JPH1041402A - Overcurrent protecting dmos fet - Google Patents

Overcurrent protecting dmos fet

Info

Publication number
JPH1041402A
JPH1041402A JP8189231A JP18923196A JPH1041402A JP H1041402 A JPH1041402 A JP H1041402A JP 8189231 A JP8189231 A JP 8189231A JP 18923196 A JP18923196 A JP 18923196A JP H1041402 A JPH1041402 A JP H1041402A
Authority
JP
Japan
Prior art keywords
drain
current
type
fet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8189231A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishiguro
宏 石黒
Nobuyuki Hamamatsu
伸到 浜松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8189231A priority Critical patent/JPH1041402A/en
Publication of JPH1041402A publication Critical patent/JPH1041402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable containment of a protecting structure deciding the upper limit of the current by making a junction FET and a DMOS FET a series connected integral structure. SOLUTION: A path is composed of an n-type semiconductor made of an n-type source region 4, an n-type semiconductor layer 2, a polarity inverting part of a p-type semiconductor region 3 and a drain region 6. When a drain electrode 7 is impressed with a high voltage, a current ID runs through the gap made between depletion layers (e) and (f) a point (g) further through an n-type inverting layer opposing to a gate electrode 8 into a source electrode 9. In such a structure as a high breakdown DMOS FET into the source region 4 to be series connected to the latter stage of J FET, the current ID is controlled by the gate electrode 8 while running in the current channel part after the point (g) halfway in the current path. In such a constitution, the gap size between the depletion layers (e) and (f) becomes smaller the higher becomes the voltage level impressed on the drain electrode 7 to increase the resistance of the current path, thereby enabling the drain current to be limited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過電流が流れるの
を防止する高耐圧DMOS FETの構造にする関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a high breakdown voltage DMOS FET for preventing an overcurrent from flowing.

【0002】[0002]

【従来の技術】従来型の二重拡散構造をとる高耐圧DM
OS FETでは、ゲートON(チャネルが導通の状
態)のときに負荷等に異常があり過電流が発生すると、
その電流はそのまま高耐圧DMOS FETを通過して
下流にある素子を破壊する可能性があった。図3は従来
型の高耐圧DMOS FETの構造を示す断面図であ
る。1は伝導型がp型の不純物でできたシリコン基板で
ある。2はp型基板1の上に作成したエピタキシャル層
または拡散層でできたn型半導体層である。3はn型半
導体層2内に形成したp型半導体領域でる。4は前記p
型半導体領域3内に形成した高濃度n形半導体のソース
領域である。以下それぞれに不純物を拡散した領域を形
成する。5は高濃度p型半導体のソース領域、6は高濃
度n型半導体のドレーン領域である。7はドレーン電
極、8はゲート電極、9はソース電極でありそれぞれの
不純物層から引き出されている。10は絶縁膜(シリコ
ン酸化膜)である。ゲート電極8は絶縁膜を隔ててp型
半導体領域3、ソース層4の上まで広がる。このような
構造において、ゲート電極8に正の電圧を印加するとゲ
ート電極8に対向して絶縁膜で隔てられた部分のp型半
導体領域3の極性がn型に反転する。この部分をn型チ
ャンネルという。この部分の不純物濃度(ド−ピング濃
度)と層の形状寸法により耐圧とチャンネルのON抵抗
(RON)が決まる。このようにしてドレーン層6からn
型半導体層2、極性がn型に反転したチャンネル部を経
てソース領域4へと経路の全てがn型半導体でつながれ
電流の経路が形成される。そこでドレーン電極7に高電
圧が加えられると高濃度n型半導体のドレーン領域6に
流れ込んだ電流は先に説明した経路を流れてソース電極
9へと流れ込む。この電流はドレイン領域6に加えた電
圧VDと前記のRONの値からVD/RONにより求めること
ができる。この電流はVDとRONの値により過大になる
ので制限する必要がある。
2. Description of the Related Art A conventional high withstand voltage DM having a double diffusion structure.
In the case of an OS FET, when an overcurrent occurs due to an abnormality in a load or the like when the gate is ON (the channel is in a conductive state),
The current may pass through the high-breakdown-voltage DMOS FET as it is and destroy elements located downstream. FIG. 3 is a sectional view showing the structure of a conventional high-breakdown-voltage DMOS FET. Reference numeral 1 denotes a silicon substrate made of a p-type impurity. Reference numeral 2 denotes an n-type semiconductor layer made of an epitaxial layer or a diffusion layer formed on the p-type substrate 1. Reference numeral 3 denotes a p-type semiconductor region formed in the n-type semiconductor layer 2. 4 is the p
It is a source region of a high-concentration n-type semiconductor formed in the type semiconductor region 3. Hereinafter, regions in which impurities are diffused are formed respectively. 5 is a source region of a high concentration p-type semiconductor, and 6 is a drain region of a high concentration n-type semiconductor. Reference numeral 7 denotes a drain electrode, 8 denotes a gate electrode, and 9 denotes a source electrode, which are extracted from the respective impurity layers. Reference numeral 10 denotes an insulating film (silicon oxide film). The gate electrode 8 extends over the p-type semiconductor region 3 and the source layer 4 via the insulating film. In such a structure, when a positive voltage is applied to the gate electrode 8, the polarity of the p-type semiconductor region 3 at the portion opposed to the gate electrode 8 and separated by the insulating film is inverted to n-type. This part is called an n-type channel. The withstand voltage and the ON resistance (R ON ) of the channel are determined by the impurity concentration (doping concentration) of this portion and the shape and dimensions of the layer. In this way, the drain layers 6 to n
All of the paths are connected by the n-type semiconductor to the source region 4 through the type semiconductor layer 2 and the channel portion whose polarity is inverted to the n-type, and a current path is formed. Therefore, when a high voltage is applied to the drain electrode 7, the current flowing into the drain region 6 of the high-concentration n-type semiconductor flows through the above-described path and flows into the source electrode 9. This current can be obtained by V D / R ON from the voltage V D applied to the drain region 6 and the value of R ON . This current needs to be limited because it becomes excessive depending on the values of V D and R ON .

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
のような過電流を防止するために、流れ込む電流の上限
値を決める保護構造を内蔵させた高耐圧DMOS FE
Tを実現することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-breakdown-voltage DMOS FE having a built-in protection structure for determining an upper limit value of a flowing current in order to prevent the above-mentioned overcurrent.
It is to realize T.

【0004】[0004]

【課題を解決するための手段】本発明の過電流保護形D
MOS FETは、第1種不純物半導体基板(1)の上
に形成した第2種不純物半導体層(2)の中に形成した
第2種不純物濃度の濃いドレーン層(6)及びこれに接
続されたドレーン電極(7)と、前記第2種不純物半導
体層(2)内であって前記ドレーン層(6)と離れた位
置に形成された第1種不純物半導体層(3)と、この第
1種不純物半導体層(3)内の前記ドレーン層(6)に
近い側に形成された第1種不純物濃度の濃い半導体層
(5)と、同じく遠い側に形成された第2種不純物濃度
の濃いソース層(4)と、このソース層(4)と前記1
種不純物濃度の濃い半導体層(5)とに共通に接続され
たソース電極(9)と、このソース電極(9)のドレー
ン電極(7)から遠い側にあって前記ソース層(4)及
び前記第1種不純物半導体層(3)とに対向して絶縁膜
を介して形成されたゲート電極(8)とから構成した接
合型FETと、DMOS FETとを直列接続の一体化
構造にしたことを特徴とする。
An overcurrent protection type D according to the present invention is provided.
The MOS FET includes a drain layer (6) having a high concentration of the second type impurity formed in a second type impurity semiconductor layer (2) formed on the first type impurity semiconductor substrate (1) and connected thereto. A drain electrode (7); a first-type impurity semiconductor layer (3) formed in the second-type impurity semiconductor layer (2) at a position separated from the drain layer (6); A semiconductor layer (5) having a high concentration of the first type impurity formed on the side closer to the drain layer (6) in the impurity semiconductor layer (3), and a source having a high concentration of the second type impurity also formed on the side farther from the drain layer (6). Layer (4), this source layer (4) and said 1
A source electrode (9) commonly connected to the semiconductor layer (5) having a high seed impurity concentration, and the source layer (4) and the source electrode (9) on a side of the source electrode (9) far from the drain electrode (7). It is described that a junction type FET constituted by a gate electrode (8) formed with an insulating film opposed to the first type impurity semiconductor layer (3) and a DMOS FET are formed in an integrated structure of series connection. Features.

【0005】[0005]

【発明の実施の形態】本発明は、先に説明した従来型の
高耐圧DMOS FETと電流制限特性のある接合型F
ET(以下J FETと記す)を一体として構成するこ
とにより電流保護構造をもつ高耐圧DMOS FETを
実現したものである。以下図面を用いて本発明を説明す
る。図1(a)は本発明の実施の形態の一例を示した過
電流保護型高耐圧DMOSFETの断面図である。第1
種不純物をp型不純物、第2種不純物をn型不純物とし
た場合の例について説明する。p、nを入れ代えて製作
することもできる。1は伝導形式がp型の不純物ででき
たシリコン基板である。2はp型基板の上に作成したエ
ピタキシャル層または拡散層のn型半導体層である。こ
の不純物濃度(ド−ピング濃度)と層の形状により耐圧
とON抵抗(チャンネル抵抗RON)が決まる。3はp型
半導体領域であり適宜マスキング、エッチング処理を経
て例えばボロンを拡散して形成する。4は高濃度n形半
導体のソース領域であり例えばリンを高濃度に拡散した
領域である。5は高濃度p型半導体のソース領域、6は
高濃度n型半導体のドレーン領域である。7はドレーン
電極でありドレン領域6に接続されている。8はゲート
電極であり絶縁膜を隔ててp型半導体領域3に対向して
いる。この部分をチャンネルという。9はソース電極で
ありソース領域4及び5に接続されている。10は絶縁
膜である。ゲート電極8は絶縁膜(シリコン酸化膜)を
隔ててドレイン層の上まで広がる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a conventional high breakdown voltage DMOS FET described above and a junction type FMOS having a current limiting characteristic.
A high voltage DMOS FET having a current protection structure is realized by integrally configuring an ET (hereinafter, referred to as a JFET). Hereinafter, the present invention will be described with reference to the drawings. FIG. 1A is a cross-sectional view of an overcurrent protection type high breakdown voltage DMOSFET showing an example of an embodiment of the present invention. First
An example in which the seed impurity is a p-type impurity and the second impurity is an n-type impurity will be described. It can also be manufactured by replacing p and n. Reference numeral 1 denotes a silicon substrate made of a p-type impurity. Reference numeral 2 denotes an n-type semiconductor layer of an epitaxial layer or a diffusion layer formed on a p-type substrate. The breakdown voltage and the ON resistance (channel resistance R ON ) are determined by the impurity concentration (doping concentration) and the shape of the layer. Reference numeral 3 denotes a p-type semiconductor region formed by appropriately diffusing, for example, boron through masking and etching processes. Reference numeral 4 denotes a source region of a high-concentration n-type semiconductor, for example, a region in which phosphorus is diffused at a high concentration. 5 is a source region of a high concentration p-type semiconductor, and 6 is a drain region of a high concentration n-type semiconductor. A drain electrode 7 is connected to the drain region 6. A gate electrode 8 faces the p-type semiconductor region 3 with an insulating film interposed therebetween. This part is called a channel. A source electrode 9 is connected to the source regions 4 and 5. Reference numeral 10 denotes an insulating film. The gate electrode 8 extends over the drain layer with the insulating film (silicon oxide film) interposed therebetween.

【0006】図1(a)の構造の特徴は、図3で示した
p型半導体領域3の表面に形成した高濃度n型半導体領
域4と高濃度p型半導体領域5の位置及びゲート電極8
の位置が入れ代わっている点にある。このように配置し
たことによりドレーン電流IDはJ FET及びDMO
SFETを直列に通過するので次に示す理由により最大
電流が制限される点に特徴がある。図1(b)は、図1
(a)に示すドレイン電極7の電位がソース電極9の電
位より高くなるに連れて空乏層(e)、(f)が広がる
ことを示す図である。ゲートに正の電圧が印加されてい
ると、ゲート電極8と絶縁膜で隔てられたp型半導体領
域3のチャンネル部分の極性がn型に反転するので、n
型のソース領域4、n型半導体層2、p型半導体領域3
の極性反転したチャンネル部分、ドレーン領域6とから
なるn型半導体でできた経路が構成される。そこでドレ
ーン電極7に高電圧が加えられるとドレーン領域6に流
れ込んだ電流IDは先に説明した経路を流れて、n型半
導体層2の中にできた空乏層(e)、(f)の間隙を通
り(g)点を通りゲート電極8に対向するn型反転層を
通ってソース電極9へと流れ込む。電流経路の途中の
(g)点から後は電流がチャンネル部分を流れる時にゲ
ート電極8により制御されソース領域4へと流れる高耐
圧DMOS FET部分であり、前記のJ FETの後
段に直列接続されている構造である。前記の空乏層
(e)と(f)との間隙の大きさはドレーン電極7に加
えられる電圧が大きくなると逆に狭くなり電流の通路の
抵抗を増加させるのでドレーン電流IDを制限するよう
になる。従ってドレーン電流IDは0<ID<VDsat/R
ON(=IMAX)の範囲に上限を持ってくることができ
る。また構造及び不純物濃度に従って電流が飽和する電
圧VDsatも次の式により求めることができる。(VG
0) q:電子電荷量、ND:チャンネル領域の不純物濃度 d:J FETチャンネルの幅、KS=Siの比誘電
率、ε0:真空の誘電率、ΦB:ゲート接合の拡散電圧
(A.S.Grove著 半導体デバイスの基礎(オー
ム社刊)第8章に関連する記載がある。)
The structure of FIG. 1A is characterized by the positions of the high-concentration n-type semiconductor regions 4 and the high-concentration p-type semiconductor regions 5 formed on the surface of the p-type semiconductor region 3 shown in FIG.
Is that the position of has been replaced. With this arrangement, the drain current ID is increased by JFET and DMO.
It is characterized in that the maximum current is limited for the following reasons because it passes through the SFET in series. FIG.
FIG. 4A is a diagram showing that the depletion layers (e) and (f) expand as the potential of the drain electrode 7 becomes higher than the potential of the source electrode 9 shown in FIG. When a positive voltage is applied to the gate, the polarity of the channel portion of the p-type semiconductor region 3 separated from the gate electrode 8 by the insulating film is inverted to n-type.
Source region 4, n-type semiconductor layer 2, p-type semiconductor region 3
A channel made of an n-type semiconductor comprising a channel portion having the polarity inverted and a drain region 6 is formed. Therefore, when a high voltage is applied to the drain electrode 7, the current ID flowing into the drain region 6 flows through the above-described path, and the current ID flows into the depletion layers (e) and (f) formed in the n-type semiconductor layer 2. It passes through the gap, passes through point (g), flows into the source electrode 9 through the n-type inversion layer facing the gate electrode 8. After the point (g) in the middle of the current path, the high voltage DMOS FET portion controlled by the gate electrode 8 and flowing to the source region 4 when the current flows through the channel portion is connected in series to the subsequent stage of the JFET. Structure. The size of the gap between the depletion layers (e) and (f) becomes smaller as the voltage applied to the drain electrode 7 increases, and the resistance of the current path increases, so that the drain current ID is limited. Become. Therefore, the drain current ID is 0 < ID <V Dsat / R
An upper limit can be brought into the range of ON (= I MAX ). The voltage V Dsat at which the current is saturated according to the structure and the impurity concentration can also be obtained by the following equation. (V G =
0) q: electron charge, N D : impurity concentration in the channel region d: JFET channel width, K S = dielectric constant of Si, ε 0 : dielectric constant of vacuum, Φ B : diffusion voltage of gate junction (A. (S. Grove has a description related to Chapter 8 of Basics of Semiconductor Devices (published by Ohmsha).)

【0007】図2は前記の高耐圧DMOS FETとJ
FETとが直列になった等価回路を示す。図2のドレ
ーン(D)、ゲート(G)、ソース(S)は図1の7、
8、9に対応するので符号を併記した。(g)点は図1
(b)の(g)点で示す同電位点である。一般にJ F
ETは、ソース及びゲート電位をゼロにしてドレーン電
圧VDを増加させてゆくとドレーン電流IDは増加してゆ
くが一定の値VDsatに達するとそれ以上の電圧を与えて
もドレーン電流IDは飽和して増加しなくなる。その理
由は、ドレーン電圧VDを大きくするにしたがって、J
FET部のゲート(図の場合はp型半導体領域3がゲ
ートとして作用する)の近傍にできた空乏層(e)と、
p型基板の表面のn型層2内にできた空乏層(f)との
間隙が狭くなり電流の通路の抵抗を増加させるためドレ
ーン電流IDが制限されからである。この効果により高
耐圧DMOS FETが過電流から保護されるのであ
る。
FIG. 2 shows the above-mentioned high voltage DMOS FET and JMOS.
3 shows an equivalent circuit in which an FET and an FET are connected in series. The drain (D), gate (G) and source (S) in FIG.
Since they correspond to 8 and 9, the symbols are also shown. (G) point in FIG.
This is the same potential point indicated by point (g) in (b). Generally JF
ET is such that when the drain voltage V D is increased by setting the source and gate potentials to zero and the drain voltage V D is increased, when the drain current I D reaches a certain value V Dsat , even if a higher voltage is applied, the drain current I D D saturates and does not increase. The reason is that as the drain voltage V D is increased, J
A depletion layer (e) formed near the gate of the FET portion (in the case of the figure, the p-type semiconductor region 3 acts as a gate);
This is because the gap with the depletion layer (f) formed in the n-type layer 2 on the surface of the p-type substrate becomes narrow, and the drain current ID is limited because the resistance of the current path increases. This effect protects the high breakdown voltage DMOS FET from overcurrent.

【0008】[0008]

【発明の効果】本発明によれば、従来の高耐圧DMOS
FETのゲートがONの場合に流れる過電流が、J
FETを直列に挿入する一体構造にしたことにより任意
の設計値に制限することが可能になった。
According to the present invention, a conventional high-breakdown-voltage DMOS is
The overcurrent flowing when the gate of the FET is ON is J
By having an integrated structure in which FETs are inserted in series, it is possible to limit to an arbitrary design value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示した高耐圧DM
OS FETの断面図である。
FIG. 1 shows a high breakdown voltage DM showing an example of an embodiment of the present invention.
FIG. 3 is a cross-sectional view of an OS FET.

【図2】本発明の高耐圧DMOS FETの等価回路で
ある。
FIG. 2 is an equivalent circuit of the high voltage DMOS FET of the present invention.

【図3】従来の高耐圧DMOS FETの断面図であ
る。
FIG. 3 is a cross-sectional view of a conventional high-breakdown-voltage DMOS FET.

【符号の説明】[Explanation of symbols]

1はp型シリコン基板 2はn型半導体層 3はp型半導体領域 4は高濃度n形半導体ソース領域 5は高濃度p型半導体ソース領域 6は高濃度n型半導体ドレーン領域 7はドレーン電極 8はゲート電極 9はソース電極 10は絶縁膜 gは図1と図2の同電位の点を示す。 eはp型半導体領域3を取り巻く空乏層 fはn型半導体層2内に発生する空乏層 1 is a p-type silicon substrate 2 is an n-type semiconductor layer 3 is a p-type semiconductor region 4 is a high concentration n-type semiconductor source region 5 is a high concentration p-type semiconductor source region 6 is a high concentration n-type semiconductor drain region 7 is a drain electrode 8 Indicates a gate electrode 9, a source electrode 10, an insulating film g, and a point having the same potential in FIGS. 1 and 2. e is a depletion layer surrounding the p-type semiconductor region 3 f is a depletion layer generated in the n-type semiconductor layer 2

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/808 9447−4M H01L 29/80 P 21/338 29/812 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location H01L 29/808 9447-4M H01L 29/80 P 21/338 29/812

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1種不純物半導体基板の上に形成した第
2種不純物半導体層の中に形成した第2種不純物濃度の
濃いドレーン層及びこれに接続されたドレーン電極と、
前記第2種不純物半導体層内であって前記ドレーン層と
離れた位置に形成された第1種不純物半導体層と、この
第1種不純物半導体層内の前記ドレーン層に近い側に形
成された第1種不純物濃度の濃い半導体層と、同じく遠
い側に形成された第2種不純物濃度の濃いソース層と、
このソース層と前記1種不純物濃度の濃い半導体層とに
共通に接続されたソース電極と、このソース電極のドレ
ーン電極から遠い側にあって前記ソース層及び前記第1
種不純物半導体層とに対向して絶縁膜を介して形成され
たゲート電極とから構成した接合型FETと、DMOS
FETとを直列接続の一体化構造にしたことを特徴と
する過電流保護形DMOS FET。
1. A drain layer having a high concentration of a second type impurity formed in a second type impurity semiconductor layer formed on a first type impurity semiconductor substrate, and a drain electrode connected thereto.
A first type impurity semiconductor layer formed in the second type impurity semiconductor layer at a position away from the drain layer; and a first type impurity semiconductor layer formed in the first type impurity semiconductor layer on a side closer to the drain layer. A semiconductor layer having a high concentration of one type impurity, a source layer having a high concentration of a second type impurity also formed on the far side,
A source electrode commonly connected to the source layer and the semiconductor layer having a high concentration of one type of impurity; and a source electrode and the first layer on a side of the source electrode remote from the drain electrode.
A junction type FET composed of a gate electrode formed with an insulating film opposed to the seed impurity semiconductor layer;
An overcurrent protection type DMOS FET, wherein the FET and the FET have an integrated structure connected in series.
JP8189231A 1996-07-18 1996-07-18 Overcurrent protecting dmos fet Pending JPH1041402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8189231A JPH1041402A (en) 1996-07-18 1996-07-18 Overcurrent protecting dmos fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8189231A JPH1041402A (en) 1996-07-18 1996-07-18 Overcurrent protecting dmos fet

Publications (1)

Publication Number Publication Date
JPH1041402A true JPH1041402A (en) 1998-02-13

Family

ID=16237798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8189231A Pending JPH1041402A (en) 1996-07-18 1996-07-18 Overcurrent protecting dmos fet

Country Status (1)

Country Link
JP (1) JPH1041402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027228A (en) * 2005-07-13 2007-02-01 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2008520089A (en) * 2004-11-09 2008-06-12 フルテック・セミコンダクター・インコーポレイテッド Transient change interrupt integrated device suitable for high voltage
US11282946B2 (en) 2020-05-29 2022-03-22 Fuji Electric Co., Ltd. Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520089A (en) * 2004-11-09 2008-06-12 フルテック・セミコンダクター・インコーポレイテッド Transient change interrupt integrated device suitable for high voltage
JP2007027228A (en) * 2005-07-13 2007-02-01 Fuji Electric Device Technology Co Ltd Semiconductor device
US11282946B2 (en) 2020-05-29 2022-03-22 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP3158738B2 (en) High breakdown voltage MIS field-effect transistor and semiconductor integrated circuit
JP2585331B2 (en) High breakdown voltage planar element
JP4972855B2 (en) Semiconductor device and manufacturing method thereof
KR20000022709A (en) Depleted poly-silicon edged mosfet structure and method
JPS59193066A (en) Mos semiconductor device
US5844273A (en) Vertical semiconductor device and method of manufacturing the same
TW201801318A (en) Semiconductor device and semiconductor device manufacturing method
SE513284C3 (en) Semiconductor component with linear current-to-voltage characteristics
US5534454A (en) Method of producing a semiconductor device having accurate current detection
JPH04332173A (en) Planar type semiconductor device and its manufacture
US3631312A (en) High-voltage mos transistor method and apparatus
JPH08130308A (en) Semiconductor device
US5072267A (en) Complementary field effect transistor
JP4447768B2 (en) Field MOS transistor and semiconductor integrated circuit including the same
JPH05121738A (en) Semiconductor device having misfets
US6900506B1 (en) Method and structure for a high voltage junction field effect transistor
JPH04127540A (en) Insulated-gate field-effect transistor
JP2004031519A (en) Semiconductor device
JPH1041402A (en) Overcurrent protecting dmos fet
JP2676888B2 (en) Semiconductor device
JPWO2003075353A1 (en) Semiconductor element
JPS6164165A (en) Mos type field-effect transistor
US5523601A (en) High-breakdown-voltage MOS transistor
JP3376294B2 (en) Semiconductor device
JP2015211140A (en) Semiconductor device