JP3066571B2 - WC-Fe alloy using iron-carbon as binder and method for producing the same - Google Patents

WC-Fe alloy using iron-carbon as binder and method for producing the same

Info

Publication number
JP3066571B2
JP3066571B2 JP8239652A JP23965296A JP3066571B2 JP 3066571 B2 JP3066571 B2 JP 3066571B2 JP 8239652 A JP8239652 A JP 8239652A JP 23965296 A JP23965296 A JP 23965296A JP 3066571 B2 JP3066571 B2 JP 3066571B2
Authority
JP
Japan
Prior art keywords
alloy
binder
cemented carbide
powder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8239652A
Other languages
Japanese (ja)
Other versions
JPH1053832A (en
Inventor
康樹 宮腰
秀一 鴨田
英徳 高橋
昌宏 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
Original Assignee
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture filed Critical Hokkaido Prefecture
Priority to JP8239652A priority Critical patent/JP3066571B2/en
Publication of JPH1053832A publication Critical patent/JPH1053832A/en
Application granted granted Critical
Publication of JP3066571B2 publication Critical patent/JP3066571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、WC−Co系合金に代
わり、これと同等の特性を有する合金を得る手法に関す
るもので、特に超硬合金と鋼との複合化における中間層
素材として最適で廉価な合金を得る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for obtaining an alloy having the same properties as a WC-Co alloy instead of a WC-Co alloy. And technology for obtaining inexpensive alloys.

【0002】[0002]

【技術的背景】従来、耐摩工具や大型工具として有用な
WC−Co系超硬合金は高価であり、且つ、難溶接材で
あるため、使用用途が限定されてきた。そこで超硬合金
を必要最小限の部位に用い、それ以外は鋼などの汎用材
とする複合化が有効と考えられ、多くの複合化の方法が
提案されてきた。その一つの方法として、ろう付法が広
く一般的に用いられているが、中間層を設けないろう付
法では、超硬合金と鋼間の熱膨張係数の違いに起因する
熱応力を完全に緩和することが困難であり、場合によっ
ては超硬合金部に割れを生じることがある。また、接合
面積が広い場合、あるいは基材との濡れ性が悪い場合に
は、ろう切れを生じ、接合不良となることがしばしば認
められた。
2. Description of the Related Art Conventionally, WC-Co cemented carbides useful as wear-resistant tools and large-sized tools are expensive and difficult to weld, so their use is limited. Therefore, it is considered effective to use a cemented carbide in a minimum necessary part and use a general-purpose material such as steel for the other parts, and many composite methods have been proposed. As one of the methods, the brazing method is widely and generally used, but the brazing method without an intermediate layer completely eliminates the thermal stress caused by the difference in the thermal expansion coefficient between the cemented carbide and the steel. It is difficult to relax, and in some cases, the cemented carbide may crack. In addition, when the bonding area was large or when the wettability with the base material was poor, it was often recognized that brazing occurred, resulting in poor bonding.

【0003】これらの欠点を解決するために、超硬合金
と鋼との間に中間的な熱膨張係数となる素材を介在させ
て複合化する方法が開発されている(例えば、特開平7
−3306)。この方法によると、熱応力の問題は解消
され、各界面も冶金学的に接合されるため強固な接合が
期待できる。しかし従来この方法における中間層素材に
は、超硬合金および鋼との接合性がよく、且つ、両者の
中間的な熱膨張係数となることを考慮したため、Coを
比較的多く含有した超硬合金と同種のWC−Co系合金
を主として用いてきた。そのため、接合体自体が高価な
ものとなっている。したがって、Coに代わる結合相成
分の中間層素材の開発は超硬合金の適用拡大の面からも
有力な解決策となる。
In order to solve these drawbacks, a method has been developed in which a material having an intermediate thermal expansion coefficient is interposed between a cemented carbide and steel to form a composite (for example, Japanese Patent Laid-Open No.
-3306). According to this method, the problem of thermal stress is solved, and since each interface is also metallurgically bonded, strong bonding can be expected. However, conventionally, the intermediate layer material in this method has a good bondability with the cemented carbide and the steel, and in consideration of having an intermediate thermal expansion coefficient between the two, the cemented carbide containing a relatively large amount of Co is used. And WC-Co alloys of the same type as above. Therefore, the joined body itself is expensive. Therefore, the development of an intermediate layer material having a binder phase component instead of Co is a promising solution from the viewpoint of expanding the application of cemented carbide.

【0004】特公平3−72148には、WC−Fe系
超硬合金とその製造方法に関する技術が提案されてい
る。当公告による超硬合金は、結合相部分にFe系合金
を用いているが、耐摩耗性のみを重視して開発された合
金であるため、硬さは高いが、強度が低く、焼結温度も
極めて高いなど、本発明が意識している中間層素材に適
用するのは困難な材料である。いずれにしてもFe以外
に他の成分元素を有した合金を原料粉末としたもので、
本発明とは目的、内容、その効果は明らかに異なるもの
である。
Japanese Patent Publication No. 3-72148 proposes a technique relating to a WC-Fe-based cemented carbide and a method for producing the same. The cemented carbide according to this announcement uses an Fe-based alloy for the binder phase, but since it is an alloy developed with emphasis on wear resistance only, it has high hardness, low strength, and low sintering temperature. This is a material that is difficult to apply to the intermediate layer material that the present invention is conscious of, for example, it is extremely high. In any case, an alloy having other component elements besides Fe was used as the raw material powder,
The purpose, contents and effects thereof are clearly different from those of the present invention.

【0005】特開昭58−110655には、結合相部
分をFe−Ni−C系合金に置き換えた超硬合金および
その製法に関する内容が開示されているが、この結合相
組成はオーステナイトにすることを目的としており、オ
ーステナイトが応力を受けてマルテンサイトに変態する
ことを特徴とすることが記載されている。すなわち、こ
の発明による超硬合金は、掘削工具のように使用中に大
きな外力を受け、且つ、耐摩耗性が必要な工具および部
品に適用することを目的として開発されており、本発明
とは原料、成分、製法が全く異なり、本発明が意識して
いる中間層素材に適用するのは困難である。
Japanese Patent Application Laid-Open (JP-A) No. 58-110655 discloses a cemented carbide in which the binder phase is replaced by an Fe-Ni-C alloy and a method for producing the cemented carbide. It is described that austenite is transformed into martensite under stress. That is, the cemented carbide according to the present invention has been developed for the purpose of being applied to tools and parts that require a large external force during use, such as a drilling tool, and require wear resistance. Since the raw materials, components, and production methods are completely different, it is difficult to apply the present invention to the intermediate layer material conscious of the present invention.

【0006】特公昭61−25537には、超硬合金と
鋼との複合化における応力緩和を目的として発明され
た、Fe−C系焼結体のスケルトンにCuを溶浸させた
素材について記載している。本発明による合金は、超硬
合金と鋼との中間的な熱膨張係数にすることで応力を緩
和するのに対し、この素材はCuの軟質な性質を利用し
て応力を緩和するものであり、根本的にその原理が違
う。一般に、軟質素材を中間層として用いた場合、接合
体の強度が低くくなる欠点がある。その点、特公昭61
−25537により示されている素材は、熱処理により
強度を高めているが、この処理により軟質素材を利用し
た応力緩和の効果が低減することが考えられ、必然的に
接合可能な超硬合金の材種および大きさが制約されてい
る。これに対し、本発明による合金は、熱膨張係数その
ものが中間的な値に設計されるため、接合可能な超硬合
金に対する自由度が大きいところに特徴がある。
Japanese Patent Publication No. 61-25537 describes a material in which Cu is infiltrated into a skeleton of an Fe—C sintered body, which was invented for the purpose of relaxing stress in the compounding of cemented carbide and steel. ing. The alloy according to the present invention relieves stress by making the coefficient of thermal expansion intermediate between that of cemented carbide and steel, whereas this material relieves stress by using the soft nature of Cu. The principle is fundamentally different. Generally, when a soft material is used as the intermediate layer, there is a disadvantage that the strength of the joined body is reduced. That point, Tokiko Sho 61
Although the strength of the material indicated by -25537 is increased by heat treatment, it is considered that the effect of stress relaxation using a soft material is reduced by this treatment. Species and size are restricted. On the other hand, the alloy according to the present invention is characterized in that the coefficient of thermal expansion itself is designed to be an intermediate value, so that the degree of freedom with respect to the cementable cemented carbide is large.

【0007】[0007]

【発明の目的】本発明は、上記、WC−Co系に代わる
もので、その機械的特性を損なうことがない、中間層素
材となる合金を得るものである。
The object of the present invention is to provide an alloy which is an alternative to the above-mentioned WC-Co-based material and which does not impair the mechanical properties of the intermediate layer material.

【0008】[0008]

【発明の構成】本発明は、50〜70wt%のWCに対
し、50〜30wt%のFe系結合相で構成され、且
つ、その結合相が残部のFeに対してC量が0.8wt
%より多く、2.0wt%より少なくなるように調整さ
れた粉末およびその焼結体に関するものであり、従来の
WC−Co系中間層素材のCo部分をFe−C系合金に
置き換えたところが大きな特徴である。また、結合相の
組成を残部のFeに対しC量を0.8wt%より多く、
2.0wt%より少なくすることで、WCの脱炭による
FeCを主体とする複炭化物の形成や過飽和のC
による遊離黒鉛および粗大なセメンタイトの形成が抑制
され、結合相部分はフェライト+パーライトの鋼と類似
の組織となり、硬さ、強度などの機械的性質の低下を防
止した。
The present invention comprises 50 to 30 wt% Fe-based binder phase with respect to 50 to 70 wt% WC, and the binder phase has a C content of 0.8 wt% with respect to the remaining Fe.
% And less than 2.0 wt% and a sintered body thereof. The major difference is that the Co portion of the conventional WC-Co-based intermediate layer material is replaced with an Fe-C-based alloy. It is a feature. Further, the composition of the binder phase is such that the amount of C is more than 0.8 wt% with respect to the remaining Fe,
By making the content less than 2.0 wt%, the formation of double carbide mainly composed of Fe 3 W 3 C by decarburization of WC and the supersaturated carbon
, The formation of free graphite and coarse cementite was suppressed, and the binder phase portion had a structure similar to that of ferrite + pearlite steel, thereby preventing a decrease in mechanical properties such as hardness and strength.

【0009】本発明による合金粉末は、例えば、平均粒
径0.5〜10.0μmのWC粉末、カルボニールFe
粉末に代表されるような純鉄に近い組成の平均粒径5μ
m前後のFe粉末、および平均粒径3.5μm前後のC
粉末を、各々所定量配合し、遊星ボールミルを用いた湿
式混合法などで容易に製造することができる。このよう
にして作製した粉末は、超硬合金と鋼との間に充填し、
焼結接合して利用してもよいし、一度、焼結体とした
後、拡散接合、ろう付あるいは溶射接合などを利用して
複合化する場合の応力緩和層として用いることができ
る。さらには、一般的な超硬合金と本発明による合金
を、焼結接合あるいは拡散接合などで複合化した2層構
造の複合材を作製すれば、溶接も可能となる。また、通
常の超硬合金よりもNiろうなどのろう材に対して濡れ
性が良好であるため、超硬合金の適用範囲を大幅に拡大
することができる。すなわち、本開発による合金は、超
硬合金と鋼とを複合化する際の中間層索材として最良の
ものである。
The alloy powder according to the present invention is, for example, a WC powder having an average particle size of 0.5 to 10.0 μm, carbonyl Fe
Average particle size 5μ of composition close to pure iron as represented by powder
m and Fe having an average particle size of about 3.5 μm.
The powders can be easily produced by mixing a predetermined amount of each powder and by a wet mixing method using a planetary ball mill. The powder produced in this way is filled between the cemented carbide and steel,
It may be used by sintering, or it may be used as a stress relaxation layer in the case of once forming a sintered body and then combining it by diffusion bonding, brazing or thermal spray bonding. Further, if a composite material having a two-layer structure in which a general cemented carbide and the alloy according to the present invention are compounded by sintering or diffusion bonding, welding can be performed. Further, since the wettability of the brazing material such as Ni brazing material is better than that of a normal cemented carbide, the applicable range of the cemented carbide can be greatly expanded. That is, the alloy according to the present development is the best one as an intermediate layer cord material when compounding a cemented carbide and steel.

【0010】また、本発明による合金は、従来のWC−
Co系中間層素材に比べ焼結温度が低いため、いくつか
ある超硬合金と鋼との複合化方法のうち、特に、焼結接
合において接合温度を下げることができ、必然的に熱応
力が緩和される方向に働く利点がある。従来のWC−C
o系中間素材を用いて超硬合金と鋼とを複合化した場合
には、鋼のC濃度が低い条件では、中間層側から鋼側に
Cが拡散し、中間層と鋼との界面にη相(Co
C)を生じることがあったが、本発明による合金は、
WC−Co系中間層素材に比べCの拡散によるη相の形
成に対して鈍感であるため、このη相形成を抑制する効
果がある。さらに、中間層の強度を向上させたい場合に
は、通常の鋼と同様の焼入れを行うことで、結合相のフ
ェライト+パーライト組織をマルテンサイト組織に変態
させることができ、これにより複合材を強化することも
可能となる。
[0010] The alloy according to the present invention is a conventional WC-
Since the sintering temperature is lower than that of the Co-based intermediate layer material, the joining temperature can be lowered particularly in the sinter joining method, and the thermal stress is inevitably reduced, especially among the methods of combining cemented carbide and steel. It has the advantage of working in a direction that is alleviated. Conventional WC-C
When the cemented carbide and steel are compounded using an o-based intermediate material, C diffuses from the intermediate layer side to the steel side under the condition that the C concentration of the steel is low, and the carbon diffuses into the interface between the intermediate layer and the steel. η phase (Co 3 W
3 C) was sometimes occur. However, the alloy according to the present invention,
Compared to the WC-Co-based intermediate layer material, it is less sensitive to the formation of the η phase due to the diffusion of C, and thus has the effect of suppressing the formation of the η phase. Furthermore, when it is desired to improve the strength of the intermediate layer, quenching in the same manner as ordinary steel can transform the ferrite + pearlite structure of the binder phase into a martensite structure, thereby strengthening the composite material. It is also possible to do.

【0011】[0011]

【実施例】【Example】

(実施例1)平均粒径8μmのWC粉末63.0wt%
と結合相素材としての平均粒径5μmのカルボニール鉄
粉末36.5%および平均粒径3.5μmのC粉末0.
5wt%(結合相の組成は、C:1.3wt%、Fe:
98.7wt%)を各々配合し、メタノールを溶媒とし
てスラリー状とし、遊星ボールミルにて混合する。この
スラリー状粉末を、攪拌しながら乾燥させ、ふるいで粒
度調整し、合金粉末を得た。この粉末を200kgf/
cmで圧縮成形し、φ40×20mmの圧粉体とし、
10−Torr台の真空炉にて1280℃で1時間保
持して焼結体を作製した。
(Example 1) 63.0 wt% of WC powder having an average particle size of 8 µm
And 36.5% of carbonyl iron powder having an average particle size of 5 μm as a binder phase material and C powder having an average particle size of 3.5 μm.
5 wt% (combined phase composition: C: 1.3 wt%, Fe:
98.7 wt%), and the mixture is made into a slurry using methanol as a solvent and mixed with a planetary ball mill. The slurry-like powder was dried with stirring, and the particle size was adjusted with a sieve, thereby obtaining an alloy powder. 200 kgf /
compression molded at cm 2, a green compact of ø40 × 20 mm,
The sintered body was manufactured by holding at 1280 ° C. for 1 hour in a vacuum furnace on the order of 10 −3 Torr.

【0012】得られた焼結体は、WCの周りをフェライ
ト+パーライトからなる結合相で取り囲んだ組織を呈
し、WCの脱炭によるFeCおよび過飽和のCに
よる遊離黒鉛、粗大なセメンタイトなどの欠陥相が認め
られない、健全な組織となった。本焼結体の硬さはHR
A=77で、三点曲げ試験による抗折力は231kgf
/cmとなり、本焼結体とWCと結合相との体積比を
等しくしたWC−Co系合金の硬さ(HRA=77)お
よび抗折力(230kgf/cm)とほぼ同様の値が
得られた。また、中間層素材として用いる場合に重要な
因子となる熱膨張係数は、本発明による合金では9.0
×10−6/℃となり、同じ比率としたWC−Co系合
金における9.4×10−6/℃とほぼ同様の値を示し
た。
The obtained sintered body has a structure in which WC is surrounded by a binder phase composed of ferrite and pearlite, free graphite by Fe 3 W 3 C and supersaturated C by decarburization of WC, coarse cementite. A healthy organization with no defect phases was found. The hardness of this sintered body is HR
A = 77, the transverse rupture strength by the three-point bending test is 231 kgf
/ Cm 2 , which are almost the same values as the hardness (HRA = 77) and the transverse rupture strength (230 kgf / cm 2 ) of the WC-Co alloy in which the volume ratio between the sintered body, the WC and the binder phase is equal. Obtained. The coefficient of thermal expansion, which is an important factor when used as an intermediate layer material, is 9.0 in the alloy according to the present invention.
× 10 −6 / ° C., which is almost the same value as 9.4 × 10 −6 / ° C. in the WC-Co alloy having the same ratio.

【0013】(実施例2)本発明による合金が、結合相
におけるC量を0.8wt%より多く、2.0wt%よ
り少ない範囲に限定している根拠を確認するために、以
下の実験を実施し、以下のような確実な知見を得た。
Example 2 In order to confirm the grounds that the alloy according to the present invention limits the C content in the binder phase to a range of more than 0.8 wt% and less than 2.0 wt%, the following experiment was conducted. The following reliable findings were obtained.

【0014】平均粒径8μmのWC粉末63.0wt%
と結合相素材としての平均粒径5μmのカルボニール鉄
粉末36.7%および平均粒径3.5μmのC粉末0.
3wt%(結合相の組成は、C:0.8wt%、Fe:
99.2wt%)を各々配合した混合粉末、並びに、平
均粒径8μmnWC粉末63.1wt%と結合相素材と
しての平均粒径5μmのカルボニール鉄粉末36.1%
および平均粒径3.5μmのC粉末0.8wt%(結合
相の組成は、C:2.0wt%、Fe:98.0wt
%)を各々配合した混合粉末を、各々メタノールを溶媒
としてスラリー状とし、遊星ボールミルにて混合する。
このスラリー状粉末を、攪拌しながら乾燥させ、ふるい
で粒度調整し、2種類の合金粉末を得た。これらの粉末
を200kgf/cmで圧縮成形し、φ40×20m
mの圧粉体とし、10−3Torr台の真空炉にて、1
280℃および1300℃で1時間保持して焼結体を作
製した。
63.0 wt% of WC powder having an average particle size of 8 μm
And 36.7% of carbonyl iron powder having an average particle diameter of 5 μm as a binder phase material and C powder having an average particle diameter of 3.5 μm.
3 wt% (the composition of the binder phase is C: 0.8 wt%, Fe:
99.2% by weight), 63.1% by weight of WC powder having an average particle diameter of 8 μm, and 36.1% of carbonyl iron powder having an average particle diameter of 5 μm as a binder phase material.
And 0.8 wt% of C powder having an average particle size of 3.5 μm (the composition of the binder phase is C: 2.0 wt%, Fe: 98.0 wt%)
%) Are mixed into a slurry using methanol as a solvent, and mixed in a planetary ball mill.
The slurry-like powder was dried while stirring, and the particle size was adjusted with a sieve, thereby obtaining two types of alloy powder. These powders are compression molded at 200 kgf / cm 2 , φ40 × 20 m
m in a vacuum furnace of the order of 10 −3 Torr.
It was kept at 280 ° C. and 1300 ° C. for 1 hour to produce a sintered body.

【0015】得られた焼結体の組織は、1280℃で焼
結した場合、前者は不完全焼結によるポアが存在し、後
者は粗大なセメンタイトが樹枝状に析出した組織とな
り、ともに良好な焼結体にはならなかった。これら焼結
体の抗折力は、前者が165kgf/cm、後者が1
50kgf/cmとなり、実施例1で示した焼結体よ
りも著しく低い値を示した。また、1300℃で焼結し
た場合の両者の組織は、前者がFeCを主体とす
る脆弱な相が分散した組織となり、後者は上記同様、粗
大なセメンタイトが樹枝状に析出した組織となり、とも
に良好な焼結体にはならなかった。これら焼結体の抗折
力は、前者が155kgf/cm、後者が160kg
f/cmとなり、実施例1で示した焼結体よりも著し
く低い値を示した。これらのことから、結合相の組成
は、残部のFeに対してC量が0.8wt%より多く、
且つ、2.0wt%より少なくなるように調整されてい
ることが望ましいとの知見を得た。
When the structure of the obtained sintered body is sintered at 1280 ° C., the former has pores due to incomplete sintering, and the latter has a structure in which coarse cementite is precipitated in a dendritic manner. It did not become a sintered body. The bending strength of these sintered bodies was 165 kgf / cm 2 for the former and 1 for the latter.
It was 50 kgf / cm 2 , which was significantly lower than that of the sintered body shown in Example 1. In the case of sintering at 1300 ° C., the former has a structure in which a fragile phase mainly composed of Fe 3 W 3 C is dispersed, and the latter has a structure in which coarse cementite is precipitated in a dendritic manner as described above. And both did not become good sintered bodies. The bending strength of these sintered bodies was 155 kgf / cm 2 for the former and 160 kg for the latter.
f / cm 2 , which was significantly lower than that of the sintered body shown in Example 1. From these facts, the composition of the binder phase is such that the C content is more than 0.8 wt% with respect to the balance of Fe,
In addition, it has been found that it is desirable to adjust the amount to be less than 2.0 wt%.

【0016】(実施例3)耐摩耗、耐衝撃用工具の素材
として一般に広く使われているWC−10wt%Co超
硬合金(φ10×8mm)をステンレス鋼製パイプ中に
設置し、その上に平均粒径8μmのWC粉末63.0w
t%と平均粒径5μmのカルボニールFe粉末36.5
wt%および平均粒径3.5μmのC粉末0.5wt%
からなる合金粉末を6g充填し、さらにSK4相当の工
具鋼(φ10×25mm)をその上に重ね、10−3
orr台の真空ホットプレス装置にて、試料への加圧1
5kgf/cm、温度1250℃、保持時間1時間の
条件で接合体を得た。
(Example 3) WC-10wt% Co cemented carbide (φ10 × 8mm), which is widely used as a material for wear and impact resistant tools, is placed in a stainless steel pipe and placed thereon. 63.0 w of WC powder having an average particle size of 8 μm
36.5% by weight of carbonyl Fe powder having an average particle diameter of 5 μm
wt% and 0.5 wt% of C powder having an average particle size of 3.5 μm
6 g of alloy powder consisting of SK4, and a tool steel equivalent to SK4 (φ10 × 25 mm) is placed thereon, and 10 −3 T
Pressurizing the sample with a vacuum hot press device of orr unit 1
A joined body was obtained under the conditions of 5 kgf / cm 2 , a temperature of 1250 ° C., and a holding time of 1 hour.

【0017】得られた接合体は、超硬合金部の割れ、各
界面での空隙、中間層部分のポアなどは観察されず、極
めて良好な接合組織を呈した。
[0017] The resulting bonded body exhibited an extremely good bonded structure without cracks in the cemented carbide portion, voids at the interfaces, pores in the intermediate layer, and the like.

【0018】(実施例4)実施例3と同様の実験を、S
K4相当の工具鋼の代わりに機械構造用炭素鋼S55C
を用いて行った。その結果、得られた接合体は、実施例
3の場合と同様に、超硬合金部の割れ、各界面での空
隙、中間層部分のポアなどは観察されず、極めて良好な
接合組織を呈した。
(Embodiment 4) An experiment similar to that of Embodiment 3 was performed by S
Instead of tool steel equivalent to K4, carbon steel for machine structure S55C
This was performed using As a result, similarly to the case of Example 3, the obtained bonded body exhibited no crack in the cemented carbide portion, no void at each interface, no pore in the intermediate layer portion, etc., and exhibited an extremely good bonded structure. did.

【0019】これに対し、上記と同様の実験をWC−C
o系の中間層素材を用いて行ったところ、中間層とS5
5Cとの界面に数μmオーダーのη相が形成された。η
相は脆弱な性質を有するため、接合体中に存在すること
は好ましくない。このことからも、本発明による合金
が、中間層素材として優れていることが認められた。
On the other hand, an experiment similar to the above was performed in the WC-C
When an o-type intermediate layer material was used, the intermediate layer and S5
An η phase on the order of several μm was formed at the interface with 5C. η
It is not preferred that the phase be present in the conjugate because of its brittle nature. This also confirms that the alloy according to the present invention is excellent as an intermediate layer material.

【0020】[0020]

【発明の効果】本発明では、入手が極めて容易なFe粉
末およびC粉末を用いることで、WC−Co系に代わる
中間層素材となる合金を得ることができる。また、有害
に作用する可能性がある他の元素を含有しないか、ある
いは含んでも極めて少ないFe粉末を用いるため、品質
が高く、その安定が図られる。これにより、超硬合金を
鋼と複合化して利用する機会を飛躍的に増加させること
となり、超硬合金の使用用途が大幅に拡大する。また、
超硬合金を鋼と接合(主に、ろう付)する場合におい
て、性能の良い中間層素材が開発されたことにより、製
品の歩留まりが大幅に改善され、信頼性の向上を図るこ
とができる。
According to the present invention, by using Fe powder and C powder which are extremely easily available, an alloy which becomes a material for the intermediate layer in place of the WC-Co system can be obtained. Further, since Fe powder which does not contain other elements which may have a harmful effect or contains very few elements is used, high quality and stability can be achieved. As a result, the chance of using a cemented carbide in combination with steel is dramatically increased, and the use of cemented carbide is greatly expanded. Also,
In the case of joining (mainly, brazing) a cemented carbide to steel, the development of an intermediate layer material with good performance greatly improves the product yield and reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本図は、結合相におけるC量が0.8、1.
3、2.0wt%で残部がFeになるように調整した3
種類の合金を用意し、焼結温度と抗折力との関係につい
て調べたものである。
FIG. 1 shows that the amount of C in the binder phase is 0.8, 1.
3, adjusted so that the balance is Fe at 2.0 wt% 3
Various alloys were prepared and the relationship between sintering temperature and bending strength was examined.

───────────────────────────────────────────────────── フロントページの続き 審査官 小柳 健悟 (58)調査した分野(Int.Cl.7,DB名) C22C 29/08 B22F 7/00 C22C 1/05 ──────────────────────────────────────────────────続 き Continued on front page Examiner Kengo Koyanagi (58) Field surveyed (Int. Cl. 7 , DB name) C22C 29/08 B22F 7/00 C22C 1/05

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C量が0.8wt%より多く2.0wt%
未満で残部がFeの結合相50〜30wt%とWC50
〜70wt%からなる鉄−炭素を結合材としたWC−F
e系合金。
1. The amount of C is more than 0.8 wt% and 2.0 wt%.
Less than 50% by weight of the combined phase of Fe and WC50
WC-F using iron-carbon of up to 70 wt% as binder
e-based alloy.
【請求項2】C量が0.8wt%より多く2.0wt%
未満で残部がFeの結合相50〜30wt%とWC50
〜70wt%からなる鉄−炭素を結合材としたWC−F
e系合金粉末を、200〜1000kgf/cm で圧
縮成型し、真空中または不活性ガス雰囲気中で、125
0〜1300℃の温度で、η相(Fe C)、遊離
黒鉛および粗大セメンタイトなどの機械的性質を低下さ
せる欠陥相が存在せず、WCの周りをフェライト+バー
ライトの結合相が取り囲んだ組織となるように焼結す
る、鉄−炭素を結合材としたWC−Fe系合金の製造方
法。
2. The amount of C is more than 0.8 wt% and 2.0 wt%.
Less than 50% by weight of the combined phase of Fe and WC50
WC-F using iron-carbon of up to 70 wt% as binder
The e-based alloy powder, pressure in 200~1000kgf / cm 2
Shrink molding, in a vacuum or in an inert gas atmosphere, 125
At a temperature of 0 to 1300 ° C., η phase (Fe 3 W 3 C), liberation
Reduced mechanical properties such as graphite and coarse cementite
Ferrite + bar around WC with no defective phase
Sinter so that the binder phase of the light has an enclosed structure
Of producing WC-Fe alloy using iron-carbon as binder
Law.
JP8239652A 1996-08-07 1996-08-07 WC-Fe alloy using iron-carbon as binder and method for producing the same Expired - Fee Related JP3066571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8239652A JP3066571B2 (en) 1996-08-07 1996-08-07 WC-Fe alloy using iron-carbon as binder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8239652A JP3066571B2 (en) 1996-08-07 1996-08-07 WC-Fe alloy using iron-carbon as binder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1053832A JPH1053832A (en) 1998-02-24
JP3066571B2 true JP3066571B2 (en) 2000-07-17

Family

ID=17047896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8239652A Expired - Fee Related JP3066571B2 (en) 1996-08-07 1996-08-07 WC-Fe alloy using iron-carbon as binder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3066571B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110063660A (en) * 2008-09-25 2011-06-13 보르그워너 인코퍼레이티드 Turbocharger and holding disk therefor
KR101141263B1 (en) * 2009-10-07 2012-05-08 김기열 ADHESIVE MATERIALS OF WC-Fe BASED HARD METAL AND MANUFACTURING METHOD OF THE SAME
CN101928939B (en) * 2010-08-24 2012-07-18 上海工程技术大学 FenWnC-Co(Y) alloy nano coating, preparation method thereof and application thereof
EP3492609B9 (en) 2016-08-01 2021-12-08 Hitachi Metals, Ltd. Cemented carbide and its production method, and rolling roll

Also Published As

Publication number Publication date
JPH1053832A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
US6521174B1 (en) Method of forming polycrystalline diamond cutters having modified residual stresses
JP2008502794A (en) Wear member made of diamond-containing composite material
US20150023830A1 (en) Diamond metal composite
EP0899051B1 (en) Alloy used for joining to cemented carbide, and composite materials made thereof
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JP3066571B2 (en) WC-Fe alloy using iron-carbon as binder and method for producing the same
JP3853362B2 (en) Manganese-containing material with high tensile strength
JP4166821B2 (en) Powder metallurgical manufacturing method of composite material
JPS63500313A (en) Impact-resistant powder metal parts and manufacturing method thereof
JPH09316587A (en) High strength fine-grained diamond sintered compact and tool using the same
EP3808864B1 (en) Premix alloy powders for diamond tools
JPH0245693B2 (en)
JP3765633B2 (en) High density sintered alloy material and manufacturing method thereof
JP4480912B2 (en) Cutting blade for semiconductor product processing and manufacturing method thereof
US20130093131A1 (en) Sintered composite sliding part and production method therefor
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
JPS61136605A (en) Joining method of sintered hard material and metallic material
JP3788385B2 (en) Manufacturing method of iron-based sintered alloy members with excellent dimensional accuracy, strength and slidability
JP2000119072A (en) Joining of silicon nitride to carbon steel
JPS6150121B2 (en)
JPH02258946A (en) Composite sintered alloy, heat-resistant member and steel material supporting member in heating furnace
JPS59123703A (en) Wear resistant sintered composite member
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees