JPH105840A - Method for controlling meandering in plate rolling - Google Patents

Method for controlling meandering in plate rolling

Info

Publication number
JPH105840A
JPH105840A JP8197718A JP19771896A JPH105840A JP H105840 A JPH105840 A JP H105840A JP 8197718 A JP8197718 A JP 8197718A JP 19771896 A JP19771896 A JP 19771896A JP H105840 A JPH105840 A JP H105840A
Authority
JP
Japan
Prior art keywords
rolling
rolling mill
tension
difference
right difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8197718A
Other languages
Japanese (ja)
Other versions
JP3297602B2 (en
Inventor
Kenji Yamada
田 健 二 山
Shigeru Ogawa
川 茂 小
Atsushi Ishii
井 篤 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19771896A priority Critical patent/JP3297602B2/en
Publication of JPH105840A publication Critical patent/JPH105840A/en
Application granted granted Critical
Publication of JP3297602B2 publication Critical patent/JP3297602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent tail choking or rapid meandering of a rolling stock in tandem rolling, by estimating difference between the left and right of tension between rolling mills and controlling the draft set value so that the difference becomes zero. SOLUTION: In tandem rolling, sampling is done at the same point of time during the rolling on the roll circumferential speed of each rolling mill, draft set value on the working side and the driving side, and detected value also on these two sides of a rolling stock tension measuring device installed between the mills. On the basis of these sampling data, difference between the left and right (L/R difference) of tension is estimated between the mills actuating on the rolling stock. In order to make this L/R difference of the tension zero, the manipulated variable is determined for the L/R difference of the draft set value for each mill, using the equation system in the stationary time of tandem rolling. On the basis of this variable, controlled is the L/R difference of the reduction set value of each mill. In addition, as necessary, in estimating the L/R difference of the tension between the mills, data are added for the plate thickness measured at two points or more in the width direction of the plate, on the entrance and exit side of the line of the mills and at three places or more between the mills.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、板材のタンデム圧
延において、圧延中の圧延材料の安定した通板性を確保
するための圧延機制御技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for controlling a rolling mill in tandem rolling of a sheet material to secure stable threadability of a rolling material during rolling.

【0002】[0002]

【従来の技術】板材のタンデム圧延は、高精度な薄板を
大量生産できるプロセスであり、タンデム圧延機列を構
成する各圧延機間で圧延材に張力を作用させることがで
きるため、非常に安定した圧延操業が可能である。圧延
材に張力を作用させた場合、例えば、作業側と駆動側の
圧下装置の設定値(以下では圧下レベリングと略称す
る)の差に、ある程度の最適値からの偏差が存在して
も、それがそのまま左右の伸び率差になるのではなく、
張力の再配分によって伸び率の左右差が抑制されるた
め、通板事故に直結することは少ない。
2. Description of the Related Art Tandem rolling of a sheet material is a process capable of mass-producing a high-precision thin sheet. Since tension can be applied to a rolling material between rolling mills constituting a tandem rolling mill row, it is very stable. Rolling operation is possible. When tension is applied to the rolled material, for example, even if there is a certain amount of deviation from the optimum value in the difference between the set values of the pressing device on the working side and the driving side (hereinafter abbreviated as “press leveling”), Is not the difference between the left and right elongation rates,
Since the left-right difference in the elongation rate is suppressed by the redistribution of the tension, it is rarely directly linked to the passing-board accident.

【0003】しかしながら、圧延材の先端および後端に
ついては、前方あるいは後方張力を作用させることがで
きないので、張力による上記安定化作用が半減し、通板
事故を生じやすくなる。特に、後端通過時には尻絞りと
いう通板事故が発生することが多く、蛇行制御あるいは
尻絞り制御と呼ばれる圧下制御方法が従来から実施され
ている。なお、以下の説明では、多くの場合、作業側,
駆動側のことを「左,右」という表現で簡略表現する。
したがって、例えば「圧下設定値の左右差」とは、圧下
設定値の作業側と駆動側間の差を意味する。また、本発
明では圧延材がミルセンターから幅方向にずれて通過す
ることを「蛇行」と呼ぶものとする。
[0003] However, since the front and rear tensions cannot be applied to the leading and trailing ends of the rolled material, the above stabilizing action due to the tension is reduced by half, and a passing-through accident is likely to occur. In particular, when passing through the rear end, a pass-through accident called a tail narrowing often occurs, and a rolling-down control method called meandering control or tail narrowing control has been conventionally implemented. In the following description, in many cases, the work side,
The driving side is simply expressed by “left, right”.
Therefore, for example, the “left-right difference of the rolling reduction value” means a difference between the working side and the driving side of the rolling reduction value. In the present invention, the passage of the rolled material shifted from the mill center in the width direction is referred to as “meandering”.

【0004】尻絞りは、圧延材後端近傍における作業側
と駆動側の伸び差率に起因する材料の蛇行が主原因と考
えられており、尻絞りの現象が現れ始める時点、すなわ
ち圧延材の後端が直前の圧延機から出た時点から、当該
圧延機の圧下設定値の左右差の制御すなわちレベリング
制御を実施するというのが、従来の蛇行制御方法であ
る。このときの検出端としては、当該圧延機の圧延荷重
の左右差や蛇行センサーによる板のオフセンター量の検
出信号などが用いられる。
It is considered that the tail drawing is caused mainly by the meandering of the material caused by the difference in elongation between the working side and the driving side near the rear end of the rolled material. The conventional meandering control method is to execute the control of the left-right difference of the rolling reduction set value of the rolling mill, that is, the leveling control from the time when the rear end exits the immediately preceding rolling mill. As the detection end at this time, a detection signal of the off-center amount of the plate by the meandering sensor or the difference in the rolling load of the rolling mill is used.

【0005】例えば、特開昭59−191510号公報
には、圧延機入側の蛇行検出器によって圧延材の蛇行量
を検出して圧下レベリング制御を実施する技術が開示さ
れている。この技術の場合も、蛇行量そのものは、タン
デム圧延中には上述したように圧延材に作用する張力に
よって大きな変化を示すことがほとんどないため、実際
に有意な圧下レベリング制御を実施できるのは、圧延材
後端が直前の圧延機を出た時点以降になる。
For example, Japanese Unexamined Patent Publication No. Sho 59-191510 discloses a technique in which a meandering detector of a rolling mill is detected by a meandering detector on the entry side of a rolling mill to control rolling leveling. Also in the case of this technology, the meandering amount itself hardly shows a large change due to the tension acting on the rolled material during the tandem rolling as described above, so that it is possible to actually perform a significant rolling leveling control. The rear end of the rolled material is after the point at which it left the immediately preceding rolling mill.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の蛇
行制御方法は、圧延材後端が直前の圧延機から出た時点
から制御が開始されるため、実質的な制御の動作時間が
短く、尻絞り防止に間に合わない場合がある。また、当
該圧延機の圧下レベリングに最適値からの偏差があった
場合には、圧延材の後端が直前の圧延機を出た時点で、
それまで作用していた後方張力がなくなり、張力の左右
差による補償効果がなくなるため急激な蛇行が始まるこ
とになり、その現象が現れてから圧下レベリング制御を
始めたのでは、手遅れになる場合が多い。
In the conventional meandering control method as described above, since the control is started from the time when the rear end of the rolled material exits the immediately preceding rolling mill, the operation time of the control is substantially reduced. In some cases, it may not be possible to prevent squeezing. Further, when there is a deviation from the optimum value in the rolling leveling of the rolling mill, when the rear end of the rolled material exits the immediately preceding rolling mill,
The backward tension that had been acting until then disappears, and the compensation effect due to the left-right difference in tension disappears, so that sudden meandering starts, and if the phenomenon starts to appear and the rolling leveling control is started, it may be too late. Many.

【0007】本発明は、圧延材の上述の尻絞りや急激な
蛇行を防止することを目的とする。
[0007] An object of the present invention is to prevent the above-mentioned squeezing of the rolled material and the sudden meandering.

【0008】[0008]

【課題を解決するための手段】本発明では、圧延材後端
が直前の圧延機を出た時点から制御を開始するのではな
く、圧延材後端に達する前の定常圧延状態で、タンデム
圧延機列の各圧延機の圧下レベリングを最適な状態にし
ておく。
According to the present invention, the control is not started from the time when the rear end of the rolled material exits the immediately preceding rolling mill, but in a tandem rolling state in a steady rolling state before reaching the rear end of the rolled material. The rolling leveling of each rolling mill in the row is kept in an optimum state.

