JPH10340712A - Rectangular nonaqueous electrolyte battery and its manufacture - Google Patents

Rectangular nonaqueous electrolyte battery and its manufacture

Info

Publication number
JPH10340712A
JPH10340712A JP9149543A JP14954397A JPH10340712A JP H10340712 A JPH10340712 A JP H10340712A JP 9149543 A JP9149543 A JP 9149543A JP 14954397 A JP14954397 A JP 14954397A JP H10340712 A JPH10340712 A JP H10340712A
Authority
JP
Japan
Prior art keywords
battery
generating element
power generating
terminal
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9149543A
Other languages
Japanese (ja)
Other versions
JP3713361B2 (en
Inventor
Tadayoshi Nakajima
匡良 中島
Yoshiaki Asami
義明 阿左美
Hirobumi Ohashi
博文 大橋
Yoshiki Ueno
嘉己 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP14954397A priority Critical patent/JP3713361B2/en
Publication of JPH10340712A publication Critical patent/JPH10340712A/en
Application granted granted Critical
Publication of JP3713361B2 publication Critical patent/JP3713361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte battery, along with its manufacturing method, that is made compact and safety taken into account in an overcharged condition or the like. SOLUTION: This nonaqueous electrolyte battery includes a laminated or flat generating element in which both the edge surfaces of each component of a negative electrode, a separator and a positive electrode are exposed to both of its end sides, and comprises an armoring can 1 that is used as one of the battery terminals and is of a type whose one end is open, and a sealing body 4 that leads out the other battery terminal in an insulating manner and is equipped with a safety valve part 7 to release internal pressure. In the battery placed on the end surface of the generating element facing the armoring can 1, which is interposed in between them, is an insulation layer having an opening 9a penetrating through it in its thickness direction and also having a width W and a length L which satisfy 0.5<=W/B<=1.5 and C×1.2<=1<=C+2A, where A, B and C represent the height, width and thickness of the flat generating element, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、安全性にすぐれた
角型非水電解液電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery having excellent safety and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、非水電解液電池として、リチウム
やナトリウムなどの軽金属を負極活物質とする負極、金
属の酸化物,硫化物もしくはハロゲン化物を正極活物質
とする正極、および非水電解液を発電要素(電池発電要
素)として備えた電池が、高電圧,高エネルギー密度お
よび長期信頼性の高い電池として注目されている。たと
えば、二酸化マンガン( MnO2 ),フッ化炭素(CF2
n ,塩化チオニル(SOCl2 )などを正極活物質として成
るリチウムイオン電池が、電卓,時計の電源やメモリの
バックアップ電池として多用されている。
2. Description of the Related Art In recent years, as a nonaqueous electrolyte battery, a negative electrode using a light metal such as lithium or sodium as a negative electrode active material, a positive electrode using a metal oxide, sulfide or halide as a positive electrode active material, and a nonaqueous electrolyte A battery provided with a liquid as a power generation element (battery power generation element) has attracted attention as a battery having high voltage, high energy density, and long-term reliability. For example, manganese dioxide (MnO 2), carbon fluoride (CF 2)
Lithium-ion batteries using n , thionyl chloride (SOCl 2 ) or the like as a positive electrode active material are frequently used as power sources for calculators and watches, and as backup batteries for memories.

【0003】すなわち、リチウムイオン電池などの非水
電解液電池は、銀電池やアルカリ電池に比べて自己放電
が小さいため、長期間の使用に耐えることから、前記電
卓,時計などの電源に使用されている。そして、この非
水電解液電池については、駆動される電子機器類の発
達,発展に対応して、長期間に亘る安定した放電特性が
要求されている。ここで、安定した放電特性を確保する
ためには、電池自身の信頼性および安全性が重要視され
る。
That is, a non-aqueous electrolyte battery such as a lithium ion battery has a smaller self-discharge than a silver battery or an alkaline battery and can withstand long-term use. ing. The non-aqueous electrolyte battery is required to have a stable discharge characteristic over a long period of time in response to the development and development of driven electronic devices. Here, in order to secure stable discharge characteristics, the reliability and safety of the battery itself are regarded as important.

【0004】一方、携帯用電話機や携帯型撮像機など各
種の機器システムに組込み、作動電源として使用されて
いる二次電池においても、携帯用電話機や携帯型撮像機
などの小形化,軽量化に伴って、電源としてエネルギー
密度の高いリチウムイオン電池などが要求されている。
なお、この種の非水電解液電池では、Li,Coを主成分と
するような複合金属酸化物を正極活物質に、また、コー
クスや有機焼成体などの単素質材料を負極活物質にに用
い、さらに、炭酸プロピレン,炭酸エチレン,1,2-ジメ
トキシエタン,γ -ブチロラクトン,テトラヒドロフラ
ンなどの有機溶剤中に、 LiCl04 ,LiBF4 , LiAsF6
どのリチウム塩を溶解させて成る有機電解液(非水電解
液)が用いられている。
On the other hand, secondary batteries which are incorporated in various equipment systems such as portable telephones and portable imaging devices and are used as an operation power supply are also being reduced in size and weight of portable telephones and portable imaging devices. Accordingly, a lithium ion battery or the like having a high energy density is required as a power source.
In this type of nonaqueous electrolyte battery, a composite metal oxide containing Li and Co as main components is used as a positive electrode active material, and a simple substance such as coke and an organic fired body is used as a negative electrode active material. used, further, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, gamma - butyrolactone, in an organic solvent such as tetrahydrofuran, LiCl0 4, LiBF 4, LiAsF 6 organic electrolyte obtained by dissolving a lithium salt such as ( Non-aqueous electrolyte).

【0005】ところで、電池の出力特性は、セパレータ
を介して対向する正極および負極の対向面積に比例する
ので、大電流を取り出すためには、正極および負極をセ
パレータを介して複数層積み重ねたり(積層型)、ある
いはロール状に捲装(巻回)して、対向面積を広く設定
している。すなわち、電池の高容量、高エネルギー密度
化に当たっては、できるだけ多くの電極を内蔵・具備し
た構成を採ることが必要である。特に、各電極部材を重
ね、これを円筒型に捲装した発電要素材を潰し、両端面
に各電極部材が露出する偏平状にした場合は、体積的に
も有効な利用が(コンパクト化など)図られるので、電
池の高容量化、高エネルギー密度化で期待されている。
Since the output characteristics of a battery are proportional to the facing area of a positive electrode and a negative electrode facing each other with a separator interposed therebetween, a large current can be taken out by stacking a plurality of layers of the positive electrode and the negative electrode with a separator interposed therebetween. Mold) or rolled (wound) in a roll shape to set the facing area wide. That is, in order to increase the capacity and the energy density of the battery, it is necessary to adopt a configuration in which as many electrodes as possible are built in and provided. In particular, when each electrode member is overlapped, the power generation element material wound in a cylindrical shape is crushed, and the electrode members are flattened so that each electrode member is exposed on both end surfaces, an effective use in terms of volume can be achieved (eg, downsizing). ), It is expected to increase the capacity and energy density of the battery.

【0006】また、発電要素が偏平型の場合、外装缶に
対して挿入・装着する際、挿入先端側の損傷などを回避
し、安全性や信頼性の改善を図るために、偏平型の発電
要素先端面に無垢な絶縁体層を貼着して、外装缶に対す
る挿入・装着を行い易くすることが試みられている(特
開平 5-74424号公報)。
In addition, when the power generating element is a flat type, the flat type power generating element is used in order to avoid damage at the insertion tip side and to improve safety and reliability when inserting and mounting into the outer can. Attempts have been made to attach a solid insulator layer to the end surface of the element to facilitate insertion and mounting into an outer can (Japanese Patent Laid-Open No. 5-74424).

【0007】さらに、上記有機電解液電池については、
長期間に亘って安定した密閉性,気密性が要求されてお
り、この封口構造の高い密閉度化は、片や、電池の内部
短絡や外部短絡、もしくは過放電時などに対する安全性
の上で問題を提起する。すなわち、電池内における発電
要素は、過充電状態のとき、何らかの原因で短絡状態に
なって大電流が流れたとき、あるいは加熱などの異常
時、発電要素(電極体)中の非水電解液が分解され、ガ
スを発生して電池内圧の上昇を招来し、電池の発火や破
裂が起こる恐れがある。この電池の発火・破裂防止対策
として、電池封口部に安全弁機構を設置し、電池内のガ
スを放出することにより、短絡や過放電時の電池内圧上
昇による電池の爆発・損傷を回避することが知られてい
る(実開平2-50957号公報など)。
Further, regarding the above-mentioned organic electrolyte battery,
Stable sealing and air-tightness are required over a long period of time, and the high degree of sealing of the sealing structure is important for safety against short-circuiting, internal short-circuiting or external short-circuiting of the battery, over-discharge, etc. Raise the problem. That is, when the power generating element in the battery is in an overcharged state, short-circuited for some reason and a large current flows, or when there is an abnormality such as heating, the non-aqueous electrolyte in the power generating element (electrode body) is discharged. The battery may be decomposed and generate gas to cause an increase in battery internal pressure, which may cause ignition or rupture of the battery. As a measure to prevent ignition and rupture of this battery, a safety valve mechanism is installed at the battery sealing part to release gas inside the battery, thereby avoiding explosion and damage of the battery due to short-circuit or rise in battery pressure during overdischarge. It is known (eg, Japanese Utility Model Publication No. 2-50957).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記短
絡や過放電時の電流を遮断し、電池内圧の上昇を防止す
る一方、電池内の上昇圧ガスを放出して爆発・損傷を回
避する対策を採った場合でも、なお次のような問題があ
る。すなわち、前記安全弁機構は、過充電時や短絡時の
電流遮断などの機能を有するとはいえ、これらの機能を
十分に発現するには、電池内に発生したガスが容易に安
全弁機構側へ抜けることが前提となる。換言すると、発
電要素部で発生したガスは発電要素部中に貯留せずに、
容易に(速やかに)安全弁機構側へ移動して電池外に放
出されなければ、電池の爆発・損傷が回避されない。し
かし、外装缶底面に接する発電要素端面に無垢な絶縁体
層が介在していると、発電要素内で発生したガス抜けに
支障が及んで、前記安全弁機構が十分に機能しない恐れ
があり、信頼性が損なわれという問題がある。
However, while the current in the short circuit or overdischarge is interrupted to prevent the internal pressure of the battery from rising, measures are taken to prevent the explosion and damage by discharging the upper pressurized gas in the battery. Even if it is adopted, there are still the following problems. That is, although the safety valve mechanism has functions such as current interruption at the time of overcharge or short circuit, in order to sufficiently exhibit these functions, gas generated in the battery easily escapes to the safety valve mechanism side. It is assumed that In other words, the gas generated in the power generation element is not stored in the power generation element,
If the battery is not easily (quickly) moved to the safety valve mechanism side and discharged out of the battery, explosion and damage of the battery cannot be avoided. However, if a solid insulator layer is interposed on the end face of the power generation element that is in contact with the bottom surface of the outer can, gas release generated in the power generation element may be hindered, and the safety valve mechanism may not function sufficiently. There is a problem that the property is impaired.

【0009】本発明は、このような事情に対処してなさ
れたもので、コンパクト化など図る一方、過充電時など
で起こる電池内ガス圧の開放などが容易に行われる安全
性の高い有機電解液電池およびその製造方法の提供を目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and while achieving compactness, it is possible to easily release gas pressure in a battery at the time of overcharging, etc. A liquid battery and a method for manufacturing the same are provided.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、負極
構成部材、セパレータ部材、正極構成部材、および非水
系電解液から成り、かつ各構成部材の端面が両端側に露
出する積層もしくは偏平型の発電要素と、前記発電要素
を内蔵し、かつ一方の端子となる一端開口型の角型外装
缶と、前記外装缶の開口を封口し、かつ他方の端子を絶
縁的に導出した封口体と、前記封口体に一体に形成具備
され内部圧を開放する安全弁部とを備えた非水電解液電
池において、前記外装缶に対接する発電要素の端面部
に、厚さ方向に貫通した開孔を有し、かつその開孔絶縁
体層の幅 W,長さ Lは、偏平型発電要素の高さ A, 幅
B,厚さCとしたとき、 0.5≦ W/B≦ 1.5で,かつ C× 1.2≦ L≦ C+2A であることを特徴とする角型非水電解液電池である。
According to a first aspect of the present invention, there is provided a laminated or flat structure comprising a negative electrode constituting member, a separator member, a positive electrode constituting member, and a non-aqueous electrolytic solution, wherein the end faces of the respective constituent members are exposed at both ends. -Type power generating element, a rectangular outer can with one end opening, which incorporates the power generating element and serves as one terminal, and a sealing body that closes the opening of the outer can and insulates the other terminal insulated. In a non-aqueous electrolyte battery provided with a safety valve portion formed integrally with the sealing body and releasing internal pressure, an opening penetrating in a thickness direction at an end surface portion of a power generation element which is in contact with the outer can. And the width W and length L of the open insulator layer are the height A and the width of the flat power generating element.
A rectangular nonaqueous electrolyte battery characterized in that, when B and thickness C, 0.5 ≦ W / B ≦ 1.5 and C × 1.2 ≦ L ≦ C + 2A.

【0011】請求項2の発明は、請求項1記載の角型非
水電解液電池において、開孔絶縁体層の開孔面積率が20
〜80%であることを特徴とする。
According to a second aspect of the present invention, in the rectangular non-aqueous electrolyte battery according to the first aspect, the open area ratio of the open insulator layer is 20%.
~ 80%.

【0012】請求項3の発明は、負極構成部材、セパレ
ータ部材、正極構成部材、および非水系電解液から成
り、かつ各構成部材の端面が両端側に露出する積層もし
くは偏平型の発電要素の一端面に厚さ方向に貫通した開
孔を有する絶縁粘着シートを貼着する工程と、一方の端
子となる一端開口の角型外装缶の底壁面に、前記貼着し
た絶縁粘着シートを対接させて発電要素を収容・装着す
る工程と、前記収容・装着した発電要素と封口体に絶縁
して導出他方の端子とを電気的に接続し、かつ外装缶の
開口をガス圧開放安全弁付きの封口体で気密に封止する
工程とを有することを特徴とする角型非水電解液電池の
製造方法である。
A third aspect of the present invention is a laminated or flat type power generating element comprising a negative electrode constituent member, a separator member, a positive electrode constituent member, and a non-aqueous electrolytic solution, wherein the end faces of the constituent members are exposed at both ends. A step of attaching an insulating pressure-sensitive adhesive sheet having an opening penetrating in the thickness direction to the end face, and contacting the adhered insulating pressure-sensitive adhesive sheet to the bottom wall surface of the rectangular outer can having one end opening to be one terminal. A step of housing and mounting the power generating element by connecting the power generating element to the other terminal which is insulated from the housed and mounted power generation element and the sealing body, and electrically connected to the other terminal, and the opening of the outer can is sealed with a gas pressure release safety valve. And a step of hermetically sealing with a body.

【0013】本発明において、発電要素を内蔵し、かつ
一方の端子(正極端子もしくは負極端子)となる外装缶
は、たとえばステンレス鋼製、鉄製もしくはアルミニウ
ム性である。また、封口蓋体は、たとえばアルミニウム
製、ニッケル製、鉄製などの通気孔付き金属薄板(たと
えば厚さ 0.1〜 1.0mm程度)、絶縁して導出された他方
の端子(負極端子もしくは正極端子)、および圧力弁体
などで構成されて居る。そして、他方の端子には、発電
要素に接続するリード線(リード片)の他端が接続され
ており、また、圧力弁体と金属薄板とは一部で対接・接
合しており、一定の圧力上昇でその接合部(易破断領
域)が容易に破断・分離するように成っている。つま
り、電池内のガス圧が一定値に上昇したとき、圧力弁体
が破断・分離して、電池内のガスを外に放出できるよう
になっている。
In the present invention, the outer can that houses the power generating element and serves as one terminal (a positive electrode terminal or a negative electrode terminal) is made of, for example, stainless steel, iron, or aluminum. The sealing lid is made of, for example, an aluminum, nickel, iron or other metal plate with a ventilation hole (for example, having a thickness of about 0.1 to 1.0 mm), the other terminal insulated and led out (a negative electrode terminal or a positive electrode terminal), And a pressure valve body. The other terminal is connected to the other end of a lead wire (lead piece) connected to the power generating element, and the pressure valve body and the metal sheet are partially connected and joined to each other. When the pressure rises, the joint (easy break area) is easily broken or separated. That is, when the gas pressure in the battery rises to a certain value, the pressure valve body breaks and separates, and the gas in the battery can be released to the outside.

【0014】本発明において、正極活物質としては、リ
チウムを脱ドープし、かつドープできる活物質、たとえ
ばリチウムやコバルトを含む複合酸化物( LiCoO2 、 L
iNiO2 、LiMn2 O 4 )などが挙げられる。また、負極活
物質としては、たとえばグラファイト、ニードルコーク
ス、メソフェーズ小球体カーボン、メソフェーズピッチ
系カーボン繊維、有機高分子の焼成体が挙げられる。そ
して、これらの活物質を、集電体箔、たとえば厚さ 5〜
50μm の銅、ニッケル、アルミニウム、ステンレス鋼な
どの金属箔の少なくとも一方の面に塗着して、正極部
材、負極部材は薄板状もしくはテープ状に構成されてい
る。
In the present invention, as the positive electrode active material, an active material capable of dedoping and doping lithium, for example, a composite oxide (LiCoO 2 , L
iNiO 2 and LiMn 2 O 4 ). Examples of the negative electrode active material include graphite, needle coke, mesophase spheroidal carbon, mesophase pitch-based carbon fiber, and a fired body of an organic polymer. Then, these active materials are collected into a current collector foil, for example, having a thickness of 5 to
The positive electrode member and the negative electrode member are formed in a thin plate or tape shape by coating on at least one surface of a 50 μm metal foil such as copper, nickel, aluminum or stainless steel.

【0015】さらに、負極部材および正極部材間を絶縁
離隔するセパレータ部材としては、たとえばポリエチレ
ン、ポリプロピレンなどのポリオレフィン系樹脂の不織
布や多孔膜などが用いられる。
Further, as the separator member for insulatingly separating the negative electrode member and the positive electrode member, for example, a nonwoven fabric or a porous film of a polyolefin resin such as polyethylene or polypropylene is used.

【0016】そして、電池要素は、セパレータ部材を介
して交互に両電極部材を多層的に積層した構造、あるい
はセパレータ部材および両電極部材を重ね、これを捲装
した後、潰して偏平型した構造が採られ、全体としては
コンパクト化されながら、電極部材の対向面積が大きく
設定される。
The battery element has a structure in which both electrode members are alternately laminated in a multi-layered manner with a separator member interposed therebetween, or a structure in which a separator member and both electrode members are stacked, wound and flattened. Is adopted, and the opposing area of the electrode member is set large while the whole is made compact.

【0017】本発明において、電池要素の一端面に貼着
ないし配置される厚さ方向に貫通した開孔を有する絶縁
体層は、たとえば粘着性を有するか、もしくは粘着性を
付与されたポリエステル樹脂、ポリイミド樹脂、芳香族
ポリアミド樹脂などを素材とした絶縁性樹脂フィルム、
絶縁紙などを素材としたものであり、一般的に、厚さ40
〜 150μm 程度,開孔の径 1〜 5mm程度でよい。そし
て、開孔を有する絶縁体層の形状、換言すると、平面的
な幅 W,長さ Lは、偏平型発電要素の高さ A, 幅B,厚
さ Cとしたとき、 0.5≦ W/B≦ 1.5で,かつ C× 1.2≦ L≦ C+2A であることが必要である。
In the present invention, the insulating layer having an opening penetrating in the thickness direction which is adhered to or disposed on one end face of the battery element is, for example, a polyester resin having an adhesive property or an adhesive property. , Polyimide resin, insulating resin film made of aromatic polyamide resin and the like,
It is made of insulating paper and has a thickness of 40
The diameter may be about 1 to 5 mm, and the diameter of the opening may be about 1 to 5 mm. Then, the shape of the insulator layer having the openings, in other words, the planar width W and the length L are 0.5 ≦ W / B when the height A, the width B, and the thickness C of the flat type power generating element are defined as: ≤ 1.5 and C × 1.2 ≤ L ≤ C + 2A.

【0018】すなわち、介在・配置する開孔を有する絶
縁体層の形状を、対接する偏平型発電要素の面形状など
との関係で、上記、式に示す関係を採るように設定しな
いと、所要の効果が得られないからである。ここで、電
池要素の高さ A, 幅 B,厚さCは、この種、角型電池の
発電要素が、一般的に、電極構成材を円筒型に捲回した
後、側壁面を押圧・偏平化するので、断面長径部を幅
B,断面短径部を厚さ Cとしている。
In other words, if the shape of the insulator layer having the openings to be interposed / arranged is not set so as to adopt the relationship shown in the above equation in relation to the surface shape of the flat power generating element to be in contact with, etc. Is not obtained. Here, the height A, the width B, and the thickness C of the battery element are generally determined as follows. The power generating element of this type of prismatic battery generally presses the side wall surface after winding the electrode constituting material into a cylindrical shape. As it is flattened, the cross-section major diameter is
B, the minor diameter section is thickness C.

【0019】なお、絶縁体層の開孔面積率が20〜80%で
あることが望ましい。
Preferably, the open area ratio of the insulator layer is 20 to 80%.

【0020】一方、本発明において用いる非水電解液と
しては、たとえばエチレンカーボネート、プロピレンカ
ーボネート、ブチレンカーボネート、γ- ブチロラクト
ン、スルホラン、アセトニトリル、1,2-ジメトキシメタ
ン、1,3-ジメトキシプロパン、ジメチルエーテル、テト
ラヒドロフラン、2-メチルテトラヒドロフラン、炭酸ジ
メチル、炭酸ジエチルおよびエチルメチルカーボネート
の群れから選ばれた少なくとも1種から成る有機溶剤
(非水溶媒)に、過塩素酸リチウム( LiClO4 )、六フ
ッ化リン酸リチウム(LiPF6 )、ホウフッ化リチウム
(LiBF4 )、六フッ化ヒ素リチウム( LiAsF6 )、トリ
フルオロメタンスルホン酸リチウム(LiCF3SO3 )など
のリチウム塩(電解質)を 0.5〜 1.5 mol/l 程度溶解
させた非水電解液が一般的に挙げられる。
On the other hand, the nonaqueous electrolyte used in the present invention includes, for example, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, dimethyl ether, Lithium perchlorate (LiClO 4 ) and hexafluorophosphoric acid are added to an organic solvent (non-aqueous solvent) comprising at least one selected from the group consisting of tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. Lithium salt (electrolyte) such as lithium (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) is about 0.5 to 1.5 mol / l. Generally, a dissolved non-aqueous electrolyte is used.

【0021】請求項1〜3の発明では、正常時において
はすぐれた気密性により液漏れなどが防止され、また、
電池内圧が上昇したときには、発電要素内に発生したガ
スが貯留することなく、封口体側に移動して安全弁機構
を作動させて、電池内圧を開放する。すなわち、過充電
時などにおける電池内圧の上昇に容易、かつ的確に対応
して電池内のガス圧を開放し、電池の爆発・破損など回
避ないし防止するので、信頼性および安全性が改善され
た非水電解液電池として機能する。特に、外装缶と電池
要素の端面との間に介在させた絶縁体層の開孔により、
電池要素に対して電解液が全体的に回り易くなるので、
電池のサイクル特性も向上する。
According to the first to third aspects of the present invention, liquid leakage and the like are prevented by excellent airtightness in a normal state.
When the internal pressure of the battery rises, the gas generated in the power generating element moves to the sealing body side without being stored and operates the safety valve mechanism to release the internal pressure of the battery. In other words, the gas pressure inside the battery is released easily and accurately in response to an increase in the battery pressure during overcharging, etc., thereby avoiding or preventing battery explosion or damage, thereby improving reliability and safety. Functions as a non-aqueous electrolyte battery. In particular, by opening the insulator layer interposed between the outer can and the end face of the battery element,
Since the electrolyte becomes easier to rotate as a whole with respect to the battery element,
The cycle characteristics of the battery are also improved.

【0022】請求項4の発明では、繁雑な操作など要せ
ずに、上記信頼性および安全性の改善された非水電解液
電池を歩留まりよく、かつ容易に提供できる。
According to the fourth aspect of the present invention, a non-aqueous electrolyte battery having improved reliability and safety can be easily provided with a high yield without requiring complicated operations.

【0023】[0023]

【発明の実施の形態】以下図1を参照して実施例を説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to FIG.

【0024】図1は、第1の実施例に係る角型非水電解
液電池の要部構成を拡大して示す断面図である。図1に
おいて、1は一方の電極端子を兼ねる有底矩形外装缶、
2は前記有底矩形外装缶1内に装填・内蔵された発電要
素、3は他方の電極端子(たとえば正極)として機能す
る電極端子(電極ピン)である。また、4は前記電極端
子3を突出的に絶縁導出する一方、前記外装缶1の開口
部をレーザー溶接・封止で気密に封止する封口体で、5
は前記電極端子3および発電要素の対応する電極側を接
続するリード線である。
FIG. 1 is a cross-sectional view showing, in an enlarged manner, a main configuration of a prismatic nonaqueous electrolyte battery according to a first embodiment. In FIG. 1, 1 is a bottomed rectangular outer can also serving as one electrode terminal,
Reference numeral 2 denotes a power generating element loaded and built in the bottomed rectangular outer can 1, and 3 denotes an electrode terminal (electrode pin) functioning as the other electrode terminal (for example, a positive electrode). Reference numeral 4 denotes a sealing body for projecting the electrode terminal 3 so as to protrudely insulate it and hermetically sealing the opening of the outer can 1 by laser welding and sealing.
Is a lead wire connecting the electrode terminal 3 and the corresponding electrode side of the power generating element.

【0025】ここで、封口体4は、他方の電極端子3を
ガラス封止層6で絶縁しながら気密に導出するととも
に、前記他方の電極端子3とは離隔した位置に、非水電
解液二次電池内で圧力が上昇したとき、その内部圧を開
放するための安全弁部7が設けられている。すなわち、
封口体4には、圧力開放孔8が別に形設されており、ス
テンレス鋼製の矩形状薄板7の溶接で、圧力開放孔8の
内側が塞がれている。なお、矩形状薄板7は、断面V字
型の切り込み溝を有し、この切り込み溝の形設で薄膜化
している部分が内部圧で破断し、安全弁として機能する
構成と成っている。 さらに、9はその厚さ方向に貫通
した開孔9aを有する絶縁体層、たとえば接着性シート、
10は電極要素2の移動を防止する絶縁性押さ板である。
Here, the sealing body 4 is hermetically led out while insulating the other electrode terminal 3 with the glass sealing layer 6, and a non-aqueous electrolyte solution is provided at a position separated from the other electrode terminal 3. A safety valve 7 is provided for releasing the internal pressure when the pressure increases in the secondary battery. That is,
A pressure release hole 8 is separately formed in the sealing body 4, and the inside of the pressure release hole 8 is closed by welding a rectangular thin plate 7 made of stainless steel. The rectangular thin plate 7 has a notch groove having a V-shaped cross section, and a portion thinned by the formation of the notch groove is broken by internal pressure, so that it functions as a safety valve. Further, 9 is an insulator layer having an opening 9a penetrating in the thickness direction thereof, for example, an adhesive sheet,
Reference numeral 10 denotes an insulating pressing plate for preventing the electrode element 2 from moving.

【0026】上記構成において、発電要素2は、次のよ
うな条件で製造された正極構成部材、負極構成部材を使
用して構成されている。
In the above configuration, the power generating element 2 is configured using a positive electrode component and a negative electrode component manufactured under the following conditions.

【0027】正極構成部材 炭酸リチウムおよび炭酸コバルトをLi/Co(mol 比)=
1になるように混合し、空気中で 900℃, 5時間焼成し
て正極活物質( LiCoO2 )を合成した後、自動乳鉢で粉
砕して LiCoO2 の粉末を得た。
Lithium carbonate and cobalt carbonate were converted to Li / Co (mol ratio) =
The mixture was mixed to 1 and calcined in air at 900 ° C. for 5 hours to synthesize a positive electrode active material (LiCoO 2 ), and then pulverized in an automatic mortar to obtain LiCoO 2 powder.

【0028】前記 LiCoO2 粉末95重量部および炭酸リチ
ウム 5重量部とを混合し、調製した混合物91重量部、導
電材としてのグラファイト 6重量部、および結着材とし
てのポリフッ化ビニリデン樹脂 6重量部を混合して正極
合剤を作成した。この正極合剤をN-メチル -2-ピロリド
ンに分散させてスラリー状とし、この正極合剤スラリー
を正極集電体である帯状のアルミニウム箔の両面に塗布
した後、乾燥させてからローラプレス機で圧縮成型し
て、活物質量が272g/ m2 の正極構成部材を得た。
91 parts by weight of a mixture prepared by mixing 95 parts by weight of the LiCoO 2 powder and 5 parts by weight of lithium carbonate, 6 parts by weight of graphite as a conductive material, and 6 parts by weight of polyvinylidene fluoride resin as a binder Were mixed to prepare a positive electrode mixture. The positive electrode mixture is dispersed in N-methyl-2-pyrrolidone to form a slurry. The positive electrode mixture slurry is applied to both sides of a belt-shaped aluminum foil as a positive electrode current collector, dried, and then dried by a roller press. To obtain a positive electrode component having an active material amount of 272 g / m 2 .

【0029】負極構成部材 出発物質に石油ピッチを用い、これに酸素を含む官能基
を10〜20%導入(酸素架橋)した後、不活性ガス中1000
℃で焼成して、ガラス状炭素に近い性質の難黒鉛炭素質
材料を得た。この難黒鉛炭素質材料90重量部、および結
着材としてのポリフッ化ビニリデン樹脂10重量部を混合
して負極合剤を作成した。
Negative electrode constituent member Petroleum pitch is used as a starting material, and 10 to 20% of a functional group containing oxygen is introduced (oxygen cross-linking) into the starting material.
By calcining at ℃, a non-graphitic carbonaceous material having properties similar to glassy carbon was obtained. 90 parts by weight of this non-graphitic carbonaceous material and 10 parts by weight of polyvinylidene fluoride resin as a binder were mixed to prepare a negative electrode mixture.

【0030】前記負極合剤をN-メチル -2-ピロリドンに
分散させてスラリー状とし、この負極合剤スラリーを負
極集電体である帯状の銅箔の両面に塗布した後、乾燥さ
せてからローラプレス機で圧縮成型して、活物質量が11
2g/ m2 の負極構成部材を得た。
The negative electrode mixture is dispersed in N-methyl-2-pyrrolidone to form a slurry. The negative electrode mixture slurry is applied to both sides of a strip-shaped copper foil as a negative electrode current collector, and then dried. Compression molding with a roller press machine, the active material amount is 11
A negative electrode constituting member of 2 g / m 2 was obtained.

【0031】次に、上記正極構成部材、負極構成部材、
および厚さ25μm の微孔性ポリプロピレンフィルムをセ
パレータ部材とし、負極構成部材が最外周になるように
積層(重ね合わせ)してから、渦巻き状に捲装して円筒
状の電極部を作成した。その後、円筒状の電極部を 100
kgf/cm2 の圧力で圧縮して、高さ Aが42mm,幅 Bが3
2.5mm,厚さ Cが 7.0mmの偏平状電極部を作成した。
Next, the positive electrode constituting member, the negative electrode constituting member,
Further, a microporous polypropylene film having a thickness of 25 μm was used as a separator member, and the negative electrode constituting member was laminated (laminated) so as to be the outermost periphery, and then spirally wound to form a cylindrical electrode portion. After that, the cylindrical electrode part is
Compressed at a pressure of kgf / cm 2 , height A is 42mm and width B is 3
A flat electrode with a thickness of 2.5 mm and a thickness C of 7.0 mm was prepared.

【0032】また、前記偏平状電極部を主体とする発電
要素を内蔵・装着する外装缶、この外装缶の開口部を封
止する封口体を用意する一方、偏平状電極部に対応する
非水系電解液として、エチレンカーボネートを主溶剤と
した有機電解液を用意した。
Further, an outer can containing a power generating element mainly composed of the flat electrode portion is provided and a sealing body for sealing an opening of the outer can is prepared, while a nonaqueous system corresponding to the flat electrode portion is prepared. As an electrolyte, an organic electrolyte using ethylene carbonate as a main solvent was prepared.

【0033】実施例1 上記偏平状電極部の一端面に、厚さ75μm ,開孔率30%
の絶縁粘着シールを貼着し、この絶縁粘着シール貼着面
が外装缶の底壁面に対接するように、偏平状電極部を挿
入・装着配置した。その後、所要量の有機電解液を注入
し、電気的な接続を採りながら、外装缶の開口部に封口
体を位置決め配置し、溶接によって気密に封止し、非水
電解液二次電池を製作した。
Example 1 One end surface of the flat electrode portion was 75 μm thick and had a porosity of 30%.
And the flat electrode portion was inserted and mounted so that the surface to which the insulating adhesive seal was attached was in contact with the bottom wall surface of the outer can. After that, a required amount of organic electrolyte is injected, and while taking electrical connection, the sealing body is positioned and arranged at the opening of the outer can, and hermetically sealed by welding to produce a non-aqueous electrolyte secondary battery. did.

【0034】なお、この二次電池の構成において、絶縁
粘着シール(開孔絶縁体層)の幅 W,長さ Lは、偏平型
発電要素の高さ A, 幅 B,厚さ Cとしたとき、W/B= 1.
3で,かつ L= C× 1.2+2A× 0.2であり、絶縁粘着シ
ールの形状は、偏平型発電要素の端面よりも幅方向、長
さ方向とも大きくなっている。
In the structure of this secondary battery, the width W and the length L of the insulating adhesive seal (opening insulator layer) are defined as the height A, the width B and the thickness C of the flat type power generating element. , W / B = 1.
3, and L = C × 1.2 + 2A × 0.2, and the shape of the insulating adhesive seal is larger in the width and length directions than the end face of the flat power generating element.

【0035】実施例2 上記偏平状電極部の一端面に、厚さ50μm ,開孔率50%
の絶縁粘着シールを貼着し、この絶縁粘着シール貼着面
が外装缶の底壁面に対接するように、偏平状電極部を挿
入・装着配置した。その後、所要量の有機電解液を注入
し、電気的な接続を採りながら、外装缶の開口部に封口
体を位置決め配置し、溶接によって気密に封止し、非水
電解液二次電池を製作した。
Embodiment 2 A thickness of 50 μm and a porosity of 50% were formed on one end surface of the flat electrode portion.
And the flat electrode portion was inserted and mounted so that the surface to which the insulating adhesive seal was attached was in contact with the bottom wall surface of the outer can. After that, a required amount of organic electrolyte is injected, and while taking electrical connection, the sealing body is positioned and arranged at the opening of the outer can, and hermetically sealed by welding to produce a non-aqueous electrolyte secondary battery. did.

【0036】なお、この二次電池の構成において、絶縁
粘着シール(開孔絶縁体層)の幅 W,長さ Lは、偏平型
発電要素の高さ A, 幅 B,厚さ Cとしたとき、W/B= 1.
0で,かつ L= C× 1.2+2A× 0.5であり、絶縁粘着シ
ールの形状は、偏平型発電要素の端面幅と同じで、高さ
の 1/2までが覆われている。
In the structure of this secondary battery, the width W and the length L of the insulating adhesive seal (opening insulator layer) are defined as the height A, the width B and the thickness C of the flat type power generating element. , W / B = 1.
It is 0 and L = C × 1.2 + 2A × 0.5. The shape of the insulating adhesive seal is the same as the end face width of the flat type power generating element, and covers up to half of the height.

【0037】実施例3 上記偏平状電極部の一端面に、厚さ50μm ,開孔率70%
の絶縁粘着シールを貼着し、この絶縁粘着シール貼着面
が外装缶の底壁面に対接するように、偏平状電極部を挿
入・装着配置した。その後、所要量の有機電解液を注入
し、電気的な接続を採りながら、外装缶の開口部に封口
体を位置決め配置し、溶接によって気密に封止し、非水
電解液二次電池を製作した。
Embodiment 3 One end face of the flat electrode portion is 50 μm thick and 70% in porosity.
And the flat electrode portion was inserted and mounted so that the surface to which the insulating adhesive seal was attached was in contact with the bottom wall surface of the outer can. After that, a required amount of organic electrolyte is injected, and while taking electrical connection, the sealing body is positioned and arranged at the opening of the outer can, and hermetically sealed by welding to produce a non-aqueous electrolyte secondary battery. did.

【0038】なお、この二次電池の構成において、絶縁
粘着シール(開孔絶縁体層)の幅 W,長さ Lは、偏平型
発電要素の高さ A, 幅 B,厚さ Cとしたとき、W/B= 0.
7で,かつ L= C+2Aであり、絶縁粘着シールの形状
は、偏平型発電要素の端面幅と同じで、高さも同じであ
る。
In the structure of this secondary battery, the width W and the length L of the insulating adhesive seal (opening insulator layer) are defined as the height A, the width B and the thickness C of the flat type power generating element. , W / B = 0.
7, L = C + 2A, and the shape of the insulating adhesive seal is the same as the end face width and the height of the flat power generating element.

【0039】比較例1〜3 上記実施例1の構成において、次の点を除いた他は、同
様の条件でそれぞれ二次電池を作製した。
Comparative Examples 1 to 3 Secondary batteries were manufactured under the same conditions as in Example 1 except that the following points were excluded.

【0040】(a)絶縁粘着シールを貼着しない(比較例
1)。
(A) No insulating adhesive seal is attached (Comparative Example 1).

【0041】(b)開孔率 0%の絶縁粘着シールを貼着し
た(比較例2)。
(B) An insulating adhesive seal having a porosity of 0% was attached (Comparative Example 2).

【0042】(c)開孔率10%の絶縁粘着シールを貼着し
た(比較例3)。
(C) An insulating adhesive seal having a porosity of 10% was attached (Comparative Example 3).

【0043】比較例4 上記実施例2の構成において、開孔率90%の絶縁粘着シ
ールを貼着した他は、同様の条件で二次電池を作製し
た。
Comparative Example 4 A secondary battery was manufactured under the same conditions as in Example 2 except that an insulating adhesive seal having a porosity of 90% was adhered.

【0044】比較例5 上記偏平状電極部の一端面に、厚さ50μm ,開孔率50%
の絶縁粘着シールを貼着し、この絶縁粘着シール貼着面
が外装缶の底壁面に対接するように、偏平状電極部を挿
入・装着配置した。その後、所要量の有機電解液を注入
し、電気的な接続を採りながら、外装缶の開口部に封口
体を位置決め配置し、溶接によって気密に封止し、非水
電解液二次電池を製作した。
Comparative Example 5 One end face of the flat electrode portion was 50 μm in thickness and 50% in porosity.
And the flat electrode portion was inserted and mounted so that the surface to which the insulating adhesive seal was attached was in contact with the bottom wall surface of the outer can. After that, a required amount of organic electrolyte is injected, and while taking electrical connection, the sealing body is positioned and arranged at the opening of the outer can, and hermetically sealed by welding to produce a non-aqueous electrolyte secondary battery. did.

【0045】なお、この二次電池の構成において、絶縁
粘着シール(開孔絶縁体層)の幅 W,長さ Lは、偏平型
発電要素の高さ A, 幅 B,厚さ Cとしたとき、W/B= 0.
5で,かつ L= C× 0.5であり、絶縁粘着シールの形状
は、偏平型発電要素の端面幅および長さ方向とも小さく
なっている。
In the structure of this secondary battery, the width W and length L of the insulating adhesive seal (opening insulator layer) are defined as the height A, width B and thickness C of the flat type power generating element. , W / B = 0.
5 and L = C × 0.5, and the shape of the insulating adhesive seal is small in both the end face width and the length direction of the flat power generating element.

【0046】上記実施例1〜3、比較例1〜5の二次電
池(いずれも規格電池容量 900 mAh、電池電圧 3.6 V)
各 100個について、所定の定電圧・定電流充電方式で過
充電試験を行って、試験電池の破裂・発火の発生数の割
合から、過充電時における安全弁機構の機能を評価し
た。
The secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 5 (each having a standard battery capacity of 900 mAh and a battery voltage of 3.6 V)
An overcharge test was performed on each of the 100 batteries using a predetermined constant voltage / constant current charging method, and the function of the safety valve mechanism during overcharge was evaluated from the ratio of the number of bursts and ignitions of the test battery.

【0047】また、同じく実施例1〜3、比較例1〜5
の二次電池について、定電圧・定電流充電と定電圧・定
電流放電を 500回繰り返し、初期容量に対する容量値
(%)からサイクル寿命を評価した結果を、上記安全弁
機構の機能評価の結果と併せて表1に示す。
Examples 1 to 3 and Comparative Examples 1 to 5
Repeated constant voltage / constant current charge and constant voltage / constant current discharge 500 times for the rechargeable battery, and evaluated the cycle life from the capacity value (%) with respect to the initial capacity. Also shown in Table 1.

【0048】 上記表1から分かるように、外装缶の底壁面において、
内蔵・配置された偏平型の発電要素端面側に、その発電
要素端面に対応して適正な形状・大きさで、また、適度
の開孔率を有する絶縁体層を密着的に介挿させた構成を
採った場合は、安全性や電池特性の大幅な改善・向上が
認められる。すなわち、外装缶に発電要素を挿入・装着
する時点での電池要素の損傷などが回避されるだけでな
く、過充電時などに電池内で生じるガス抜き性も良好
で、破裂・発火などを容易に回避できるし、さらには、
すぐれたサイクル特性も呈する。
[0048] As can be seen from Table 1 above, on the bottom wall surface of the outer can,
An insulator layer having an appropriate shape and size corresponding to the end face of the power generating element and an appropriate porosity is closely inserted on the end face side of the built-in and disposed flat type power generating element. In the case of adopting the configuration, significant improvements and improvements in safety and battery characteristics are recognized. In other words, not only can the battery element be prevented from being damaged when the power generating element is inserted and mounted in the outer can, but also the gas venting properties that occur inside the battery during overcharging, etc. are good, making it easier to burst or ignite. Can be avoided, and
Also exhibits excellent cycle characteristics.

【0049】上記では、円筒型非水電解液電池の例示に
ついて説明したが、発明の主旨を逸脱しない範囲でいろ
いろの変形を採ることができる。たとえば発電要素を捲
回型の代りに平板状に積層した構成としてもよいし、ま
た、正極や負極の活物質、正極や負極の構成、セパレー
タ、二次電池の形状など前記例示の以外の組み合わせ・
形態などを採ることができる。
In the above, an example of a cylindrical nonaqueous electrolyte battery has been described. However, various modifications can be made without departing from the gist of the invention. For example, the power generation element may be configured to be laminated in a flat plate shape instead of the wound type, or may be a combination other than the above examples such as the active material of the positive electrode and the negative electrode, the configuration of the positive electrode and the negative electrode, the separator, and the shape of the secondary battery.・
It can take a form or the like.

【0050】[0050]

【発明の効果】上記説明したように、本発明によれば、
正常時、すぐれた気密性により液漏れなどが防止され、
高い信頼性を保持する一方、過充電などによって電池内
圧が上昇したときには、発電要素部内のガス抜きも容易
に行われる。したがって、過充電時などでの電池内ガス
圧の上昇に起因する電池の爆発・破損なども回避され、
また、電流回路も遮断されるので電流に起因する事故な
ど確実にの防止できる。つまり、信頼性および安全性の
すぐれた非水電解液電池を提供できる。
As described above, according to the present invention,
Under normal conditions, excellent airtightness prevents liquid leakage,
While maintaining high reliability, when the internal pressure of the battery rises due to overcharging or the like, degassing in the power generating element portion is easily performed. Therefore, explosion and breakage of the battery due to an increase in gas pressure in the battery at the time of overcharging and the like are also avoided,
Further, since the current circuit is also cut off, it is possible to reliably prevent an accident caused by the current. That is, a non-aqueous electrolyte battery having excellent reliability and safety can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る非水電解液電池の要部構成を示す
断面図。
FIG. 1 is a cross-sectional view illustrating a main configuration of a nonaqueous electrolyte battery according to an embodiment.

【符号の説明】[Explanation of symbols]

1……一方の電極端子を兼ねる外装缶 2……発電要素 3……他方の電極端子 4……封口体 5……リード線 6……ガラス封止層 7……圧力弁体 8……圧力開放孔 9……開孔絶縁体層 9a……開孔絶縁体層の開孔部 10……絶縁板 DESCRIPTION OF SYMBOLS 1 ... Exterior can which also serves as one electrode terminal 2 ... Power generation element 3 ... The other electrode terminal 4 ... Sealing body 5 ... Lead wire 6 ... Glass sealing layer 7 ... Pressure valve body 8 ... Pressure Open hole 9: Open hole insulator layer 9a: Open hole of open hole insulator layer 10: Insulating plate

フロントページの続き (72)発明者 上野 嘉己 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内Continued on the front page (72) Inventor Yoshimi Ueno 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極構成部材、セパレータ部材、正極構
成部材、および非水系電解液から成り、かつ各構成部材
の端面が両端側に露出する積層もしくは偏平型の発電要
素と、 前記発電要素を内蔵し、かつ一方の端子となる一端開口
型の角型外装缶と、 前記外装缶の開口を封口し、かつ他方の端子を絶縁的に
導出した封口体と、 前記封口体に一体に形成具備され内部圧を開放する安全
弁部とを備えた非水電解液電池において、 前記外装缶に対接する発電要素の端面部に、厚さ方向に
貫通した開孔を有し、かつその開孔絶縁体層の幅 W,長
さ Lは、偏平型発電要素の高さ A, 幅 B,厚さCとした
とき、 0.5≦ W/B≦ 1.5で,かつ C× 1.2≦ L≦ C+2A であることを特徴とする角型非水電解液電池。
1. A laminated or flat power generating element comprising a negative electrode constituent member, a separator member, a positive electrode constituent member, and a non-aqueous electrolytic solution, wherein end faces of each constituent member are exposed at both ends, and the power generating element is built in. And one end opening type rectangular outer can that becomes one terminal, a sealing body that seals the opening of the outer can, and insulatedly leads out the other terminal, and is formed integrally with the sealing body. A non-aqueous electrolyte battery provided with a safety valve part that releases internal pressure, wherein an end face of a power generation element in contact with the outer can has an opening penetrating in a thickness direction, and the opening insulator layer The width W and the length L of the flat power generating element are 0.5 ≦ W / B ≦ 1.5 and C × 1.2 ≦ L ≦ C + 2A when the height A, width B and thickness C of the flat type power generating element Square non-aqueous electrolyte battery.
【請求項2】 開孔絶縁体層の開孔面積率が20〜80%で
あることを特徴とする請求項1記載の角型非水電解液電
池。
2. The rectangular nonaqueous electrolyte battery according to claim 1, wherein the open area ratio of the open insulator layer is 20 to 80%.
【請求項3】 負極構成部材、セパレータ部材、正極構
成部材、および非水系電解液から成り、かつ各構成部材
の端面が両端側に露出する積層もしくは偏平型の発電要
素の一端面に厚さ方向に貫通した開孔を有する絶縁粘着
シートを貼着する工程と、 一方の端子となる一端開口の角型外装缶の底壁面に、前
記貼着した絶縁粘着シートを対接させて発電要素を収容
・装着する工程と、 前記収容・装着した発電要素と封口体に絶縁して導出他
方の端子とを電気的に接続し、かつ外装缶の開口をガス
圧開放安全弁付きの封口体で気密に封止する工程とを有
することを特徴とする角型非水電解液電池の製造方法。
3. A laminated or flat power generating element comprising a negative electrode component, a separator member, a positive electrode component, and a non-aqueous electrolytic solution and having end faces exposed at both ends in a thickness direction. Attaching an insulating pressure-sensitive adhesive sheet having an opening penetrating therethrough; and housing the power generating element by contacting the bonded pressure-sensitive adhesive pressure-sensitive adhesive sheet with the bottom wall surface of the rectangular outer can having one end opening that becomes one terminal. The mounting step, the power generation element housed and mounted and the sealing terminal are insulated and the other terminal is electrically connected to the other terminal, and the opening of the outer can is hermetically sealed with a sealing member equipped with a gas pressure release safety valve. And a step of stopping the non-aqueous electrolyte battery.
JP14954397A 1997-06-06 1997-06-06 Square non-aqueous electrolyte battery and method for manufacturing the same Expired - Fee Related JP3713361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14954397A JP3713361B2 (en) 1997-06-06 1997-06-06 Square non-aqueous electrolyte battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14954397A JP3713361B2 (en) 1997-06-06 1997-06-06 Square non-aqueous electrolyte battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10340712A true JPH10340712A (en) 1998-12-22
JP3713361B2 JP3713361B2 (en) 2005-11-09

Family

ID=15477454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14954397A Expired - Fee Related JP3713361B2 (en) 1997-06-06 1997-06-06 Square non-aqueous electrolyte battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3713361B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027275A (en) * 1999-09-13 2001-04-06 김순택 Sealed battery
WO2016067510A1 (en) * 2014-10-31 2016-05-06 三洋電機株式会社 Battery
WO2016088505A1 (en) * 2014-12-04 2016-06-09 日立オートモティブシステムズ株式会社 Rectangular secondary cell
WO2018159618A1 (en) * 2017-02-28 2018-09-07 株式会社 豊田自動織機 Power storage apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027275A (en) * 1999-09-13 2001-04-06 김순택 Sealed battery
WO2016067510A1 (en) * 2014-10-31 2016-05-06 三洋電機株式会社 Battery
JPWO2016067510A1 (en) * 2014-10-31 2017-08-10 三洋電機株式会社 battery
US10541397B2 (en) 2014-10-31 2020-01-21 Sanyo Electric Co., Ltd. Battery
WO2016088505A1 (en) * 2014-12-04 2016-06-09 日立オートモティブシステムズ株式会社 Rectangular secondary cell
WO2018159618A1 (en) * 2017-02-28 2018-09-07 株式会社 豊田自動織機 Power storage apparatus
JPWO2018159618A1 (en) * 2017-02-28 2019-12-26 株式会社豊田自動織機 Power storage device
US10916751B2 (en) 2017-02-28 2021-02-09 Kabushiki Kaisha Toyota Jidoshokki Power storage apparatus

Also Published As

Publication number Publication date
JP3713361B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
KR100853628B1 (en) Electrode and battery, and methods of producing the same
EP1119060B1 (en) Nonaqueous electrolyte solution secondary battery
KR100779282B1 (en) Nonaqueous electrolyte secondary battery
JP4986009B2 (en) Secondary battery
US5962167A (en) Non-aqueous liquid electrolyte secondary cell
EP1735858B1 (en) Battery safety device and battery having the same
US20140038002A1 (en) Film-covered battery and assembled battery
JP4236308B2 (en) Lithium ion battery
WO2006033319A1 (en) Lithium secondary battery
JPH11185714A (en) Nonaqueous electrolyte secondary battery
US20050175892A1 (en) Battery including rolled electrodes
CN115552684A (en) Secondary battery
JP4432146B2 (en) Nonaqueous electrolyte secondary battery
JP2000277066A5 (en)
JPH10233198A (en) Nonaqueous electrolyte battery
JP2002151020A (en) Electrochemical device
JP3713361B2 (en) Square non-aqueous electrolyte battery and method for manufacturing the same
JPH10233199A (en) Nonaqueous electrolyte battery
JP2000285902A5 (en)
JP2000357536A (en) Nonaqueous electrolyte battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP3272937B2 (en) Non-aqueous electrolyte secondary battery
JPH10340717A (en) Nonaquous electrolytic secondary battery
CN111316495A (en) Cylindrical secondary battery
JPH10233202A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees