JPH1050480A - Light-emitting element and manufacture thereof - Google Patents

Light-emitting element and manufacture thereof

Info

Publication number
JPH1050480A
JPH1050480A JP9107081A JP10708197A JPH1050480A JP H1050480 A JPH1050480 A JP H1050480A JP 9107081 A JP9107081 A JP 9107081A JP 10708197 A JP10708197 A JP 10708197A JP H1050480 A JPH1050480 A JP H1050480A
Authority
JP
Japan
Prior art keywords
light
rate
sec
doping
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9107081A
Other languages
Japanese (ja)
Inventor
Yoshio Himeshima
義夫 姫島
Shigeo Fujimori
茂雄 藤森
Toru Kohama
亨 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9107081A priority Critical patent/JPH1050480A/en
Publication of JPH1050480A publication Critical patent/JPH1050480A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an element, which can emit the light with a high luminance at a low power and which has high stability, by providing a material for emitting the light between a positive electrode and a negative electrode so as to emit the light with the electric energy, and doping the material with dopant for emitting the light. SOLUTION: Donor material is used for doping of an electron transporting layer. In the case of doping a hole-transporting layer, an acceptor material is used. As the donor materials, alkali metal, alkali earth metal and amino compound are used. Sodium and potassium or the like, which can be easily deposited in the vacuum and which is easy to be diffused in the organic thin film, is desirable. Quantity of doping is desirably set at 5% or less in consideration for damages to the organic material. As the electron-transporting material to be doped, tris, aluminum, bis or the like is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気エネルギーを
光に変換できる素子であって、表示素子、フラットパネ
ルディスプレイ、バックライト、照明、インテリア、標
識、看板、電子写真機などの分野に利用可能な面状発光
体用の発光素子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element capable of converting electric energy into light, and is applicable to fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, and electrophotographic machines. The present invention relates to a light-emitting element for a planar light-emitting body and a manufacturing method thereof.

【0002】[0002]

【従来の技術】負極から注入された電子と正極から注入
された正孔が両極に挟まれた有機蛍光体内で再結合する
際に発光するという有機積層薄膜発光素子の研究が近年
活発に行われるようになってきた。この素子は、薄型、
低駆動電圧下での高輝度発光、蛍光材料を選ぶことによ
る多色発光が特徴である。
2. Description of the Related Art In recent years, research has been actively conducted on organic laminated thin-film light emitting devices in which electrons injected from a negative electrode and holes injected from a positive electrode emit light when they recombine in an organic phosphor sandwiched between both electrodes. It has become. This element is thin,
It features high-luminance light emission under a low driving voltage and multicolor light emission by selecting a fluorescent material.

【0003】有機積層薄膜素子が高輝度に発光すること
は、コダック社のC.W.Tangらによって初めて示
された(Appl.Phys.Lett.51(12)
21,p.913,1987)。コダック社の研究グル
ープが提示した有機積層薄膜発光素子の代表的な構成
は、ITOガラス基板上に正孔輸送性のジアミン化合
物、発光層であり、かつ電子輸送層でもあるトリス(8
−ヒドロキシキノリノラト)アルミニウム、そして負極
としてMg:Agを順次設けたものであり、10V程度
の駆動電圧で1000cd/m2の緑色発光が可能であ
った。現在は、上記の素子構成要素の他に発光層と機能
分離された電子輸送層を設けているものなど構成を変え
ているものもあるが、基本的にはコダック社の構成を踏
襲している。
[0003] It is known from Kodak's C.I. W. Tang et al. (Appl. Phys. Lett. 51 (12)
21, p. 913, 1987). A typical configuration of an organic laminated thin-film light-emitting device presented by a research group of Kodak Company is a tris (8), which is a hole-transporting diamine compound, a light-emitting layer, and an electron-transport layer on an ITO glass substrate.
-Hydroxyquinolinolato) aluminum and Mg: Ag as a negative electrode were sequentially provided, and green light emission of 1000 cd / m 2 was possible at a driving voltage of about 10 V. At present, there are also those that have changed configurations such as those that have an electron transport layer that is functionally separated from the light emitting layer in addition to the above-mentioned element components, but basically follow the configuration of Kodak Company .

【0004】このような素子では電子の供給を促進でき
れば素子特性を向上させることが可能である。電子供給
促進には電子輸送能力の向上、電子注入効率向上、そし
てその両方の三通りの方法が考えられる。例えば、素子
内の電子輸送能力を向上して電子の供給を向上させる例
として、特開平6−322362号公報を例示すること
ができる。即ち、本公報には10−ヒドロキシベンゾ
[h]キノリン金属錯体が高い電子輸送能力を持つこと
から、トリス(8−ヒドロキシキノリノラト)アルミニ
ウムを用いた素子より高い素子性能を示すことが示され
ている。しかし、ポリアセチレンやポリピロールのよう
な共役系ポリマーにおいてドーピングによって電気伝導
率が向上することは、周知のことである。
In such an element, if the supply of electrons can be promoted, the element characteristics can be improved. There are three ways to promote electron supply: improving electron transport capability, improving electron injection efficiency, and both. For example, JP-A-6-322362 can be exemplified as an example of improving the electron transport capability in the device to improve the supply of electrons. That is, this publication discloses that the 10-hydroxybenzo [h] quinoline metal complex has a higher electron transporting ability, and thus exhibits higher device performance than a device using tris (8-hydroxyquinolinolato) aluminum. ing. However, it is well known that doping improves electrical conductivity in conjugated polymers such as polyacetylene and polypyrrole.

【0005】一方、電子注入を向上することによる電子
供給促進として、リチウムなどのアルカリ金属、マグネ
シウム、カルシウム、ベリリウムやそれらの合金である
低仕事関数陰電極の使用が好ましいことが、特開昭60
−196980号公報、特開昭63−264692号公
報、特開平2−15595号公報、特開平2−2343
94号公報、特開平4−212287号公報などに、ま
た有機物とこれらの金属との共蒸着層の介在による電子
注入向上については、特開平7−268317号公報
に、また陰電極と有機層の界面剥離を防止する目的で陰
極材料と有機材料のそれぞれの成分が漸増するように共
蒸着する方法が特開平4−133286号公報に記載さ
れている。
On the other hand, in order to promote electron supply by improving electron injection, it is preferable to use a low work function cathode, which is an alkali metal such as lithium, magnesium, calcium, beryllium or an alloy thereof.
-196980, JP-A-63-264692, JP-A-2-15595, JP-A-2-2343
No. 94, Japanese Unexamined Patent Publication No. Hei 4-212287, and the like, and for the improvement of electron injection through the interposition of a co-evaporation layer of an organic substance and these metals, see Japanese Unexamined Patent Publication No. Hei 7-268317. Japanese Patent Application Laid-Open No. 4-133286 discloses a method of co-evaporating the cathode material and the organic material so as to gradually increase the respective components for the purpose of preventing interface separation.

【0006】[0006]

【発明が解決しようとする課題】本発明に関する発光素
子では、正孔と電子がそれぞれ正極と負極から注入され
て素子内で再結合が起こることによって発光が可能とな
る。しかし、従来技術では、高い電子移動度を示す材料
がなかったために、正孔の注入の方が優勢で素子特性を
十分に発現することができなかった。そこで、前述のよ
うに電子移動度の高い材料を開発したり、電子の注入効
率を上げて素子性能を向上させている。
In the light emitting device according to the present invention, holes and electrons are injected from the positive electrode and the negative electrode, respectively, and recombination occurs in the device, thereby enabling light emission. However, in the prior art, since there was no material exhibiting high electron mobility, hole injection was more dominant and device characteristics could not be sufficiently exhibited. Therefore, as described above, a material having a high electron mobility has been developed, and the device performance has been improved by increasing the electron injection efficiency.

【0007】しかし、本発光素子に適合した電子輸送材
料はかなり限られており、現在最高の特性を示す材料を
用いても電子の供給は不足している。また、前記低仕事
関数電極およびこれらの金属と有機物の混合層は、非常
に活性であるため劣化が激しく、キャッピング層を設け
たり、厳しく封止しないとたちまち素子特性が低下して
しまうし、混合層や合金陰電極においては共蒸着法を用
いるために各成分の制御が困難で工程が複雑であるばか
りか再現性にも乏しかった。本発明は、かかる問題を解
決し、低電力で高輝度発光が可能で安定性の高い素子を
提供することを目的とするものである。
However, electron transport materials suitable for the present light emitting device are considerably limited, and even if a material exhibiting the best characteristics is used, supply of electrons is insufficient. In addition, the low work function electrode and the mixed layer of these metals and organic substances are extremely active and thus are greatly deteriorated. If a capping layer is not provided or strictly sealed, device characteristics are immediately deteriorated. In the layer and the alloy negative electrode, since the co-evaporation method is used, it is difficult to control each component, the process is complicated, and the reproducibility is poor. An object of the present invention is to solve such a problem and to provide a highly stable element which can emit light with high luminance at low power.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、正極
と負極の間に発光を司る物質が存在し、電気エネルギー
により発光する素子であって、前記発光を司る物質にド
ーパントをドーピングすることにより前記課題を解決で
きる。さらに前記発光を司る物質にドーパントをドーピ
ングする際に意外にも有機層を微量の金属蒸気に晒すだ
けでドーピングできる製造方法を見いだし本発明に至っ
た。
That is, the present invention relates to an element which emits light by electric energy, in which a substance responsible for light emission exists between a positive electrode and a negative electrode, and wherein the substance responsible for light emission is doped with a dopant. The above problem can be solved. Furthermore, when doping the substance responsible for light emission with a dopant, surprisingly, the present inventors have found a manufacturing method capable of doping simply by exposing the organic layer to a small amount of metal vapor, and reached the present invention.

【0009】[0009]

【発明の実施の形態】本発明において正極は、光を取り
出すために透明であればよく、その成分としては、イン
ジウム、錫、金、銀、亜鉛、アルミニウム、クロム、ニ
ッケル、酸素、窒素、水素、アルゴン、炭素から選ばれ
る少なくとも一種類の元素からなることが多いが、ヨウ
化銅、硫化銅などの無機導電性物質、ポリチオフェン、
ポリピロール、ポリアニリンなどの導電性ポリマなど特
に限定されるものでない。本発明において好ましい例と
しては、酸化錫、酸化亜鉛、酸化インジウム、酸化錫イ
ンジウム(ITO)があげられるが、パターニング加工
などを施すディスプレイ用途などにおいては、加工性に
優れたITOが特に好適な例としてあげることができる
が、表面抵抗を下げたり電圧降下抑制のために少量の銀
や金などの金属が含まれていても良く、また、錫、金、
銀、亜鉛、インジウム、アルミニウム、クロム、ニッケ
ルをガイド電極として使用することも可能である。中で
もクロムはブラックマトリックスとガイド電極の両方の
機能を持たせることができることからも好適な金属であ
る。透明電極の抵抗は素子の発光に十分な電流が供給で
きればよいので限定されないが、素子の消費電力の観点
からは低抵抗であることが望ましい。例えば300Ω/
□以下のITO基板であれば素子電極として機能する
が、現在では10Ω/□程度の基板の供給も可能になっ
ていることから、低抵抗品を使用することが特に望まし
い。ITOの厚みは抵抗値に合わせて任意に選ぶことが
できるが、通常100〜300nmの間で用いられるこ
とが多い。また、ガラス基板はソーダライムガラス、無
アルカリガラスなどが用いられ、また厚みも機械的強度
を保つのに十分な厚みがあればよいので、0.7mm以
上あれば十分である。ガラスの材質については、ガラス
からの溶出イオンが少ない方がよいので無アルカリガラ
スの方が好ましいが、SiO2などのバリアコートを施
したソーダライムガラスも市販されているのでこれを使
用できる。ITO膜形成方法は、電子ビーム法、スパッ
タリング法、化学反応法など特に制限を受けるものでは
ない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the positive electrode only needs to be transparent for extracting light, and its components include indium, tin, gold, silver, zinc, aluminum, chromium, nickel, oxygen, nitrogen and hydrogen. , Argon, often composed of at least one element selected from carbon, copper iodide, inorganic conductive substances such as copper sulfide, polythiophene,
There is no particular limitation on conductive polymers such as polypyrrole and polyaniline. Preferable examples in the present invention include tin oxide, zinc oxide, indium oxide, and indium tin oxide (ITO). In display applications where patterning is performed, ITO having excellent workability is particularly preferable. However, it may contain a small amount of metal such as silver or gold to lower the surface resistance or suppress voltage drop, and tin, gold,
Silver, zinc, indium, aluminum, chromium, and nickel can also be used as guide electrodes. Among them, chromium is a suitable metal because it can have both functions of a black matrix and a guide electrode. The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but is preferably low from the viewpoint of power consumption of the element. For example, 300Ω /
If the substrate is the following ITO substrate, it functions as an element electrode. However, it is now possible to supply a substrate of about 10 Ω / □, and it is particularly preferable to use a low-resistance substrate. The thickness of the ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of usually 100 to 300 nm. Further, as the glass substrate, soda lime glass, non-alkali glass or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength. As for the material of the glass, non-alkali glass is preferable because it is preferable that the amount of ions eluted from the glass is small. However, soda lime glass provided with a barrier coat such as SiO2 is commercially available and can be used. The method of forming the ITO film is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.

【0010】負極は、通常ドーピング層と隣接してお
り、電気伝導性があって電子の注入を実現できるもので
あれば特に限定されない。具体的には、白金、金、銀、
銅、鉄、錫、亜鉛、炭素、パラジウム、クロム、アルミ
ニウム、インジウムなどの金属、またはこれら金属を用
いた合金などが好ましい例として挙げられる。中でも電
極の形成の容易さや安定性を考慮すると銀、アルミニウ
ム、インジウムなどが特に好ましい例として挙げること
ができる。これらの電極の作製法も抵抗加熱、電子線、
スパッタリング、イオンプレーティング、ペーストのコ
ーティングなど導通を取ることができれば特に制限され
ないが、本発明では手軽にできる抵抗加熱蒸着法を使用
している。
[0010] The negative electrode is usually adjacent to the doping layer, and is not particularly limited as long as it has electrical conductivity and can realize injection of electrons. Specifically, platinum, gold, silver,
Preferred examples include metals such as copper, iron, tin, zinc, carbon, palladium, chromium, aluminum and indium, and alloys using these metals. Among them, silver, aluminum, indium and the like can be cited as particularly preferable examples in consideration of ease and stability of electrode formation. These electrodes are manufactured by resistance heating, electron beam,
Although there is no particular limitation as long as electrical conduction such as sputtering, ion plating, and paste coating can be achieved, the present invention uses a resistance heating evaporation method that can be easily performed.

【0011】発光を司る物質とは、1)正孔輸送層/発
光層、2)正孔輸送層/発光層/電子輸送層、3)発光
層/電子輸送層、4)以上の組合わせ物質を一層に混合
した形態、そして、5)発光層単独のいずれであっても
よい。即ち、素子構成としては、上記1)〜3)の多層
積層構造の他に4)5)のように発光材料単独または発
光材料と正孔輸送材料および/または電子輸送材料を含
む層を一層設けるだけでもよい。
The substances that control light emission include 1) a hole transport layer / light emitting layer, 2) a hole transport layer / light emitting layer / electron transport layer, 3) a light emitting layer / electron transport layer, and 4) a combination of the above substances. , And 5) the light emitting layer alone. That is, as for the element structure, in addition to the multilayer laminated structure of the above 1) to 3), a single layer containing a light emitting material alone or a light emitting material and a hole transporting material and / or an electron transporting material is provided as in 4) 5). Or just

【0012】正孔輸送層は正孔輸送材料単独で、あるい
は正孔輸送材料と高分子結着剤により形成され、正孔輸
送材料としてはN,N´−ジフェニル−N,N´−ジ
(3−メチルフェニル)−4,4´−ジアミン(TP
D)などのトリフェニルアミン類、N−イソプロピルカ
ルバゾ−ルなどの3級アミン類、ピラゾリン誘導体、ス
チルベン系化合物、ヒドラゾン系化合物、オキサジアゾ
ール誘導体やフタロシアニン誘導体に代表される複素環
化合物、ポリマー系では前記単量体を側鎖に有するポリ
カーボネートやスチレン誘導体、ポリビニルカルバゾー
ル、ポリシランなどが好ましいが特に限定されるもので
はない。これらの正孔輸送材料は、積層型の素子の場
合、単独で正孔輸送層を形成してもよいし、二種類以上
を混合または積層してもよい。例えば、ITO透明電極
に正孔輸送材料として、まずフタロシアニンを蒸着して
続いてTPDを積層した正孔輸送層は素子の性能を安定
化するし、ポリビニルカルバゾール中にTPDを分散し
た正孔輸送層を持つ素子は、電圧耐性が向上する。
The hole transporting layer is formed of a hole transporting material alone or a hole transporting material and a polymer binder, and the hole transporting material is N, N'-diphenyl-N, N'-di ( 3-methylphenyl) -4,4'-diamine (TP
Triphenylamines such as D), tertiary amines such as N-isopropylcarbazole, pyrazoline derivatives, stilbene compounds, hydrazone compounds, heterocyclic compounds represented by oxadiazole derivatives and phthalocyanine derivatives, polymers In the system, polycarbonate having a monomer in the side chain, a styrene derivative, polyvinyl carbazole, polysilane and the like are preferable, but are not particularly limited. In the case of a stacked element, these hole transport materials may form a single hole transport layer alone, or may be a mixture or stack of two or more. For example, as a hole transport material on an ITO transparent electrode, a phthalocyanine is first deposited and then a TPD is laminated. The hole transport layer stabilizes the performance of the device, and the TPD is dispersed in polyvinyl carbazole. The element having the above has improved voltage resistance.

【0013】発光材料は主に以前から発光体として知ら
れていたアントラセンやピレン、そして前述のトリス
(8−ヒドロキシキノリノラト)アルミニウムや10−
ヒドロキシベンゾ[h]キノリン金属錯体の他にも、例
えば、ビススチリルアントラセン誘導体、テトラフェニ
ルブタジエン誘導体、クマリン誘導体、オキサジアゾー
ル誘導体、ジスチリルベンゼン誘導体、ピロロピリジン
誘導体、ペリノン誘導体、シクロペンタジエン誘導体、
オキサジアゾール誘導体、チアジアゾロピリジン誘導
体、ポリマー系では、ポリフェニレンビニレン誘導体、
ポリパラフェニレン誘導体、そして、ポリチオフェン誘
導体などが使用できる。また発光層に添加するドーパン
トとしては、前述のルブレン、キナクリドン誘導体、ジ
アザインダセン誘導体、フェノキサゾン660、DCM
1、Nile Red、ペリノン、ペリレン、クマリン誘導体な
どがそのまま使用できる。
The light-emitting materials are mainly anthracene and pyrene, which have long been known as light emitters, and the aforementioned tris (8-hydroxyquinolinolato) aluminum and 10-
In addition to the hydroxybenzo [h] quinoline metal complex, for example, bisstyrylanthracene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, distyrylbenzene derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives,
Oxadiazole derivatives, thiadiazolopyridine derivatives, in the case of polymer systems, polyphenylenevinylene derivatives,
Polyparaphenylene derivatives and polythiophene derivatives can be used. The dopants to be added to the light emitting layer include the above-mentioned rubrene, quinacridone derivative, diazaindacene derivative, phenoxazone 660, DCM
1, Nile Red, perinone, perylene, coumarin derivatives and the like can be used as they are.

【0014】電子輸送材料としては、電界を与えられた
電極間において負極からの電子を効率良く輸送すること
が必要で、電子注入効率が高く、注入された電子を効率
良く輸送することが望ましい。そのためには電子親和力
が大きく、しかも電子移動度が大きく、さらに安定性に
優れ、トラップとなる不純物が製造時および使用時に発
生しにくい物質であることが要求される。このような条
件を満たす物質としてトリス(8−ヒドロキシキノリノ
ラト)アルミニウム、ビス(10−ヒドロキシベンゾ
[h]キノリノラト)ベリリウム、2−(4−ビフェニ
ル)−5−(4−t−ブチルフェニル)−1,3,4−
オキサジアゾール(t−BuPBD)などのオキサジア
ゾール系誘導体、薄膜安定性を向上させたオキサジアゾ
ール二量体系誘導体の1,3−ビス(4−t−ブチルフ
ェニル−1,3,4−オキサジゾリル)ビフェニレン
(OXD−1)、1,3−ビス(4−t−ブチルフェニ
ル−1,3,4−オキサジゾリル)フェニレン(OXD
−7)、トリアゾール系誘導体、フェナントロリン系誘
導体などがある。
As the electron transporting material, it is necessary to efficiently transport electrons from the negative electrode between the electrodes to which an electric field is applied, and it is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is required that the material has a high electron affinity, a high electron mobility, a high stability, and a small amount of impurities serving as traps during production and use. Materials satisfying such conditions include tris (8-hydroxyquinolinolato) aluminum, bis (10-hydroxybenzo [h] quinolinolato) beryllium, and 2- (4-biphenyl) -5- (4-t-butylphenyl). -1,3,4-
Oxadiazole derivatives such as oxadiazole (t-BuPBD) and oxadiazole dimer derivatives 1,3-bis (4-t-butylphenyl-1,3,4- Oxazizolyl) biphenylene (OXD-1), 1,3-bis (4-t-butylphenyl-1,3,4-oxazizolyl) phenylene (OXD-1)
-7), triazole derivatives, phenanthroline derivatives and the like.

【0015】以上の正孔輸送層、発光層、電子輸送層に
用いられる材料は単独で各層を形成することができる
が、高分子結着剤としてポリ塩化ビニル、ポリカーボネ
ート、ポリスチレン、ポリ(N−ビニルカルバゾー
ル)、ポリメチルメタクリレート、ポリブチルメタクリ
レート、ポリエステル、ポリスルフォン、ポリフェニレ
ンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン
樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、
エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレ
タン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キ
シレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不
飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、
シリコーン樹脂などの硬化性樹脂などに分散させて用い
ることも可能である。
The above materials used for the hole transporting layer, the light emitting layer, and the electron transporting layer can be used alone to form the respective layers. As the polymer binder, polyvinyl chloride, polycarbonate, polystyrene, poly (N- Vinyl carbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide,
Solvent-soluble resins such as ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, phenolic resin, xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin,
It is also possible to use the resin dispersed in a curable resin such as a silicone resin.

【0016】発光を司る物質の形成方法は、抵抗加熱蒸
着、電子ビーム蒸着、スパッタリング、分子積層法、コ
ーティング法など特に限定されるものではないが、通常
は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好まし
い。層の厚みは、発光を司る物質の抵抗値にもよるので
限定することはできないが、経験的には10〜1000
nmの間から選ばれる。
The method of forming the substance which controls light emission is not particularly limited, such as resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, and coating method. Preferred in terms of surface. The thickness of the layer cannot be limited because it depends on the resistance value of the substance that controls light emission.
nm.

【0017】電気エネルギーとは主に直流電流を指す
が、パルス電流や交流電流を用いることも可能である。
電流値および電圧値は特に制限はないが、素子の消費電
力、寿命を考慮するとできるだけ低いエネルギーで最大
の輝度が得られるようにするべきである。
Although the electric energy mainly refers to a direct current, a pulse current or an alternating current can also be used.
The current value and the voltage value are not particularly limited. However, in consideration of the power consumption and life of the device, it is necessary to obtain the maximum luminance with the lowest possible energy.

【0018】本発明において透明な電極とは、可視光の
光線透過率が30%以上であれば使用に大きな障害はな
いが、理想的には100%に近い方が好ましい。ITO
電極などは80%以上の光線透過率を示すものもある
が、表面抵抗が低いものは光線透過率が低いものが多い
ので、素子特性とのバランスを取りながら選択する必要
がある。基本的には、透明な電極は可視光全域にわたっ
てほぼ同程度の透過率を持つことが好ましい。これはあ
る特定の波長にのみ吸収のある透明電極を使用した場
合、実際の発光色が透明電極を透過することによって変
化することがあるためである。従って、通常は発光色そ
のままで使用したいので平均的な透過率が必要となる。
但し、色を変えたい場合は積極的に吸収を持たせること
も可能であるが、通常はカラーフィルターや干渉フィル
ターを用いて変色させる方が技術的には容易である。
In the present invention, a transparent electrode does not have a major obstacle to use as long as the light transmittance of visible light is 30% or more, but ideally it is preferably close to 100%. ITO
Some electrodes have a light transmittance of 80% or more, but those having a low surface resistance often have a low light transmittance. Therefore, it is necessary to select electrodes while keeping a balance with the element characteristics. Basically, it is preferable that the transparent electrode has substantially the same transmittance over the entire visible light range. This is because when a transparent electrode that absorbs only at a specific wavelength is used, the actual emission color may change due to transmission through the transparent electrode. Therefore, it is usually necessary to use an emitted color as it is, so that an average transmittance is required.
However, if it is desired to change the color, it is possible to positively absorb the color, but it is technically easier to change the color using a color filter or an interference filter.

【0019】本発明においてドーピングは、共役系ポリ
マーのように素子内の有機層の電気伝導性向上ならびに
キャリア注入を容易ならしめる目的がある。本発明の素
子は、電子輸送材料と正孔輸送材料から成っている。従
って、ドーピングの効果は、正孔輸送能力と電子輸送能
力向上のどちらでも期待できる。しかし、本発明の場合
特に電子輸送能力向上を目的としていることから、電子
輸送層へのドーピングについて具体例を示す。まず、ド
ーピングを行うためにはドーパントが必要であり、電子
輸送層にドーピングするには、ドナー性物質を用いる。
逆に、正孔輸送層にドーピングする場合は、アクセプタ
ー性物質を使用することになる。ドナー性物質は、アル
カリ金属、アルカリ土類金属、アミノ化合物、アンモニ
ア、テトラチアフルバレン誘導体、テトラセレナフルバ
レン誘導体などが挙げられる。中でも真空中で容易に蒸
着できて、有機薄膜の中に拡散しやすいナトリウム、カ
リウム、リチウム、マグネシウム、カルシウム、バリウ
ム、ストロンチウム、サマリウム、アンモニアが好まし
い物質である。ドーピング量には適切値があり、性能発
現のことを考慮するとドーピングされる物質に対して1
0%以下であることが好ましいが、有機物へのダメージ
を考慮すると5%以下がより好ましい。ドーピング量
は、通常SIMSなどの測定法を用いて検量補正して定
めることが望ましいが、通常は蒸着時の水晶振動子モニ
ターでの膜厚測定が対比していると考えてよい。即ち、
リチウム金属の場合は電子輸送層の膜厚が30〜100
nmの場合、モニター値で3nm以下、好ましくは1.
5nm以下、更に好ましくは0.5nm以下であり、マ
グネシウム金属の場合は、モニター値で50nm以下、
好ましくは10nm以下、更に好ましくは1nm以下で
あり、カルシウム金属の場合は、モニター値で30nm
以下、好ましくは5nm以下、更に好ましくは1nm以
下であり、ナトリウム金属の場合は、モニター値で10
nm以下、好ましくは3nm以下、更に好ましくは1n
m以下であり、カリウム金属の場合は、モニター値で1
0nm以下、好ましくは3nm以下、更に好ましくは1
nm以下であれば前記適切値に入っていると考えてよ
い。蒸着速度も素子の特性に大きく影響するが、素子構
成や金属によって最適な速度が存在する。個々には示さ
ないがこれら最適な蒸着速度を使用することが肝要であ
る。
In the present invention, doping has the purpose of improving electric conductivity of an organic layer in a device and facilitating carrier injection like a conjugated polymer. The device of the present invention comprises an electron transporting material and a hole transporting material. Therefore, the effect of doping can be expected in both the hole transport ability and the electron transport ability. However, since the purpose of the present invention is particularly to improve the electron transport ability, a specific example will be given for doping of the electron transport layer. First, a dopant is necessary for doping, and a donor substance is used for doping the electron transport layer.
Conversely, when doping the hole transport layer, an acceptor substance is used. Examples of the donor substance include an alkali metal, an alkaline earth metal, an amino compound, ammonia, a tetrathiafulvalene derivative, and a tetraselenafulvalene derivative. Among them, sodium, potassium, lithium, magnesium, calcium, barium, strontium, samarium, and ammonia, which can be easily deposited in a vacuum and easily diffused into an organic thin film, are preferable substances. There is an appropriate value for the doping amount.
It is preferably 0% or less, but more preferably 5% or less in consideration of damage to organic substances. It is generally desirable that the doping amount is determined by calibration correction using a measurement method such as SIMS, but it can be generally considered that film thickness measurement by a quartz oscillator monitor at the time of vapor deposition is compared. That is,
In the case of lithium metal, the thickness of the electron transport layer is 30 to 100.
In the case of nm, the monitor value is 3 nm or less, preferably 1.
5 nm or less, more preferably 0.5 nm or less, in the case of magnesium metal, the monitor value is 50 nm or less,
It is preferably 10 nm or less, more preferably 1 nm or less. In the case of calcium metal, the monitor value is 30 nm.
Or less, preferably 5 nm or less, more preferably 1 nm or less.
nm or less, preferably 3 nm or less, more preferably 1 n
m, and in the case of potassium metal, the monitor value is 1
0 nm or less, preferably 3 nm or less, more preferably 1 nm or less.
If it is less than nm, it may be considered that the value falls within the above-mentioned appropriate value. The deposition rate also greatly affects the characteristics of the element, but there is an optimum rate depending on the element configuration and metal. It is important to use these optimal deposition rates, not individually shown.

【0020】陰電極は、ドーピング操作が終了してから
引き続き行われる。これは、素子への電力供給が可能で
あればどの様な材料をも用いることが可能である。この
点で合金を使用する電極に比べて安定な電極材料が使用
できるし、共蒸着をする必要がないために電極の特性も
再現性よく発現できる。具体的には、白金、金、銀、
銅、鉄、アルミニウム、インジウム、パラジウム、クロ
ム、ニッケル、亜鉛、炭素、タンタル、タングステン、
導電性高分子、酸化錫、ITOまたはこれらの合金が使
用できる。金属の抵抗値や安定性を考慮すると金、銀、
銅、アルミニウムクロムがより好ましい例として挙げる
ことができる。
The negative electrode is continuously operated after the doping operation is completed. For this, any material can be used as long as power can be supplied to the element. In this respect, a stable electrode material can be used as compared with an electrode using an alloy, and since there is no need to perform co-evaporation, characteristics of the electrode can be expressed with good reproducibility. Specifically, platinum, gold, silver,
Copper, iron, aluminum, indium, palladium, chromium, nickel, zinc, carbon, tantalum, tungsten,
A conductive polymer, tin oxide, ITO, or an alloy thereof can be used. Considering metal resistance and stability, gold, silver,
Copper and aluminum chromium are more preferable examples.

【0021】ドーピングされる電子輸送材料としては、
前記のトリス(8−ヒドロキシキノリノラト)アルミニ
ウム(III)、ビス(10−ヒドロキシベンゾ[h]
キノリノラト)ベリリウム、2−(4−ビフェニル)−
5−(4−t−ブチルフェニル)−1,3,4−オキサ
ジアゾール(t−BuPBD)などのオキサジアゾール
系誘導体、薄膜安定性を向上させたオキサジアゾール二
量体系誘導体の1,3−ビス(4−t−ブチルフェニル
−1,3,4−オキサジゾリル)ビフェニレン(OXD
−1)、1,3−ビス(4−t−ブチルフェニル−1,
3,4−オキサジゾリル)フェニレン(OXD−7)、
トリアゾール系誘導体、フェナントロリン系誘導体など
が挙げられるが、これらの材料は、電子輸送材料である
とともに発光材料として機能する場合もある。つまり、
ITO/N,N´−ジフェニル−N,N´−ジ(3−メ
チルフェニル)−4,4´−ジアミン(TPD)/トリ
ス(8−ヒドロキシキノリノラト)アルミニウム(II
I)/リチウム/銀を順次積層した素子では、トリス
(8−ヒドロキシキノリノラト)アルミニウム(II
I)が発光材料であるとともに電子輸送材料としての機
能を果たしている。また、ビス(10−ヒドロキシベン
ゾ[h]キノリノラト)ベリリウムなども同様の機能を
果たしている。
As the electron transporting material to be doped,
Tris (8-hydroxyquinolinolato) aluminum (III), bis (10-hydroxybenzo [h]
Quinolinolato) beryllium, 2- (4-biphenyl)-
Oxadiazole derivatives such as 5- (4-t-butylphenyl) -1,3,4-oxadiazole (t-BuPBD) and oxadiazole dimer derivatives 1,2 having improved thin film stability 3-bis (4-t-butylphenyl-1,3,4-oxadizolyl) biphenylene (OXD
-1), 1,3-bis (4-t-butylphenyl-1,1,
3,4-oxadizolyl) phenylene (OXD-7),
Examples thereof include a triazole derivative and a phenanthroline derivative, and these materials are not only an electron transporting material but also function as a light emitting material in some cases. That is,
ITO / N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diamine (TPD) / tris (8-hydroxyquinolinolato) aluminum (II
In a device in which I) / lithium / silver is sequentially stacked, tris (8-hydroxyquinolinolato) aluminum (II)
I) is a light emitting material and functions as an electron transporting material. Further, bis (10-hydroxybenzo [h] quinolinolato) beryllium and the like also perform the same function.

【0022】[0022]

【実施例】以下、実施例および比較例をあげて本発明を
説明するが、本発明はこれらの例によって限定されるも
のではない。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0023】実施例1 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングした。この基板を
洗浄した後にUV−オゾン処理を施してから真空蒸着機
にセットして1×10-4Paにまで真空引きした。そし
てアルミナるつぼからN,N´−ジフェニル−N,N´
−ジ(3−メチルフェニル)−4,4´−ジアミンを
0.3nm/秒の速度で130nm蒸着し、続いてタン
タル製クヌーセンセルからトリス(8−ヒドロキシキノ
リノラト)アルミニウム(III)を同じく0.3nm
/秒の速度で100nm蒸着した。真空中で5×5mm
角の素子ができるようにマスクをセットした。その後、
タングステンボートから0.1nm/秒の速度でリチウ
ムを1nm蒸着してから、0.5nm/秒の速度で銀を
150nm蒸着した。本素子は、4Vで4cd/m2
発光が認められ、7V−1.75mAで213cd/m
2、12V−195mAで16730cd/m2の最高発
光輝度が得られた。
Example 1 An ITO glass substrate was cut into a predetermined size, and 12 mm in size was cut out.
Etching was performed so that an ITO band having a width remained. After washing the substrate, the substrate was subjected to UV-ozone treatment, and then set in a vacuum evaporation machine to evacuate to 1 × 10 −4 Pa. Then, N, N'-diphenyl-N, N 'is obtained from the alumina crucible.
-Di (3-methylphenyl) -4,4'-diamine was deposited at a rate of 0.3 nm / sec to a thickness of 130 nm, followed by tris (8-hydroxyquinolinolato) aluminum (III) from a Knudsen cell made of tantalum. 0.3nm
/ Nm at a rate of / sec. 5 × 5mm in vacuum
A mask was set so that corner elements could be formed. afterwards,
1 nm of lithium was deposited at a rate of 0.1 nm / sec from a tungsten boat, and then 150 nm of silver was deposited at a rate of 0.5 nm / sec. This device emits 4 cd / m 2 at 4 V, and 213 cd / m 2 at 7 V-1.75 mA.
2 , a maximum emission luminance of 16730 cd / m 2 was obtained at 12 V-195 mA.

【0024】実施例2 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングした。この基板を
洗浄した後にUV−オゾン処理を施してから真空蒸着機
にセットして1×10-4Paにまで真空引きした。そし
てタンタル製クヌーセンセルから銅フタロシアニンを
0.3nm/秒の速度で20nm、続いてアルミナるつ
ぼからビス(m−メチルフェニルカルバゾール)を0.
3nm/秒の速度で100nm蒸着し、更にタンタル製
クヌーセンセルからトリス(8−ヒドロキシキノリノラ
ト)アルミニウム(III)を同じく0.3nm/秒の
速度で100nm蒸着した。真空中で5×5mm角の素
子ができるようにマスクをセットした。その後、タング
ステンボートから0.05nm/秒の速度でリチウムを
1.0nm蒸着してから、0.5nm/秒の速度でアル
ミニウムを200nm蒸着した。本素子は、5.61V
で115cd/m2の発光が認められ、7.42V−
5.00mAの低電力で1289cd/m2の発光輝度
が得られた。
Example 2 An ITO glass substrate was cut into a predetermined size,
Etching was performed so that an ITO band having a width remained. After washing the substrate, the substrate was subjected to UV-ozone treatment, and then set in a vacuum evaporation machine to evacuate to 1 × 10 −4 Pa. Then, copper phthalocyanine was added at a rate of 0.3 nm / sec to a thickness of 20 nm from a tantalum Knudsen cell, and then bis (m-methylphenylcarbazole) was added to the alumina crucible at a rate of 0.2 nm.
100 nm was deposited at a rate of 3 nm / sec, and tris (8-hydroxyquinolinolato) aluminum (III) was further deposited at a rate of 0.3 nm / sec from a Knudsen cell made of tantalum at a rate of 0.3 nm / sec. The mask was set so that a 5 × 5 mm square element was formed in a vacuum. Thereafter, 1.0 nm of lithium was deposited at a rate of 0.05 nm / sec from a tungsten boat, and then 200 nm of aluminum was deposited at a rate of 0.5 nm / sec. This element is 5.61V
At 115 cd / m 2 , and 7.42 V −
An emission luminance of 1289 cd / m 2 was obtained with a low power of 5.00 mA.

【0025】実施例3 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングした。この基板を
洗浄した後にUV−オゾン処理を施してから真空蒸着機
にセットして1×10-4Paにまで真空引きした。そし
てタンタル製クヌーセンセルから銅フタロシアニンを
0.3nm/秒の速度で20nm、続いてアルミナるつ
ぼからビス(m−メチルフェニルカルバゾール)を0.
3nm/秒の速度で100nm蒸着し、更にタンタル製
クヌーセンセルからトリス(8−ヒドロキシキノリノラ
ト)アルミニウム(III)を同じく0.3nm/秒の
速度で100nm蒸着した。真空中で5×5mm角の素
子ができるようにマスクをセットした。その後、タング
ステンボートから0.05nm/秒の速度でリチウムを
0.5nm蒸着してから、0.5nm/秒の速度でアル
ミニウムを200nm蒸着した。本素子は、4.92V
で117cd/m2の発光が認められ、6.7V−5.
00mAの低電力で1375cd/m2の発光輝度が得
られた。
Example 3 An ITO glass substrate was cut into a predetermined size,
Etching was performed so that an ITO band having a width remained. After washing the substrate, the substrate was subjected to UV-ozone treatment, and then set in a vacuum evaporation machine to evacuate to 1 × 10 −4 Pa. Then, copper phthalocyanine was added at a rate of 0.3 nm / sec to a thickness of 20 nm from a tantalum Knudsen cell, and then bis (m-methylphenylcarbazole) was added to the alumina crucible at a rate of 0.2 nm.
100 nm was deposited at a rate of 3 nm / sec, and tris (8-hydroxyquinolinolato) aluminum (III) was further deposited at a rate of 0.3 nm / sec from a Knudsen cell made of tantalum at a rate of 0.3 nm / sec. The mask was set so that a 5 × 5 mm square element was formed in a vacuum. Thereafter, 0.5 nm of lithium was deposited at a rate of 0.05 nm / sec from a tungsten boat, and then 200 nm of aluminum was deposited at a rate of 0.5 nm / sec. This element is 4.92V
And emission of 117 cd / m 2 was observed, and 6.7 V-5.
An emission luminance of 1375 cd / m 2 was obtained with a low power of 00 mA.

【0026】実施例4 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングした。この基板を
洗浄した後にUV−オゾン処理を施してから真空蒸着機
にセットして1×10-4Paにまで真空引きした。そし
てタンタル製クヌーセンセルから銅フタロシアニンを
0.3nm/秒の速度で20nm、続いてアルミナるつ
ぼからビス(m−メチルフェニルカルバゾール)を0.
3nm/秒の速度で100nm蒸着し、更にタンタル製
クヌーセンセルからトリス(8−ヒドロキシキノリノラ
ト)アルミニウム(III)を同じく0.3nm/秒の
速度で100nm蒸着した。真空中で5×5mm角の素
子ができるようにマスクをセットした。その後、タング
ステンボートから0.05nm/秒の速度でリチウムを
0.01nm蒸着してから、0.5nm/秒の速度でア
ルミニウムを200nm蒸着した。本素子は、5.01
Vで120cd/m2の発光が認められ、6.78V−
5.00mAの低電力で1448cd/m2の発光輝度
が得られた。
Example 4 An ITO glass substrate was cut into a predetermined size,
Etching was performed so that an ITO band having a width remained. After washing the substrate, the substrate was subjected to UV-ozone treatment, and then set in a vacuum evaporation machine to evacuate to 1 × 10 −4 Pa. Then, copper phthalocyanine was added at a rate of 0.3 nm / sec to a thickness of 20 nm from a tantalum Knudsen cell, and then bis (m-methylphenylcarbazole) was added to the alumina crucible at a rate of 0.2 nm.
100 nm was deposited at a rate of 3 nm / sec, and tris (8-hydroxyquinolinolato) aluminum (III) was further deposited at a rate of 0.3 nm / sec from a Knudsen cell made of tantalum at a rate of 0.3 nm / sec. The mask was set so that a 5 × 5 mm square element was formed in a vacuum. After that, lithium was vapor-deposited at 0.01 nm from a tungsten boat at a rate of 0.05 nm / sec, and then aluminum was vapor-deposited at 200 nm at a rate of 0.5 nm / sec. This element is 5.01
At 120 V, emission of 120 cd / m 2 was observed, and 6.78 V −
An emission luminance of 1448 cd / m 2 was obtained with a low power of 5.00 mA.

【0027】実施例5 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングした。この基板を
洗浄した後にUV−オゾン処理を施してから真空蒸着機
にセットして1×10-4Paにまで真空引きした。そし
てアルミナるつぼからN,N´−ジフェニル−N,N´
−ジ(3−メチルフェニル)−4,4´−ジアミンを
0.3nm/秒の速度で130nm蒸着し、続いてタン
タル製クヌーセンセルからトリス(8−ヒドロキシキノ
リノラト)アルミニウム(III)を同じく0.3nm
/秒の速度で100nm蒸着した。真空中で5×5mm
角の素子ができるようにマスクをセットした。その後、
アルミナるつぼから0.1nm/秒の速度でマグネシウ
ムを1nm蒸着してから、0.5nm/秒の速度で銀を
150nm蒸着した。本素子は、4Vで3cd/m2
発光が認められ、7V−1.72mAで153cd/m
2、13V−155mAで13210cd/m2の最高発
光輝度が得られた。
Example 5 An ITO glass substrate was cut into a predetermined size,
Etching was performed so that an ITO band having a width remained. After washing the substrate, the substrate was subjected to UV-ozone treatment, and then set in a vacuum evaporation machine to evacuate to 1 × 10 −4 Pa. Then, N, N'-diphenyl-N, N 'is obtained from the alumina crucible.
-Di (3-methylphenyl) -4,4'-diamine was deposited at a rate of 0.3 nm / sec to a thickness of 130 nm, followed by tris (8-hydroxyquinolinolato) aluminum (III) from a Knudsen cell made of tantalum. 0.3nm
/ Nm at a rate of / sec. 5 × 5mm in vacuum
A mask was set so that corner elements could be formed. afterwards,
1 nm of magnesium was deposited at a rate of 0.1 nm / sec from an alumina crucible, and then 150 nm of silver was deposited at a rate of 0.5 nm / sec. This device emits 3 cd / m 2 at 4 V and 153 cd / m 2 at 7 V-1.72 mA.
2. A maximum luminance of 13210 cd / m 2 was obtained at 13 V-155 mA.

【0028】実施例6 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングして基板を洗浄し
た。ポリビニルカルバゾールのジクロロエタンに溶解し
(濃度8.5mg/g)、0.5μmのPTFEフィル
ターで濾過して溶液を調整した。この溶液からITO基
板ディップコーティングでポリビニルカルバゾールを2
0nm塗布した(引上げ速度50mm/分)。この基板
を5×5mm角の素子ができるようにマスクとともに真
空蒸着機にセットして2×10-3Paにまで真空引きし
た。そして、タンタル製クヌーセンセルからトリス(8
−ヒドロキシキノリノラト)アルミニウム(III)を
0.3nm/秒の速度で150nm蒸着した。そして、
タングステンボートから0.2nm/秒の速度でナトリ
ウムを1.1nm蒸着してから、続いてタングステンボ
ートから0.3nm/秒の速度で銀を150nm蒸着し
た。本素子は、4.5Vで2cd/m2の発光が認めら
れ、8.4V−2.0mAで195cd/m2、14.
2V−100mAで11370cd/m2の最高発光輝
度が得られた。
Example 6 An ITO glass substrate was cut into a predetermined size, and 12 mm in size.
The substrate was washed by etching so as to leave an ITO band having a width. The solution was dissolved in dichloroethane of polyvinyl carbazole (concentration 8.5 mg / g), and filtered through a 0.5 μm PTFE filter to prepare a solution. From this solution, dip coating of polyvinyl carbazole with ITO substrate
0 nm was applied (pulling speed 50 mm / min). The substrate was set in a vacuum evaporation machine together with a mask so as to form a 5 × 5 mm square element, and the substrate was evacuated to 2 × 10 −3 Pa. And tris (8
-Hydroxyquinolinolato) aluminum (III) was deposited at a rate of 0.3 nm / sec to a thickness of 150 nm. And
1.1 nm of sodium was deposited at a rate of 0.2 nm / sec from a tungsten boat, followed by 150 nm of silver deposited at a rate of 0.3 nm / sec from a tungsten boat. This device emitted light of 2cd / m 2 was observed at 4.5V, 195cd / m 2 at 8.4V-2.0 mA, 14.
The highest emission luminance of 11370 cd / m 2 was obtained at 2 V-100 mA.

【0029】実施例7 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングして基板を洗浄し
た。この基板を真空蒸着機にセットして2×10-3Pa
にまで真空引きした。そしてタンタル製クヌーセンセル
からN,N´−ジフェニル−N,N´−ジ(3−メチル
フェニル)−4,4´−ジアミンを0.3nm/秒の速
度で50nm蒸着し、続いてタンタル製クヌーセンセル
からトリス(8−ヒドロキシキノリノラト)アルミニウ
ム(III)を同じく0.3nm/秒の速度で60nm
蒸着した。一度、チャンバーを大気圧に戻し、5×5m
m角の素子ができるようにマスクをセットした。その
後、0.3nm/秒の速度でカルシウムを1nm蒸着し
てから、0.3nm/秒の速度で銀を150nm蒸着し
た。本素子は、4Vで発光が認められ、10V−1.1
9mAで135cd/m2、18V−124mAで13
230cd/m2の最高発光輝度が得られた。
Example 7 An ITO glass substrate was cut into a predetermined size, and 12 mm in size.
The substrate was washed by etching so as to leave an ITO band having a width. This substrate is set in a vacuum evaporation machine and 2 × 10 −3 Pa
Was evacuated to. Then, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diamine is vapor-deposited at a rate of 0.3 nm / sec to a thickness of 50 nm from a tantalum Knudsen cell. Tris (8-hydroxyquinolinolato) aluminum (III) was also removed from the cell at a rate of 0.3 nm / sec to 60 nm.
Evaporated. Once the chamber is returned to atmospheric pressure, 5 × 5m
A mask was set so that an m-square element could be formed. After that, 1 nm of calcium was deposited at a rate of 0.3 nm / sec, and then 150 nm of silver was deposited at a rate of 0.3 nm / sec. This device emits light at 4 V, and 10 V-1.1
135 cd / m 2 at 9 mA, 13 at 18 V-124 mA
The highest emission luminance of 230 cd / m 2 was obtained.

【0030】実施例8 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングした。この基板を
洗浄した後にUV−オゾン処理を施してから真空蒸着機
にセットして2×10-3Paにまで真空引きした。そし
てタンタル製クヌーセンセルからN,N´−ジフェニル
−N,N´−ジ(3−メチルフェニル)−4,4´−ジ
アミンを0.3nm/秒の速度で50nm蒸着し、続い
てタンタル製クヌーセンセルからトリス(8−ヒドロキ
シキノリノラト)アルミニウム(III)を同じく0.
3nm/秒の速度で60nm蒸着した。一度、チャンバ
ーを大気圧に戻し、薄膜をコーティングした基板をアン
モニア飽和環境下に3分晒した。その後、5×5mm角
の素子ができるようにマスクをセットして2×10-3
aにまで真空引きしてから0.3nm/秒の速度で、
0.3nm/秒の速度でアルミニウムを50nm蒸着し
た。本素子は、5Vで発光が認められ、10V−2.6
2mAで117cd/m2の発光輝度が得られた。
Example 8 An ITO glass substrate was cut into a predetermined size,
Etching was performed so that an ITO band having a width remained. After washing the substrate, the substrate was subjected to UV-ozone treatment, and then set in a vacuum vapor deposition machine and evacuated to 2 × 10 −3 Pa. Then, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diamine is vapor-deposited at a rate of 0.3 nm / sec to a thickness of 50 nm from a tantalum Knudsen cell. Tris (8-hydroxyquinolinolato) aluminum (III) was also added to the cell from the cell.
60 nm was deposited at a rate of 3 nm / sec. Once the chamber was returned to atmospheric pressure, the substrate coated with the thin film was exposed to an ammonia saturated environment for 3 minutes. After that, a mask is set so that a 5 × 5 mm square element is formed, and 2 × 10 −3 P
After evacuation to a, at a speed of 0.3 nm / sec,
50 nm of aluminum was deposited at a rate of 0.3 nm / sec. This device emits light at 5 V, and 10 V-2.6.
An emission luminance of 117 cd / m 2 was obtained at 2 mA.

【0031】比較例1(ドーピングのない場合) ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングした。この基板を
洗浄した後にUV−オゾン処理を施してから真空蒸着機
にセットして1×10-4Paにまで真空引きした。そし
てアルミナるつぼからN,N´−ジフェニル−N,N´
−ジ(3−メチルフェニル)−4,4´−ジアミンを
0.3nm/秒の速度で130nm蒸着し、続いてタン
タル製クヌーセンセルからトリス(8−ヒドロキシキノ
リノラト)アルミニウム(III)を同じく0.3nm
/秒の速度で100nm蒸着した。真空中で5×5mm
角の素子ができるようにマスクをセットした。その後、
0.5nm/秒の速度で銀を150nm蒸着した。本素
子は、6Vで2cd/m2の発光が認められ、10V−
3.63mAで160cd/m2、16V−150mA
で2910cd/m2の最高発光輝度が得られた。
Comparative Example 1 (without doping) An ITO glass substrate was cut into a predetermined size,
Etching was performed so that an ITO band having a width remained. After washing the substrate, the substrate was subjected to UV-ozone treatment, and then set in a vacuum evaporation machine to evacuate to 1 × 10 −4 Pa. Then, N, N'-diphenyl-N, N 'is obtained from the alumina crucible.
-Di (3-methylphenyl) -4,4'-diamine was deposited at a rate of 0.3 nm / sec to a thickness of 130 nm, followed by tris (8-hydroxyquinolinolato) aluminum (III) from a Knudsen cell made of tantalum. 0.3nm
/ Nm at a rate of / sec. 5 × 5mm in vacuum
A mask was set so that corner elements could be formed. afterwards,
150 nm of silver was deposited at a rate of 0.5 nm / sec. This device emits 2 cd / m 2 at 6 V, and emits 10 V-
160 cd / m 2 at 3.63 mA, 16 V-150 mA
, A maximum emission luminance of 2910 cd / m 2 was obtained.

【0032】比較例2(ドーピングのない場合) ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングして基板を洗浄し
た。この基板を真空蒸着機にセットして2×10-3Pa
にまで真空引きした。そしてタンタル製クヌーセンセル
からN,N´−ジフェニル−N,N´−ジ(3−メチル
フェニル)−4,4´−ジアミンを0.3nm/秒の速
度で50nm蒸着し、続いてタンタル製クヌーセンセル
からトリス(8−ヒドロキシキノリノラト)アルミニウ
ム(III)を同じく0.3nm/秒の速度で60nm
蒸着した。一度、チャンバーを大気圧に戻し、5×5m
m角の素子ができるようにマスクをセットした。その
後、0.3nm/秒の速度でアルミニウムを50nm蒸
着した。本素子は、5Vで発光が認められ、12V−
1.86mAで100cd/m2、18V−75mAで
2320cd/m2の最高発光輝度が得られた。
Comparative Example 2 (without doping) An ITO glass substrate was cut into a predetermined size,
The substrate was washed by etching so as to leave an ITO band having a width. This substrate is set in a vacuum evaporation machine and 2 × 10 −3 Pa
Was evacuated to. Then, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diamine is vapor-deposited at a rate of 0.3 nm / sec to a thickness of 50 nm from a tantalum Knudsen cell. Tris (8-hydroxyquinolinolato) aluminum (III) was also removed from the cell at a rate of 0.3 nm / sec to 60 nm.
Evaporated. Once the chamber is returned to atmospheric pressure, 5 × 5m
A mask was set so that an m-square element could be formed. Thereafter, 50 nm of aluminum was deposited at a rate of 0.3 nm / sec. This device emits light at 5 V, and emits light at 12 V-
In 100cd / m 2, 18V-75mA is maximum emission luminance of 2320cd / m 2 was obtained in 1.86MA.

【0033】比較例3 ITOガラス基板を所定の大きさに切り出し、12mm
幅のITO帯が残るようにエッチングして基板を洗浄し
た。ポリビニルカルバゾールのジクロロエタンに溶解し
(濃度8.5mg/g)、0.5μmのPTFEフィル
ターで濾過して溶液を調整した。この溶液からITO基
板ディップコーティングでポリビニルカルバゾールを2
0nm塗布した(引上げ速度50mm/分)。この基板
を5×5mm角の素子ができるようにマスクとともに真
空蒸着機にセットして2×10-3Paにまで真空引きし
た。そして、タンタル製クヌーセンセルからトリス(8
−ヒドロキシキノリノラト)アルミニウム(III)を
0.3nm/秒の速度で100nm蒸着した。そして、
タングステンボートから0.2nm/秒の速度でリチウ
ムを30nm蒸着してから、続いてタングステンボート
から0.3nm/秒の速度で銀を150nm蒸着し、積
層負極を得た。本素子は、15.9V−4.0mAで3
60cd/m2、19.7V−20mAで1820cd
/m2の最高発光輝度が得られた。
Comparative Example 3 An ITO glass substrate was cut into a predetermined size,
The substrate was washed by etching so as to leave an ITO band having a width. The solution was dissolved in dichloroethane of polyvinyl carbazole (concentration 8.5 mg / g), and filtered through a 0.5 μm PTFE filter to prepare a solution. From this solution, dip coating of polyvinyl carbazole with ITO substrate
0 nm was applied (pulling speed 50 mm / min). The substrate was set in a vacuum evaporation machine together with a mask so as to form a 5 × 5 mm square element, and the substrate was evacuated to 2 × 10 −3 Pa. And tris (8
-Hydroxyquinolinolato) aluminum (III) was deposited at a rate of 0.3 nm / sec to a thickness of 100 nm. And
After depositing 30 nm of lithium at a rate of 0.2 nm / sec from a tungsten boat, subsequently depositing 150 nm of silver at a rate of 0.3 nm / sec from a tungsten boat to obtain a laminated negative electrode. This device has 3 at 15.9V-4.0mA.
1820 cd at 60 cd / m 2 , 19.7 V-20 mA
/ M 2 was obtained.

【0034】参考例(電子輸送層中のドーパントの検
出) ITO基板を1×2mmの大きさに切り出し洗浄した。
UV−オゾン処理を施してから真空蒸着機に固定して1
×10-4Paにまで真空引きした。そしてアルミナるつ
ぼからN,N´−ジフェニル−N,N´−ジ(3−メチ
ルフェニル)−4,4´−ジアミンを0.3nm/秒の
速度で90nm蒸着し、続いてタンタル製クヌーセンセ
ルからトリス(8−ヒドロキシキノリノラト)ガリウム
を同じく0.3nm/秒の速度で100nm蒸着した。
続いて、タングステンボートから0.5nm/秒の速度
でマグネシウムを50nm、そして0.5nm/秒の速
度でアルミニウムを150nm蒸着した。得られた素子
の陰電極をテープを用いて剥離してすぐにSIMS測定
を行った。測定条件は、一次イオン種はO2+、一次イ
オンエネルギー3keV、一次イオン電流50nm、ラ
スター領域600×600μm、ゲート率60%、分析
領域360×360μm、検出二次イオンは正イオン、
電子スプレー条件0.7kV−3.0A(F4.0)、
測定時真空度2×10-6Pa、H−Q−Hは#14であ
る。その結果、電子輸送層であり発光層でもあるトリス
(8−ヒドロキシキノリノラト)ガリウム中へのマグネ
シウムの拡散が認められた。
Reference Example (Detection of Dopant in Electron Transport Layer) An ITO substrate was cut into a size of 1 × 2 mm and washed.
After UV-ozone treatment, fix it on a vacuum deposition machine
Vacuum was drawn to × 10 -4 Pa. Then, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diamine was vapor-deposited at a rate of 0.3 nm / sec. From the alumina crucible at a rate of 0.3 nm / sec. Tris (8-hydroxyquinolinolato) gallium was also deposited at a rate of 0.3 nm / sec to a thickness of 100 nm.
Subsequently, 50 nm of magnesium was deposited from the tungsten boat at a rate of 0.5 nm / sec, and 150 nm of aluminum was deposited at a rate of 0.5 nm / sec. SIMS measurement was performed immediately after the negative electrode of the obtained device was peeled off using a tape. The measurement conditions are as follows: primary ion species is O2 +, primary ion energy is 3 keV, primary ion current is 50 nm, raster area is 600 × 600 μm, gate rate is 60%, analysis area is 360 × 360 μm, detected secondary ions are positive ions,
Electrospray conditions 0.7 kV-3.0 A (F4.0),
The degree of vacuum during measurement is 2 × 10 −6 Pa, and HQH is # 14. As a result, diffusion of magnesium into tris (8-hydroxyquinolinolato) gallium, which is both an electron transport layer and a light emitting layer, was observed.

【0035】[0035]

【発明の効果】本発明は、電気エネルギーの利用効率が
高く長時間の駆動にも安定な発光素子を提供できるもの
である。
According to the present invention, it is possible to provide a light-emitting element which has a high use efficiency of electric energy and is stable even when driven for a long time.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】正極と負極の間に発光を司る物質が存在
し、電気エネルギーにより発光する素子であって、前記
発光を司る物質にドーパントをドーピングすることを特
徴とする発光素子。
1. A light-emitting element in which a substance responsible for light emission exists between a positive electrode and a negative electrode and emits light by electric energy, wherein the substance responsible for light emission is doped with a dopant.
【請求項2】ドーパントがドナー性を持っていることを
特徴とする請求項1記載の発光素子。
2. The light emitting device according to claim 1, wherein the dopant has a donor property.
【請求項3】ドナー性を持ったドーパントが、ナトリウ
ム、カリウム、リチウム、マグネシウム、カルシウム、
バリウムおよびアンモニアから選ばれる少なくとも一種
類からなる物質であることを特徴とする請求項2記載の
発光素子。
3. The method according to claim 1, wherein the dopant having a donor property is sodium, potassium, lithium, magnesium, calcium,
3. The light-emitting device according to claim 2, wherein the light-emitting device is at least one substance selected from barium and ammonia.
【請求項4】ドーピングされた発光を司る物質が電子輸
送性を持つことを特徴とする請求項1記載の発光素子。
4. The light-emitting element according to claim 1, wherein the doped substance responsible for light emission has an electron-transporting property.
【請求項5】ドーピングされる発光を司る物質に対して
ドーパントのドーピング量が10%以下であることを特
徴とする請求項1記載の発光素子。
5. The light emitting device according to claim 1, wherein the doping amount of the dopant is 10% or less with respect to the substance which controls light emission to be doped.
【請求項6】ドーピングされる発光を司る物質に対して
ドーパントのドーピング量が5%以下であることを特徴
とする請求項1記載の発光素子。
6. The light emitting device according to claim 1, wherein the doping amount of the dopant is 5% or less with respect to the substance which controls light emission to be doped.
【請求項7】ドーピングされた発光を司る物質に隣接し
て陰電極が形成されていることを特徴とする請求項1記
載の発光素子。
7. The light emitting device according to claim 1, wherein a negative electrode is formed adjacent to the doped substance which controls light emission.
【請求項8】有機層を金属蒸気に晒すことによってドー
ピングすることを特徴とする発光素子の製造方法。
8. A method for manufacturing a light emitting device, wherein the organic layer is doped by exposing it to a metal vapor.
JP9107081A 1996-04-24 1997-04-24 Light-emitting element and manufacture thereof Pending JPH1050480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9107081A JPH1050480A (en) 1996-04-24 1997-04-24 Light-emitting element and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10285196 1996-04-24
JP8-102851 1996-04-24
JP9107081A JPH1050480A (en) 1996-04-24 1997-04-24 Light-emitting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1050480A true JPH1050480A (en) 1998-02-20

Family

ID=26443539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9107081A Pending JPH1050480A (en) 1996-04-24 1997-04-24 Light-emitting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1050480A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948063A2 (en) * 1998-03-02 1999-10-06 Kido, Junji Organic electroluminescent devices
JP2000196140A (en) * 1998-12-28 2000-07-14 Sharp Corp Organic electroluminescence element and fabrication thereof
EP1071144A2 (en) * 1999-07-23 2001-01-24 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
JP2002141173A (en) * 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd Light emitting device
JP2002164177A (en) * 1999-11-29 2002-06-07 Canon Inc Liquid crystal element
JP2002280184A (en) * 2001-03-16 2002-09-27 Nippon Seiki Co Ltd Organic electroluminescent element
JP2002289360A (en) * 2001-03-27 2002-10-04 Univ Toyama Organic electric field light emitting device
US6905784B2 (en) * 2000-08-22 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
WO2006027578A1 (en) * 2004-09-09 2006-03-16 Stephen Paul Harvey An illuminatable laminate
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
US6423429B2 (en) 1998-03-02 2002-07-23 Junji Kido Organic electroluminescent devices
EP0948063A3 (en) * 1998-03-02 2000-08-23 Kido, Junji Organic electroluminescent devices
EP0948063A2 (en) * 1998-03-02 1999-10-06 Kido, Junji Organic electroluminescent devices
JP2000196140A (en) * 1998-12-28 2000-07-14 Sharp Corp Organic electroluminescence element and fabrication thereof
EP1071144A2 (en) * 1999-07-23 2001-01-24 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
EP1071144A3 (en) * 1999-07-23 2006-04-26 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
US7456037B2 (en) 1999-07-23 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
JP2002164177A (en) * 1999-11-29 2002-06-07 Canon Inc Liquid crystal element
JP4717198B2 (en) * 1999-11-29 2011-07-06 キヤノン株式会社 Organic electroluminescence device
JP2002141173A (en) * 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd Light emitting device
US6905784B2 (en) * 2000-08-22 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2002280184A (en) * 2001-03-16 2002-09-27 Nippon Seiki Co Ltd Organic electroluminescent element
JP2002289360A (en) * 2001-03-27 2002-10-04 Univ Toyama Organic electric field light emitting device
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof
GB2435754A (en) * 2004-09-09 2007-09-05 Stephen Paul Harvey An illuminatable laminate
GB2435754B (en) * 2004-09-09 2009-08-05 Stephen Paul Harvey An illuminatable laminate
WO2006027578A1 (en) * 2004-09-09 2006-03-16 Stephen Paul Harvey An illuminatable laminate

Similar Documents

Publication Publication Date Title
US6121727A (en) Organic electroluminescent device
US5811833A (en) Electron transporting and light emitting layers based on organic free radicals
JP2931229B2 (en) Organic electroluminescence device
JP3412076B2 (en) Organic EL device
JPH06325871A (en) Organic electroluminescent element
JP2002203679A (en) Light-emitting element
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP2006012821A (en) Metal compound-metal multilayer electrode for organic electron device
JP2002352961A (en) Organic electroluminescent device
JP5223163B2 (en) Light emitting element
JP3978976B2 (en) Organic electroluminescence device
JPH1050480A (en) Light-emitting element and manufacture thereof
JPH10294181A (en) Organic electroluminescence element and manufacture thereof
JP3796787B2 (en) Light emitting element
JPH1140352A (en) Organic el element and manufacture thereof
JP2002299062A (en) Organic electroluminescent device
JPH07268317A (en) Light-emitting element
JPH10208880A (en) Light emitting element
JPH11242994A (en) Light emitting element and its manufacture
JPH11329746A (en) Organic el element
JP2000223265A (en) Light-emitting device
JPH1154284A (en) Electroluminescent element
JP3972584B2 (en) Organic electroluminescent device and manufacturing method thereof
JPH05320633A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012