【0009】これを実現する本発明の第1の要旨は、複
数の圧延機で連続的かつ同時に板材をタンデム圧延する
に際し、圧延中に各圧延機のロール周速,作業側および
駆動側の圧下設定値ならびに各圧延機間に設置した圧延
材張力測定装置の作業側および駆動側の検出値を同時点
にサンプリングし、これらのデータに基づいて、圧延材
に作用している各圧延機間の張力の左右差を推定し、該
張力の左右差が零となるように、タンデム圧延の定常時
の方程式系を用いて各圧延機の圧下設定値左右差の操作
量を求め、これに基づいて各圧延機の圧下設定値の左右
差を制御することを特徴とする板圧延における蛇行制御
方法であり、第二の要旨は、複数の圧延機で連続的かつ
同時に板材をタンデム圧延するに際し、圧延中に各圧延
機のロール周速,作業側および駆動側の圧下設定値およ
び圧延荷重、ならびに各圧延機間に設置した圧延材張力
測定装置の作業側および駆動側の検出値を同時点にサン
プリングし、これらのデータに基づいて、圧延材に作用
している各圧延機間の張力の左右差を推定し、該張力の
左右差が零となるように、タンデム圧延の定常時の方程
式系を用いて各圧延機の圧下設定値左右差の操作量を求
め、これに基づいて各圧延機の圧下設定値の左右差を制
御することを特徴とする板圧延における蛇行制御方法で
あり、第三の要旨は、複数の圧延機で連続的かつ同時に
板材をタンデム圧延するに際し、圧延中に各圧延機のロ
ール周速,作業側および駆動側の圧下設定値ならびに各
圧延機間に設置した圧延材張力測定装置の作業側および
駆動側の検出値を同時点にサンプリングし、さらに、上
記データ採取時点と実質同時点のタンデム圧延機列入側
および出側および各圧延機間の内の計3箇所以上におい
て板厚を板幅方向に2点以上測定し、これらのデータに
基づいて、圧延材に作用している各圧延機間の張力の左
右差を推定し、該張力の左右差が零となるように、タン
デム圧延の定常時の方程式系を用いて各圧延機の圧下設
定値左右差の操作量を求め、これに基づいて各圧延機の
圧下設定値の左右差を制御することを特徴とする板圧延
における蛇行制御方法であり、第四の要旨は、複数の圧
延機で連続的かつ同時に板材をタンデム圧延するに際
し、圧延中に各圧延機のロール周速,作業側および駆動
側の圧下設定値および圧延荷重、ならびに各圧延機間に
設置した圧延材張力測定装置の作業側および駆動側の検
出値を同時点にサンプリングし、さらに、上記データ採
取時点と実質同時点のタンデム圧延機列入側および出側
の板厚を板幅方向に2点以上測定し、これらのデータに
基づいて、圧延材に作用している各圧延機間の張力の左
右差を推定し、該張力の左右差が零となるように、タン
デム圧延の定常時の方程式系を用いて各圧延機の圧下設
定値左右差の操作量を求め、これに基づいて各圧延機の
圧下設定値の左右差を制御することを特徴とする板圧延
における蛇行制御方法であり、第五の要旨は、複数の圧
延機で連続的かつ同時に板材をタンデム圧延するに際
し、圧延中に各圧延機のロール周速,作業側および駆動
側の圧下設定値および圧延荷重、ならびに各圧延機間に
設置した圧延材張力測定装置の作業側および駆動側の検
出値を同時点にサンプリングし、さらに、上記データ採
取時点と実質同時点のタンデム圧延機列入側および/ま
たは出側の圧延材温度を板幅方向に2点以上測定し、こ
れらのデータに基づいて、圧延材に作用している各圧延
機間の張力の左右差を推定し、該張力の左右差が零とな
るように、タンデム圧延の定常時の方程式系を用いて各
圧延機の圧下設定値左右差の操作量を求め、これに基づ
いて各圧延機の圧下設定値の左右差を制御することを特
徴とする板圧延における蛇行制御方法であり、第六の要
旨は、複数の圧延機で連続的かつ同時に板材をタンデム
圧延するに際し、圧延中に各圧延機のロール周速,作業
側および駆動側の圧下設定値および圧延荷重、ならびに
各圧延機間に設置した圧延材張力測定装置の作業側およ
び駆動側の検出値を同時点にサンプリングし、さらに、
上記データ採取時点と実質同時点のタンデム圧延機列入
側および出側の板厚を板幅方向に2点以上、および、タ
ンデム圧延機列入側および/または出側の圧延材温度を
板幅方向に2点以上測定し、これらのデータに基づい
て、圧延材に作用している各圧延機間の張力の左右差を
推定し、該張力の左右差が零となるように、タンデム圧
延の定常時の方程式系を用いて各圧延機の圧下設定値左
右差の操作量を求め、これに基づいて各圧延機の圧下設
定値の左右差を制御することを特徴とする板圧延におけ
る蛇行制御方法であり、第七の要旨は、圧延材と接触し
かつ圧延機のロール軸線に平行なロール軸に回動自在に
支持されたロールと、該ロールに負荷される鉛直方向の
力を作業側および駆動側それぞれ独立に検出可能な荷重
測定器とを備えた圧延材張力測定装置により、作業側お
よび駆動側の検出値をサンプリングするとともに、該圧
延材張力測定装置の張力測定用ロールに圧延材から作用
するスラスト力を検出もしくは推定し、該スラスト力に
よる該圧延材張力測定装置の検出値の誤差を修正するこ
とを特徴とする上記第一〜第六の要旨に示す板圧延にお
ける蛇行制御方法であり、第八の要旨は、圧延材に作用
している各圧延機間の張力の左右差を推定するに際し、
併せて第1圧延機入側の板厚の左右差および各圧延機に
おける変形抵抗の左右差を推定し、該張力の左右差およ
び各圧延機出側の圧延材速度の左右差が零となるよう
に、該第1圧延機入側の板厚の左右差および該変形抵抗
の左右差に基づきタンデム圧延の定常時の方程式系を用
いて各圧延機の圧下設定値左右差の操作量を求め、これ
に基づいて各圧延機の圧下設定値の左右差を制御するこ
とを特徴とした、上記第一〜第七の要旨に示す板圧延に
おける蛇行制御方法である。
A first gist of the present invention for realizing this is that, when a sheet material is continuously and simultaneously tandem-rolled by a plurality of rolling mills, the rolling peripheral speed of each rolling mill, the reduction of the working side and the driving side during rolling are reduced. The set values and the detected values on the working side and the drive side of the rolled material tension measuring device installed between the rolling mills are sampled at the same time, and based on these data, between the rolling mills acting on the rolled material. Estimate the left-right difference of the tension, so that the left-right difference of the tension becomes zero, obtain the operation amount of the rolling set value left-right difference of each rolling mill using an equation system in a steady state of tandem rolling, based on this A meandering control method in plate rolling characterized by controlling the difference between the left and right set values of the rolling reduction of each rolling mill, the second gist is, when performing tandem rolling of a plate material continuously and simultaneously in a plurality of rolling mills, During the roll peripheral speed of each rolling mill, Rolling set values and rolling loads on the industrial side and the driving side, and the detected values on the working side and the driving side of the rolled material tension measuring device installed between each rolling mill are sampled at the same time, and rolling is performed based on these data. Estimate the left-right difference in tension between the rolling mills acting on the material, and use the equation system in the steady state of tandem rolling to reduce the left-right set value of each rolling mill so that the left-right difference in the tension becomes zero. A meandering control method in sheet rolling characterized by determining the manipulated variable of the difference, and controlling the left-right difference of the rolling reduction value of each rolling mill based on this, the third gist is a method of continuously controlling a plurality of rolling mills. In the tandem rolling of the sheet material simultaneously and simultaneously, during rolling, the roll peripheral speed of each rolling mill, the set value of the rolling reduction on the working side and the driving side, and the working side and the driving side of the rolling material tension measuring device installed between each rolling mill Sampling of detected values at the same time Further, at two or more points in total in the width direction of the tandem rolling mill at the entry and exit sides of the tandem rolling mill row and between each rolling mill at substantially the same time as the data collection point, the thickness was measured at two or more points. Based on the data, the left-right difference in tension between the rolling mills acting on the rolled material is estimated, and so that the left-right difference in the tension becomes zero, each equation is used using a tandem rolling steady state equation system. It is a meandering control method in sheet rolling characterized by calculating the manipulated variable of the rolling set value left-right difference of the rolling mill, and controlling the left-right difference of the rolling set value of each rolling mill based on this, the fourth gist is: When rolling a sheet continuously and simultaneously in a plurality of rolling mills, during rolling, the peripheral speed of each rolling mill, the set value and rolling load on the working side and the driving side, and the rolling set between each rolling mill. Detection of working side and drive side of material tension measuring device The values were sampled at the same point, and the thickness of the tandem rolling mill row entrance and exit sides were measured at two or more points in the sheet width direction at substantially the same point as the data collection point, and the rolling was performed based on these data. Estimate the left-right difference in tension between the rolling mills acting on the material, and use the equation system in the steady state of tandem rolling to reduce the left-right set value of each rolling mill so that the left-right difference in the tension becomes zero. A meandering control method in sheet rolling, characterized in that the operation amount of the difference is obtained, and the left and right difference of the rolling reduction value of each rolling mill is controlled based on the operation amount. When rolling a sheet material tandemly and simultaneously, during rolling, the roll peripheral speed of each rolling mill, set value and rolling load of the working side and drive side, and the working side of the rolled material tension measuring device installed between each rolling mill And the detected value on the drive side at the same time. The temperature of the rolled material at the entrance and / or the exit of the tandem rolling mill train at substantially the same time as the data collection time is measured at two or more points in the sheet width direction. Estimate the left-right difference in tension between each rolling mill that is acting, so that the left-right difference of the tension becomes zero, using the equation system at the time of steady state of tandem rolling, the rolling set value left-right difference of each rolling mill. It is a meandering control method in sheet rolling characterized by obtaining a manipulated variable, and controlling a left-right difference of a rolling set value of each rolling mill based on the manipulated variable. During the tandem rolling of the sheet at the same time, the rolling peripheral speed of each rolling mill, the set value and rolling load on the working side and the driving side during rolling, and the working side and driving of the rolled material tension measuring device installed between each rolling mill. Sample values at the same time And, further,
At the same time as the data collection time, the thickness of the tandem rolling mill row entrance and exit sides at two or more points in the width direction of the tandem rolling mill row, and the rolled material temperature on the tandem rolling mill row entrance and / or exit side are set to the sheet width. Two or more points in the direction, and based on these data, estimate the left-right difference in tension between the rolling mills acting on the rolled material, and perform tandem rolling so that the left-right difference in tension is zero. A meandering control in sheet rolling, characterized in that a manipulated variable of a rolling set value left / right difference of each rolling mill is obtained by using an equation system at a steady state, and a left / right difference of a rolling set value of each rolling mill is controlled based on this. A seventh aspect of the present invention is to provide a method in which a roll which is in contact with a rolled material and is rotatably supported on a roll axis parallel to a roll axis of a rolling mill, and a vertical force applied to the roll is applied to a work side. And a load measuring device that can detect the drive side independently. The sampled values on the working side and the drive side are sampled by the material tension measuring device, and the thrust force acting from the rolled material on the tension measuring roll of the rolled material tension measuring device is detected or estimated, and the rolling by the thrust force is performed. A meandering control method in plate rolling as described in the first to sixth aspects, wherein the error in the detected value of the material tension measuring device is corrected, and an eighth aspect is a method for controlling a rolled material. In estimating the left-right difference in tension between rolling mills,
In addition, the left-right difference of the sheet thickness on the entrance side of the first rolling mill and the left-right difference of the deformation resistance in each rolling mill are estimated, and the left-right difference of the tension and the left-right difference of the rolling material speed on the exit side of each rolling mill become zero. As described above, the operation amount of the rolling reduction set value left and right difference of each rolling mill is obtained by using the equation system at the time of steady state of tandem rolling based on the left and right difference of the sheet thickness on the first rolling mill entry side and the left and right difference of the deformation resistance. A meandering control method in sheet rolling according to the first to seventh aspects, characterized in that a left-right difference of a rolling reduction value of each rolling mill is controlled based on this.

【0010】[0010]

【発明の実施の形態】圧延材の後端が直前の圧延機を出
たことによって起きる最も大きな変化は、言うまでもな
く後方張力がなくなることである。したがって、この時
から急激な蛇行が始まるのであれば、それは当該圧延機
の圧下レベリングが最適値からずれていたにもかかわら
ず、これによる張力差が後方張力すなわち圧延機入側の
張力の左右差によって補償されていたためである。この
ことから、圧延材後端に達する前の定常圧延状態の間
に、各圧延機間の張力の左右差をできるだけ零に近づけ
ておくのが、尻絞りの発生防止の決め手になるものと考
えられる。このためには、各圧延機間の圧延材に作用す
る張力の左右差を検出あるいは推定し、これを零に近づ
ける操作を行えばよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The greatest change caused by the trailing end of the rolled material leaving the immediately preceding rolling mill is, of course, the loss of back tension. Therefore, if a sudden meandering starts at this time, the tension difference caused by this is the rearward tension, that is, the right and left difference of the tension on the rolling mill entry side, even though the rolling leveling of the rolling mill has deviated from the optimum value. This is because it was compensated by. From this, it is thought that keeping the left-right difference in tension between the rolling mills as close to zero as possible during the steady rolling state before reaching the rear end of the rolled material will be the decisive factor in preventing the occurrence of tail drawing. Can be For this purpose, the operation of detecting or estimating the difference between the left and right tension applied to the rolled material between the rolling mills and making the difference close to zero may be performed.

【0011】しかしながら、タンデム圧延状態では、各
圧延機の圧下レベリング操作は、各圧延機間の張力分布
を通じて、全ての圧延機における圧延状態に影響をおよ
ぼすので、たとえ張力の左右差が一つの圧延機間のみに
存在した場合においても、圧下レベリング修正は一般に
全圧延機に対して行わなければならない。
However, in the tandem rolling state, the rolling leveling operation of each rolling mill affects the rolling state of all the rolling mills through the tension distribution between the rolling mills. Even when present only between mills, the reduction in rolling leveling must generally be performed for all rolling mills.

【0012】したがって、本発明の第一の発明では、タ
ンデム圧延機列による定常圧延状態において、ロール周
速,作業側および駆動側の圧下設定値ならびに圧延機間
の圧延材張力測定装置による作業側および駆動側の張力
検出値のデータを同時点でサンプリングし、これらのデ
ータに基づいて、圧延材に作用している各圧延機間の張
力の左右差を推定し、該張力の左右差が零となるよう
に、各圧延機の圧下設定値の左右差すなわち圧下レベリ
ングを制御する。以下に詳細に説明する。
Therefore, in the first invention of the present invention, in the steady rolling state by the tandem rolling mill train, the roll peripheral speed, the set value of the rolling reduction on the working side and the driving side, and the working side by the rolled material tension measuring device between the rolling mills. And the data of the detected tension value on the drive side are sampled at the same time, and based on these data, the left / right difference in tension between the rolling mills acting on the rolled material is estimated, and the left / right difference in the tension is zero. Thus, the left-right difference of the rolling set value of each rolling mill, that is, the rolling leveling is controlled. This will be described in detail below.

【0013】N基の圧延機から構成されるタンデム圧延
機列の第i圧延機出側板厚の左右差すなわち板ウェッジ
量hdfiは、圧下レベリングSdfi,単位幅あたりの圧延
荷重(以下線荷重と略称する)の幅方向分布の左右差す
なわち線荷重差pdfi、および、圧延材板幅中心とタン
デム圧延機列の幅方向中心すなわちミルセンターとの距
離を、作業側を正として表した材料オフセンター量xci
によって、次式で表現できる。
[0013] The difference between the left and right sheet thicknesses on the delivery side of the i-th rolling mill, ie, the sheet wedge amount hdfi , of the tandem rolling mill row composed of N rolling mills is determined by the reduction leveling Sdfi , the rolling load per unit width (hereinafter referred to as linear load). Abbreviated as width), ie, the line load difference p dfi , and the distance between the center of the rolled material width and the center in the width direction of the tandem rolling mill row, ie, the mill center, where the working side is defined as positive. Off-center quantity x ci
Can be expressed by the following equation.

【0014】 hdfi =(b/aBi)Sdfi+Didfi+Eici (i=1〜N) ・・・
(1) ここで、bは圧延材の板幅、aBiは補強ロール圧下支持
点間距離、Eiは材料オフセンター量が板ウェッジにお
よぼす影響係数すなわち第一種平行剛性であり、Di
線荷重差pdfiが板ウェッジにおよぼす影響係数すなわ
ち第二種平行剛性である。また、添え字dfは左右差を表
し、作業側から駆動側の値を差し引いたものを表すもの
とする。式(1)は純粋に圧延機側の変形特性を表してい
るものであるが、式(1)中の線荷重差pdfiは、主として
圧延材側の条件に左右される圧延荷重式の左右差として
次式のように表現される。
[0014] h dfi = (b / a Bi ) S dfi + D i p dfi + E i x ci (i = 1~N) ···
(1) where, b is the plate width of the rolled material, a Bi distance between rolls pressure supporting points, E i is the influence coefficient or first type parallel rigid weight material off center on the plate wedge, D i Is the coefficient of influence of the linear load difference p dfi on the plate wedge, that is, the second-class parallel rigidity. The suffix df indicates the difference between left and right, and indicates a value obtained by subtracting the value on the driving side from the working side. Equation (1) purely expresses the deformation characteristics on the rolling mill side, but the linear load difference p dfi in equation (1) is mainly determined by the right and left of the rolling load equation which is mainly affected by the conditions on the rolled material side. The difference is expressed as the following equation.

【0015】 pdfi =pdfi[kdfi,hdf(i-1),hdfi,σdf(i-1),σdfi] (i=1〜N) ・・・(2) ここで、kdfiは圧延材の変形抵抗左右差、σdfiは第i
圧延機出側張力の左右差(以下張力の左右差を張力差と
略称する)であり、式(2)は圧延理論で与えられる圧延
荷重式〔例えば公知文献「板圧延の理論と実際」(社団法
人 日本鉄鋼協会編)第2章に開示されている式(2.97),
式(2.185)および式(2.196)〕の作業側と駆動側の差とし
て与えられる。
P dfi = p dfi [k dfi , hdf (i-1) , hdfi , σdf (i-1) , σdfi ] (i = 1 to N) (2) where k dfi is the difference between left and right deformation resistance of the rolled material, σ dfi is the i-th
The left-right difference in the tension on the exit side of the rolling mill (hereinafter, the right-left difference in the tension is abbreviated as the tension difference), and the equation (2) is a rolling load equation given by the rolling theory [for example, the known literature “Theory and practice of sheet rolling” ( Formula (2.97) disclosed in Chapter 2 of the Iron and Steel Institute of Japan
Equation (2.185) and Equation (2.196)] are given as the difference between the working side and the driving side.

【0016】張力差σdfiを決める主要因は、各圧延機
における先進係数の左右差fdfiおよび後進係数の左右
差fbdfiであり、これらは圧延理論で与えられる先進係
数式〔例えば公知文献「板圧延の理論と実際」(社団法人
日本鉄鋼協会編)第2章に開示されている式(2.19)およ
び式(2.175)で計算される先進率fSに1を加算した式)
および後進係数式(例えば先進係数式に(出側板厚/入
側板厚)を乗じた式〕の左右差として与えられ、次式の
ような要因に左右されるものである。
The main factor that determines the tension difference sigma dfi is a left-right difference f Bdfi the left-right difference f dfi and backward coefficients developed coefficients in each rolling mill, it is advanced coefficient equation given in the rolling theory [for example, a known literature " Plate Rolling Theory and Practice ''
(Edited by the Iron and Steel Institute of Japan) 1 added to the advance rate f S calculated by the equations (2.19) and (2.175) disclosed in Chapter 2)
And a backward coefficient formula (for example, a formula obtained by multiplying an advanced coefficient formula by (outgoing plate thickness / incoming plate thickness)) and is influenced by factors such as the following formula.

【0017】 fdfi =fdfi[kdfi,hdf(i-1),hdfi,σdf(i-1),σdfi] (i=1〜N) ・・・(3) fbdfi =fbdfi[kdfi,hdf(i-1),hdfi,σdf(i-1),σdfi] (i=1〜N) ・・・(4) また、データサンプリング時は十分に定常圧延状態が実
現されているものと仮定すると、各圧延機間で新たな張
力変動が発生しないという条件より、次式を得る。
F dfi = f dfi [k dfi , hdf (i-1) , hdfi , σdf (i-1) , σdfi ] (i = 1 to N) (3) f bdfi = f bdfi [k dfi , hdf (i-1) , hdfi , σdf (i-1) , σdfi ] (i = 1 to N) (4) Also, the data sampling is sufficiently steady Assuming that the rolling state is realized, the following equation is obtained from the condition that no new tension fluctuation occurs between the rolling mills.

【0018】 VR(i+1)・fbdf(i+1)=VRi・fbdfi (i=1〜N−1) ・・・(5) ここで、VRiは第i圧延機のロール周速である。式(5)
のほか、タンデム圧延機列入側材料の座屈や水平面内で
の全体としての回転は通常生じないため、次式も成立す
る。
V R (i + 1) · f bdf (i + 1) = V Ri · f bdfi (i = 1 to N−1) (5) where V Ri is the i-th rolling mill Roll peripheral speed. Equation (5)
In addition, since the buckling of the material entering the tandem rolling mill row and the rotation as a whole in the horizontal plane do not normally occur, the following equation is also satisfied.

【0019】 fbdf1 =0 ・・・(6) 次に、圧延中に実測可能なデータとして圧延荷重がある
が、これは作業側および駆動側の補強ロール圧下支持点
位置にとりつけられた圧延荷重測定装置すなわちロード
セルによって検出される。そこで、第i圧延機のロード
セルによる圧延荷重測定値の左右差(以下圧延荷重差と
略称する)をPdfiとするとき、これは線荷重差pdfi
材料オフセンター量xciと次の関係を有する。
F bdf1 = 0 (6) Next, there is a rolling load as data that can be measured during rolling, which is a rolling load attached to the position of the supporting roll reduction support point on the working side and the driving side. It is detected by a measuring device or load cell. Then, when the left-right difference (hereinafter simply referred to as the rolling load difference) of the measured rolling load by the load cell of the i-th rolling mill is P dfi , the following relationship is obtained between the linear load difference p dfi and the material off-center amount x ci. Having.

【0020】 Pdfi =[b2/(6aBi)]pdfi+(2/aBi)Pici +(aWi/aBi)Fdfi (i=1〜N) ・・・(7) ここで、Fdfiはロールベンディング力の左右差、aWi
は作業ロールの支点間距離であり、一般の操業ではF
dfi=0であるから、その場合、式(7)右辺第三項は省略
できる。
[0020] P dfi = [b 2 / ( 6a Bi)] p dfi + (2 / a Bi) P i x ci + (a Wi / a Bi) F dfi (i = 1~N) ··· (7 ) Where F dfi is the difference between left and right roll bending force, a Wi
Is the distance between the fulcrums of the work rolls.
Since dfi = 0, in this case, the third term on the right side of Equation (7) can be omitted.

【0021】さらに、通常タンデム圧延機列の各圧延機
間には、圧延材の張力を検出するために圧延材張力測定
装置としてのロールが配置されている。これは、圧延材
と接触しかつ圧延機のロール軸線に平行なロール軸に回
動自在に支持されたロールと、該ロールに負荷される鉛
直方向の力を作業側および駆動側それぞれ独立に検出可
能な荷重測定器とを備えている。例えば、熱間タンデム
ミルの場合、各圧延機間にはルーパーロールが配置され
ており、このルーパーロールの左右支持部にロードセル
を配備し、圧延材をルーパーロールで押し上げる際の圧
延材からの反力すなわちルーパーロードセル荷重を検出
することによってルーパーロール位置における張力差の
計算が可能となる。但し、ルーパーロードセル荷重の左
右差Rdfiには、張力差σdfiの他に材料オフセンターの
影響も含まれ、次式のような関係式が成立する。
Further, a roll as a rolled material tension measuring device is arranged between each rolling mill in the tandem rolling mill row to detect the tension of the rolled material. This is a roll that is in contact with the rolled material and is rotatably supported on a roll axis parallel to the roll axis of the rolling mill, and independently detects the vertical force applied to the roll on the working side and the drive side. A possible load measuring device. For example, in the case of a hot tandem mill, a looper roll is disposed between each rolling mill, and a load cell is provided on each of the left and right support portions of the looper roll, and a countermeasure from the rolled material when the rolled material is pushed up by the looper roll is provided. By detecting the force, that is, the load of the looper load cell, it is possible to calculate the tension difference at the position of the looper roll. However, the left-right difference R dfi of the looper load cell load includes the influence of the material off center in addition to the tension difference σ dfi , and the following relational expression is established.

【0022】 Rdfi =[{b2/(6aLi)}σdfi+(2/aLi)σibxcLi] ×(sinθfi+sinθb(i+1))hi (i=1〜N−1) ・・・(8) ここで、Rdfiはルーパーロードセルに加わる鉛直方向
荷重の左右差(以下ルーパー荷重差と略称する)、aLi
はルーパーロール支点間距離、θfiおよびθb(i+1)はル
ーパーロールを境にして第i圧延機出側および第i+1
圧延機入側の板面が水平面となす角度(図2参照)、h
iおよびσiは第i圧延機出側の板厚および圧延機間張力
である。xcLiはルーパー位置における材料オフセンタ
ー量であり、近似的には第iおよび第i+1圧延機にお
ける材料オフセンター量xci,xc(i+1)の内挿式すなわ
ち次式で求めることができる。
R dfi = [{b 2 / (6a Li )} σ dfi + (2 / a Li ) σ i bx cLi ] × (sin θ fi + sin θ b (i + 1) ) h i (i = 1 to N -1) (8) Here, R dfi is the left-right difference of the vertical load applied to the looper load cell (hereinafter simply referred to as the looper load difference), a Li
Is the distance between the looper roll fulcrum, and θ fi and θ b (i + 1) are the i-th rolling mill exit side and the i + 1 th
The angle between the plate surface on the rolling mill entry side and the horizontal plane (see FIG. 2), h
i and σ i are the sheet thickness on the exit side of the i-th rolling mill and the tension between the rolling mills. x cLi is the material off-center amount at the looper position, and can be approximately determined by an interpolation formula of the material off-center amounts x ci and x c (i + 1) in the i-th and (i + 1) -th rolling mills, that is, the following expression. it can.

【0023】 xcLi =βici+(1−βi)xc(i+1) ・・・(9) 蛇行の状況によっては、図3の(a)に示すように、ル
ーパーロール回転方向と圧延材の進行方向に相対差が生
じ、ルーパーロールと圧延材の接触部における相対滑り
に起因したルーパーロール軸方向の力すなわちスラスト
力Siが生じることがある。このスラスト力Siは、図3
の(b)に示す左ル−パ−荷重Rwiと右ル−パ−荷重R
diとの差すなわちルーパー荷重差Rdfiに影響するた
め、場合によっては、式(8)に無視し得ない誤差が生じ
ることも考えられる。
X cLi = β i x ci + (1−β i ) x c (i + 1) (9) Depending on the meandering condition, as shown in FIG. the relative difference occurs in the traveling direction of the direction of the rolled material, there is a force of looper roll axial direction due to the relative sliding i.e. thrust force S i occurs at the contact portion of the looper roll and rolling material. This thrust force Si is shown in FIG.
Hidariru shown in (b) - Pa - load R wi and Migiru - Pa - load R
Since this affects the difference from di , that is, the looper load difference R dfi , an error that cannot be ignored in Expression (8) may occur in some cases.

【0024】従って、その際は、まず、このスラスト力
iをルーパーロール支持機構にいわゆるスラスト力計
を設置し直接検出するか、もしくは、例えば前後の第i
および第i+1圧延機における材料オフセンター量
ci,xc(i+1)やルーパー荷重Rti(左右ロードセル検
出値の和)およびスラスト係数γを用いた次式で推定す
る。 Si=sgn(xc(i+1)−xci)γRti ここで、sgn(X)はXの符号を表す関数である。次
に、上記のように直接検出もしくは推定されたスラスト
力Sを考慮した次式を上記式(8)の代わりに用いるこ
とによって、ルーパー荷重差Rdfiのスラスト力に起因
した誤差を解消することが好ましい。
[0024] Therefore, in that case, first, either detecting the thrust force S i directly set up a so-called thrust force meter looper roll support mechanism, or, for example, before and after the i
And the following formula using the material off-center amounts x ci , x c (i + 1) , the looper load R ti (sum of left and right load cell detection values) and the thrust coefficient γ in the (i + 1) th rolling mill. S i = sgn (x c (i + 1) −x ci ) γR ti where sgn (X) is a function representing the sign of X. Then, considering direct detection or estimated thrust force S i as described above following equation by using in place of the equation (8), to eliminate the error caused by the thrust force of the looper load difference R dfi Is preferred.

【0025】 Rdfi =[{b2/(6aLi)}σdfi+(2/aLi)σibxcLi] ×(sinθfi+sinθb(i+1))hi+(2/aLi)rLii (i=1〜N−1) ・・・(8') ここで、rLiはルーパーロール半径であり、スラスト力
iの符号は駆動側から作業側に向って圧延材からルー
パーロールに作用した場合を正としている。
R dfi = [{b 2 / (6a Li )} σ dfi + (2 / a Li ) σ i bx cLi ] × (sin θ fi + sin θ b (i + 1) ) h i + (2 / a Li ) R Li S i (i = 1 to N−1) (8 ′) where r Li is a looper roll radius, and the sign of the thrust force S i is a rolled material from the driving side to the working side. Is positive when applied to the looper roll.

【0026】冷間タンデムミルの場合は、ルーパーロー
ルの代わりにテンションロールを用いることになるが、
このテンションロールの左右支持部にロードセルを配置
し、圧延材をテンションロールで押し上げる際の荷重を
検出する事によってテンションロールの位置における張
力差の計算が可能となる。張力検出の基本原理はルーパ
ーロールの場合と同じてあり、式(8),(9)は同様に使用
できる。なお、これにおいて生じるスラスト力の影響も
上記と同様に考慮するのが望ましい。また、例えば電磁
相関式張力検出器のように、圧延材に生じる張力および
その左右差を直接、すなわち反力測定に依らず、検出可
能な測定装置もあるが、その場合は式(8),式(9)を省略
し、直接測定された張力差σdfiの測定値をそのまま式
(1)〜式(7)の方程式系に用いればよい。
In the case of a cold tandem mill, a tension roll is used instead of a looper roll.
By arranging load cells on the left and right support portions of the tension roll and detecting the load when the rolled material is pushed up by the tension roll, it is possible to calculate the difference in tension at the position of the tension roll. The basic principle of tension detection is the same as that of the looper roll, and equations (8) and (9) can be used similarly. Note that it is desirable to consider the effect of the thrust force generated in this manner in the same manner as described above. Also, for example, there is a measuring device such as an electromagnetic correlation type tension detector that can directly detect the tension generated in the rolled material and the difference between the left and right thereof, that is, without depending on the reaction force measurement, but in that case, the expression (8), Equation (9) is omitted, and the measured value of the directly measured tension difference σ dfi
It may be used for the equation system of (1) to (7).

【0027】すなわち、式(8),(9)はルーパー荷重差測
定値Rdfiから張力差σdfiを求めることのみを目的とす
る式であり、以下では、圧延機間の圧延材張力測定装置
の検出値の左右差としてルーパー荷重差Rdfiが得られ
る場合を例に説明するが、張力差σdfiを直接測定でき
る場合でも同様に成立する。
That is, Expressions (8) and (9) are expressions for the purpose of only obtaining the tension difference σ dfi from the looper load difference measurement value R dfi. The case where the looper load difference R dfi is obtained as the left-right difference between the detected values of the above will be described as an example, but the same holds when the tension difference σ dfi can be directly measured.

【0028】本発明で用いる圧延材張力測定装置とは、
前述のように、タンデム圧延機間に圧延材の張力を検出
するために設けられたルーパーロールあるいはテンショ
ンロールのロードセルにより、圧延材からの鉛直方向の
反力すなわち荷重を検出して関接的に張力を測定するも
の、および電磁相関式張力検出器のように、直接張力を
検出する装置を含んでおり、圧延材張力測定装置の検出
値とは、これらの荷重,張力等の検出値をいう。また、
上記以外の形式の圧延材張力装置においても、その検出
値の左右差と張力差σdfiを関係づける式(8)に相当する
方程式が得られる場合には、該検出値を用いてよい。
The rolled material tension measuring device used in the present invention is:
As described above, the load cell of the looper roll or the tension roll provided for detecting the tension of the rolled material between the tandem rolling mills is used to detect the vertical reaction force, that is, the load from the rolled material. Includes a device that measures tension and a device that directly detects tension, such as an electromagnetic correlation type tension detector. The detection values of a rolled material tension measurement device refer to the detection values of these loads, tension, etc. . Also,
In a rolled material tension apparatus of a type other than the above, if an equation corresponding to the equation (8) relating the right-left difference of the detected value and the tension difference σ dfi is obtained, the detected value may be used.

【0029】さて、本発明は以上の式(1)〜(9)を利用し
て、各圧延機間の張力差を求め、これを零にするような
圧下制御を行うものであるが、このため、まず、ある測
定時点の圧延状態(以下現状と略称する)の把握を行わ
なければならない。
The present invention uses the above equations (1) to (9) to determine the tension difference between rolling mills, and performs reduction control to make this difference zero. Therefore, first, the rolling state at a certain measurement point (hereinafter, abbreviated as the current state) must be grasped.

【0030】上記の方程式系に含まれる変数のうち、圧
下レベリングSdfi,圧延機寸法aBi,aWi,板幅b,
ロール周速VRi,圧延荷重Pi,圧延荷重差Pdfi,ロー
ルベンディング力の左右差Fdfi,ルーパー荷重差
dfi,ルーパーロールの支点間距離aLi,圧延板面が
水平面となす角度θfiおよびθbi,出側板厚hi,圧延
機間張力σi,内挿式の係数βi,第一種平行剛性Ei
よび第二種平行剛性Diは、既知量か、測定可能あるい
は設定計算等で推定可能な量であり、これらの変数を除
外した未知数を列挙すると次のようになる。
Among the variables included in the above equation system, reduction leveling S dfi , rolling mill dimensions a Bi , a Wi , strip width b,
Roll peripheral speed V Ri , rolling load P i , rolling load difference P dfi , right and left difference F dfi of roll bending force, looper load difference R dfi , distance a Li between fulcrums of looper rolls, angle θ between rolled plate surface and horizontal plane θ fi and theta bi, exit side thickness h i, mill interstand tension sigma i, the coefficient of internal interpolation equation beta i, the first kind parallel rigidity E i and the two parallel rigid D i are either known amount, measurable or It is an amount that can be estimated by setting calculation, etc., and the unknowns excluding these variables are listed as follows.

【0031】 Pdfi(i=1〜N),hdfi(i=0〜N),pdfi(i=1〜N), xci(i=1〜N),fdfi(i=1〜N),fbdfi(i=1〜N), kdfi(i=1〜N),σdfi(i=0〜N) ・・・(10) 式(10)の中のPdfi(i=1〜N)は一般に計測可能な
量であるが、トータル荷重Piに比べるとその絶体値は
小さく、信頼できるデータを得るには十分な精度検討が
必要なため、ここではまず未知数として取り扱う。ま
た、ルーパー位置における材料オフセンター量x
cLiは、式(9)を式(8)に代入することで簡単に消去され
るため、未知数としては取り扱わない。同時に後述する
方程式系には式(9)は含めないものとする。
P dfi (i = 1 to N), hdfi (i = 0 to N), p dfi (i = 1 to N), x ci (i = 1 to N), f dfi (i = 1 to N) N), f bdfi (i = 1 to N), k dfi (i = 1 to N), σ dfi (i = 0 to N) (10) P dfi (i = 1 to N) are generally measurable quantities, but their absolute value is smaller than the total load P i , and sufficient accuracy study is required to obtain reliable data. . Further, the material off-center amount x at the looper position
cLi is not treated as an unknown because cLi is easily deleted by substituting equation (9) into equation (8). At the same time, equation (9) is not included in the equation system described later.

【0032】上記式(10)に示す変数を全て未知数とした
場合、8N+2個の未知数が存在することになる。これ
に対して、式(1)〜(8)の方程式の数は7N−1個である
から、未知数をN+3個分減らさなければ、タンデム圧
延の蛇行に関する現状把握を行うことはできない。した
がって、式(10)の未知数の内、少なくともN+3個の値
は、測定するか、別の方法で推定する必要があり、この
選択の方法によって種々の実施態様が考えられる。
If all the variables shown in the above equation (10) are unknown, there will be 8N + 2 unknowns. On the other hand, since the number of equations (1) to (8) is 7N-1, the current state of the tandem rolling meander cannot be grasped unless the unknowns are reduced by N + 3. Therefore, at least N + 3 values among the unknowns in the equation (10) need to be measured or estimated by another method, and various embodiments can be considered depending on the method of this selection.

【0033】しかしながら、少なくともロール周速,圧
下設定値の左右差およびルーパー荷重の左右差は、同時
点のデータを一斉に測定する必要があり、このため圧延
中の作業側および駆動側の圧下設定値,ロール周速,各
圧延機間に設置した圧延材張力測定装置の作業側および
駆動側の検出値のデータの同時点サンプリングは、本発
明の必須要件となる。
However, at least the roll peripheral speed, the right and left difference of the reduction set value and the left and right difference of the looper load need to be measured simultaneously at the same time. Therefore, the reduction of the working side and the drive side during rolling is required. Simultaneous point sampling of the data of the working side and the driving side of the rolled material tension measuring device installed between the rolling mills, the roll speed and the roll peripheral speed is an essential requirement of the present invention.

【0034】本発明のように定常圧延時の測定値から張
力差を求め、圧下レベリング操作を行う方法として特開
平06−218412号公報が開示されているが、この
方法は作業側および駆動側の圧延機間の張力検出値を必
須要件としない点で本発明とは異なる。この相違は、特
開平06−218412号公報が開示している方法で
は、上述した本発明の方程式系に対して、各圧延機前後
のマスフロー一定条件を表すN個の方程式(11)が追加さ
れていることに由来すると考えられる。
Japanese Patent Application Laid-Open No. H06-218412 discloses a method of calculating a tension difference from a measured value during steady rolling and performing a rolling leveling operation as in the present invention. The present invention is different from the present invention in that a detected tension value between rolling mills is not required. The difference is that, in the method disclosed in Japanese Patent Application Laid-Open No. 06-218412, N equations (11) representing a constant mass flow condition before and after each rolling mill are added to the above-described equation system of the present invention. It is thought that it comes from.

【0035】 hdf(i-1)bi+fbdfi(i-1)=hdfii+fdfii (i=1〜N) ・・・(11) ここで、fi,fbiは第i圧延機における先進係数,後
進係数である。
[0035] h df (i-1) f bi + f bdfi h (i-1) = h dfi f i + f dfi h i (i = 1~N) ··· (11) here, f i, f bi Is an advanced coefficient and a backward coefficient in the ith rolling mill.

【0036】ところが、圧延理論面での詳細な検討の結
果、上記の各圧延機前後のマスフロー一定条件式(11)
は、本来、先進係数および後進係数の左右差を求める式
(3),(4)に含まれることが判明した。換言すれば式
(3),(4)として、合理性のある式を用いれば、式(11)は
自動的に満足されることを意味している。
However, as a result of a detailed study in terms of the rolling theory, the above formula (11)
Is originally the formula for calculating the left / right difference between the advanced coefficient and the backward coefficient.
(3) and (4). In other words, the expression
If rational expressions are used as (3) and (4), it means that expression (11) is automatically satisfied.

【0037】例えば、第i圧延機における先進率をfsi
とし、次式で求められるとする。
For example, the advance rate in the ith rolling mill is represented by f si
And it is assumed that it is obtained by the following equation.

【0038】 fsi =fsi[ki,h(i-1),hi,σ(i-1),σi] ここで、kiは第i圧延機における変形抵抗、hiは出側
板厚、σiは出側張力を表す。先進係数fi,後進係数f
biは、上記先進率式を用いた次の式で求められる。
[0038] f si = f si [k i , h (i-1), h i, σ (i-1), σ i] Here, k i is the deformation resistance in the i mill, h i is out The side plate thickness, σ i , represents the output side tension. Advanced coefficient f i , backward coefficient f
bi is obtained by the following equation using the advanced rate equation.

【0039】 fi=1+fsi[ki,h(i-1),hi,σ(i-1),σi] fbi=(hi/h(i-1))fi=(hi/h(i-1)){1+f
si[ki,h(i-1),hi,σ(i-1),σi]} 先進係数fi,後進係数fbiの左右差は、上記式中の各
変数に関する一階の偏微分項と各変数の左右差項の積の
和で、次のように近似される。
F i = 1 + f si [k i , h (i−1) , h i , σ (i−1) , σ i ] f bi = (h i / h (i−1) ) f i = ( h i / h (i-1) ) {1 + f
si [k i , h (i-1) , h i , σ (i-1) , σ i ]} The left-right difference between the advanced coefficient f i and the backward coefficient f bi is the first order of each variable in the above equation. This is the sum of the product of the partial differential term and the left-right difference term of each variable, and is approximated as follows.

【0040】 fdfi≒(∂fsi/∂ki)kdfi+(∂fsi/∂h(i-1))hdf(i-1) +(∂fsi/∂hi)hdfi+(∂fsi/∂σ(i-1)df(i-1) +(∂fsi/∂σidfi (i=1〜N) ・・・(3') fbdfi≒(hi/h(i-1))〔(∂fsi/∂ki)kdfi +[(∂fsi/∂h(i-1))−{(1+fsi)/h(i-1)}]hdf(i-1) +[(∂fsi/∂hi)+{(1+fsi)/hi}]hdfi +(∂fsi/∂σ(i-1)df(i-1)+(∂fsi/∂σidfi〕 (i=1〜N) ・・・(4') 上式で得られる先進係数,後進係数の左右差fdfi,f
bdfiは、式(11)を恒等的に満たす。すなわち、式(3),
(4)を正当に表現すれば、式(11)は新たに追加されるべ
き方程式ではないことがわかる。このことは、式(11)が
式(3),(4)とは別に(独立に)存在することを前提に構
築された、特開平6−218412号公報に開示の方法
では、方程式数に対して未知数の個数が不当に大きくな
る。換言すれば、必須要件としての測定項目が不足する
ため、十分な蛇行制御精度が得られないことがわかる。
[0040] f dfi ≒ (∂f si / ∂k i) k dfi + (∂f si / ∂h (i-1)) h df (i-1) + (∂f si / ∂h i) h dfi + (∂f si / ∂σ (i-1) ) σ df (i-1) + (∂f si / ∂σ i ) σ dfi (i = 1 to N) (3 ′) f bdfi (h i / h (i- 1)) [(∂f si / ∂k i) k dfi + [(∂f si / ∂h (i-1)) - {(1 + f si) / h (i-1 ) }] h df (i-1) + [(∂f si / ∂h i ) + {(1 + f si ) / h i }] h dfi + (∂f si / ∂σ (i-1) ) σ df (i-1) + (∂f si / ∂σ i ) σ dfi ] (i = 1 to N) (4 ′) Left and right difference f dfi , f of advanced coefficient and backward coefficient obtained by the above equation
bdfi satisfies equation (11) on an equal basis. That is, equation (3),
If (4) is properly expressed, it can be seen that equation (11) is not an equation to be newly added. This is because the method disclosed in Japanese Patent Application Laid-Open No. 6-218412, which was constructed on the assumption that Expression (11) exists (independently) separately from Expressions (3) and (4), has On the other hand, the number of unknowns becomes unduly large. In other words, it is understood that sufficient meandering control accuracy cannot be obtained because of insufficient measurement items as essential requirements.

【0041】これに対し本発明では、制御の指針となる
各圧延機間の張力差を反映した圧延材張力測定装置の検
出値の左右差を用いることによって、特開平6−218
412号公報に開示の方法では実現し得ない高い蛇行制
御精度を得ることが可能である。
On the other hand, in the present invention, the right and left difference of the detected value of the rolled material tension measuring device, which reflects the difference in tension between rolling mills, which serves as a guide for control, is used.
It is possible to obtain a high meandering control accuracy that cannot be realized by the method disclosed in Japanese Patent Publication No. 412.

【0042】本願の第二発明は、第一の発明に対して、
現状把握のために圧延荷重差Pdfiのデータがある程度
信頼できる場合の実施形態に相当し、ロール周速,圧下
設定値,ルーパー荷重差とともに圧延荷重も左右差を含
めて同時点データを採取することを前提としている。こ
の場合は、未知数が7N+2個、方程式の数が7N−1
個であるから、Pdfiを除した未知数[式(10)]の内、
少なくとも3個は測定値または推定値を採用しなければ
ならない。この3個以上の変数の選び方によって種々の
実施態様が考えられるが、Pdfiを未知数とする場合に
比べて利用可能なデータが多くなり、計測あるいは推定
しなければならないデータは少くなり、さらに、同じ計
測データを得た場合でも既知量が多い場合には、最小自
乗解の精度が上がるため、制御の収束性が高くなる。
The second invention of the present application is based on the first invention,
This corresponds to an embodiment in which the data of the rolling load difference P dfi is reliable to some extent for the purpose of grasping the current situation. In addition to the roll peripheral speed, the set value of the rolling reduction, and the difference in the looper load, simultaneous point data including the rolling difference is sampled. It is assumed that In this case, the number of unknowns is 7N + 2, and the number of equations is 7N-1.
Therefore , among the unknowns [Equation (10)] obtained by dividing P dfi ,
At least three must take measurements or estimates. Various embodiments are conceivable depending on how to select these three or more variables. However, more data is available than when P dfi is unknown, and data that needs to be measured or estimated is smaller. Even when the same measurement data is obtained, if the known amount is large, the accuracy of the least squares solution is increased, and the convergence of the control is improved.

【0043】このように、同時点の測定値に基づき、式
(1)〜式(8)の方程式系を解くことで現状の未知数の解
(以下現状解と略称する),現状の把握が可能となる。
Thus, based on the measured values at the same time, the equation
By solving the system of equations (1) to (8), it is possible to grasp the current unknown solution (hereinafter abbreviated as the current solution) and the current situation.

【0044】次に、方程式の個数が未知数の個数と同数
以上となり、現状の把握が可能となった場合について、
各圧延機間の張力差を零とするための圧下レベリング
(以下最適圧下レベリングと略称する)操作量を求める
方法を説明する。
Next, the case where the number of equations is equal to or greater than the number of unknowns and the current situation can be grasped is as follows.
A method for calculating the amount of operation of the rolling leveling (hereinafter, abbreviated as the optimum rolling leveling) for reducing the tension difference between the rolling mills to zero will be described.

【0045】現状解として得られた(もしくは直接測定
された)張力差σdfiは一般には零ではないので、目標
は各圧延機間の張力差を零とすること、すなわち次式を
満たすことである。
Since the tension difference σ dfi obtained as the current solution (or directly measured) is generally not zero, the goal is to make the tension difference between the rolling mills zero, that is, to satisfy the following equation. is there.

【0046】 σdfi=0 (i=0〜N) ・・・(1
2) しかしながら、この条件を満たすためには、式に示す各
圧延機における先進係数および後進係数の左右差が零と
する条件を同時に満たす必要がある。
Σ dfi = 0 (i = 0 to N) (1)
2) However, in order to satisfy this condition, it is necessary to simultaneously satisfy the condition that the left and right difference between the advanced coefficient and the backward coefficient in each rolling mill shown in the equation is zero.

【0047】 fdfi =0 (i=1〜N) fbdfi=0 (i=1〜N) ・・・(13) 式(13)の条件が必要な理由は次のように説明される。各
圧延機間の張力差σdfiは、圧延機間において長さの左
右差が生じた圧延材を引張る(張力を負荷する)ことで
発生するものと考えられる。したがって、張力差を零と
するには、圧延機間の圧延材長さの左右差を生じさせな
いために、圧延材速度の左右差を示す先進係数および後
進係数の左右差fdfiおよびfbdfiを同時に零とする条
件すなわち式(13)が必須であることがわかる。
F dfi = 0 (i = 1 to N) f bdfi = 0 (i = 1 to N) (13) The reason why the condition of the expression (13) is necessary is explained as follows. It is considered that the tension difference σ dfi between the rolling mills is generated by pulling (loading a tension) a rolled material having a left-right difference in length between the rolling mills. Therefore, in order to reduce the tension difference to zero, the left and right differences f dfi and f bdfi of the advanced coefficient and the backward coefficient indicating the left and right difference of the rolled material speed in order not to cause the left and right difference of the rolled material length between the rolling mills. At the same time, the condition of zero, that is, equation (13) is indispensable.

【0048】条件式(12),(13)の個数は3N+1個ある
が、式(5),(6)より、先進係数の左右差fdfi=0(i
=1〜N)を満たす場合、後進係数の左右差fbdfi=0
(i=1〜N)は恒等的に満たされるため、実質的な条
件式の数は2N+1個である。すなわち、張力差σdfi
を零とするためには、上述した式(1)〜(8)の現状把握の
ための方程式系に、σdfi=0(i=0〜N),fdfi
0(i=1〜N)の2N+1個の条件を追加し、新たに
圧下レベリング量Sdfi(i=1〜N)を未知数として
最適圧下レベリング操作量を求めるための方程式系を構
成し、解けばよいこととなる。
Although the number of conditional expressions (12) and (13) is 3N + 1, from expressions (5) and (6), the left-right difference f dfi = 0 (i
= 1 to N), the left-right difference of the backward coefficient f bdfi = 0
Since (i = 1 to N) is satisfied all the time, the substantial number of conditional expressions is 2N + 1. That is, the tension difference σ dfi
Is set to zero, σ dfi = 0 (i = 0 to N) and f dfi =
A 2N + 1 condition of 0 (i = 1 to N) is added, and an equation system for obtaining an optimum rolling leveling operation amount with a new rolling leveling amount S dfi (i = 1 to N) as an unknown number is constructed and solved. That would be good.

【0049】但し、その際に、張力差を零とするために
圧下レベリングを現状から修正変更することで、現状の
把握のための方程式系で測定もしくは推定により既知で
あるとした諸量の一部は少なからず変化するため、新た
に未知数として取り扱わなければならないこと、またこ
れとは逆に、現状の把握の際に未知量であり、方程式系
を解くことで値が得られた現状解の一部は圧下レベリン
グを修正してもほとんど変化しない、すなわち最適圧下
レベリングの修正量計算のための方程式系においては既
知量となることに注意する必要がある。
However, at this time, by correcting and changing the draft leveling from the current state in order to make the tension difference zero, one of the various quantities that are known by measurement or estimation in the equation system for grasping the current state. Part changes a little, so it must be newly treated as an unknown.On the contrary, it is an unknown quantity when grasping the current situation, and the value of the current solution obtained by solving the equation system It should be noted that some of them hardly change even if the draft leveling is corrected, that is, they become known quantities in the equation system for calculating the amount of correction of the optimal draft leveling.

【0050】本発明では、第4および第6発明を適用し
た場合に新たに未知数として取り扱うべき変数の個数が
最も多く、 Sdfi(i=1〜N),Pdfi(i=1〜N),R
dfi(i=1〜N−1),hdfN の計3N個が新たな未知数となる。これに対し、現状解
の内、圧下レベリングを修正してもほとんど変化しない
と考えられる変数は、主として圧延材の温度,材質の左
右差に起因すると考えられる変形抵抗の左右差k
dfi(i=1〜N)と、タンデム圧延機列入側の板ウェ
ッジhdf0、および定常圧延中には比較的安定と考えら
れる各圧延機における材料オフセンター量xci(i=1
〜N)であり、kdfiに推定値を用いる、すなわち既知
量とした場合、を除いても、少なくともN+1個の変数
が新たに既知量となる。
In the present invention, when the fourth and sixth inventions are applied, the number of variables to be newly treated as unknowns is the largest, and S dfi (i = 1 to N) and P dfi (i = 1 to N) , R
A total of 3N dfi (i = 1 to N−1) and h dfN become new unknowns. On the other hand, among the current solutions, the variable that is considered to hardly change even if the draft leveling is corrected is mainly the temperature difference of the rolled material, the lateral difference k of the deformation resistance, which is considered to be caused by the lateral difference of the material.
dfi (i = 1 to N), the sheet wedge h df0 on the entry side of the tandem rolling mill row, and the material off-center amount x ci (i = 1) in each rolling mill considered to be relatively stable during steady rolling.
NN ), and at least N + 1 variables become new known quantities even if the estimated value is used for k dfi , that is, if the known quantity is used.

【0051】したがって、現状の把握における未知数の
個数に比べ、最も多い場合で新たに2N−1個の未知数
が増えることになる。しかしながら、現状の把握に用い
た方程式系に比ベ、最適圧下レベリング操作量を求める
ための方程式系では方程式の数は2N+1個増えてお
り、最大2N−1個の未知数が増えても、現状の把握の
計算が可能である限り、タンデム圧延の定常時の方程式
系を用いて最適圧下レベリング操作量が求められる。
Therefore, compared to the number of unknowns in the current situation, 2N-1 new unknowns increase in the largest case. However, compared to the equation system used to grasp the current situation, the number of equations in the equation system for obtaining the optimum rolling leveling operation amount is increased by 2N + 1, and even if the number of unknowns up to 2N-1 increases, the current As long as the calculation of the grasp is possible, the optimal rolling leveling operation amount is obtained by using the equation system in the steady state of the tandem rolling.

【0052】以下に、具体的な最適圧下レベリング操作
量を求めるための手順を、一例として示す。
The following is an example of a procedure for obtaining a specific optimal rolling leveling operation amount.

【0053】前述のように、最適圧下レベリング操作の
ための条件σdfi=0(i=0〜N),fdfi=0(i=
1〜N)を、式(3)〜(6)に代入すると、次式が得られ
る。
As described above, the conditions σ dfi = 0 (i = 0 to N) and f dfi = 0 (i =
1 to N) into the equations (3) to (6), the following equation is obtained.

【0054】 0=fdfi[kdfi,hdf(i-1),hdfi,0,0] (i=1〜N) ・・・(3") 0=fbdfi[kdfi,hdf(i-1),hdfi,0,0] (i=1〜N) ・・・(4") 上記式(3"),(4")を用いれば、第i圧延機の入側板ウェ
ッジhdf(i-1)と出側板ウェッジhdfiの関係を表す次の
方程式(14)が少なくともN個得られる。
[0054] 0 = f dfi [k dfi, h df (i-1), h dfi, 0,0] (i = 1~N) ··· (3 ") 0 = f bdfi [k dfi, h df (i-1) , hdfi , 0, 0] (i = 1 to N) (4 ") If the above equations (3") and (4 ") are used, the entry side wedge of the ith rolling mill is obtained. At least N following equations (14) representing the relationship between h df (i-1) and the exit plate wedge hdfi are obtained.

【0055】 hdfi=F[hdf(i-1)] (i=1〜N) ・・・(14) ここで、第1圧延機入側の板ウェッジhdf0は圧下レベ
リング操作によっては変化しないため、前述した現状把
握で得られた値のままである。したがって、この第1圧
延機入側の板ウェッジの現状解(もしくは測定値)h
df0*を基に、式(14)を第1圧延機から順次適用すれ
ば、最適レベリング操作時の各圧延機出側の目標板ウェ
ッジhdfi*が求められる。この目標板ウェッジhdfi
を、式(2)に代入して目標線荷重差pdfi*を算出し、目
標板ウェッジおよび目標線荷重差を式(1)に代入するこ
とで、次式に示すように、張力の左右差を零とするため
の圧下レベリング解Sdfi*が得られることとなる。
H dfi = F [h df (i-1) ] (i = 1 to N) (14) Here, the plate wedge h df0 on the entry side of the first rolling mill changes depending on the rolling leveling operation. Therefore, the value obtained by the above-mentioned grasp of the current state remains as it is. Therefore, the current solution (or measured value) h of the plate wedge on the entrance side of the first rolling mill h
If the equation (14) is applied sequentially from the first rolling mill based on df0 *, the target plate wedge hdfi * on the exit side of each rolling mill at the time of the optimal leveling operation can be obtained. This target plate wedge hdfi *
Into the equation (2) to calculate the target line load difference p dfi *, and by substituting the target plate wedge and the target line load difference into the equation (1), as shown in the following equation, A rolling leveling solution S dfi * for making the difference zero can be obtained.

【0056】 Sdfi*=(aBi/b)(hdfi*−Didfi*−Eici*) (i=1〜N) ・・・(15) 目標線荷重差pdfi*を算出する際に用いる変形抵抗の
左右差kdfiは、現状解として得られた値を用いる。ま
た、式(15)中の各圧延機における材料オフセンター量の
目標値はxci*、最適圧下レベリング操作が実現される
場合は圧延材は直進することになるので、全ての圧延機
で同一の値、例えば、零、もしくは現状の把握で得られ
た第1圧延機における材料オフセンター量を与えればよ
い。
[0056] S dfi * = (a Bi / b) (h dfi * -D i p dfi * -E i x ci *) (i = 1~N) ··· (15) target line load difference p dfi * The value obtained as the current solution is used as the left-right difference k dfi of the deformation resistance used in calculating the value. In addition, the target value of the material off-center amount in each rolling mill in the equation (15) is x ci *, and when the optimal rolling leveling operation is realized, the rolled material travels straight. , For example, zero, or the material off-center amount in the first rolling mill obtained by grasping the current state.

【0057】最適圧下レベリング操作量ΔSdfiは、最
初に測定されていた値をSdfiとすると、次式で計算さ
れる。
The optimum reduction leveling operation amount ΔS dfi is calculated by the following equation, where the initially measured value is S dfi .

【0058】 ΔSdfi =Sdfi*−Sdfi (i=1〜N) ・・・(16) 上記のように、現状把握が可能であれば、現状解として
得られた値をもとに最適圧下レベリング操作が行える。
なお、ここで算出したΔSdfiは、張力の左右差を零に
する理論解を求めたものであり、実際の制御に際しては
ΔSdfiを操作基本量として、これにチューニングファ
クターを乗じた値を実際の圧下レベリング操作量とする
などの、測定値や理論モデルの誤差に起因した過剰操作
やこれに伴う制御の不安定化を防止するための制御の常
套手段を採用することはいうまでもない。ただし、本制
御は定常圧延状態における各圧延機の圧延状況に相互依
存しており、制御のサイクルタイムは操作後新たな定常
状態に落ち着くまでの時間、少なくともタンデム圧延機
列の第1圧延機から最終圧延機まで材料が移送される時
間より長くする方が好ましい。
ΔS dfi = S dfi * −S dfi (i = 1 to N) (16) As described above, if the current condition can be grasped, the optimal value is obtained based on the value obtained as the current solution. A rolling leveling operation can be performed.
The ΔS dfi calculated here is a theoretical solution that makes the right-left difference in tension zero. In actual control, ΔS dfi is used as the basic operation amount, and the value obtained by multiplying this by the tuning factor is used. It goes without saying that conventional means of control for preventing excessive operation due to errors in measured values or theoretical models and for preventing instability of control due to this error, such as the reduction level operation amount, are adopted. However, this control is interdependent on the rolling state of each rolling mill in the steady rolling state, and the cycle time of the control is a time until the new steady state is set after the operation, at least from the first rolling mill in the tandem rolling mill row. It is preferable to make the time longer than the time for transferring the material to the final rolling mill.

【0059】本願の第三の発明は、変形抵抗の左右差が
ほとんど無視できる場合、例えば冷間圧延などに好適で
ある。すなわちこの場合には、kdfi=0(i=1〜
N)とし、タンデム圧延機列入側および出側および各圧
延機間の内の計3箇所以上における板ウェッジの計測を
実施すれば、残る未知数は7N−1個となり、式(1)〜
(8)を解くことによって全ての未知数の値が求まり、蛇
行に関する現状把握が可能となり、上述したように最適
圧下レベリング操作が行える。
The third invention of the present application is suitable for, for example, cold rolling when the left-right difference in deformation resistance is almost negligible. That is, in this case, k dfi = 0 (i = 1 to
N), and if the plate wedges are measured at a total of three or more locations between the entrance and exit sides of the tandem rolling mill row and between the rolling mills, the remaining unknowns are 7N-1, and the equations (1) to (1)
By solving (8), the values of all unknowns are obtained, the current state of meandering can be grasped, and the optimal rolling leveling operation can be performed as described above.

【0060】本願の第四発明は、圧延素材の組織等の幅
方向の非対称性により変形抵抗の左右差が無視し得ない
場合を想定したもので、この場合変形抵抗の左右差k
dfiは必ずしも零ではなくなる。圧延荷重差Pdfi(i=
1〜N)を未知数とすると、前述したように未知数の個
数が方程式の個数よりN+3個多くなるため、十分な精
度検討,対策を行った上で、圧延荷重差Pdfi(i=1
〜N)を測定するものとする。この時点で、未知数が方
程式に対して3個多いこととなる。
The fourth invention of the present application is based on the assumption that the lateral difference in deformation resistance cannot be ignored due to the asymmetry in the width direction of the structure or the like of the rolled material.
dfi is not always zero. Rolling load difference P dfi (i =
If 1 to N) are unknown, the number of unknowns is N + 3 larger than the number of equations as described above. Therefore, after sufficient examination of the accuracy and countermeasures, the rolling load difference P dfi (i = 1)
To N). At this point, there are three more unknowns to the equation.

【0061】そこで、タンデム圧延機列入側,出側の板
厚を板幅方向に2点以上測定し、タンデム圧延機列入り
出側の板ウェッジ量hdf0,hdfNを求める。また、圧延
素材の組織等の幅方向の非対称性により生じた変形抵抗
の左右差は、各圧延機毎に強い相関性を有すると考えら
れるため、1つ以上の圧延機における変形抵抗の左右差
dfjを、未知数とする他の圧延機における変形抵抗の
左右差kdfk(k≠j)から内挿等の計算により推定す
る。これにより未知数が2個(入り出側の板ウェッジ)
減り、方程式(変形抵抗の左右差に関する内挿式等)が
1つ以上増えるため、方程式数が未知数の個数に対し同
数以上となり、唯一解もしくは最小自乗近似解として現
状解が得られ、最適圧下レベリング操作が可能となる。
Therefore, the thickness of the sheet on the entrance side and the exit side of the tandem rolling mill row are measured at two or more points in the strip width direction, and the sheet wedge amounts h df0 and h dfN on the entrance and exit sides of the tandem rolling mill row are obtained. In addition, the difference between the left and right deformation resistance caused by the asymmetry in the width direction of the structure of the rolled material is considered to have a strong correlation for each rolling mill. k dfj is estimated by calculation such as interpolation from the left and right difference k dfk (k ≠ j) of the deformation resistance in another rolling mill with unknown values. As a result, two unknowns (plate wedges on the entrance and exit sides)
Since the number of equations decreases by one or more (such as the interpolation formula for the left-right difference in deformation resistance), the number of equations becomes equal to or greater than the number of unknowns, and the current solution can be obtained as the only solution or the least squares approximation solution. Leveling operation becomes possible.

【0062】本願の第五および第六の発明は、圧延材の
幅方向温度分布が左右非対称となる場合、例えば熱間圧
延などの場合に好適である。この場合も変形抵抗の左右
差kdfiは必ずしも零ではなくなる。そこで、タンデム
圧延機列入側および出側のすくなくとも1箇所において
圧延材の温度を板幅方向に2点以上測定し、この圧延材
温度分布のデータに基づいて各圧延機に圧延材が達した
時点の圧延材の板幅方向温度分布の推定を3つ以上の圧
延機について実施し、この推定温度分布と変形抵抗式、
例えば志田の式を用いて、変形抵抗の左右差kdfiの推
定計算式を3つ以上得る。次いでこれと同時点で測定し
た圧下設定値および圧延荷重の左右差,ロール周速、お
よび、圧延材張力測定装置の作業側および駆動側の反力
検出値に基づきタンデム圧延の定常時の方程式系を解く
ことで、現状解が得られ、最適圧下レベリング操作が可
能となる。
The fifth and sixth inventions of the present application are suitable for the case where the temperature distribution in the width direction of the rolled material is left-right asymmetric, for example, for hot rolling. Also in this case, the left and right difference k dfi of the deformation resistance is not always zero. Therefore, the temperature of the rolled material was measured at two or more points in at least one place in the width direction of the tandem rolling mill row at the entry side and the exit side, and the rolled material reached each rolling mill based on the data of the rolled material temperature distribution. Estimation of the temperature distribution in the sheet width direction of the rolled material at the time was performed for three or more rolling mills, and the estimated temperature distribution and the deformation resistance formula were
For example, using Shida's equation, three or more equations for estimating the left-right difference k dfi of deformation resistance are obtained. Next, the steady-state equation system for tandem rolling is determined based on the set value of the rolling reduction and the left and right difference of the rolling load, the peripheral speed of the roll, and the reaction force detected on the working side and the driving side of the rolled material tension measuring device. By solving, the current solution can be obtained, and the optimal rolling leveling operation can be performed.

【0063】本願の第六の発明では、第五の発明に加え
てタンデム圧延機列入側,出側の板ウェッジ量を測定す
ることにより未知数の数を更に少なくでき、最小自乗近
似計算を用いてより高精度な現状解の計算と最適圧下レ
ベリング操作が可能となる。図4は、この第6の発明を
7個の圧延機で構成される熱間タンデムミルに適用する
場合の、圧延機および各種検出器の配置列を示す。この
例では、第1〜第7圧延機2a〜2gにおけるロール周
速VRiをワークロール回転数計6a〜6gの測定値か
ら、圧下設定値Sdfiを圧下位置センサー5a〜5gの
検出値から、圧延荷重Piおよび圧延荷重差Pdfiをロー
ドセル8a〜8gの左右検出値から、各圧延機間のルー
パー荷重差Rdfiをルーパーロール3a〜3fの左右支
持点に設置したロードセル7a〜7fの検出値から、タ
ンデム圧延機列入側,出側の板ウェッジhdf0,hdfN
板厚分布測定装置9a,9bの検出値から、圧延材温度
の左右差を放射温度計による幅方向温度分布測定器10
a,10bの検出値から求め、上述した方法で最適圧下
レベリング操作基本量ΔSdfiを計算し、チューニング
ファクターを乗じた上で圧下レベリング設定装置4a〜
4gに指令値として出力している。
In the sixth invention of the present application, in addition to the fifth invention, the number of unknowns can be further reduced by measuring the amount of sheet wedges on the entrance side and the exit side of the tandem rolling mill row, and the least square approximation calculation is used. Thus, more accurate calculation of the current solution and optimal rolling leveling operation can be performed. FIG. 4 shows an arrangement row of rolling mills and various detectors when the sixth invention is applied to a hot tandem mill composed of seven rolling mills. In this example, the roll peripheral speed V Ri in the first to seventh rolling mills 2a to 2g is measured from the work roll tachometers 6a to 6g, and the rolling reduction set value S dfi is determined from the detection values of the rolling position sensors 5a to 5g. , The rolling load P i and the rolling load difference P dfi from the left and right detection values of the load cells 8a to 8g, and the looper load difference R dfi between the rolling mills of the load cells 7a to 7f installed at the left and right support points of the looper rolls 3a to 3f. From the detected values, the sheet wedges h df0 and h dfN on the entrance and exit sides of the tandem rolling mill row are determined from the detected values of the sheet thickness distribution measuring devices 9a and 9b. Measuring instrument 10
a, 10b are calculated from the detected values of a and 10b, and the optimum rolling leveling operation basic amount ΔS dfi is calculated by the above-described method, and is multiplied by a tuning factor.
4g is output as a command value.

【0064】なお、上記説明では未知数として取り扱っ
ていたものに測定値,推定値あるいは推定式を採用し、
既知量として、もしくは新たに加わる方程式として取り
扱っても本発明の趣旨は変わらない。
In the above description, a measurement value, an estimated value, or an estimation formula is adopted for an item treated as an unknown.
The gist of the present invention does not change even if it is treated as a known quantity or as a newly added equation.

【0065】図1には、本発明の蛇行制御方法のアルゴ
リズムの概要を示している。測定値としては、圧下設定
値の左右差,ロール周速および圧延材張力測定装置の反
力検出値の左右差が必須データであり、必要に応じて圧
延荷重の左右差,タンデム圧延機列入り出側板ウェッジ
量,圧延機間の板厚ウェッジ量,変形抵抗の左右差,ル
ーパーロールに作用するスラスト力が、測定値,推定値
あるいは推定式として取り扱われ(ステップ1,2)、
定常圧延時の方程式系を解き(ステップ3)、現状の解
として、張力の左右差,変形抵抗の左右差,板ウェッジ
量,材料オフセンター量等が得られる。
FIG. 1 shows an outline of an algorithm of the meandering control method of the present invention. As the measured values, the difference between the left and right of the reduction set value, the roll peripheral speed and the left and right of the reaction force detection value of the rolled material tension measuring device are essential data. The exit side wedge amount, the thickness wedge amount between rolling mills, the difference between left and right deformation resistance, and the thrust force acting on the looper roll are treated as measured values, estimated values, or estimated expressions (steps 1 and 2).
The equation system at the time of steady rolling is solved (step 3), and as the current solution, the left-right difference in tension, the left-right difference in deformation resistance, the amount of sheet wedge, the amount of material off-center, and the like are obtained.

【0066】次に、張力の左右差と先進係数の左右差を
零とおき、圧下設定値の左右差および圧延機間の張力測
定装置の出力の左右差を新たな未知数として再び定常圧
延時の方程式系を解き、圧下レベリングの目標値を求め
(ステップ4)、これにチューニングファクターを乗じ
た値を圧下レベリングの制御出力とする(ステップ5,
6)。
Next, the left-right difference of the tension and the left-right difference of the advanced coefficient are set to zero, and the left-right difference of the set value of the rolling reduction and the left-right difference of the output of the tension measuring device between the rolling mills are set as new unknowns, and again, during steady rolling. By solving the equation system, a target value of the reduction leveling is obtained (Step 4), and a value obtained by multiplying the target value by a tuning factor is used as a control output of the reduction leveling (Steps 5 and 5).
6).

【0067】図5は、具体的な最適圧下レベリングの目
標値を求める手順(図1のステップ3〜6)の内容の具
体例を示したフローであり、現状解として得られた諸量
の内、変形抵抗の左右差,第1圧延機入側の板ウェッジ
量および第1圧延機における材料オフセンター量に基づ
き、まず、各圧延機出側の目標板ウェッジ量を求め(ス
テップ12)、次いで、これを実現した際に生じる線荷
重の左右差をもとめ(ステップ13)、該目標板ウェッ
ジ量および該線荷重の左右差に基づき圧下レベリングの
目標値を求める(ステップ14)ものである。
FIG. 5 is a flow chart showing a specific example of the procedure of obtaining a specific optimum rolling reduction target value (steps 3 to 6 in FIG. 1). First, a target sheet wedge amount on the exit side of each rolling mill is determined based on the left-right difference in deformation resistance, the amount of sheet wedges on the entrance side of the first rolling mill, and the material off-center amount on the first rolling mill (step 12). The difference between the left and right of the line load generated when this is realized is determined (step 13), and the target value of the rolling leveling is determined based on the target plate wedge amount and the left and right difference of the line load (step 14).

【0068】図1のアルゴリズムのうち、圧延機間の張
力差σdfiを求める手続きは、制御出力を求めるには必
ずしも必要ではないが、現状を把握して圧下レベリング
修正が必要かどうかを判断する場合や、計算そのものの
合理性を確かめる場合などには、指標として必要とな
る。以下、実施例に即して詳細に説明する。
In the algorithm shown in FIG. 1, the procedure for obtaining the tension difference σ dfi between rolling mills is not always necessary for obtaining the control output, but it is necessary to grasp the current situation and determine whether or not the correction of the rolling reduction is necessary. It is necessary as an index in cases or when confirming the rationality of the calculation itself. Hereinafter, the present invention will be described in detail with reference to examples.

【0069】[0069]

【実施例】【Example】

−実施例1− タンデム冷間圧延機列による圧延において、定常圧延中
の圧下レベリングSdfi(i=1〜N),圧延機列の入
り出側および各圧延機間のテンションロールの反力の左
右差Rdfi(i=0〜N)およびロール周速VRi(i=
1〜N)の同時点データと、これとほぼ同時点の圧延機
列入側,出側の板ウェッジhdf0,hdfNを測定した。こ
れらのデータを得た上で、冷間圧延であることを考慮し
て各圧延機における変形抵抗の左右差kdfi=0(i=
1〜N)と仮定することにより、変数〔式(10)〕の内の
未知数の数は7N個となる。これに対し、方程式の数
は、圧延機列の入り出側のテンションロールの反力差に
関する式(8)が成立することを考慮すれば7N+1個と
なり、式(1)〜(8)の方程式系を線形近似した上で最小自
乗法により7N個の未知数を精度よく求めることができ
る。このように求められた張力差σdfiの値が許容値を
越えた場合に圧下レベリングの修正を施す。
-Example 1-In rolling by a tandem cold rolling mill row, reduction leveling S dfi (i = 1 to N) during steady rolling, the reaction force of a tension roll between the entrance and exit sides of the rolling mill row and each rolling mill. Left-right difference R dfi (i = 0 to N) and roll peripheral speed V Ri (i =
1 to N), and the sheet wedges h df0 and h dfN at the entrance and exit of the rolling mill row at almost the same point. After obtaining these data, considering the cold rolling, the difference between the left and right deformation resistances k dfi = 0 (i =
1 to N), the number of unknowns in the variable [Equation (10)] is 7N. On the other hand, the number of equations is 7N + 1 considering that the equation (8) relating to the reaction force difference between the tension rolls on the entrance and exit of the rolling mill row is satisfied, and the equations of equations (1) to (8) are obtained. After linearly approximating the system, 7N unknowns can be accurately obtained by the least squares method. When the value of the tension difference σ dfi obtained in this way exceeds an allowable value, the reduction in the rolling down is corrected.

【0070】次に最適圧下レベリング操作の基本量ΔS
dfiを求める際には、前述したように、張力差σdfi=0
(i=0〜N)と先進係数の左右差fdfi=0(i=1
〜N)の計2N+1個の条件式が追加され、解くべき方
程式の数は9N+2個となる。このとき、Sdfi(i=
1〜N),Rdfi(i=0〜N),hdfNが新たに未知数
となるが、全ての未知数の個数は9N+2個であり、唯
一解として最適圧下レベリング操作の目標値Sdfi*が
求められる。
Next, the basic amount ΔS of the optimal rolling leveling operation
When calculating dfi , as described above, the tension difference σ dfi = 0
(I = 0 to N) and the left-right difference f dfi = 0 (i = 1
To N), and a total of 2N + 1 conditional expressions are added, and the number of equations to be solved is 9N + 2. At this time, S dfi (i =
1 to N), R dfi (i = 0 to N), and h dfN are newly unknown, but the number of all unknowns is 9N + 2, and the target value S dfi * of the optimal rolling leveling operation is the only solution. Desired.

【0071】なお、最適圧下レベリング操作基本量ΔS
dfiを求めるに際し、前述したように、各圧延機におけ
る材料オフセンター量の目標値xci*を第1圧延機にお
ける現状解xc1に等しいとし、xci*=xc1(i=1〜
N)の条件式を追加することで方程式数をさらに多くす
ることができ、レベリングの目標値Sdfi*を最小自乗
解として安定的に求めることができる。
It should be noted that the optimum rolling leveling operation basic amount ΔS
When obtaining dfi , as described above, the target value x ci * of the material off-center amount in each rolling mill is assumed to be equal to the current solution x c1 in the first rolling mill, and x ci * = x c1 (i = 1 to
The number of equations can be further increased by adding the conditional expression of N), and the leveling target value S dfi * can be stably obtained as a least square solution.

【0072】このようにして計算された圧下レベリング
の目標値Sdfi*と現状値Sdfiから圧下レベリング操作
基本量ΔSdfiを計算し、これにチューニングファクタ
ーを乗じて制御出力とする。このような制御サイクルを
数回経ることによって、各圧延機間で圧延材に作用する
張力差を零に近づけることができ、圧延材の蛇行や尻絞
りを未然に防ぐことが可能となる。図6には本実施例1
のアルゴリズムを示す。
The rolling leveling operation basic amount ΔS dfi is calculated from the target value S dfi * and the current value S dfi of the rolling leveling calculated in this way, and is multiplied by a tuning factor to obtain a control output. By passing through such a control cycle several times, the difference in tension acting on the rolled material between the rolling mills can be made close to zero, and it is possible to prevent meandering and trailing of the rolled material. FIG. 6 shows the first embodiment.
The following shows the algorithm.

【0073】−実施例2− 熱間仕上げミル(7スタンド)による圧延において、定
常圧延中の圧下レベリングSdfi(i=1〜N),圧延
荷重差Pdfi,各圧延機間のルーパーロールの反力差R
dfi(i=1〜N−1)およびロール周速VRi(i=1
〜N)の同時点データと、これとほぼ同時点の圧延機列
入り出側の板の幅方向温度分布を測定した。幅方向温度
分布の測定結果に基づいて、仕上げミル内の各圧延機ロ
ールバイトにおける温度(の左右差)の推定計算を行
い、これより変形抵抗の左右差kdfiの値を推定し、既
知量とした。これらのデータを得た時点で変数〔式(1
0)〕の内の未知数の数は6N+2個となる。これに対
し、方程式の数は、式(1)〜(8)の7N−1個であり、本
実施例(N=7)の場合、未知数の数にくらべ方程式数
が4個多くなり、方程式系を線形近似した上で最小自乗
法により精度よく未知数を求めるこができる。このよう
に求められた張力差σdfiの値が許容値を越えた場合に
圧下レベリングの修正を施す。
Example 2 In rolling by a hot finishing mill (7 stands), rolling leveling S dfi (i = 1 to N) during steady rolling, rolling load difference P dfi , looper roll between each rolling mill. Reaction force difference R
dfi (i = 1 to N−1) and the roll peripheral speed V Ri (i = 1
-N) and the temperature distribution in the width direction of the sheet at the entrance and exit of the rolling mill row at almost the same point. Based on the measurement results of the temperature distribution in the width direction, an estimation calculation of the temperature (left-right difference) at each rolling mill roll bite in the finishing mill is performed, and the value of the left-right difference k dfi of the deformation resistance is estimated from the calculated value. And When these data are obtained, the variables [Expression (1
0)] is 6N + 2. On the other hand, the number of equations is 7N−1 in equations (1) to (8). In the present embodiment (N = 7), the number of equations is four more than the number of unknowns, and After linear approximation of the system, unknowns can be obtained with high accuracy by the method of least squares. When the value of the tension difference σ dfi obtained in this way exceeds an allowable value, the reduction in the rolling down is corrected.

【0074】最適圧下レベリング操作の基本量ΔSdfi
を求める際には、本願の第8発明を適用した。まず、式
(3'),(4')をσdfi=0(i=0〜N),fdfi=0(i
=1〜N)の条件を考慮して解くと、各圧延機入り出側
の板ウェッジ量が満たすべき関係式として次式が得られ
る。
The basic amount ΔS dfi of the optimum rolling leveling operation
Was applied, the eighth invention of the present application was applied. First, the formula
(3 ′) and (4 ′) are represented by σ dfi = 0 (i = 0 to N) and f dfi = 0 (i
= 1 to N), the following equation is obtained as a relational expression to be satisfied by the sheet wedge amounts on the entrance and exit sides of each rolling mill.

【0075】 (hdfi/hi)=(hdf(i-1)/h(i-1)) (i=1〜N) ・・・(14) 上式に現状解として得られたミル入側の板ウェッジ量h
df0を代入し、各圧延機出側の板ウェッジ量の目標値h
dfi*を求める。次に、上記の推定したkdfiと現状解で
あるミル入側板ウェッジ量および各圧延機出側の目標板
ウェッジ量hdfi*、さらにσdfi=0(i=0〜N)を
式(2)に代入して目標の線荷重差pdfi*を求める。最後
に、式(15)に得られたhdfi*,pdfi*を代入して最適
圧下レベリングの目標値Sdfi*が得られる。その際、
式(15)中のxci*には第1圧延機における材料オフセン
ター量の現状解を用いている。このようにして計算され
た圧下レベリングの目標値Sdfi*と現状値Sdfiから圧
下レベリング操作基本量ΔSdfiを計算し、これにチュ
ーニングファクターを乗じて制御出力とする。このよう
な制御サイクルを数回経ることによって、各圧延機間で
圧延材に作用する張力差を零に近づけることができ、圧
延材の蛇行や尻絞りを未然に防ぐことが可能となる。図
7には本実施例2のアルゴリズムを示す。
(H dfi / h i ) = (h df (i-1) / h (i-1) ) (i = 1 to N) (14) The mill obtained as the current solution in the above equation Entry wedge amount h
Substituting df0 , the target value h of the sheet wedge amount on the exit side of each rolling mill
Find dfi *. Next, the above estimated k dfi , the current plate solution wedge amount on the mill entrance side and the target plate wedge amount h dfi * on the exit side of each rolling mill, and σ dfi = 0 (i = 0 to N), which are the current solutions, are calculated by the equation (2). ) To obtain the target linear load difference p dfi *. Finally, the target value S dfi * of the optimal rolling leveling is obtained by substituting h dfi * and p dfi * obtained in the equation (15). that time,
For x ci * in equation (15), the current solution of the material off-center amount in the first rolling mill is used. The rolling leveling operation basic amount ΔS dfi is calculated from the target value S dfi * and the current value S dfi of the rolling level calculated in this way, and is multiplied by a tuning factor to obtain a control output. By passing through such a control cycle several times, the difference in tension acting on the rolled material between the rolling mills can be made close to zero, and it is possible to prevent meandering and trailing of the rolled material. FIG. 7 shows an algorithm of the second embodiment.

【0076】[0076]

【発明の効果】以上詳述した様に、本発明によれば、定
常圧延中にタンデム圧延機列の各圧延機間で圧延材に作
用する張力差をほぼ零にすることができ、その結果、通
板時の事故はほとんど皆無となり、作業率および歩留を
大きく向上させ、産業上裨益するところ大である。
As described in detail above, according to the present invention, the tension difference acting on the rolled material between the rolling mills in the tandem rolling mill row during the steady rolling can be reduced to almost zero. In addition, almost no accidents occur during passing, greatly improving the work rate and yield, and greatly benefiting the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の蛇行制御方法のアルゴリズムを示す
フローチャートである。
FIG. 1 is a flowchart illustrating an algorithm of a meandering control method according to the present invention.

【図2】 圧延機間の圧延材が水平面となす角を示すた
めの側面図である。
FIG. 2 is a side view showing an angle between a rolling material between rolling mills and a horizontal plane.

【図3】 (a)は、圧延材1の平面図であり、圧延機
間で圧延材からルーパーロールにスラスト力が作用する
状況を示す。(b)は、ル−パ−ロ−ルの正面図であ
る。
FIG. 3A is a plan view of a rolled material 1 and shows a state in which a thrust force acts on a looper roll from a rolled material between rolling mills. (B) is a front view of the looper roll.

【図4】 本願の第6発明を7個の圧延機で構成される
熱間タンデムミルに適用する場合の、圧延機および各種
検出器の配置例を示す側面図である。
FIG. 4 is a side view showing an example of arrangement of rolling mills and various detectors when the sixth invention of the present application is applied to a hot tandem mill composed of seven rolling mills.

【図5】 本発明の第8発明のアルゴリズムを示すフロ
ーチャートである。
FIG. 5 is a flowchart showing an algorithm of the eighth invention of the present invention.

【図6】 本発明の実施例1のアルゴリズムを示すフロ
ーチャートである。
FIG. 6 is a flowchart illustrating an algorithm according to the first embodiment of the present invention.

【図7】 本発明の実施例2のアルゴリズムを示すフロ
ーチャートである。
FIG. 7 is a flowchart illustrating an algorithm according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:圧延材 2a〜2g:圧延
機 3a〜3f:ルーパーロール 4a〜4g:圧下
レベリング設定装置 5a〜5g:圧下位置センサー 6a〜6g:ワー
クロール回転数計 7a〜7f:ルーパーロードセル 8a〜8g:圧延
荷重ロードセル 9a,9b:板厚分布測定装置 10a,10b:
幅方向温度分布測定器
1: Rolled material 2a to 2g: Rolling machine 3a to 3f: Looper roll 4a to 4g: Roll-down leveling setting device 5a to 5g: Roll-down position sensor 6a to 6g: Work roll rotation meter 7a to 7f: Looper load cell 8a to 8g: Rolling load cell 9a, 9b: thickness distribution measuring device 10a, 10b:
Width temperature distribution measuring instrument

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の圧延機で連続的かつ同時に板材を
タンデム圧延するに際し、圧延中に各圧延機のロール周
速,作業側および駆動側の圧下設定値ならびに各圧延機
間に設置した圧延材張力測定装置の作業側および駆動側
の検出値を同時点にサンプリングし、これらのデータに
基づいて、圧延材に作用している各圧延機間の張力の左
右差を推定し、該張力の左右差が零となるように、タン
デム圧延の定常時の方程式系を用いて各圧延機の圧下設
定値左右差の操作量を求め、これに基づいて各圧延機の
圧下設定値の左右差を制御することを特徴とする板圧延
における蛇行制御方法。
In a tandem rolling of a sheet material continuously and simultaneously by a plurality of rolling mills, during rolling, a peripheral speed of each rolling mill, a set value of a rolling reduction on a working side and a driving side, and a rolling mill installed between the rolling mills. The detected values on the working side and the drive side of the material tension measuring device are sampled at the same time, and based on these data, the left-right difference in the tension between the rolling mills acting on the rolled material is estimated, and the tension In order to make the left-right difference zero, the operation amount of the rolling set value left-right difference of each rolling mill is obtained using the equation system in the steady state of tandem rolling, and the left-right difference of the rolling set value of each rolling mill is determined based on this. A meandering control method in sheet rolling, characterized by controlling.
【請求項2】 複数の圧延機で連続的かつ同時に板材を
タンデム圧延するに際し、圧延中に各圧延機のロール周
速,作業側および駆動側の圧下設定値および圧延荷重、
ならびに各圧延機間に設置した圧延材張力測定装置の作
業側および駆動側の検出値を同時点にサンプリングし、
これらのデータに基づいて圧延材に作用している各圧延
機間の張力の左右差を推定し、該張力の左右差が零とな
るように、タンデム圧延の定常時の方程式系を用いて各
圧延機の圧下設定値左右差の操作量を求め、これに基づ
いて各圧延機の圧下設定値の左右差を制御することを特
徴とする板圧延における蛇行制御方法。
2. When tandem rolling a sheet continuously and simultaneously by a plurality of rolling mills, during rolling, the roll peripheral speed of each rolling mill, the set-down value and rolling load on the working side and the driving side,
And sampled the detected values on the working side and the drive side of the rolled material tension measuring device installed between each rolling mill at the same time,
Based on these data, the left-right difference in the tension between the rolling mills acting on the rolled material is estimated, and each is calculated using a steady-state equation system of tandem rolling so that the left-right difference in the tension becomes zero. A meandering control method in sheet rolling, wherein an operation amount of a rolling set value left / right difference of a rolling mill is obtained, and the left / right difference of a rolling set value of each rolling mill is controlled based on the calculated amount.
【請求項3】 複数の圧延機で連続的かつ同時に板材を
タンデム圧延するに際し、圧延中に各圧延機のロール周
速,作業側および駆動側の圧下設定値ならびに各圧延機
間に設置した圧延材張力測定装置の作業側および駆動側
の検出値を同時点にサンプリングし、さらに、上記デー
タ採取時点と実質同時点のタンデム圧延機列入側および
出側ならびに各圧延機間の内の計3箇所以上において板
厚を板幅方向に2点以上測定し、これらのデータに基づ
いて、圧延材に作用している各圧延機間の張力の左右差
を推定し、該張力の左右差が零となるように、タンデム
圧延の定常時の方程式系を用いて各圧延機の圧下設定値
左右差の操作量を求め、これに基づいて各圧延機の圧下
設定値の左右差を制御することを特徴とする板圧延にお
ける蛇行制御方法。
3. A tandem rolling method for continuously and simultaneously rolling a sheet material with a plurality of rolling mills, wherein during rolling, the roll peripheral speed of each rolling mill, the set value of reduction on the working side and the driving side, and the rolling set between the rolling mills. The detected values of the work side and the drive side of the material tension measuring device are sampled at the same time, and the total of 3 times between the rolling mill row entrance and exit side and each rolling mill at substantially the same time as the data collection time point. At two or more points, the thickness is measured at two or more points in the width direction. Based on these data, the left-right difference in tension between the rolling mills acting on the rolled material is estimated. To obtain the manipulated variable of the rolling set value left and right difference of each rolling mill using the equation system in the steady state of tandem rolling, and to control the left and right difference of the rolling set value of each rolling mill based on this. Characteristic meandering control method in plate rolling.
【請求項4】 複数の圧延機で連続的かつ同時に板材を
タンデム圧延するに際し、圧延中に各圧延機のロール周
速,作業側および駆動側の圧下設定値および圧延荷重、
ならびに各圧延機間に設置した圧延材張力測定装置の作
業側および駆動側の検出値を同時点にサンプリングし、
さらに、上記データ採取時点と実質同時点のタンデム圧
延機列入側および出側の板厚を板幅方向に2点以上測定
し、これらのデータに基づいて、圧延材に作用している
各圧延機間の張力の左右差を推定し、該張力の左右差が
零となるように、タンデム圧延の定常時の方程式系を用
いて各圧延機の圧下設定値左右差の操作量を求め、これ
に基づいて各圧延機の圧下設定値の左右差を制御するこ
とを特徴とする板圧延における蛇行制御方法。
4. When tandem rolling a sheet continuously and simultaneously in a plurality of rolling mills, during rolling, the roll peripheral speed of each rolling mill, the set-down value and rolling load on the working side and the driving side,
And sampled the detected values on the working side and the drive side of the rolled material tension measuring device installed between each rolling mill at the same time,
Further, at least two points in the width direction of the tandem rolling mill row were measured in the width direction of the tandem rolling mill row at substantially the same time as the data collection time, and based on these data, each rolling acting on the rolled material was measured. Estimate the left-right difference of the tension between the mills, so that the left-right difference of the tension is zero, using a system of equations in the steady state of tandem rolling, determine the operation amount of the rolling set value left-right difference of each rolling mill, A meandering control method in sheet rolling, wherein a left-right difference in a set value of a rolling reduction of each rolling mill is controlled on the basis of the following.
【請求項5】 複数の圧延機で連続的かつ同時に板材を
タンデム圧延するに際し、圧延中に各圧延機のロール周
速,作業側および駆動側の圧下設定値および圧延荷重、
ならびに各圧延機間に設置した圧延材張力測定装置の作
業側および駆動側の検出値を同時点にサンプリングし、
さらに、上記データ採取時点と実質同時点のタンデム圧
延機列入側および/または出側の圧延材温度を板幅方向
に2点以上測定し、これらのデータに基づいて、圧延材
に作用している各圧延機間の張力の左右差を推定し、該
張力の左右差が零となるように、タンデム圧延の定常時
の方程式系を用いて各圧延機の圧下設定値左右差の操作
量を求め、これに基づいて各圧延機の圧下設定値の左右
差を制御することを特徴とする板圧延における蛇行制御
方法。
5. When tandem rolling a sheet material continuously and simultaneously by a plurality of rolling mills, a rolling peripheral speed of each rolling mill, a set value of rolling reduction and a rolling load on a working side and a driving side during rolling,
And sampled the detected values on the working side and the drive side of the rolled material tension measuring device installed between each rolling mill at the same time,
Further, the temperature of the rolled material at the entrance and / or the exit of the tandem rolling mill row at substantially the same time as the data collection time is measured at two or more points in the sheet width direction, and based on these data, the temperature is applied to the rolled material. Estimating the left-right difference in tension between each rolling mill, and using the equation system in the steady state of tandem rolling, the operation amount of the rolling set value left-right difference of each rolling mill so that the right-left difference in tension becomes zero. A meandering control method in sheet rolling, wherein the difference between the left and right of the rolling reduction value of each rolling mill is controlled based on the determined value.
【請求項6】 複数の圧延機で連続的かつ同時に板材を
タンデム圧延するに際し、圧延中に各圧延機のロール周
速,作業側および駆動側の圧下設定値および圧延荷重、
ならびに各圧延機間に設置した圧延材張力測定装置の作
業側および駆動側の検出値を同時点にサンプリングし、
さらに、上記データ採取時点と実質同時点のタンデム圧
延機列入側および出側の板厚を板幅方向に2点以上、お
よび、タンデム圧延機列入側および/または出側の圧延
材温度を板幅方向に2点以上測定し、これらのデータに
基づいて、圧延材に作用している各圧延機間の張力の左
右差を推定し、該張力の左右差が零となるように、タン
デム圧延の定常時の方程式系を用いて各圧延機の圧下設
定値左右差の操作量を求め、これに基づいて各圧延機の
圧下設定値の左右差を制御することを特徴とする板圧延
における蛇行制御方法。
6. When tandem rolling a sheet material continuously and simultaneously by a plurality of rolling mills, during rolling, the roll peripheral speed of each rolling mill, the set-down value and rolling load on the working side and the driving side,
And sampled the detected values on the working side and the drive side of the rolled material tension measuring device installed between each rolling mill at the same time,
Further, the thickness of the tandem rolling mill row entrance side and the exit side at substantially the same time as the data collection time point is set to two or more points in the width direction of the tandem rolling mill row, and the rolled material temperature on the tandem rolling mill row entrance side and / or the exit side is set. Two or more points are measured in the sheet width direction, and based on these data, the left-right difference in the tension between the rolling mills acting on the rolled material is estimated, and the tandem is performed so that the left-right difference in the tension becomes zero. Using the equation system at the time of steady rolling, obtain the operation amount of the rolling set value left and right difference of each rolling mill, in the sheet rolling characterized by controlling the left and right difference of the rolling set value of each rolling mill based on this Meander control method.
【請求項7】 圧延材と接触しかつ圧延機のロール軸線
に平行なロール軸に回動自在に支持されたロールと、該
ロールに負荷される鉛直方向の力を作業側および駆動側
それぞれ独立に検出可能な荷重測定器とを備えた圧延材
張力測定装置により、作業側および駆動側の検出値をサ
ンプリングするとともに、該圧延材張力測定装置の張力
測定用ロールに圧延材から作用するスラスト力を検出も
しくは推定し、該スラスト力による該圧延材張力測定装
置の検出値の誤差を修正することを特徴とする、請求項
1,請求項2,請求項3,請求項4,請求項5又は請求
項6記載の、板圧延における蛇行制御方法。
7. A roll in contact with a rolled material and rotatably supported by a roll axis parallel to a roll axis of a rolling mill, and a vertical force applied to the roll is independent of a work side and a drive side. The rolled material tension measuring device provided with a load measuring device capable of detecting the working side and the drive side sampling values, and the thrust force acting from the rolled material on the tension measuring roll of the rolled material tension measuring device. Detecting or estimating the error, and correcting the error of the detected value of the rolled material tension measuring device due to the thrust force, wherein the error is detected. The meandering control method in sheet rolling according to claim 6.
【請求項8】 圧延材に作用している各圧延機間の張力
の左右差を推定するに際し、併せて第1圧延機入側の板
厚の左右差および各圧延機における変形抵抗の左右差を
推定し、該張力の左右差および各圧延機出側の圧延材速
度の左右差が零となるように、該第1圧延機入側の板厚
の左右差および該変形抵抗の左右差に基づきタンデム圧
延の定常時の方程式系を用いて各圧延機の圧下設定値左
右差の操作量を求め、これに基づいて各圧延機の圧下設
定値の左右差を制御することを特徴とする、請求項1,
請求項2,請求項3,請求項4,請求項5,請求項6又
は請求項7記載の、板圧延における蛇行制御方法。
8. Estimating the left-right difference in tension between the rolling mills acting on the rolled material, together with the left-right difference in plate thickness on the first rolling mill entry side and the left-right difference in deformation resistance in each rolling mill. The left-right difference in the thickness and the left-right difference in the deformation resistance on the entrance side of the first rolling mill are set such that the left-right difference in the tension and the left-right difference in the rolling material speed on the exit side of each rolling mill become zero. Determine the manipulated variable of the rolling set value left and right difference of each rolling mill using the equation system at the time of steady state of tandem rolling based on, to control the left and right difference of the rolling set value of each rolling mill based on this, Claim 1,
A meandering control method in sheet rolling according to claim 2, claim 3, claim 4, claim 5, claim 6, or claim 7.
JP19771896A 1996-04-18 1996-07-26 Meandering control method in plate rolling Expired - Fee Related JP3297602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19771896A JP3297602B2 (en) 1996-04-18 1996-07-26 Meandering control method in plate rolling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-97008 1996-04-18
JP9700896 1996-04-18
JP19771896A JP3297602B2 (en) 1996-04-18 1996-07-26 Meandering control method in plate rolling

Publications (2)

Publication Number Publication Date
JPH105840A true JPH105840A (en) 1998-01-13
JP3297602B2 JP3297602B2 (en) 2002-07-02

Family

ID=26438160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19771896A Expired - Fee Related JP3297602B2 (en) 1996-04-18 1996-07-26 Meandering control method in plate rolling

Country Status (1)

Country Link
JP (1) JP3297602B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716269A (en) * 1986-10-01 1987-12-29 L-Tec Company Plasma arc torch having supplemental electrode cooling mechanisms
US7854155B2 (en) 2005-11-18 2010-12-21 Sms Siemag Aktiengesellschaft Method and rolling mill for improving the running-out of a rolled metal strip whose trailing end is moving at rolling speed
JP2018043255A (en) * 2016-09-13 2018-03-22 株式会社神戸製鋼所 Meandering prediction system and meandering prediction method
CN109465302A (en) * 2018-10-09 2019-03-15 山西太钢不锈钢股份有限公司 Eliminating 304 is the method that rolled stainless steel skidding prints
JP2021137825A (en) * 2020-03-02 2021-09-16 日本製鉄株式会社 Meandering control device for rolled material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716269A (en) * 1986-10-01 1987-12-29 L-Tec Company Plasma arc torch having supplemental electrode cooling mechanisms
US7854155B2 (en) 2005-11-18 2010-12-21 Sms Siemag Aktiengesellschaft Method and rolling mill for improving the running-out of a rolled metal strip whose trailing end is moving at rolling speed
JP2018043255A (en) * 2016-09-13 2018-03-22 株式会社神戸製鋼所 Meandering prediction system and meandering prediction method
CN109465302A (en) * 2018-10-09 2019-03-15 山西太钢不锈钢股份有限公司 Eliminating 304 is the method that rolled stainless steel skidding prints
CN109465302B (en) * 2018-10-09 2020-03-17 山西太钢不锈钢股份有限公司 Method for eliminating rolling slip mark of 304 series stainless steel
JP2021137825A (en) * 2020-03-02 2021-09-16 日本製鉄株式会社 Meandering control device for rolled material

Also Published As

Publication number Publication date
JP3297602B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP3607029B2 (en) Rolling mill control method and control apparatus
JPH0253123B2 (en)
JP5239728B2 (en) Rolling method and rolling apparatus for metal sheet
JP3297602B2 (en) Meandering control method in plate rolling
US5722279A (en) Control method of strip travel and tandem strip rolling mill
KR0148612B1 (en) Reverse rolling control system of pair cross rolling mill
JPH0569021A (en) Method and device for controlling rolling mill
EP0075946B1 (en) Dimension control device for a continuous rolling machine
JP3067879B2 (en) Shape control method in strip rolling
JP3479820B2 (en) Method and apparatus for controlling meandering of a strip in a continuous rolling mill
JP2588233B2 (en) Rolled material flatness control device
JP3144934B2 (en) Meander control method
JPS6111123B2 (en)
JP3610338B2 (en) Method and apparatus for temper rolling of metal strip
JP3172613B2 (en) Meander control method
WO2024034020A1 (en) Sheet width control device for reversing rolling mill
JP3350294B2 (en) Control method and control device for tandem mill
JP2650575B2 (en) Thick plate width control rolling method
JPH0818058B2 (en) Automatic plate thickness control method for plate rolling
JP3284948B2 (en) Strip meandering control method
JP2697723B2 (en) Hot continuous rolling method
JPH0659483B2 (en) Method for measuring rolling plate deformation resistance
JP3119169B2 (en) Thickness control method in hot continuous rolling mill
JP3396774B2 (en) Shape control method
JPH0839123A (en) Method for preventing draw-in in hot rolling

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees