JPH1059867A - Activation of blood coagulation factor vii and production of activated blood coagulation factor vii by the activation method - Google Patents

Activation of blood coagulation factor vii and production of activated blood coagulation factor vii by the activation method

Info

Publication number
JPH1059867A
JPH1059867A JP8237145A JP23714596A JPH1059867A JP H1059867 A JPH1059867 A JP H1059867A JP 8237145 A JP8237145 A JP 8237145A JP 23714596 A JP23714596 A JP 23714596A JP H1059867 A JPH1059867 A JP H1059867A
Authority
JP
Japan
Prior art keywords
fvii
blood coagulation
coagulation factor
solution
factor vii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8237145A
Other languages
Japanese (ja)
Other versions
JP4046377B2 (en
Inventor
Kazuhiko Tomokiyo
和彦 友清
Hisashi Yano
寿 矢野
Masanobu Imamura
匡伸 今村
Yoshiaki Nakano
祥晃 中野
Shinichi Maruno
真一 丸野
Yoichi Ogata
洋一 緒方
Takeshi Terano
剛 寺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP23714596A priority Critical patent/JP4046377B2/en
Publication of JPH1059867A publication Critical patent/JPH1059867A/en
Application granted granted Critical
Publication of JP4046377B2 publication Critical patent/JP4046377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To extremely easily produce an activated blood coagulation factor VII having depressed contaminant protein content by treating a plasma fraction containing blood coagulation factor VII by anion exchange chromatography. SOLUTION: A solution containing a blood coagulation factor VII (FVII) is brought into contact with an anion exchange resin and developed. The developed FVII is eluted by partially activating the FVII. The activation rate is preferably <60%. The eluate is left at rest in a solution state to completely activate the non-activated molecule. The buffer solution used in the elution preferably contains Ca<2+> at a concentration of >=0.5mM. The leaving (aging) of the eluate solution is preferably carried out in a solution containing >=0.5mM of Ca<2+> until. >=95% of the FVII is activated. The formation of contaminant substance in the activation process can be suppressed to enable remarkable increase in the yield of the activated product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、血漿蛋白質の分野に
関する。より詳細には、活性化血液凝固第VII因子
(以下、FVIIaと称することがある)の製造方法に関
し、FVIIを含有する血漿画分または遺伝子組換え技
術に基づいて作出されたFVII産生細胞培養上清か
ら、陰イオン交換クロマトグラフィーによる処理及びそ
れに連続した液相中での活性化によって、夾雑蛋白質含
量が低減されたFVIIaを、極めて簡便に生産し得る
FVIIaの製造方法を提供するものである。
The present invention relates to the field of plasma proteins. More specifically, activated blood coagulation factor VII
(Hereinafter, may be referred to as FVIIa), from an FVII-containing plasma fraction or an FVII-producing cell culture supernatant produced based on a gene recombination technique, by anion exchange chromatography and the like. An object of the present invention is to provide a method for producing FVIIa, which can extremely easily produce FVIIa in which the content of contaminant proteins is reduced by activation in a continuous liquid phase.

【0002】[0002]

【従来の技術並びに発明が解決しようとする課題】FV
IIはビタミンK依存性の血液凝固因子であり、外因系
血液凝固の開始因子であることは広く知られている。他
のビタミンK依存性凝固因子と同様にN末端から35残
基までのアミノ酸配列に10個のγカルボキシグルタミ
ン酸(以下、Glaと称することがある)からなるGla
領域を有している(Proc.Natl.Acad.Sc
i.USA,vol.83,p.2412−2416,198
6)。FVIIは、in vitroにおいて、活性化血
液凝固第X因子(以下、FXaと称することがある)、活
性化血液凝固第IX因子(以下、FIXaと称することが
ある)またはトロンビン(以下、FIIaと称することが
ある)によって、152Arg−153Ileが加水分解さ
れ、一個のS−S結合で架橋されたH鎖とL鎖から構成
される活性型FVIIすなわちFVIIaに変換される
ことが知られている(J.Biol.Chem.,vol.2
51,p.4797−4802,1976)。また、最近、
Saulius等は生理的なFVII活性化酵素が活性
化血液凝固第X因子であると報告した(Biochem
istry,vol.35,p.1904−1910,19
96)。
2. Description of the Related Art FV
II is a vitamin K-dependent blood coagulation factor and is widely known to be an initiator of extrinsic blood coagulation. Similar to other vitamin K-dependent coagulation factors, Gla consisting of 10 γ-carboxyglutamic acids (hereinafter sometimes referred to as Gla) in the amino acid sequence from the N-terminal to 35 residues.
Region (Proc. Natl. Acad. Sc.
i. USA, vol. 83, p. 2412-2416, 198.
6). In vitro, FVII is activated blood coagulation factor X (hereinafter sometimes referred to as FXa), activated blood coagulation factor IX (hereinafter sometimes referred to as FIXa) or thrombin (hereinafter referred to as FIIa). Is sometimes hydrolyzed to convert it into activated FVII, which is composed of H and L chains cross-linked by one SS bond, ie, FVIIa (J). .Biol.Chem., Vol.2
51, p. 4797-4802, 1976). Also recently,
Saulius et al. Reported that physiological FVII activating enzyme is activated blood coagulation factor X (Biochem).
istry, vol. 35, p. 1904-1910, 19
96).

【0003】血友病A及び血友病B患者に対する補充療
法として、血液凝固第VIII因子(以下、FVIIIと称す
ることがある)及び血液凝固第IX因子(以下、FIXと
称することがある)製剤の投与が行なわれている。しか
し、当該治療法に伴いFVIII及びFIXに対する中和
抗体(インヒビターと呼ばれることもある)の出現が問題
視されている。このようなインヒビター患者の治療にF
VIIaが有効であることは既に報告されており、現
在、血漿由来FVIIa及び遺伝子組換え技術を応用し
た遺伝子組換え型FVIIaの開発が進められている(基
礎と臨床,vol.30,p.315−325,1996;H
aemostasis,vol.19,p.335−34
3,1989)
[0003] As replacement therapy for hemophilia A and hemophilia B patients, blood coagulation factor VIII (hereinafter sometimes referred to as FVIII) and blood coagulation factor IX (hereinafter sometimes referred to as FIX) preparations Is being administered. However, the appearance of neutralizing antibodies (sometimes called inhibitors) against FVIII and FIX has been regarded as a problem with the treatment. F for the treatment of such inhibitor patients
It has already been reported that VIIa is effective, and currently, the development of plasma-derived FVIIa and recombinant FVIIa applying genetic recombination technology is underway (Basic and Clinical, vol. 30, p. 315). -325, 1996; H
aemostasis, vol.19, p.335-34
3, 1989)

【0004】酵素前駆体であるFVIIからFVIIa
への変換に関しては各種の試験が行なわれ、FVII活
性化酵素であるFXa、FIXa及びFIIaが存在しな
い場合、FVIIaの関与によるFVIIの自己活性化
反応が生じること、即ち次式で示される反応"FVII
+ FVIIa → 2FVIIa"で進行することが明らか
にされている(Biochemistry,vol.28,
p.9331−9336,1989)。ところで、FVI
Iaの調製方法として、陰イオン交換樹脂を使用した活
性化方法がある(Res.Discl.,vol.269,
p.564−565,1986)。この方法は、反応の詳
細は明らかにされていないが、FVIIaを工業規模で
生産するうえで極めて有効な方法である。しかしなが
ら、陰イオン交換樹脂を使用したFVIIの活性化にお
いて問題となるのは、副産物としてFVIIのL鎖のN
末端から38残基のアミノ酸が欠失したGla領域欠失
FVIIa(以下、GD-lessFVIIaと称すること
がある)が生成することにある。FVIIaの生体内での
活性発現にはリン脂質及び組織因子との結合が必要であ
り、Gla領域はそのためには必須である。従って、G
la領域の存在しないGD-lessFVIIaはリン脂
質及び組織因子との結合が極めて弱く、生物学的活性を
有さずその存在の生理的意義はないものと考えられてい
る(J.Biol.Chem.,vol.265,p.1890
−1894,1990;Thrombosis and
Haemostasis.,vol.67,p.679−6
85,1992)。
[0004] The enzyme precursors FVII to FVIIa
Various tests have been conducted for the conversion to FVII, and in the absence of the FVII activating enzymes FXa, FIXa and FIIa, a self-activation reaction of FVII due to the involvement of FVIIa occurs, ie, a reaction represented by the following formula: FVII
+ FVIIa → 2FVIIa "(Biochemistry, vol. 28,
pp. 9331-9336, 1989). By the way, FVI
As a method for preparing Ia, there is an activation method using an anion exchange resin (Res. Discl., Vol. 269,
564-565, 1986). This method is an extremely effective method for producing FVIIa on an industrial scale, although the details of the reaction are not disclosed. However, the problem with the activation of FVII using anion exchange resins is that the by-product N
This is to produce Gla region-deleted FVIIa in which 38 amino acids have been deleted from the terminal (hereinafter sometimes referred to as GD-lessFVIIa). Expression of FVIIa activity in vivo requires binding to phospholipids and tissue factor, and the Gla region is essential for that. Therefore, G
GD-lessFVIIa having no la region has a very weak binding to phospholipids and tissue factor, has no biological activity, and is considered to have no physiological significance (J. Biol. Chem. , vol. 265, p. 1890
-1894, 1990; Thrombosis and
Haemostasis., Vol. 67, p. 679-6.
85, 1992).

【0005】これまで、陰イオン交換樹脂上での活性化
はゲルにFVIIを展開した後、完全活性化させ、グラ
ジエント溶出することにより、溶出段階で副産物のGD
-lessFVIIaとFVIIaの等電点の差異を利用
して分離する方法が報告されており、Thim等はMo
noQを使用した陰イオン交換クロマトグラフィーによ
る活性化反応においては産生されたGD-lessFV
IIaは分離可能と述べている(Biochemistr
y,vol.27,p.7785−7793,1988)。し
かしながら、実際上その完全分離は極めて難しく、分離
を厳密に行なえば工程間収率は著しく低減する。さら
に、これまでに陰イオン交換樹脂上でのGD-less
FVIIaの産生機構に関する報告はなく、その制御を
陰イオン交換樹脂上で行なうことは極めて困難であっ
た。
Up to now, activation on an anion exchange resin has been achieved by developing FVII on a gel, fully activating the gel, and performing gradient elution, whereby GD of by-products is eluted in the elution step.
-less FVIIa and FVIIa have been reported to use a difference in isoelectric point to separate them.
GD-lessFV produced in the activation reaction by anion exchange chromatography using noQ
IIa states that it is separable (Biochemistr).
y, vol. 27, p. 7785-7793, 1988). However, in practice, complete separation is extremely difficult, and strict separation can significantly reduce the yield between steps. Furthermore, GD-less on anion exchange resin
There has been no report on the mechanism of FVIIa production, and it was extremely difficult to control it on an anion exchange resin.

【0006】[0006]

【課題を解決するための手段】本願発明者等は活性化反
応における上記問題点に鑑み、陰イオン交換樹脂上での
活性化反応における副産物であるGD-lessFVI
Iaの産生を抑制するべく鋭意研究を重ね種々の検討を
行なった結果、本願発明を完成するに至った。本願発明
は、陰イオン交換樹脂上における活性化反応を60%未
満に抑制し、溶出したFVII/FVIIa混合溶液を
0.5mM以上のCa2+が存在する溶液中での液相中で
熟成させ95%以上活性化させる方法をその技術の骨子
とする。本願発明を適用すれば、活性化工程におけるF
VIIからFVIIaの変換において生ずるGD-les
sFVIIaの産生が抑制され、著しい工程間収率の上
昇が可能となる。
In view of the above-mentioned problems in the activation reaction, the present inventors have considered that GD-lessFVI which is a by-product in the activation reaction on an anion exchange resin.
As a result of intensive studies and various studies to suppress the production of Ia, the present invention was completed. The present invention suppresses the activation reaction on an anion exchange resin to less than 60%, and matures the eluted FVII / FVIIa mixed solution in a liquid phase in a solution containing 0.5 mM or more of Ca 2+. The method of activating 95% or more is the gist of the technology. By applying the present invention, F in the activation step
GD-les generated in the conversion of VII to FVIIa
The production of sFVIIa is suppressed, and the yield between steps can be significantly increased.

【0007】以下、本願発明の詳細について説明する。
本願発明で用いられる出発物質は、血漿または血漿を
適当なクロマトグラフィー操作またはコーンのエタノー
ル分離法もしくはその改良法を用いて調製されたFVI
I含有溶液または、遺伝子組換え技術に基づいて作出
されたFVII産生形質転換細胞より調製されるFVI
I及び/もしくはFVII誘導体含有溶液が対象となる
が、最適な出発原料としては、血漿を陰イオンクロマト
グラフィーで粗精製したGla領域を有する蛋白溶液
(PPSB画分)を抗FVIIモノクローナル抗体固定化
アフィニティーゲルに展開し溶出したほぼFVIIのみ
を含有する溶液である。FVIIの精製は特に免疫吸着
の原理に基づく方法に限定されるものではなく、FVI
Iを純化可能な方法であればいずれでもよい。
Hereinafter, the present invention will be described in detail.
The starting material used in the present invention is FVI prepared by using plasma or plasma by an appropriate chromatography operation or a method of separating ethanol from corn or an improved method thereof.
I-containing solution or FVI prepared from an FVII-producing transformed cell produced based on a genetic recombination technique
The most suitable starting material is a protein solution having a Gla region obtained by roughly purifying plasma by anion chromatography.
(PPSB fraction) is a solution containing almost only FVII which was developed and eluted on an affinity gel immobilized with an anti-FVII monoclonal antibody. The purification of FVII is not particularly limited to a method based on the principle of immunoadsorption.
Any method can be used as long as I can be purified.

【0008】前記FVII画分を、陰イオン交換樹脂ク
ロマトグラフィーに供する。陰イオン交換樹脂は陰イオ
ン交換樹脂であれば特に限定されるものではないが、好
適にはDEAEセファロースファーストフロウ(ファル
マシア社)及びQセファロースファーストフロウ(ファル
マシア社)等が使用され、FVII画分を樹脂と接触さ
せる。この工程では種々の条件を採用することができ、
上記リガンドとの接触はバッチ法または連続カラム法で
実施することができるが、最適な態様としては、前記の
陰イオン交換樹脂をクロマトグラフィーのカラムに充填
し、試料を通液後、吸着した所望のFVIIを溶出させ
る。陰イオン交換樹脂からの溶出は0.5mM以上のC
2+を含む緩衝液を用いて段階的溶出法(ステップワイ
ズ溶出法)により、溶出液中のFVII/FVIIa混合
溶液のFVIIaへの活性化率が60%以下になるよう
に溶出する。溶出液中の活性化率を制御するためには、
陰イオン交換樹脂へのFVII展開量と樹脂内での滞留
時間を調整すればよい。すなわち、樹脂へのFVII展
開量及び樹脂内での滞留時間の増加は活性化率を増大さ
せ、樹脂へのFVII展開量及び樹脂内での滞留時間の
減少は活性化率を低下せしめる。
[0008] The FVII fraction is subjected to anion exchange resin chromatography. The anion exchange resin is not particularly limited as long as it is an anion exchange resin. Preferably, DEAE Sepharose Fast Flow (Pharmacia) and Q Sepharose Fast Flow (Pharmacia) are used, and the FVII fraction is used. Contact with resin. In this step, various conditions can be adopted,
The contact with the ligand can be carried out by a batch method or a continuous column method. In an optimal embodiment, the anion exchange resin is packed in a chromatography column, the sample is passed, and the adsorbed resin is adsorbed. Of FVII. Elution from the anion exchange resin is 0.5 mM or more C
The FVII / FVIIa mixed solution in the eluate is eluted by a stepwise elution method (stepwise elution method) using a buffer containing a 2+ so that the activation rate of FVIIa to FVIIa is 60% or less. To control the activation rate in the eluate,
The amount of FVII developed on the anion exchange resin and the residence time in the resin may be adjusted. That is, an increase in the amount of FVII spread to the resin and the residence time in the resin increase the activation rate, and a decrease in the amount of FVII spread to the resin and the residence time in the resin lowers the activation rate.

【0009】溶出後の熟成時間は、溶出時のFVII
/FVIIaの混合比率、FVII/FVIIaの蛋白
濃度によって決定される。溶出液中の蛋白濃度は陰イオ
ン交換樹脂へのFVII展開量及びカラムサイズが決定
されれば一定になる。好適には1.0〜3.0mg/ml
が望ましく、そのように陰イオン交換樹脂への展開量及
びカラムサイズを決定する。また、溶出時の活性化率は
陰イオン交換樹脂へのFVII展開量が決定されれば、
上述のごとく樹脂内での滞留時間を制御すればよい。ま
た、熟成開始時のCa2+濃度は0.5mM以上が要求さ
れ、それ以下の濃度ではGD-lessFVIIaの産生
が顕著になり、適正ではない。好適には1.0〜10m
Mの濃度範囲が使用される。熟成の終了は、FVII/
FVIIaの混合溶液のFVIIaの活性化率が95%を
越えた時点で、希釈操作によって蛋白濃度を減じ活性化
反応速度を遅延させるか、またはpHを低下させ酵素反
応を一時停止せしめることによって行なう。得られたF
VIIa溶液は透析操作によって所望の製薬学的調合剤
に処方すればよい。
The aging time after elution is determined by the FVII at the time of elution.
/ FVIIa mixing ratio and FVII / FVIIa protein concentration. The protein concentration in the eluate becomes constant if the amount of FVII developed on the anion exchange resin and the column size are determined. Preferably 1.0-3.0 mg / ml
It is desirable to determine the amount of development on the anion exchange resin and the column size. Further, the activation rate at the time of elution is determined if the amount of FVII developed on the anion exchange resin is determined.
The residence time in the resin may be controlled as described above. Further, the Ca 2+ concentration at the start of ripening is required to be 0.5 mM or more, and at a concentration lower than that, GD-lessFVIIa production becomes remarkable and is not appropriate. Preferably 1.0 to 10 m
A concentration range of M is used. End of ripening is FVII /
When the activation rate of FVIIa in the mixed solution of FVIIa exceeds 95%, the protein concentration is reduced by a dilution operation to delay the activation reaction rate, or the enzyme reaction is temporarily stopped by lowering the pH. Obtained F
The VIIa solution may be formulated into a desired pharmaceutical preparation by a dialysis operation.

【0010】静脈内投与のための調合剤に対しては、組
成物を、通常、生理学的に適合し得る物質例えば塩化ナ
トリウム、グリシン等を含み且つ生理学的条件に適合し
得る緩衝されたpHを有する水溶液中に溶解する。ま
た、長期安定性の確保の観点から、最終的剤型として凍
結乾燥製剤の形態を採ることも考慮され得る。なお、静
脈内に投与される組成物のガイドラインは政府の規則、
例えば「生物学的製剤基準」によって確立されている。
以下に、実施例を挙げて本願発明を具体的に説明する
が、本願発明は何等これらに限定されるものではない。
For preparations for intravenous administration, the compositions are usually formulated with a buffered pH that includes physiologically compatible substances such as sodium chloride, glycine, and the like, and that is compatible with physiological conditions. Dissolves in the aqueous solution. In addition, from the viewpoint of securing long-term stability, it may be considered to take the form of a lyophilized preparation as the final dosage form. The guidelines for compositions administered intravenously are governed by government regulations,
For example, it has been established by the “Biological Standards”.
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

【0011】[0011]

【実施例】実施例の記述に先立ち、本願発明において使
用されたFVII活性及びFVIIa含量の測定方法に
ついて概説する。 1) FVIIの生物学的活性 FVIIは血液凝固の開始因子である組織因子と結合し
血液凝固を開始する。FVIIの定量方法は、検体をF
VII欠乏血漿に添加後、一定時間インキュベーション
した後、組織因子、リン脂質及びCa2+を含有したPT
試薬を添加しその凝固時間から算出する。 2) FVIIa含量の測定 FVIIa含量の測定にはSDS−PAGEを使用す
る。FVII(分子量50kda)は活性化すると1個の
S−S結合で結合した2本鎖に分かれる。H鎖は分子量
30kda、L鎖は分子量20kda。還元系のSDS
−PAGEでは未活性体は分子量50kdaの位置に、
H鎖は30kda、L鎖は20kdaの位置に確認され
る。検出されるバンドをデンシトメーターで読み取り、
分子量50kdaのバンドを未活性化FVII含量%、
H鎖とL鎖の含量の和をFVIIa含量%とした。活性
化率はFVIIa含量をFVII含量とFVIIa含量の
和で除した値を百分率(%)で表した。
EXAMPLES Prior to the description of the examples, the method of measuring FVII activity and FVIIa content used in the present invention will be outlined. 1) Biological activity of FVII FVII binds to tissue factor which is an initiation factor of blood coagulation and initiates blood coagulation. The method of quantifying FVII is as follows:
After adding to VII-deficient plasma and incubating for a certain period of time, PT containing tissue factor, phospholipid and Ca 2+ was added.
Calculate from the clotting time of the reagent added. 2) Measurement of FVIIa content SDS-PAGE is used for measurement of FVIIa content. When activated, FVII (molecular weight 50 kda) is separated into two strands linked by one SS bond. The H chain has a molecular weight of 30 kda, and the L chain has a molecular weight of 20 kda. Reduction SDS
-In the PAGE, the inactive compound is located at a position of a molecular weight of 50 kda,
The H chain is confirmed at a position of 30 kda, and the L chain is confirmed at a position of 20 kda. Read the detected band with a densitometer,
The band with a molecular weight of 50 kda was converted to the unactivated FVII content%,
The sum of the contents of the H chain and the L chain was defined as FVIIa content%. The activation rate was expressed as a percentage (%) obtained by dividing the FVIIa content by the sum of the FVII content and the FVIIa content.

【0012】実施例1 新鮮凍結血漿100リットルを冷融解し沈澱画分を遠心分離
した上清を、陰イオン交換体(DEAE−セファデック
ス A−50:ファルマシア社)カラムに通液し、20m
Mクエン酸/0.1MNaCl緩衝液(pH7.0)にて充
分に洗浄し、20mMクエン酸/0.5MNaCl緩衝
液(pH7.0)にてGlaドメインを有するPPSB画
分を溶出した。溶出液10リットルを50mMTris/1
50mMNaCl/5.0mMCaCl2緩衝液(pH8.
0)で予め平衡化した抗FVIIモノクローナル抗体固
定化アフィニティーゲルに展開し、50mMTris/
2.5MNaCl/5.0mMCaCl2緩衝液(pH8.
0)で洗浄後、50mMTris/30mMNaCl/
5.0mMCaCl2緩衝液(pH8.0)でさらに洗浄
し、50mMTris/30mMNaCl/10mME
DTA緩衝液(pH7.4)で溶出してFVII画分を得
た。該FVII画分を予め50mMTris/30mM
NaCl緩衝液(pH8.0)で充填されているウイルス
除去膜(ベンベルグマイクロポーラスメンブレン、旭化
成)に展開し濾液を得た。得られた濾液のFVII純度
は85%であった。
Example 1 100 liters of fresh frozen plasma was cooled and thawed, and the supernatant obtained by centrifuging the precipitated fraction was passed through an anion exchanger (DEAE-Sephadex A-50: Pharmacia) column to give 20 m
After washing thoroughly with M citric acid / 0.1 M NaCl buffer (pH 7.0), the PPSB fraction having a Gla domain was eluted with 20 mM citric acid / 0.5 M NaCl buffer (pH 7.0). Elute 10 liters of 50 mM Tris / 1
50 mM NaCl / 5.0 mM CaCl 2 buffer (pH 8.
The gel was developed on the affinity gel immobilized with the anti-FVII monoclonal antibody which had been equilibrated in
2.5 M NaCl / 5.0 mM CaCl 2 buffer (pH 8.
After washing with 0), 50 mM Tris / 30 mM NaCl /
Further washing with 5.0 mM CaCl 2 buffer (pH 8.0), 50 mM Tris / 30 mM NaCl / 10 mM E
Elution with DTA buffer (pH 7.4) gave the FVII fraction. The FVII fraction was previously purified to 50 mM Tris / 30 mM
The solution was developed on a virus removal membrane (Bemberg microporous membrane, Asahi Kasei) filled with a NaCl buffer (pH 8.0) to obtain a filtrate. The FVII purity of the obtained filtrate was 85%.

【0013】上記0.2mg/mlのFVII溶液50
mlを、予め50mMTris/30mMNaCl緩衝
液(pH8.0)で平衡化した内径5.0mm、高さ5.0
cmのDEAE−セファロースファーストフロウ(ファ
ルマシア社)カラムに線速300cm/hrで展開し、
さらに同線速下、上記緩衝液で所定の各種カラム容量洗
浄し、吸着したFVII/FVIIaを失活させるため
に50mM酢酸緩衝液(pH3.5)で溶出した。溶出し
たFVII/FVIIa画分のSDS−PAGE解析を
行ない、表1の結果を得た。本結果は洗浄カラム容量が
70カラム容量を越えるとFVIIaの活性化率が66.
4%を越え、GD-lessFVIIaの産生が始まるこ
とを示している。
The above-mentioned 0.2 mg / ml FVII solution 50
ml was previously equilibrated with a 50 mM Tris / 30 mM NaCl buffer (pH 8.0) and had an inner diameter of 5.0 mm and a height of 5.0.
cm DEAE-Sepharose Fast Flow (Pharmacia) column at a linear speed of 300 cm / hr,
Further, at the same linear velocity, the column was washed with the above-mentioned buffer at various column volumes, and eluted with a 50 mM acetate buffer (pH 3.5) to deactivate the adsorbed FVII / FVIIa. SDS-PAGE analysis of the eluted FVII / FVIIa fraction was performed, and the results in Table 1 were obtained. The results show that when the washing column volume exceeds 70 column volumes, the activation rate of FVIIa is 66.
It exceeds 4%, indicating that the production of GD-lessFVIIa starts.

【0014】[0014]

【表1】 NDは検出限界以下を意味する[Table 1] ND means below detection limit

【0015】実施例2 実施例1と同様な操作でウイルス除去膜濾液として調製
した0.2mg/mlのFVII溶液50mlを、予め
50mMTris/30mMNaCl緩衝液(pH8.
0)で平衡化した内径5.0mm、高さ5.0cmのDE
AE−セファロースファーストフロウ(ファルマシア社)
カラムに線速300cm/hrで展開し、さらに同線速
下、上記緩衝液で10倍カラム容量洗浄し、50mMT
ris/30mMNaCl/2.0mMCaCl2緩衝液
(pH8.0)を用い各種線速で溶出した。溶出したFV
II/FVIIa画分のSDS−PAGE解析を行な
い、表2の結果を得た。本結果は溶出線速が100cm
/hrを下回るとFVIIaの活性化率が62.8%を越
え、GD-lessFVIIaの産生が始まることを示し
ている。
Example 2 50 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate in the same manner as in Example 1 was previously charged with a 50 mM Tris / 30 mM NaCl buffer (pH 8.
DE with an inner diameter of 5.0 mm and a height of 5.0 cm equilibrated in 0)
AE-Sepharose First Flow (Pharmacia)
The column was developed at a linear speed of 300 cm / hr, and the column was washed 10 times with the above buffer at the same linear speed.
ris / 30 mM NaCl / 2.0 mM CaCl 2 buffer
(pH 8.0) and eluted at various linear velocities. Eluted FV
SDS-PAGE analysis of the II / FVIIa fraction was performed, and the results in Table 2 were obtained. This result shows that the elution linear velocity is 100 cm.
Below / hr, the activation rate of FVIIa exceeds 62.8%, indicating that the production of GD-lessFVIIa starts.

【0016】[0016]

【表2】 NDは検出限界以下を意味する[Table 2] ND means below detection limit

【0017】実施例3 実施例1と同様な操作でウイルス除去膜濾液として調製
した0.2mg/mlのFVII溶液70mlを、予め
50mMTris/30mMNaCl緩衝液(pH8.
0)で平衡化した内径5.0mm、高さ3.3cmのDE
AE−セファロースファーストフロウ(ファルマシア社)
カラムに線速200cm/hrで展開し、さらに同線速
下、上記緩衝液で10カラム容量洗浄後、50mMTr
is/30mMNaCl/1.75mMCaCl2緩衝液
(pH8.0)を用い線速150cm/hrで溶出した。
溶出した濃度2.0mg/mlのFVII/FVIIa混
合溶液をさらに液相中で10時間熟成させた。カラム溶
出直後(熟成前)及び熟成後の成績を表3に示す。結果
は、実施例1、2とは陰イオン交換樹脂への展開量及び
カラムサイズの異なる条件においても、溶出後の活性化
率が60%以下ではGD-lessFVIIaが産生され
ず、且つ熟成後もその産生が極めて抑制されていること
を示している。
Example 3 70 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was previously prepared in a 50 mM Tris / 30 mM NaCl buffer (pH 8.
DE with an inner diameter of 5.0 mm and a height of 3.3 cm equilibrated in 0)
AE-Sepharose First Flow (Pharmacia)
The column was developed at a linear speed of 200 cm / hr.
is / 30 mM NaCl / 1.75 mM CaCl 2 buffer
(pH 8.0) and eluted at a linear velocity of 150 cm / hr.
The eluted 2.0 mg / ml FVII / FVIIa mixed solution was further aged in the liquid phase for 10 hours. Table 3 shows the results immediately after column elution (before ripening) and after ripening. The results show that GD-lessFVIIa was not produced when the activation rate after elution was 60% or less even under the conditions different in the amount of development on the anion exchange resin and the column size from those in Examples 1 and 2, and even after aging. This indicates that its production is extremely suppressed.

【0018】[0018]

【表3】 NDは検出限界以下を意味する[Table 3] ND means below detection limit

【0019】実施例4 実施例1と同様な操作でウイルス除去膜濾液として調製
された0.2mg/mlのFVII溶液35mlを予め
10mMTris/100mMNaCl緩衝液(pH8.
5)で平衡化した内径5.0mm、高さ5.0cmのQ−
セファロースファーストフロウ(ファルマシア社)カラム
に線速300cm/hrで展開し、さらに同線速下、上
記緩衝液で各種カラム容量洗浄後、吸着したFVIIa
を失活させるために50mM酢酸緩衝液(pH3.5)で
溶出した。溶出したFVII/FVIIa画分のSDS
−PAGE解析を行ない、表4の結果を得た。本結果は
洗浄カラム容量が40カラム容量を越えるとFVIIa
の活性化率が61.3%を越え、GD-lessFVII
aの産生が始まることを示している。
Example 4 35 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was previously prepared in a 10 mM Tris / 100 mM NaCl buffer (pH 8.
Q-equilibrated in 5) with an inner diameter of 5.0 mm and a height of 5.0 cm
FVIIa adsorbed on a Sepharose First Flow (Pharmacia) column at a linear speed of 300 cm / hr, washed at the same linear speed with various column volumes with the above buffer solution
Was eluted with 50 mM acetate buffer (pH 3.5) in order to inactivate. SDS of eluted FVII / FVIIa fraction
A PAGE analysis was performed, and the results in Table 4 were obtained. This result indicates that FVIIa was obtained when the washing column volume exceeded 40 column volumes.
Activation rate exceeds 61.3% and GD-lessFVII
This indicates that production of a begins.

【0020】[0020]

【表4】 NDは検出限界以下を意味する[Table 4] ND means below detection limit

【0021】実施例5 実施例1と同様な操作でウイルス除去膜濾液として調製
した0.2mg/mlのFVII溶液35mlを、予め
10mMTris/100mMNaCl緩衝液(pH8.
5)で平衡化した内径5.0mm、高さ5.0cmのQ−
セファロースファーストフロウ(ファルマシア社)カラム
に線速300cm/hrで展開し、さらに同線速下、上
記緩衝液で10倍カラム容量洗浄し、10mMTris
/100mMNaCl/4.0mMCaCl2緩衝液(p
H8.5)を用い各種線速で溶出した。溶出したFVII
/FVIIa画分のSDS−PAGE解析を行ない、表
5の結果を得た。本結果は溶出線速が108cm/hr
以下になるとFVIIaの活性化率が62.7%を越え、
GD-lessFVIIaの産生が始まることを示してい
る。
Example 5 35 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was previously prepared in a 10 mM Tris / 100 mM NaCl buffer (pH 8.
Q-equilibrated in 5) with an inner diameter of 5.0 mm and a height of 5.0 cm
The column was developed on a Sepharose First Flow (Pharmacia) column at a linear speed of 300 cm / hr, and further washed with the above buffer at 10-fold column volume under the same linear speed.
/ 100 mM NaCl / 4.0 mM CaCl 2 buffer (p
H8.5) and eluted at various linear velocities. Eluted FVII
The SDS-PAGE analysis of the / FVIIa fraction was performed, and the results in Table 5 were obtained. This result shows that the elution linear velocity is 108 cm / hr.
When it becomes below, the activation rate of FVIIa exceeds 62.7%,
This indicates that the production of GD-lessFVIIa starts.

【0022】[0022]

【表5】 NDは検出限界以下を意味する[Table 5] ND means below detection limit

【0023】実施例6 実施例1と同様な操作でウイルス除去膜濾液として調製
した0.2mg/mlのFVII溶液35mlを、予め
10mMTris/100mMNaCl緩衝液(pH8.
5)で平衡化した内径5.0mm、高さ5.0cmのQ−
セファロースファーストフロウ(ファルマシア社)カラム
に線速300cm/hrで展開し、さらに同線速下、上
記緩衝液で10カラム容量洗浄後、10mMTris/
100mMNaCl/4.0mMCaCl2緩衝液(pH
8.5)で線速180cm/hrで溶出した。溶出した濃
度1.0mg/mlのFVII/FVIIa混合溶液を液
相中で25時間熟成させた。カラム溶出直後(熟成前)及
び熟成後の成績を表6に示す。結果は、実施例3と同様
に陰イオン交換樹脂としてQ−セファロースファースト
フロウ(ファルマシア社)を使用しても、溶出後の活性化
率が60%以下ではGD-lessFVIIaが産生され
ず、且つ溶出液熟成後もその産生が極めて抑制されてい
ることを示している。
Example 6 35 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was previously prepared in a 10 mM Tris / 100 mM NaCl buffer (pH 8.
Q-equilibrated in 5) with an inner diameter of 5.0 mm and a height of 5.0 cm
The column was developed on a Sepharose Fast Flow (Pharmacia) column at a linear speed of 300 cm / hr, and at the same linear speed, 10 column volumes were washed with the above buffer solution, and then 10 mM Tris /
100 mM NaCl / 4.0 mM CaCl 2 buffer (pH
Eluted at 8.5) at a linear velocity of 180 cm / hr. The eluted FVII / FVIIa mixed solution having a concentration of 1.0 mg / ml was aged in the liquid phase for 25 hours. Table 6 shows the results immediately after elution of the column (before ripening) and after ripening. As a result, even when Q-Sepharose Fast Flow (Pharmacia) was used as the anion exchange resin as in Example 3, GD-lessFVIIa was not produced when the activation rate after elution was 60% or less, and the elution was not achieved. This indicates that the production is extremely suppressed even after liquid ripening.

【0024】[0024]

【表6】 NDは検出限界以下を意味する[Table 6] ND means below detection limit

【0025】実施例7 実施例3と同様な操作で、DEAE−セファロースファ
ーストフロウ(ファルマシア社)を使用し部分活性化後、
液相で熟成し完全活性化させたCa2+濃度2.0mMを
含む5.0mg/ml濃度のFVIIa混合溶液を、Ca
2+濃度が0.17mM、0.50mM、0.75mM、1.
0mM、2.0mM、蛋白質濃度が0.4mg/mlにな
るように50mMTris/30mMNaCl緩衝液
(pH8.1)で希釈し、9℃で88時間インキュベート
した。インキュベート後の成績を表7に記載する。表7
の成績はGD-lessFVIIa産生の至適Ca2+濃度
が0.5mM未満であることを示すと共に、FVIIaの
GD-lessFVIIaへの分解反応が0.75mM以
上のCa2+濃度下で抑制されることをも示している。こ
の結果は液相におけるGD-lessFVIIa産生反応
のCa2+濃度の閾値を示すと共に、陰イオン交換樹脂か
らの溶出をCa2+を含む緩衝液で行なう場合、溶出時の
GD-lessFVIIaの産生を抑制するためには溶出
緩衝液のCa2+濃度は0.5mM以上必要であることを
示している。
Example 7 In the same manner as in Example 3, after partially activating using DEAE-Sepharose Fast Flow (Pharmacia),
A 5.0 mg / ml FVIIa mixed solution containing 2.0 mM Ca 2+ , which was aged and completely activated in the liquid phase, was mixed with Ca
2+ concentrations of 0.17 mM, 0.50 mM, 0.75 mM, 1.
0 mM, 2.0 mM, 50 mM Tris / 30 mM NaCl buffer so that the protein concentration becomes 0.4 mg / ml.
(pH 8.1) and incubated at 9 ° C. for 88 hours. The results after the incubation are described in Table 7. Table 7
Shows that the optimal Ca 2+ concentration for GD-lessFVIIa production is less than 0.5 mM, and that the decomposition reaction of FVIIa to GD-lessFVIIa is suppressed at a Ca 2+ concentration of 0.75 mM or more. It also shows that. This result shows the threshold value of the Ca 2+ concentration in the GD-less FVIIa production reaction in the liquid phase, and when the elution from the anion exchange resin is performed using a buffer containing Ca 2+ , the production of GD-less FVIIa during the elution is reduced. This indicates that the concentration of Ca 2+ in the elution buffer must be 0.5 mM or more for suppression.

【0026】[0026]

【表7】 [Table 7]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸野 真一 熊本県菊池郡西合志町須屋1733−31 (72)発明者 緒方 洋一 熊本県熊本市帯山7丁目9−142 (72)発明者 寺野 剛 熊本県菊池郡西合志町須屋1548−2 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shinichi Maruno 1733-31, Suya, Nishigoshi-cho, Kikuchi-gun, Kumamoto Prefecture (72) Inventor Yoichi Ogata 7-9-142 Obiyama, Kumamoto City, Kumamoto Prefecture 1548-2 Suya, Nishikoshi-cho, Kikuchi-gun

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 以下の工程を経てなる血液凝固第VI
I因子(以下、FVIIと称することがある)の活性化血
液凝固第VII因子(以下、FVIIaと称することがあ
る)への活性化方法。FVIIを含有する溶液を陰イ
オン交換樹脂に接触させ展開し、FVIIを部分的に
活性化し溶出して、該溶出液を溶液状態で静置し未活
性体分子を完全に活性化させる。
1. A blood coagulation VI comprising the following steps:
A method for activating factor I (hereinafter sometimes referred to as FVII) to activated blood coagulation factor VII (hereinafter sometimes referred to as FVIIa). The solution containing FVII is brought into contact with the anion exchange resin and developed, FVII is partially activated and eluted, and the eluate is left in a solution state to completely activate the inactive molecule.
【請求項2】 上記部分的活性化後の溶出液の活性化
率が60%未満である請求項1記載のFVIIの活性化
方法。
2. The method for activating FVII according to claim 1, wherein the activation rate of the eluate after the partial activation is less than 60%.
【請求項3】 上記陰イオン交換樹脂からの溶出時の
溶出緩衝液はCa2 +を含有し該Ca2+濃度が0.5mM
以上である請求項1または請求項2記載のFVIIの活
性化方法。
3. The elution buffer for elution from the anion exchange resin contains Ca 2 + , and the Ca 2+ concentration is 0.5 mM.
The method for activating FVII according to claim 1 or 2, which is described above.
【請求項4】 上記陰イオン交換樹脂からの溶出時の
溶出方法が段階的溶出法(ステップワイズ溶出法)である
請求項1から請求項3のいずれかに記載のFVIIの活
性化方法。
4. The method for activating FVII according to claim 1, wherein the elution method at the time of elution from the anion exchange resin is a stepwise elution method (stepwise elution method).
【請求項5】 上記溶液状態での静置(熟成)における
溶液中にCa2+を含有し該Ca2+濃度が0.5mM以上
である請求項1に記載のFVIIの活性化方法。
5. The method for activating FVII according to claim 1, wherein the solution contains Ca 2+ in the solution when left standing (aging) in a solution state, and the Ca 2+ concentration is 0.5 mM or more.
【請求項6】 請求項1から請求項5のいずれかに記
載のFVIIの活性化方法に基づく工程を含むことを特
徴とする活性化血液凝固第VII因子の製造方法。
6. A method for producing activated blood coagulation factor VII, comprising a step based on the method for activating FVII according to any one of claims 1 to 5.
JP23714596A 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method Expired - Lifetime JP4046377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23714596A JP4046377B2 (en) 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23714596A JP4046377B2 (en) 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method

Publications (2)

Publication Number Publication Date
JPH1059867A true JPH1059867A (en) 1998-03-03
JP4046377B2 JP4046377B2 (en) 2008-02-13

Family

ID=17011081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23714596A Expired - Lifetime JP4046377B2 (en) 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method

Country Status (1)

Country Link
JP (1) JP4046377B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055203A1 (en) * 1999-03-15 2000-09-21 Novo Nordisk A/S Ion exchange chromatographic separation of glp-1 and related peptides
US6881721B2 (en) 1999-12-24 2005-04-19 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Medicinal compositions for treating and preventing diseases based on abnormal blood coagulation
US7749955B2 (en) 2003-08-21 2010-07-06 Novo Nordisk A/S Separation of polypeptides comprising a racemized amino acid
US9488625B2 (en) 2010-12-15 2016-11-08 Baxalta GmbH Purification of factor VIII using a conductivity gradient

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055203A1 (en) * 1999-03-15 2000-09-21 Novo Nordisk A/S Ion exchange chromatographic separation of glp-1 and related peptides
US6881721B2 (en) 1999-12-24 2005-04-19 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Medicinal compositions for treating and preventing diseases based on abnormal blood coagulation
US7749955B2 (en) 2003-08-21 2010-07-06 Novo Nordisk A/S Separation of polypeptides comprising a racemized amino acid
US9488625B2 (en) 2010-12-15 2016-11-08 Baxalta GmbH Purification of factor VIII using a conductivity gradient

Also Published As

Publication number Publication date
JP4046377B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP3330932B2 (en) Anticoagulant protein
US5580560A (en) Modified factor VII/VIIa
JP3459416B2 (en) Modified Factor VII
JP4317976B2 (en) Factor X analogue having a modified protease cleavage site
JP2533050B2 (en) Method for producing high-purity active factor VIIa concentrate
Esmon et al. Protein C activation
JP3963406B2 (en) Purification method of factor VII and activation factor VIIa
HUT72712A (en) Purification of factor vii
Hubbard et al. Vitamin K-dependent carboxylase: affinity purification from bovine liver by using a synthetic propeptide containing the gamma-carboxylation recognition site.
HU225247B1 (en) Factor x deletion mutants and analogues thereof
JP2015501137A (en) Compositions and methods for regulating hemostasis
JPH1059866A (en) Production of blood coagulation factor vii and/or activated blood coagulation factor vii
JPH10509436A (en) Method of producing an inhibited form of an activated blood factor
Michalski et al. Large‐scale production and properties of a solvent‐detergent‐treated factor IX concentrate from human plasma
US6063909A (en) Preparation of factor IX
AU9244998A (en) Pharmaceutical substance containing various vitamin k-dependent factors
JP4046377B2 (en) Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method
Owen et al. Evidence for an ester bond between thrombin and heparin cofactor
EP0139447B1 (en) A process for preparing urokinase zymogen
EP0347078A1 (en) Hybrid proteins
EP0275606A1 (en) Hybrid plasminogen activators with improved thrombolytic properties and drugs comprising these plasminogen activators
WO1991012320A1 (en) Activated protein c with truncated light chain
JPH0736755B2 (en) Composition containing plasminogen activator precursor
WO1991002065A1 (en) Cell culture methods for producing activated protein c
JP3153236B2 (en) Recombinant protein C with truncated light chain

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R153 Grant of patent term extension

Free format text: JAPANESE INTERMEDIATE CODE: R153

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term