336657B4 (en) Composite material, in particular for heat exchangers, heat conductors and heat storage
CN115401202B (en) WC hard alloy matrix diamond compact combined by high-entropy alloy and preparation method thereof