JPH1048182A - Decision apparatus for base sequence - Google Patents

Decision apparatus for base sequence

Info

Publication number
JPH1048182A
JPH1048182A JP9130668A JP13066897A JPH1048182A JP H1048182 A JPH1048182 A JP H1048182A JP 9130668 A JP9130668 A JP 9130668A JP 13066897 A JP13066897 A JP 13066897A JP H1048182 A JPH1048182 A JP H1048182A
Authority
JP
Japan
Prior art keywords
fragment
migration
medium
concentration
electrophoresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9130668A
Other languages
Japanese (ja)
Other versions
JP2853706B2 (en
Inventor
Hideki Kanbara
秀記 神原
Yoshiko Katayama
佳子 片山
Tetsuo Nishikawa
哲夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9130668A priority Critical patent/JP2853706B2/en
Publication of JPH1048182A publication Critical patent/JPH1048182A/en
Application granted granted Critical
Publication of JP2853706B2 publication Critical patent/JP2853706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photodetection-type electrophoretic apparatus by which a fragment is detected at high speed and with high sensitivity. SOLUTION: In this apparatus, a fragment in which a nucleic acid sample is fluorescence-labeled is being electrophoresed by using a migration medium 4, a separated fragment is irradiated with a laser beam 1, fluorescence which in generated from a fluorescence labeling operation is detected, and the base sequence of the nucleic acid sample is decided. At this time, a polyacrylamine concentration in the migration medium 4 is decided in such a way that the migration time required when a fragment in a required base length is electrophoreses at the prescribe distance of the migration medium 4 becomes minimum, and the polyacryalamide concentration is set to a range of 2 to 6%, thereby shortening the measuring time of a fragment up to a 300 base length to 1.5 hours or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明はDNAあるいはRNAの
塩基配列決定方法及び塩基配列決定装置に係わり、特に
測定時間の短縮に好適な方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for determining the base sequence of DNA or RNA, and more particularly to a method and apparatus suitable for shortening the measurement time.

【従来の技術】従来、DNAなどの塩基配列決定はDN
A断片を放射性元素で標識し、長さに応じてゲル電気泳
動分離したパターンをオートラジオグラフイーで写真に
転写し、DNAバンドパターンを読み取ることによりな
されていた。これは手間と時間のかかる難点があった。
そこで放射性標識に代わり、蛍光標識を用いて、実時間
でDNA断片を分離検出して塩基配列を決定する手法が
発展してきた。このような蛍光標識を用いた実時間検出
法及びこれに用いる光検出型電気泳動装置については、
例えば、ジャーナル オブ バイオケミカル アンド
バイオフイジカルメソーズ 13(1986)315−
323(Journal of Biochemica
l and Biophysical Methods
13(1986)315−323)、あるいはネーチ
ャー 321,12,6月,1986,第674頁−第
679頁(Nature Vol.321 12 Ju
ne 1986)に記載されている。
2. Description of the Related Art Conventionally, DNA and other nucleotide sequences have been
The fragment A was labeled with a radioactive element, the pattern obtained by gel electrophoresis separation according to the length was transferred to a photograph by autoradiography, and the DNA band pattern was read. This had the disadvantage that it was troublesome and time-consuming.
Thus, a technique has been developed in which a DNA fragment is separated and detected in real time to determine a base sequence by using a fluorescent label instead of a radioactive label. About the real-time detection method using such a fluorescent label and the light detection type electrophoresis apparatus used for the method,
For example, Journal of Biochemical and
Bioactive Physical Methods 13 (1986) 315-
323 (Journal of Biochemical)
l and Biophysical Methods
13 (1986) 315-323), or Nature 321, December, June, 1986, pp. 674-679 (Nature Vol. 321 12 Ju).
ne 1986).

【発明が解決しようとする課題】上記従来技術では、泳
動開始から測定終了までに5〜10時間もの長時間を要
する難点があった。このような長時間泳動を必要とする
原因はゲル電気泳動現象の詳細が知られていないこと、
実時間検出法ではオートラジオグラムを目視してバンド
を読み取る時の位置分解能よりも光検出の位置分解能が
悪く、長い泳動路を必要とすること、それにもかかわら
ずオートラジオグラフイーと同じような通常8%程度の
高いアクリルアミド濃度の泳動分離器で測定を行なって
いることなどによる。本発明の課題はこの難点を解決
し、短時間で測定を終了しえるDNAあるいはRNAの
塩基配列決定方法及び装置を提供することにある。
In the above-mentioned prior art, there is a problem that it takes as long as 5 to 10 hours from the start of the electrophoresis to the end of the measurement. The reason why such long-time electrophoresis is required is that the details of the gel electrophoresis phenomenon are not known,
In the real-time detection method, the position resolution of light detection is lower than the position resolution when reading bands by observing the autoradiogram, and a long electrophoresis path is required. This is due to the fact that the measurement is carried out using a migration separator having a high acrylamide concentration of usually about 8%. An object of the present invention is to provide a method and an apparatus for determining the base sequence of DNA or RNA, which can solve the above-mentioned difficulties and can complete the measurement in a short time.

【課題を解決するための手段】そこで上記短時間計測と
いう目的は、ゲル電気泳動の諸条件を最適化することに
より達成される。具体的には、電気泳動分離器に用いる
ゲルのポリアクリルアミド濃度Cを2%〜6%とするこ
とで達成される。より詳細には、測定上支障のない電界
強度及び温度Tの下で、隣接するDNAバンドを識別す
ると共に泳動に要する時間tをできるだけ小さくするよ
うなゲル濃度C、及び泳動開始点からレーザ照射部まで
の泳動距離(泳動路長)Lを選ぶ。
Accordingly, the object of the short-time measurement is achieved by optimizing various conditions of gel electrophoresis. Specifically, this is achieved by setting the polyacrylamide concentration C of the gel used for the electrophoresis separator to 2% to 6%. More specifically, under the electric field intensity and the temperature T at which there is no problem in the measurement, the gel concentration C for identifying the adjacent DNA band and minimizing the time t required for the electrophoresis as much as possible, and the laser irradiation part from the electrophoresis start point. Up to the migration distance (migration path length) L.

【作用】塩基長NのDNA断片の泳動速度V(N)を用
いると泳動路長Lを泳動するに要する時間tは(数1)
と表示できる。
Using the electrophoresis speed V (N) of a DNA fragment having a base length of N, the time t required for electrophoresis of the electrophoresis path length L is (Equation 1)
Can be displayed.

【数1】 t=L/V(N) …(数1) V(N)はゲル中の電界強度Eに比例し、V(N)=E
・V0(N,C,T)と表され、比例係数V0(N,C,
T)は、DNA断片の塩基数即ち塩基長N、ポリアクリ
ルアミドの濃度C、及び温度Tの関数である。
T = L / V (N) (Equation 1) V (N) is proportional to the electric field strength E in the gel, and V (N) = E
V 0 (N, C, T), and the proportional coefficient V 0 (N, C, T)
T) is a function of the number of bases of the DNA fragment, that is, the base length N, the concentration C of polyacrylamide, and the temperature T.

【数2】 t=L/{E・V0(N,C,T)} …(数2) 電界強度Eを高くすると泳動に要する時間tは小さくで
きるが、ジュール熱が発生してゲル板の温度Tが高くな
りDNAバンドの分離に支障をきたす。測定上支障のな
い電界強度E及び温度(T)の下で、DNAバンドを識
別すると共に泳動に要する時間tをできるだけ小さくす
るようなゲル濃度C及び泳動路長Lを選ぶことにより短
時間計測を実現できる。
T = L / {E · V 0 (N, C, T)} (Equation 2) When the electric field strength E is increased, the time t required for electrophoresis can be shortened. , The temperature T increases, which hinders DNA band separation. Under the electric field intensity E and the temperature (T) at which there is no problem in the measurement, the DNA band is identified and the gel concentration C and the migration path length L are selected so as to minimize the time t required for the electrophoresis. realizable.

【実施例】以下、本発明の一実施例を図1〜図5を用い
て説明する。図1は本発明による光検出型電気泳動装置
の一例である。レーザー源31から得た励起用レーザー
1はレンズ2を通して側面から電気泳動ゲル4に入る。
電気泳動ゲル4は石英板3に保持されている。蛍光標識
DNAなどの試料32は、例えばゲル4の上端部を泳動
開始点として泳動分離されながらゲル4の下端部に向か
つて進んでゆく。泳動開始点から一定距離の所をレーザ
ー1は照射し、そこを通過する蛍光標識DNAからの蛍
光をフイルタ5付きレンズ6で集光し、イメージ増幅器
7で増幅しリレーレンズ8を通した後ビジコンカメラ9
で検出する。得られた信号は計算機10で処理され出力
される。レーザーを側面から入れる代わりに前面から一
定路上をスキャンして照射してもよい。泳動時間は(数
2)からわかるように泳動開始点からレーザ照射部まで
の距離(泳動距離)L、ポリアクリルアミドゲルの濃度
C、ゲル板の上下両端に加える電圧v(あるいはゲル中
での電界強度E)に依存する。図2は種々のゲル濃度C
におけるDNA断片の泳動時間tを示したものである。
DNA断片の泳動時間tは、泳動速度V(N)が電界強
度Eに比例すること及び図2から(数2)と表示でき
る。なお、V0(N,C,T)=f(C,T)N+g
(T)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows an example of a photodetection type electrophoresis apparatus according to the present invention. The excitation laser 1 obtained from the laser source 31 enters the electrophoresis gel 4 from the side through the lens 2.
The electrophoresis gel 4 is held on the quartz plate 3. The sample 32 such as a fluorescence-labeled DNA advances toward the lower end of the gel 4 while being subjected to electrophoretic separation with the upper end of the gel 4 as an electrophoresis starting point, for example. The laser 1 irradiates a certain distance from the electrophoresis start point, and the fluorescence from the fluorescently labeled DNA passing therethrough is collected by the lens 6 with the filter 5, amplified by the image amplifier 7, passed through the relay lens 8, Camera 9
To detect. The obtained signal is processed and output by the computer 10. Instead of inserting the laser from the side, it may scan and irradiate a fixed road from the front. As can be seen from (Equation 2), the migration time is the distance (migration distance) L from the migration start point to the laser irradiation part, the concentration C of the polyacrylamide gel, the voltage v applied to the upper and lower ends of the gel plate (or the electric field in the gel). Intensity E). FIG. 2 shows various gel concentrations C
5 shows the migration time t of the DNA fragment in FIG.
The migration time t of the DNA fragment can be expressed as (Equation 2) from FIG. 2 that the migration speed V (N) is proportional to the electric field strength E. V 0 (N, C, T) = f (C, T) N + g
(T).

【数3】 t=(L/E){f(C,T)N+g(T)} …(数3) 即ち、泳動時間tは、泳動距離L、ゲル中での電解強度
Eの逆数(1/E)に比例する。ここで、f(C,T)
及びg(T)はポリアクリルアミドの濃度C、及び温度
Tの関数である。塩基長Nを零に漸近した時の泳動時間
0は(数3)のL・g(T)/Eに等しく、t0=L・
g(T)/Eであり、t0はLに比例し、g(T)、E
に依存するが、濃度Cによらない((数3)はこのt0
を用いて、t=(L/E)f(C,T)N+t0とな
る)。図1からt0≒27分である。(数1)及び(数
3)からV(N)は(数4)と表示できる。
T = (L / E) {f (C, T) N + g (T)} (Equation 3) That is, the migration time t is determined by the migration distance L and the reciprocal of the electrolysis intensity E in the gel (1 / E). Where f (C, T)
And g (T) are a function of the concentration C of the polyacrylamide and the temperature T. The migration time t 0 when the base length N is asymptotically reduced to zero is equal to L · g (T) / E in (Equation 3), and t 0 = L ·
g (T) / E, where t 0 is proportional to L, g (T), E
Depends on, it does not depend on the concentration C ((number 3) The t 0
With, and t = (L / E) f (C, T) N + t 0). From FIG. 1, t 0 ≒ 27 minutes. From (Equation 1) and (Equation 3), V (N) can be expressed as (Equation 4).

【数4】 V(N)=E/{f(C,T)N+g(T)} …(数4) 時間tだけ泳動した時の隣接したバンドの間隔dは(数
5)となる。
V (N) = E / {f (C, T) N + g (T)} (Equation 4) The interval d between adjacent bands when electrophoresed for time t is (Equation 5).

【数5】 d={V(N)−V(N+1)}t =L/{N+(g(T)/f(C,T))} …(数5) この(数5)からバンド間隔dは塩基長Nの値が大きい
時、ポリアクリルアミドの濃度Cにあまり依存せず、L
/Nに近くなることがわかる。例えば、L=220mm
とする時、N=100、200、300、400塩基に
対して、L/N=2.2、1.1、0.73、0.55
となる。図3は実測のバンド間隔の濃度依存性を種々の
塩基長Nについて示したものである。泳動距離は22c
mである。塩基長Nが100程度と短い時にはゲル濃度
Cを上げるとバンド間隔dも大きくなるが、塩基長Nが
200以上、とくに300あるいは400になってくる
とゲル濃度C、6%ではバンド間隔はほぼ一定になり、
6%以上のゲルの使用は単に泳動時間の増大を招くだけ
であることがわかる。一方、DNAバンド幅ωはゲル濃
度Cにほとんど依存せず、√Lにほぼ比例することが実
験から確認できた。そこで、ωは(数6)で表わすこと
ができる。
D = {V (N) -V (N + 1)} t = L / {N + (g (T) / f (C, T))} (Equation 5) From this (Equation 5), the band interval When the value of the base length N is large, d does not depend much on the concentration C of polyacrylamide.
/ N. For example, L = 220 mm
L / N = 2.2, 1.1, 0.73, 0.55 for N = 100, 200, 300, 400 bases
Becomes FIG. 3 shows the concentration dependence of the actually measured band interval for various base lengths N. Migration distance is 22c
m. When the base length N is as short as about 100, the band interval d increases when the gel concentration C is increased. However, when the base length N is 200 or more, particularly 300 or 400, the band interval is almost equal at the gel concentration C and 6%. Become constant,
It can be seen that the use of 6% or more of the gel merely causes an increase in the migration time. On the other hand, it was confirmed from the experiment that the DNA bandwidth ω hardly depends on the gel concentration C and is almost proportional to ΔL. Therefore, ω can be represented by (Equation 6).

【数6】 ω=ω0(N,T)√L …(数6) 図4は種々の塩基長Nの泳動時間のポリアクリルアミド
ゲル濃度依存性を示したものである(図2では塩基長N
に対する泳動時間tの変化を示したが、図2を書きかた
図4は、ポアクリルアミド濃度Cに対する泳動時間tの
変化を示し、濃度Cを零に漸近した時の泳動時間は図2
に示すt0であり、濃度Cによらない)。濃度Cのほぼ
2乗に比例して泳動時間が増大することがわかる。温度
Tを一定にした時、泳動時間tは泳動路長Lとゲル濃度
Cの函数である。二つの隣接バンドを識別するには少な
くともd≧ωである必要がある。そこでd=ωとおい
て、泳動時間tをゲル濃度Cだけの函数にして、泳動時
間tを最小にするゲル濃度Cを求めた。d=ω、(数
5)、(数6)から(数7)のようにLを求め、(数
3)に代入して(数8)を得る。
Ω = ω 0 (N, T) √L (Equation 6) FIG. 4 shows the polyacrylamide gel concentration dependence of the migration time of various base lengths N (base length in FIG. 2). N
FIG. 4 shows how the migration time t changes with respect to the polyacrylamide concentration C. The migration time when the concentration C is asymptotically reduced to zero is shown in FIG.
A t 0 shown in, not according to the concentration C). It can be seen that the migration time increases in proportion to the square of the concentration C. When the temperature T is kept constant, the migration time t is a function of the migration path length L and the gel concentration C. At least d ≧ ω is required to distinguish two adjacent bands. Then, with d = ω, the migration time t was made a function of the gel concentration C only, and the gel concentration C that minimized the migration time t was determined. L is obtained as in (Equation 7) from d = ω, (Equation 5) and (Equation 6), and is substituted into (Equation 3) to obtain (Equation 8).

【数7】 L=ω0 2(N,T){N+(g(T)/f(C,T))}2 …(数7)L = ω 0 2 (N, T) {N + (g (T) / f (C, T))} 2 (Equation 7)

【数8】 t=ω0 2(N,T){f(C,T)N+g(T)}3/{Ef2(C,T)} …(数8) (数8)を用い(dt/dC)=0からCを変化させた
時にtを極小とするC値が求めるゲル濃度である。
T = ω 0 2 (N, T) {f (C, T) N + g (T)} 3 / {Ef 2 (C, T)} (Equation 8) / DC) = 0 The C value that minimizes t when C is changed from 0 is the gel concentration to be determined.

【数9】 (dt/dC)={ω0 2(N,T)/(Ef4(C,T))}× {3(f(C,T)N+g(T))2f(C,T)N−2(f(C,T)N+ g(T))3}f(C,T){df(C,T)/dC}=0 …(数9) (数9)より、f(C,T)N=2g(T)を得る。即
ち図4上で(t−t0)=(L/E)f(C,T)N=
(L/E)2g(T)=2t0となるゲル濃度Cがtを
最小にするもので、塩基長Nが100、200、300
及び400の時、それぞれ6.2%、4.3%、3.2
%及び2.6%である。なお、tの最小値tminは、
(数3)のt=(L/E){f(C,T)N+g
(T)}にf(C,T)N=2g(T)を代入して、t
=(L/E){3g(T)}を得て、さらにt0=L・
g(T)/Eを用いると、tmin=3t0≒3×27=8
1(分)となり、図4においてtminに対応する濃度C
を読み取れば上記のtを最小にするゲル濃度Cとなる。
実際の分析では200〜300塩基長の分析をすること
が多い。二つの隣接バンドを識別して分離に必要なゲル
泳動路長L(=L*)は、(数7)にf(C,T)N=
2g(T)を代入して求めることができる。
(Dt / dC) = {ω 0 2 (N, T) / (Ef 4 (C, T))} × {3 (f (C, T) N + g (T)) 2 f (C, T) N−2 (f (C, T) N + g (T)) 3 {f (C, T)} df (C, T) / dC} = 0 (Equation 9) (C, T) N = 2g (T) is obtained. That is, in FIG. 4, (t−t 0 ) = (L / E) f (C, T) N =
(L / E) 2g (T) = 2t 0 , the gel concentration C minimizes t, and the base length N is 100, 200, 300
And 400, 6.2%, 4.3%, and 3.2, respectively.
% And 2.6%. Note that the minimum value t min of t is
T = (L / E) {f (C, T) N + g in (Equation 3)
Substituting f (C, T) N = 2g (T) into (T)}, t
= (L / E) {3g (T)}, and t 0 = L ·
Using g (T) / E, t min = 3t 0 ≒ 3 × 27 = 8
1 (minute), and the density C corresponding to t min in FIG.
Is read, the gel concentration C is obtained to minimize the above-mentioned t.
In actual analysis, analysis of 200 to 300 bases is often performed. The gel migration path length L (= L * ) required for discriminating the two adjacent bands and separating them is expressed by (Equation 7) as f (C, T) N =
It can be obtained by substituting 2g (T).

【数10】 L*=(9/4)N2ω0 2(N,T) …(数10) ω0(N,T)は、(数6)より泳動路長L0の時のバン
ド幅の実測値ωobsからωobs/√L0により求めること
ができ、L*=(9/4)N2ωobs 2/L0となる。ゲル
板厚さを0.3mmとし、電界強度50V/cmの時に
泳動時間を最小とするポリアクリルアミド濃度Cと泳動
路長L(=L*)及びその時の泳動時間t)を、以下
に、{塩基長N:ポリアクリルアミド濃度C(%):泳
動路長L(=L*)(cm):泳動時間t(分)}とし
て示す。図2(図4)の結果を得たときの泳動路長を
L’とするとき、t0=L’・g(T)/E≒27分で
あるから、g(T)/E=27/L’となり、t0
L’に比例するから、泳動路長L*を泳動するに要する
泳動時間3t0は、3t0=(81/L’)L*から得ら
れる(なお、以下の結果を与えるL’は約22cmであ
る)。 {N=100:C=6.2%:L*= 6cm:t=
22分} {N=200:C=4.3%:L*=15cm:t=
56分} {N=300:C=3.2%:L*=28cm:t=1
06分} {N=400:C=2.6%:L*=41cm:t=1
56分} ここで示した値は1つの目安であり、泳動電圧、泳動ゲ
ルの濃度、ゲルの厚さなどで若干変化する。しかし、長
い塩基長のDNA断片を含む試料を、少なくともd≧ω
として、二つの隣接バンドを識別する好適なバンド間隔
で高速に電気泳動分離するには、ポリアクリルアミド濃
度が2%〜6%のゲルの使用が好適であることがわか
る。この濃度範囲は、従来使用されていた濃度よりはは
るかに低い濃度である。ここで得た条件は約1.5時間
で300塩基までの計測を行なうことができる。 図5
には3%ゲルを用いて泳動路長22cmで測定した結果
を示す。泳動路長が28cmよりも短いので分離は十分
ではないが、300塩基近傍の塩基が識別できることが
わかる。300塩基長のDNA断片の泳動時間は77分
であった。
L * = (9/4) N 2 ω 0 2 (N, T) (Equation 10) ω 0 (N, T) is a band at the migration path length L 0 according to (Equation 6). It can be obtained from the measured width value ω obs by ω obs / √L 0 , and L * = (9/4) N 2 ω obs 2 / L 0 . The polyacrylamide concentration C, the migration path length L (= L * ) and the migration time t) at which the migration time is minimized when the gel plate thickness is 0.3 mm and the electric field strength is 50 V / cm are as follows: Base length N: polyacrylamide concentration C (%): migration path length L (= L * ) (cm): migration time t (minute)}. When the migration path length when the result of FIG. 2 (FIG. 4) is obtained is L ′, since t 0 = L ′ · g (T) / E ≒ 27 minutes, g (T) / E = 27 / L ′, and t 0 is proportional to L ′, so that the migration time 3t 0 required to migrate the migration path length L * is obtained from 3t 0 = (81 / L ′) L * (the following: L 'giving the result is about 22 cm). {N = 100: C = 6.2%: L * = 6 cm: t =
22 minutes} N = 200: C = 4.3%: L * = 15 cm: t =
56 minutes} N = 300: C = 3.2%: L * = 28 cm: t = 1
06 minutes} N = 400: C = 2.6%: L * = 41 cm: t = 1
56 minutes} The values shown here are only a guide and slightly vary depending on the migration voltage, the concentration of the migration gel, the thickness of the gel, and the like. However, at least d ≧ ω
It can be seen that the use of a gel having a polyacrylamide concentration of 2% to 6% is suitable for high-speed electrophoretic separation at a suitable band interval for discriminating two adjacent bands. This concentration range is much lower than the concentration conventionally used. The conditions obtained here can measure up to 300 bases in about 1.5 hours. FIG.
Shows the results of measurement using a 3% gel at a migration path length of 22 cm. Since the migration path length is shorter than 28 cm, separation is not sufficient, but it can be seen that bases near 300 bases can be identified. The electrophoresis time of the DNA fragment having a length of 300 bases was 77 minutes.

【発明の効果】本発明によれば従来5〜10時間を必要
としていたDNA断片の測定が1時間余で行なうことが
でき、塩基配列決定に必要な時間を飛躍的に短縮できる
という効果がある。また、蛍光計測ではゲルからの散乱
光や蛍光が背景光となり検出下限を決めていたが、低い
ゲル濃度ではこれら背景光も低下するので高感度検出が
できる利点もある。
According to the present invention, the measurement of a DNA fragment, which conventionally required 5 to 10 hours, can be performed in less than 1 hour, and the time required for base sequence determination can be greatly reduced. . In the fluorescence measurement, the scattered light and the fluorescence from the gel serve as background light, and the lower limit of detection is determined. However, at a low gel concentration, the background light also decreases, so that there is an advantage that high sensitivity detection is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光検出型電気泳動装置の1実施例
の概念図。
FIG. 1 is a conceptual diagram of one embodiment of a light detection type electrophoresis apparatus according to the present invention.

【図2】本発明の実施例での種々のポリアクリルアミド
ゲル濃度における塩基長と泳動時間の関係を示す図。
FIG. 2 is a diagram showing the relationship between base length and migration time at various polyacrylamide gel concentrations in Examples of the present invention.

【図3】本発明の実施例での種々の塩基長のバンド間隔
のゲル濃度依存性を示す図。
FIG. 3 is a graph showing the gel concentration dependency of the band intervals of various base lengths in Examples of the present invention.

【図4】本発明の実施例での各塩基長の泳動時間のゲル
濃度依存性を示す図。
FIG. 4 is a graph showing the gel concentration dependence of the migration time of each base length in Examples of the present invention.

【図5】本発明の実施例での3%ポリアクリルアミドゲ
ル(泳動路長22cm)を用いて得たDNA断片スペク
トルを示す図。
FIG. 5 is a view showing a DNA fragment spectrum obtained using a 3% polyacrylamide gel (migration path length: 22 cm) in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…レーザ、2…レンズ、3…石英板、4…ゲル板、5
…フイルター、6…結像レンズ、7…イメージ増幅器、
8…リレーレンズ、9…ビジコンカメラ、10…計算
機、11〜16…それぞれ2%、3%、4%、5%、6
%、8%ポリアクリルアミドゲルを用いた時の泳動時間
と塩基長の関係、17〜20…100、200、300
及び400塩基のDNA断片のバンド間隔あるいは泳動
時間のゲル濃度による変化、16…末端がグアニン
(G)で終わる断片群のスペクトル、17’…末端がチ
ミン(T)で終わる断片群のスペクトル、31…レーザ
ー源、32…試料。
DESCRIPTION OF SYMBOLS 1 ... Laser, 2 ... Lens, 3 ... Quartz plate, 4 ... Gel plate, 5
... a filter, 6 ... an imaging lens, 7 ... an image amplifier,
8: relay lens, 9: vidicon camera, 10: computer, 11 to 16: 2%, 3%, 4%, 5%, 6 respectively
%, Relationship between electrophoresis time and base length when using 8% polyacrylamide gel, 17 to 20 ... 100, 200, 300
And the change in the band interval or the migration time of the DNA fragment of 400 bases depending on the gel concentration, the spectrum of the group of fragments ending with guanine (G) at 16..., The spectrum of the group of fragments ending with thymine (T) at 17 ′. ... laser source, 32 ... sample.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】核酸試料の蛍光標識された断片を、泳動媒
体を用いて電気泳動しながら、分離された前記断片にレ
ーザ光を照射し、前記蛍光標識から発生した蛍光を検出
して、前記核酸試料の塩基配列を決定する塩基配列決定
装置であって、前記泳動媒体中のポリアクリルアミド濃
度が2%〜6%であり、300塩基長までの前記断片を
1.5時間以下で検出することを特徴とする塩基配列決
定装置。
The method comprises the steps of: irradiating a fluorescently labeled fragment of a nucleic acid sample with a laser beam while electrophoresing the fragment using an electrophoresis medium, detecting fluorescence generated from the fluorescent label, A base sequencer for determining a base sequence of a nucleic acid sample, wherein the polyacrylamide concentration in the electrophoresis medium is 2% to 6%, and the fragment up to 300 bases in length is detected in 1.5 hours or less. A base sequence determination device characterized by the above-mentioned.
【請求項2】核酸試料の蛍光標識された断片を、泳動媒
体を用いて電気泳動しながら、分離された前記断片にレ
ーザ光を照射し、前記蛍光標識から発生した蛍光を検出
して、前記核酸試料の塩基配列を決定する塩基配列決定
装置であって、前記断片の泳動開始点から前記レーザ光
が照射される部位までの泳動路長Lを、塩基長Nの前記
断片が泳動する泳動時間tを、前記泳動媒体濃度C、及
び前記塩基長Nを変化させて計測し、前記塩基長Nを0
に漸近した時に得られる泳動時間をt0、前記泳動路長
LがL0である時の前記断片の実測のバンド幅をωobs
前記泳動媒体中の電界強度をE、前記核酸試料の計測対
象の塩基長をN’とする時、前記断片の泳動距離L’を
L’=(3ωobsN’/2)2/L0、泳動時間tをt=
3t0L’/Lとすることを特徴とする塩基配列決定装
置。
2. Fluorescently labeled fragments of a nucleic acid sample are electrophoresed using an electrophoresis medium, and the separated fragments are irradiated with laser light to detect fluorescence generated from the fluorescent labels. A base sequence determination device for determining a base sequence of a nucleic acid sample, wherein a migration path length L from an electrophoresis start point of the fragment to a site irradiated with the laser beam is determined by a migration time for the fragment having a base length N to migrate. t is measured by changing the electrophoretic medium concentration C and the base length N, and setting the base length N to 0
The migration time obtained when asymptotically approaching is t 0 , the measured bandwidth of the fragment when the migration path length L is L 0 is ω obs ,
When the electric field strength in the electrophoresis medium is E and the base length of the nucleic acid sample to be measured is N ′, the electrophoresis distance L ′ of the fragment is L ′ = (3ω obs N ′ / 2) 2 / L 0 , The migration time t is t =
An apparatus for determining a nucleotide sequence, which is set to 3t 0 L ′ / L.
【請求項3】請求項2に記載の塩基配列決定装置におい
て、前記泳動媒体中のポリアクリルアミド濃度が2%〜
6%であることを特徴とする塩基配列決定装置。
3. The base sequencer according to claim 2, wherein the concentration of polyacrylamide in the electrophoresis medium is 2% to 2%.
A base sequence determination device characterized in that the ratio is 6%.
【請求項4】請求項2に記載の塩基配列決定装置におい
て、前記泳動媒体の厚さが0.3mmであることを特徴
とする塩基配列決定装置。
4. The base sequencer according to claim 2, wherein said electrophoresis medium has a thickness of 0.3 mm.
【請求項5】核酸試料の蛍光標識された断片を、泳動媒
体を用いて電気泳動しながら、分離された前記断片にレ
ーザ光を照射し、前記蛍光標識から発生した蛍光を検出
して、前記核酸試料の塩基配列を決定する塩基配列決定
装置であって、所定の塩基長の前記断片が前記泳動媒体
の所定の距離を泳動するに要する泳動時間を最小とする
ように、前記泳動媒体濃度が決定されることを特徴とす
る塩基配列決定装置。
5. A method for irradiating a fluorescently labeled fragment of a nucleic acid sample with a laser beam while electrophoresing the fragment using a migration medium, detecting fluorescence generated from the fluorescent label, A base sequence determination device for determining a base sequence of a nucleic acid sample, wherein the concentration of the migration medium is such that the fragment having a predetermined base length minimizes migration time required to migrate a predetermined distance of the migration medium. A base sequence determination device characterized by being determined.
【請求項6】請求項5に記載の塩基配列決定装置におい
て、前記泳動媒体中のポリアクリルアミド濃度が2%〜
6%であることを特徴とする塩基配列決定装置。
6. The apparatus for determining a base sequence according to claim 5, wherein the concentration of polyacrylamide in the electrophoresis medium is 2% or less.
A base sequence determination device characterized in that the ratio is 6%.
【請求項7】核酸試料の蛍光標識された断片を所定の時
間にわたり電気泳動する泳動媒体と、該泳動媒体により
分離された前記断片にレーザ光を照射する光照射手段
と、前記レーザ光の照射により前記蛍光標識から発生し
た蛍光を検出する光検出手段とを有し、前記核酸試料の
塩基配列を決定する塩基配列決定装置であって、前記泳
動媒体中のポリアクリルアミド濃度が2%〜6%であ
り、前記光照射手段は前記レーザ光を、前記泳動媒体の
厚さの方向の側面から照射することを特徴とする塩基配
列決定装置。
7. An electrophoresis medium for electrophoresing a fluorescence-labeled fragment of a nucleic acid sample for a predetermined period of time, a light irradiating means for irradiating the fragment separated by the electrophoresis medium with laser light, and irradiating the laser light. And a light detecting means for detecting the fluorescence generated from the fluorescent label by the method according to (1), wherein the polyacrylamide concentration in the electrophoresis medium is 2% to 6%. Wherein the light irradiation means irradiates the laser light from a side surface in a thickness direction of the electrophoresis medium.
【請求項8】核酸試料の蛍光標識された断片を所定の時
間にわたり電気泳動する泳動媒体と、該泳動媒体により
分離された前記断片にレーザ光を照射する光照射手段
と、前記レーザ光の照射により前記蛍光標識から発生し
た蛍光を検出する光検出手段とを有し、前記核酸試料の
塩基配列を決定する塩基配列決定装置であって、前記泳
動媒体中のポリアクリルアミド濃度が2%〜6%であ
り、前記泳動媒体の面に対してスキャンしながら照射す
ることを特徴とする塩基配列決定装置。
8. An electrophoresis medium for electrophoresing a fluorescence-labeled fragment of a nucleic acid sample for a predetermined time, a light irradiating means for irradiating the fragment separated by the electrophoresis medium with laser light, and irradiating the laser light. And a light detecting means for detecting the fluorescence generated from the fluorescent label by the method according to (1), wherein the polyacrylamide concentration in the electrophoresis medium is 2% to 6%. And irradiating the surface of the electrophoresis medium while scanning the base medium.
JP9130668A 1997-05-21 1997-05-21 Base sequence determination method Expired - Fee Related JP2853706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9130668A JP2853706B2 (en) 1997-05-21 1997-05-21 Base sequence determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9130668A JP2853706B2 (en) 1997-05-21 1997-05-21 Base sequence determination method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63039385A Division JP2804038B2 (en) 1988-02-24 1988-02-24 Base sequence determination method

Publications (2)

Publication Number Publication Date
JPH1048182A true JPH1048182A (en) 1998-02-20
JP2853706B2 JP2853706B2 (en) 1999-02-03

Family

ID=15039767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9130668A Expired - Fee Related JP2853706B2 (en) 1997-05-21 1997-05-21 Base sequence determination method

Country Status (1)

Country Link
JP (1) JP2853706B2 (en)

Also Published As

Publication number Publication date
JP2853706B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP2804038B2 (en) Base sequence determination method
EP0628164B1 (en) Capillary array confocal fluorescence scanner and method
JP3127238B2 (en) Methods and detectors for separation processes
Karger et al. Multiwavelength fluorescence detection for DNA sequencing using capillary electrophoresis
US5051162A (en) Fluorescence detection type electrophoresis apparatus and its supporting vessel
US6132578A (en) Method and apparatus for electrophoresis separation and detection
JP2702920B2 (en) Electrophoretic separation detection method and apparatus
JP2702965B2 (en) Gene detection apparatus and gene detection method
JP2914333B2 (en) Base sequence determination method
JP2853706B2 (en) Base sequence determination method
JP2610870B2 (en) Base sequencer
JP7016957B2 (en) Biopolymer analysis method and biopolymer analyzer
Lindberg et al. Gel electrophoresis of DNA fragments in narrow‐bore capillaries
Smith et al. [10] High-speed automated DNA sequencing in ultrathin slab gels
EP0275440B1 (en) Photo detection system for dna base analysis
JPH05322771A (en) Multi-marker electrophoretic system
JP2840586B2 (en) Light detection electrophoresis device
Kambara et al. Photodestruction of fluorophores and optimum conditions for trace DNA detection by automated DNA sequencer
JPH05322770A (en) Multi-marker electrophoresis
JPH04244954A (en) Apparatus for determining base sequence
Kamahori et al. Capillary array electrophoresis analyzer
KR100777363B1 (en) Separation wall-integrated electrophoresis board and Nucleic acid sequencing appratus using the same
JPH09178703A (en) Base arrangement determining device
JPH01174958A (en) Base sequence determining apparatus
JPH09243562A (en) Dna sequencer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees