JP3272937B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3272937B2
JP3272937B2 JP05476896A JP5476896A JP3272937B2 JP 3272937 B2 JP3272937 B2 JP 3272937B2 JP 05476896 A JP05476896 A JP 05476896A JP 5476896 A JP5476896 A JP 5476896A JP 3272937 B2 JP3272937 B2 JP 3272937B2
Authority
JP
Japan
Prior art keywords
thin plate
sealing body
secondary battery
aqueous electrolyte
cut groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05476896A
Other languages
Japanese (ja)
Other versions
JPH09245837A (en
Inventor
雄一 佐藤
優治 佐藤
隆久 大崎
建一郎 小里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05476896A priority Critical patent/JP3272937B2/en
Publication of JPH09245837A publication Critical patent/JPH09245837A/en
Application granted granted Critical
Publication of JP3272937B2 publication Critical patent/JP3272937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明、安全弁機構を有する
非水電解液二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery having a safety valve mechanism.

【0002】[0002]

【従来の技術】最近、携帯電話やビデオカメラ等の電子
機器や、コンピュータ等の小型化、軽量化、高性能化に
伴い、これらの電子機器などの電源となる二次電池につ
いても、軽量で、エネルギー密度が高く、さらに繰り返
し充放電が可能である等の要求が高まっている。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and video cameras and computers and the like have become smaller, lighter, and more sophisticated, secondary batteries serving as power sources for these electronic devices have also become lighter. There is a growing demand for high energy density and the ability to repeatedly charge and discharge.

【0003】水の分解電圧以上の高電圧化が可能な非水
電解液二次電池は、従来から使用されてきた鉛二次電池
やニッケルカドミウム二次電池に代わる二次電池として
開発が進んでいる。このような非水電解液二次電池は、
負極材料としてコークス、黒鉛、有機物焼結体等のリチ
ウムを吸蔵・放出することが可能な炭素材料を用い、正
極活物質としてLiCoO2 、LiNiO2 などのリチ
ウムイオンを吸蔵・放出することが可能な金属酸化物を
用いたリチウムイオン二次電池が提案されている。
A non-aqueous electrolyte secondary battery capable of increasing the voltage higher than the decomposition voltage of water has been developed as a secondary battery that replaces conventionally used lead secondary batteries and nickel cadmium secondary batteries. I have. Such a non-aqueous electrolyte secondary battery,
A carbon material capable of occluding and releasing lithium such as coke, graphite, and an organic sintered body is used as a negative electrode material, and lithium ions such as LiCoO 2 and LiNiO 2 can be inserted and released as a positive electrode active material. A lithium ion secondary battery using a metal oxide has been proposed.

【0004】しかしながら、前記非水電解液二次電池は
上述した利点を有する反面、信頼性が乏しいという問題
があった。その一つとして、外装缶内に収納された正極
および負極を有する電極体が化学変化を起こして内圧が
高くなり、発火、破裂を生じる場合がある。例えば、リ
チウムイオン二次電池のような非水電解液電池に通常以
上の電流を与える、いわゆる過充電状態にしたり、誤使
用により短絡状態になって大電流が流れたりすると前記
電極体の中の非水電解液が分解されてガスが発生する場
合がある。このようなガスが前記外装缶内に次第に充満
し、外装缶内の内圧が上昇すると、最後には電池が破裂
する。
[0004] However, the above-mentioned non-aqueous electrolyte secondary battery has the above-mentioned advantages, but has a problem of poor reliability. As one of them, there is a case where an electrode body having a positive electrode and a negative electrode housed in an outer can undergoes a chemical change to increase the internal pressure, thereby causing ignition and rupture. For example, applying a current higher than normal to a non-aqueous electrolyte battery such as a lithium ion secondary battery, or in a so-called overcharged state, or when a large current flows due to a short circuit due to misuse, the inside of the electrode body The non-aqueous electrolyte may be decomposed to generate gas. Such a gas gradually fills the outer can, and when the internal pressure in the outer can increases, the battery eventually bursts.

【0005】このようなことから、従来では前述した電
池の破裂を防止するために外装缶の内圧が一定値以上に
達した場合、発生ガスを外装缶の外に放出し、破裂を防
止するための安全弁機構が設けられている。このような
安全弁機構を備えた非水電解液二次電池は、次のような
構造のものが知られている。すなわち、この非水電解液
二次電池は有底筒状の外装缶と、前記外装缶内に収納さ
れ、正極、セパレータおよび負極を渦巻き状に巻回した
電極体と、前記外装缶内に収容された非水電解液と、前
記外装缶の上端開口部に設けられた封口体とを備え、前
記封口体に圧力開放用孔を開口し、かつ前記封口体(例
えばその下面)の前記孔を塞ぐように設けられた切り込
み溝を有する金属薄板を取り付けた構造になっている。
前記切り込み溝は、例えば直線部およびこの両端をV字
型にした形状を有する。前記封口体の圧力開放用孔およ
び前記切り込み溝を有する薄板からなる安全便機構を有
する二次電池において、その内圧が過電流等により上昇
すると、前記切り込み溝部分から薄板が破断されて孔が
形成される。この孔および前記圧力開放用孔を通して前
記外装缶内に充満したガスが放出され、爆発が未然に防
止される。なお、前記内圧上昇に伴う爆発を防止するた
めには前記安全弁機構の作動圧は15±5kgf/cm
2 であることが好ましい。
In view of the above, conventionally, when the internal pressure of the outer can reaches a certain value or more, the generated gas is discharged to the outside of the outer can to prevent the rupture of the battery. Is provided. A non-aqueous electrolyte secondary battery having such a safety valve mechanism is known to have the following structure. That is, this non-aqueous electrolyte secondary battery is a cylindrical outer can with a bottom, housed in the outer can, an electrode body in which a positive electrode, a separator and a negative electrode are spirally wound, and housed in the outer can. A non-aqueous electrolyte solution, and a sealing body provided at an upper end opening of the outer can, a pressure release hole is opened in the sealing body, and the hole of the sealing body (for example, the lower surface) is closed. It has a structure in which a thin metal plate having a cut groove provided so as to close it is attached.
The cut groove has, for example, a shape in which a straight portion and both ends thereof are V-shaped. In a secondary battery having a safety convenience mechanism comprising a thin plate having a pressure releasing hole and the cut groove of the sealing body, when the internal pressure increases due to overcurrent or the like, the thin plate is broken from the cut groove portion to form a hole. Is done. The gas filled in the outer can is released through the hole and the pressure release hole, thereby preventing explosion. In order to prevent the explosion caused by the rise of the internal pressure, the operating pressure of the safety valve mechanism is 15 ± 5 kgf / cm.
It is preferably 2 .

【0006】しかしながら、前記切り込み溝を形成し、
その底部が前記作動圧で確実に破断される金属薄板を有
する安全弁機構を付設した非水電解液二次電池におい
て、落下衝撃、とりわけ前記安全弁機構が付設された封
口体に直接に落下衝撃を受けると、所定の作動圧以下で
あるにもかかわらず、前記薄板の切り込み溝が破断され
て開放状態になり、電池機能を喪失するか、外装缶内に
収容された電解液が外部に漏れだし周辺機器を損傷する
という問題があった。
However, the cut groove is formed,
In a non-aqueous electrolyte secondary battery provided with a safety valve mechanism having a metal sheet whose bottom is reliably broken by the operating pressure, a drop impact, particularly, a drop impact is directly received by a sealing body provided with the safety valve mechanism. In spite of being below the predetermined operating pressure, the cut groove of the thin plate is broken to open, and the battery function is lost or the electrolyte contained in the outer can leaks out and leaks around. There was a problem that the equipment was damaged.

【0007】すなわち、落下試験に際し、外装缶内に収
容された非水電解液が大きな加速度をもって外装缶の落
下面に衝撃を与える。特に、落下面が安全弁機構が付設
された封口体表面であると、前記衝撃は前記封口体に取
り付けられた薄板を凸状に変形するように加わる。この
時、前記落下衝撃によって前記薄板の切り込み溝を広げ
るように引き裂き応力が加わるため、前記切り込み溝が
形成された薄板の強度が低下する。その結果、前記薄板
が所定の作動圧未満で破断されて開放状態になる。
That is, in the drop test, the non-aqueous electrolyte contained in the outer can impacts the falling surface of the outer can with a large acceleration. In particular, when the falling surface is the surface of the sealing body provided with the safety valve mechanism, the impact is applied so as to deform the thin plate attached to the sealing body into a convex shape. At this time, a tearing stress is applied so as to widen the cut groove of the thin plate by the drop impact, so that the strength of the thin plate formed with the cut groove is reduced. As a result, the thin plate is broken below a predetermined operating pressure, and becomes open.

【0008】このような落下衝撃に対しては、安全弁機
構の作動圧を高めることが考えられるが、作動圧を高め
ると当初の目的である過充電や短絡減少による電池の内
圧上昇を防止する効果が著しく損なわれる。
It is conceivable to increase the operating pressure of the safety valve mechanism against such a drop impact. However, if the operating pressure is increased, the effect of preventing an increase in the internal pressure of the battery due to the initial purpose of overcharging and short circuit reduction is considered. Is significantly impaired.

【0009】[0009]

【発明が解決しようとする課題】本発明は、所定の作動
圧で確実に破断され、かつ落下衝撃に対して良好な強度
を保持した安全弁機構を備えた非水電解液二次電池を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention is to provide a non-aqueous electrolyte secondary battery provided with a safety valve mechanism which is reliably broken at a predetermined operating pressure and has good strength against a drop impact. It is assumed that.

【0010】[0010]

【課題を解決するための手段】本発明に係わる非水電解
液二次電池は、有底筒状の外装缶と、前記外装缶内に収
納され、正極、セパレータおよび負極を渦巻き状に巻回
した電極体と、前記外装缶内に収容された非水電解液
と、前記外装缶の上端開口部に設けられ、圧力開放用孔
が開口された封口体と、前記封口体に前記圧力開放用孔
を塞ぐように取り付けられ、切り込み溝が形成された薄
板と、前記封口体に前記薄板上面を覆うように取り付け
られたゴム弾性を有する高分子材料被膜とを具備したこ
とを特徴とするものである。
A non-aqueous electrolyte secondary battery according to the present invention comprises a cylindrical outer can having a bottom and a positive electrode, a separator and a negative electrode which are housed in the outer can and are spirally wound. Electrode body, a non-aqueous electrolyte contained in the outer can, a sealing body provided at the upper end opening of the outer can, and having a pressure opening hole, and a pressure releasing hole for the sealing body. A thin plate attached to close the hole and formed with a notch groove, and a polymer material film having rubber elasticity attached to the sealing body so as to cover the upper surface of the thin plate. is there.

【0011】[0011]

【発明の実施の形態】以下、本発明を図1および図2に
示す角形の非水電解液二次電池を例にして詳細に説明す
る。図1は、本発明に係わる非水電解液二次電池の要部
斜視図、図2は同電池の縦断面図である。例えばステン
レスからなる負極端子を兼ねる有底矩形筒状の外装缶1
内には、電極体2が収納されている。前記電極体2は、
正極3、セパレータ4および負極5の積層物を渦巻状に
巻回して構成されている。なお、前記電極体2は籠形の
電極カバー6に収納されている。非水電解液は、前記外
装缶1内に収容されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to a prismatic nonaqueous electrolyte secondary battery shown in FIGS. FIG. 1 is a perspective view of a main part of a non-aqueous electrolyte secondary battery according to the present invention, and FIG. 2 is a longitudinal sectional view of the battery. For example, a bottomed rectangular cylindrical outer can 1 also serving as a negative electrode terminal made of stainless steel
The electrode body 2 is housed inside. The electrode body 2 is
A laminate of the positive electrode 3, the separator 4, and the negative electrode 5 is spirally wound. The electrode body 2 is housed in a basket-shaped electrode cover 6. The non-aqueous electrolyte is contained in the outer can 1.

【0012】中央に円形穴7およびこの穴7に隣接した
個所に矩形状の圧力開放用孔8がそれぞれ開口された例
えばステンレスからなる封口体9は、前記外装缶1の上
端開口部にレーザ溶接により気密に取り付けられてい
る。例えばステンレスからなる正極端子ピン10は、前
記封口体9の前記穴7内にその上下端が前記封口体9の
上下面から突出するように挿入されていると共に、前記
穴7に充填されたガラス製絶縁材11によりハーメティ
クシールされている。前記正極端子ピン10は、リード
12により前記電極体2の正極3と接続されている。
A sealing body 9 made of, for example, stainless steel having a circular hole 7 in the center and a rectangular pressure release hole 8 at a position adjacent to the hole 7 is laser-welded to the upper end opening of the outer can 1. More airtight. For example, the positive electrode terminal pin 10 made of stainless steel is inserted into the hole 7 of the sealing body 9 so that the upper and lower ends thereof protrude from the upper and lower surfaces of the sealing body 9, and the glass filled in the hole 7. Hermetically sealed by the insulating material 11. The positive electrode terminal pin 10 is connected to the positive electrode 3 of the electrode body 2 by a lead 12.

【0013】例えばステンレスからなる矩形状の薄板1
3は、前記封口体9の下面に前記圧力開放用孔8を塞ぐ
ようにレーザ溶接により気密に取り付けられている。直
線部およびこの両端をV字型にした形状を有する切り込
み溝14は、前記薄板13の上面に形成され、この切り
込み溝14により溝部分は薄膜化されている。なお、前
記切り込み溝14は、前記薄板13の下面に前記形状の
パンチでプレス加工するか、もしくはエッチングを行う
ことにより形成される。前記封口体9の圧力開放用孔8
および前記切り込み溝14を有する薄板13とにより安
全弁機構を構成している。
For example, a rectangular thin plate 1 made of stainless steel
Reference numeral 3 is hermetically attached to the lower surface of the sealing body 9 by laser welding so as to cover the pressure release hole 8. A straight portion and a cut groove 14 having a V-shaped shape at both ends are formed on the upper surface of the thin plate 13, and the groove portion is thinned by the cut groove 14. The cut groove 14 is formed by pressing or etching the lower surface of the thin plate 13 with a punch having the above-described shape. Pressure release hole 8 of the sealing body 9
The thin plate 13 having the cut groove 14 constitutes a safety valve mechanism.

【0014】ゴム弾性を有する高分子材料被膜15は、
前記封口体9の前記圧力開放用孔8内に前記薄板13の
切り込み溝14を覆うように充填されている。次に、前
記正極3、負極5及び非水電解液について説明する。
The polymer material film 15 having rubber elasticity is
The pressure releasing hole 8 of the sealing body 9 is filled so as to cover the cut groove 14 of the thin plate 13. Next, the positive electrode 3, the negative electrode 5, and the non-aqueous electrolyte will be described.

【0015】1)正極3 この正極3は、アルミニウム箔、アルミニウム製メッシ
ュ、アルミニウム製パンチドメタル、アルミニウム製ラ
スメタルのような集電体3aの両面に例えばLix MO
2 (ただし、MはCo、Niのような遷移金属、xは
0.05≦x≦1.10を示す)で表される活物質を含
む正極合剤3bを形成した構造を有する。前記活物質
は、具体的にはLiCo2 、LiNiO2 、LiNiy
CO(1-y)2 (ただし、xは0.05≦x≦1.1
0、yは0<y,1を示す)で表される複合酸化物が挙
げられる。
1) Positive Electrode 3 The positive electrode 3 is formed on both sides of a current collector 3a such as an aluminum foil, an aluminum mesh, an aluminum punched metal, or an aluminum lath metal by, for example, Li x MO.
2 (where M represents a transition metal such as Co or Ni, and x represents 0.05 ≦ x ≦ 1.10.) The positive electrode mixture 3b containing the active material is formed. The active material is specifically LiCo 2 , LiNiO 2 , LiNi y
CO (1-y) O 2 (where x is 0.05 ≦ x ≦ 1.1
0 and y represent 0 <y, 1).

【0016】前記複合酸化物は、例えばリチウム、コバ
ルト、ニッケルの炭酸塩を出発原料とし、これらの炭酸
塩を所定量混合し、酸素雰囲気中、600〜1000℃
で焼成することにより得られる。また、前記出発原料は
炭酸塩に限らず、水酸化物、酸化物からも同様に合成可
能である。
The composite oxide is prepared, for example, by using carbonates of lithium, cobalt and nickel as starting materials, mixing these carbonates in predetermined amounts, and heating at 600 to 1000 ° C. in an oxygen atmosphere.
It is obtained by baking. The starting materials are not limited to carbonates, but can be synthesized from hydroxides and oxides.

【0017】2)負極5 この負極5は、銅箔、銅製メッシュ、銅製パンチドメタ
ル、銅製ラスメタルのような集電体5aの両面にリチウ
ムを吸蔵・放出する材料を活物質として含む負極合剤5
bを形成した構造を有する。前記活物質としては、具体
的には熱分解炭素類;ピッチコークス、ニードルコーク
ス、石油コークスのようなコークス類;グラファイト
類;ガラス状炭素類;フェノール樹脂、フラン樹脂のよ
うな適当な温度で焼成化する有機高分子化合物焼成体;
炭素繊維;活性炭などの炭素材料、または金属リチウ
ム、リチウム−アルミニウム合金のようなリチウム合
金、ポリアセチレン、ポリピロールなどのポリマーを用
いることができる。
2) Negative Electrode 5 The negative electrode 5 is a negative electrode mixture containing, as an active material, a material that absorbs and releases lithium on both surfaces of a current collector 5a such as copper foil, copper mesh, copper punched metal, and copper lath metal. 5
b. Specific examples of the active material include pyrolytic carbons; cokes such as pitch coke, needle coke and petroleum coke; graphites; glassy carbons; Organic polymer compound fired body to be converted;
Carbon fiber; a carbon material such as activated carbon; a lithium alloy such as lithium metal or a lithium-aluminum alloy; or a polymer such as polyacetylene or polypyrrole can be used.

【0018】3)非水電解液 この非水電解液は、リチウム塩のような電解質を有機溶
媒で溶解したものである。
3) Non-aqueous electrolyte This non-aqueous electrolyte is obtained by dissolving an electrolyte such as a lithium salt in an organic solvent.

【0019】前記電解質としては、例えばLiClO
4 、LiPF6 、LiAsF6 、LiBF4 、LiCF
3 SO3 、LiB(C654 、LiCl、LiB
r、LiCH3 SO3 から選ばれる1種または2種以上
のリチウム塩を挙げることができる。
As the electrolyte, for example, LiClO
4, LiPF 6, LiAsF 6, LiBF 4, LiCF
3 SO 3 , LiB (C 6 H 5 ) 4 , LiCl, LiB
r, one or more lithium salts selected from LiCH 3 SO 3 .

【0020】前記有機溶媒としては、例えばプロピレン
カーボネート、エチレンカーボネート、1,2−ジメト
キシエタン、γ−ブチルラクトン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,3−ジオキソ
ラン、スルホラン、アセトニトリル、ジエチレンカーボ
ネート、ジプロピルカーボネートから選ばれる1種また
は2種以上の混合物を挙げることができる。
Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, sulfolane, acetonitrile, diethylene carbonate, dipropyl One type or a mixture of two or more types selected from carbonates can be mentioned.

【0021】前記電解質の非水溶媒に対する溶解量は、
0.5〜1.5モル/lとすることが望ましい。前記ゴ
ム弾性を有する高分子材料は、この被膜が設けられる前
記薄板の素材であるステンレスに対して接着強度が低い
性質を有することが好ましい。このような性質は、ステ
ンレスに接着された時の引張り弾性率で定義することが
できる。すなわち、前記ゴム弾性を有する高分子材料は
前記引張り弾性率が400kgf/mm2 以下であるこ
とが好ましく、具体的にはシリコーン樹脂、フッ素樹脂
等を用いることができる。前記引張り弾性率が400k
gf/mm2 を越える高分子材料を用いると、前記高分
子材料被膜と前記薄板との接着強度が大きくなって内圧
上昇による電池の破裂、発火を防ぐ前記弁膜の破断が所
定の作動圧で行われなく恐れがある。
The amount of the electrolyte dissolved in the non-aqueous solvent is as follows:
It is desirably 0.5 to 1.5 mol / l. The polymer material having rubber elasticity preferably has low adhesive strength to stainless steel, which is a material of the thin plate on which the coating is provided. Such properties can be defined by the tensile modulus of elasticity when bonded to stainless steel. That is, the polymer material having rubber elasticity preferably has a tensile modulus of 400 kgf / mm 2 or less, and specifically, a silicone resin, a fluororesin, or the like can be used. The tensile modulus is 400k
When a polymer material exceeding gf / mm 2 is used, the adhesive strength between the polymer material film and the thin plate is increased, so that the battery membrane is prevented from being ruptured due to an increase in internal pressure and the valve membrane is prevented from being broken at a predetermined operating pressure. There is fear that it is not done.

【0022】前記ゴム弾性を有する高分子材料被膜、例
えば液状もしくはゲル状の高分子材料を封口体の所定の
部位に塗布、乾燥することにより形成される。以上説明
した本発明に係わる非水電解液二次電池によれば、外装
缶1の上端開孔部に設けられた封口体9の下面に切り込
み溝14が形成された薄板13を前記封口体9の圧力開
放用孔8を塞ぐように取り付け、かつ前記圧力開放用孔
8内にゴム弾性を有する高分子材料被膜15を前記薄板
13上面の少なくとも切り込み溝14を覆うように充填
している。このため、過充電や短絡に起因して電池内の
温度上昇が生じ、前記外装缶1内に収納された電解液が
分解し、ガスが発生して内圧が上昇すると、前記薄板1
3が押上られて変形するため、所定の内圧以上に達する
と前記薄板13の溝部分が破断し、同時にその上面の前
記高分子材料被膜15が前記薄板13から剥離し、前記
圧力開放用孔8が開放される。その結果、前記前記外装
缶1内に充満したガスを破断した薄板13および前記封
口体9の圧力開放用孔8を通して外部に放出することが
できるため、前記外装缶1の破裂、変形を防止すること
ができる。
The polymer material film having rubber elasticity, for example, a liquid or gel polymer material is applied to a predetermined portion of the sealing body and dried. According to the non-aqueous electrolyte secondary battery according to the present invention described above, the thin plate 13 in which the notch groove 14 is formed on the lower surface of the sealing body 9 provided at the upper opening of the outer can 1 is connected to the sealing body 9. The pressure releasing hole 8 is mounted so as to close the pressure releasing hole 8, and the polymer material film 15 having rubber elasticity is filled in the pressure releasing hole 8 so as to cover at least the cut groove 14 on the upper surface of the thin plate 13. For this reason, the temperature inside the battery rises due to overcharging or short-circuit, and the electrolytic solution contained in the outer can 1 is decomposed, and gas is generated to increase the internal pressure.
3 is pushed up and deformed, so that when a predetermined internal pressure or more is reached, the groove portion of the thin plate 13 is broken, and at the same time, the polymer material coating 15 on the upper surface of the thin plate 13 is peeled off from the thin plate 13 and the pressure release hole 8 is formed. Is released. As a result, the gas filled in the outer can 1 can be released to the outside through the ruptured thin plate 13 and the pressure release hole 8 of the sealing body 9, so that the rupture and deformation of the outer can 1 are prevented. be able to.

【0023】また、前記封口体9の下面に切り込み溝1
4が形成された薄板13を前記封口体9の圧力開放用孔
8を塞ぐように取り付け、かつ前記圧力開放用孔8内に
ゴム弾性を有する高分子材料被膜15を前記薄板13上
面の少なくとも切り込み溝14を覆うように充填するこ
とによって、落下等の衝撃を受けても前記薄板が所定の
作動圧未満で破断されて開放状態になるのを阻止して電
池機能の喪失や外装缶内に収容された電解液の外部への
漏れだしを防止できる。
Further, the cut groove 1 is formed on the lower surface of the sealing body 9.
The thin plate 13 on which the seal 4 is formed is attached so as to cover the pressure releasing hole 8 of the sealing body 9, and a polymer material film 15 having rubber elasticity is cut into the pressure releasing hole 8 at least in the upper surface of the thin plate 13. By filling the groove 14 so as to cover it, even if it receives an impact such as dropping, the thin plate is prevented from breaking under a predetermined operating pressure to be in an open state. The leaked electrolyte solution can be prevented from leaking to the outside.

【0024】すなわち、落下の際に、外装缶1内に収容
された非水電解液が大きな加速度をもって外装缶1の落
下面に衝撃を与える。特に、落下面が安全弁機構が付設
された封口体9表面であると、前記衝撃は前記封口体9
に取り付けられた薄板13を凸状に変形するように加わ
る。この時、前記封口体9下面に取り付けられた前記薄
板13上面の少なくとも切り込み溝14をゴム弾性を有
する前記高分子材料被膜15で覆っているため、前記高
分子材料被膜15が前記薄板13に対して重石のように
作用し、前記薄板13の変形を抑制できる。その結果、
前記落下に伴う衝撃により前記薄板13の切り込み溝1
4を広げるような引き裂き応力が加わるのを緩和でき
る。その結果、前記切り込み溝14部分の強度低下を抑
制できる。したがって、前記薄板13が所定の作動圧未
満で破断されて開放状態になるのを阻止して電池機能の
喪失や外装缶内に収容された電解液の外部への漏れだし
を防止できる。
That is, when falling, the non-aqueous electrolyte contained in the outer can 1 impacts the falling surface of the outer can 1 with a large acceleration. In particular, when the falling surface is the surface of the sealing body 9 provided with the safety valve mechanism, the impact is applied to the sealing body 9.
Is applied so as to deform the thin plate 13 attached to the convex shape. At this time, since at least the cut groove 14 on the upper surface of the thin plate 13 attached to the lower surface of the sealing body 9 is covered with the polymer material coating 15 having rubber elasticity, the polymer material coating 15 Acting like a weight, the deformation of the thin plate 13 can be suppressed. as a result,
The cut groove 1 of the thin plate 13
4 can be alleviated by the application of a tearing stress. As a result, a decrease in the strength of the cut groove 14 can be suppressed. Therefore, it is possible to prevent the thin plate 13 from being broken and opened under a predetermined operating pressure, thereby preventing the loss of the battery function and the leakage of the electrolyte contained in the outer can to the outside.

【0025】次に、本発明に係わる別の非水電解液二次
電池を図3、図4、図5および図6を参照して説明す
る。なお、前述した図1および図2と同様な部材は同符
号を付して説明を省略する。
Next, another non-aqueous electrolyte secondary battery according to the present invention will be described with reference to FIGS. 3, 4, 5 and 6. FIG. The same members as those in FIGS. 1 and 2 described above are denoted by the same reference numerals, and description thereof will be omitted.

【0026】図3に示す非水電解液二次電池は、切り込
み溝14を下面に設け、その切り込み溝14が形成され
た薄板13を封口体9の下面に圧力開放用孔8を塞ぐよ
うにレーザ溶接により気密に取り付け、かつ前記圧力開
放用孔8内にゴム弾性を有する高分子材料被膜15を前
記薄板13上面を覆うように充填した構造を有する。
The non-aqueous electrolyte secondary battery shown in FIG. 3 is provided with a cut groove 14 on the lower surface, and the thin plate 13 having the cut groove 14 is formed on the lower surface of the sealing body 9 so as to cover the pressure release hole 8. It has a structure in which a polymer material film 15 having rubber elasticity is filled in the pressure release hole 8 so as to cover the upper surface of the thin plate 13 by airtightly attaching by laser welding.

【0027】このような図3に示す構成の非水電解液二
次電池によれば、前述した図1、図2に示す構造の非水
電解液二次電池と同様、過充電や短絡に起因して電池内
の温度上昇による外装缶1の破裂、変形を防止すること
ができ、かつ落下等の衝撃を受けても前記弁膜が所定の
作動圧未満で破断されて開放状態になるのを阻止して電
池機能の喪失や外装缶内に収容された電解液の外部への
漏れだしを防止することができる。
According to the non-aqueous electrolyte secondary battery having the structure shown in FIG. 3, the non-aqueous electrolyte secondary battery having the structure shown in FIGS. As a result, it is possible to prevent the outer can 1 from being ruptured or deformed due to a rise in the temperature inside the battery, and to prevent the valve membrane from being broken below a predetermined operating pressure and being opened even when subjected to an impact such as dropping. As a result, loss of the battery function and leakage of the electrolyte contained in the outer can to the outside can be prevented.

【0028】図4および図5に示す非水電解液二次電池
は、切り込み溝14を上面に設け、その切り込み溝14
が形成された薄板13を封口体9の上面に圧力開放用孔
8を塞ぐようにレーザ溶接により気密に取り付け、かつ
前記薄板13を含む前記封口体9の上面に弾性を有する
高分子材料被膜16を被覆した構造を有する。
In the non-aqueous electrolyte secondary battery shown in FIGS. 4 and 5, a cut groove 14 is provided on the upper surface.
The thin plate 13 on which is formed is hermetically attached to the upper surface of the sealing body 9 by laser welding so as to cover the pressure release hole 8, and an elastic polymer film 16 on the upper surface of the sealing body 9 including the thin plate 13. Having a structure coated with

【0029】このような図4および図5に示す構成の非
水電解液二次電池によれば、過充電や短絡に起因して電
池内の温度上昇が生じ、外装缶1内に収納された電解液
が分解し、ガスが発生して内圧が上昇すると、封口体9
の上面に圧力開放用孔8を塞ぐように取り付けられた薄
板13が押上られて変形するため、所定の内圧以上に達
すると前記薄板13の切り込み溝14で破断し、同時に
前記薄板13上面を覆う高分子材料被膜16が前記薄板
13から剥離し、前記圧力開放用孔8が開放される。そ
の結果、前記前記外装缶1内に充満したガスを前記封口
体9の圧力開放用孔8および破断した薄板13を通して
外部に放出することができるため、前記外装缶1の破
裂、変形を防止することができる。
According to the non-aqueous electrolyte secondary battery having the structure shown in FIGS. 4 and 5, the temperature inside the battery rises due to overcharging or short-circuit, and the battery is stored in the outer can 1. When the electrolytic solution is decomposed and gas is generated to increase the internal pressure, the sealing body 9
Since the thin plate 13 attached to the upper surface of the thin plate 13 so as to close the pressure releasing hole 8 is pushed up and deformed, when the internal pressure reaches a predetermined internal pressure or more, the thin plate 13 is broken by the cut groove 14 of the thin plate 13 and simultaneously covers the upper surface of the thin plate 13 The polymer material film 16 is peeled off from the thin plate 13, and the pressure release hole 8 is opened. As a result, the gas filled in the outer can 1 can be released to the outside through the pressure release hole 8 of the sealing body 9 and the broken thin plate 13, so that the rupture and deformation of the outer can 1 are prevented. be able to.

【0030】また、図4および図5に示す構造の二次電
池が落下すると、外装缶1内に収容された非水電解液が
大きな加速度をもって外装缶1の落下面に衝撃を与え
る。特に、落下面が安全弁機構が付設された封口体9表
面であると、前記衝撃は前記封口体9に取り付けられた
薄板13を凸状に変形するように加わる。この時、前記
封口体9上面に取り付けられた前記薄板13はその上面
がゴム弾性を有する前記高分子材料被膜16で覆われて
いるため、前記高分子材料被膜16が前記薄板13に対
して重石のように作用し、前記薄板13の変形を抑制で
きる。その結果、前記落下に伴う衝撃により前記薄板1
3の切り込み溝14を広げるような引き裂き応力が加わ
るのを緩和できるため、前記切り込み溝14部分の強度
低下を抑制できる。したがって、前記薄板13が所定の
作動圧未満で破断されて開放状態になるのを阻止して電
池機能の喪失や外装缶内に収容された電解液の外部への
漏れだしを防止できる。
When the secondary battery having the structure shown in FIGS. 4 and 5 falls, the non-aqueous electrolyte contained in the outer can 1 impacts the falling surface of the outer can 1 with a large acceleration. In particular, if the falling surface is the surface of the sealing body 9 provided with the safety valve mechanism, the impact is applied so as to deform the thin plate 13 attached to the sealing body 9 into a convex shape. At this time, since the upper surface of the thin plate 13 attached to the upper surface of the sealing body 9 is covered with the polymer material film 16 having rubber elasticity, the polymer material film 16 And the deformation of the thin plate 13 can be suppressed. As a result, the thin plate 1
Since it is possible to alleviate the application of a tearing stress that widens the cut groove 14 of the third embodiment, it is possible to suppress a decrease in the strength of the cut groove 14 portion. Therefore, it is possible to prevent the thin plate 13 from being broken and opened under a predetermined operating pressure, thereby preventing the loss of the battery function and the leakage of the electrolyte contained in the outer can to the outside.

【0031】図6に示す非水電解液二次電池は、切り込
み溝14を下面に設け、その切り込み溝14により溝部
分が薄膜化された薄板13を封口体9の上面に圧力開放
用孔(図示せず)を塞ぐようにレーザ溶接により気密に
取り付け、かつ前記薄板13を含む前記封口体9の上面
に弾性を有する高分子材料被膜16を被覆した構造を有
する。
In the non-aqueous electrolyte secondary battery shown in FIG. 6, a cut groove 14 is provided on the lower surface, and a thin plate 13 whose groove portion is thinned by the cut groove 14 is formed on the upper surface of the sealing body 9 with a pressure release hole ( (Not shown) is hermetically attached by laser welding so as to cover the upper surface of the sealing body 9 including the thin plate 13 with an elastic polymer film 16.

【0032】このような図6に示す構成の非水電解液二
次電池によれば、前述した図4および図5に示す構造の
非水電解液二次電池と同様、過充電や短絡に起因して電
池内の温度上昇による外装缶1の破裂、変形を防止する
ことができ、かつ落下等の衝撃を受けても前記薄板が所
定の作動圧未満で破断されて開放状態になるのを阻止し
て電池機能の喪失や外装缶内に収容された電解液の外部
への漏れだしを防止することができる。
According to the non-aqueous electrolyte secondary battery having the structure shown in FIG. 6, similar to the non-aqueous electrolyte secondary battery having the structure shown in FIGS. As a result, it is possible to prevent the outer can 1 from being ruptured or deformed due to a rise in the temperature inside the battery, and to prevent the thin plate from being broken below a predetermined operating pressure and being opened even when subjected to an impact such as dropping. As a result, loss of the battery function and leakage of the electrolyte contained in the outer can to the outside can be prevented.

【0033】[0033]

【実施例】以下、本発明の実施例を前述した図1を参照
して詳細に説明する。 (実施例1) <正極の作製>炭酸リチウムと炭酸コバルトをLi/C
oのモル比で1になるように混合し、空気中、900
℃、5時間焼成しての正極活物質である複合酸化物を合
成した。この複合酸化物について、X線回折測定を行っ
た。その結果、JCPDカードのLiCoO2 とよく一
致していた。また、前記複合酸化物からなる試料を硫酸
で分解し、生成した二酸化炭素を塩化バリウムと水酸化
ナトリウムの溶液中に導入して吸収させた後、標準試料
で滴定することにより二酸化炭素を定量し、その二酸化
炭素量から換算して複合酸化物中の炭酸リチウムを定量
した。その結果、炭酸リチウムは殆ど検出されなかっ
た。この複合酸化物を自動乳鉢で粉砕してLiCoO2
を得た。
An embodiment of the present invention will be described below in detail with reference to FIG. Example 1 <Preparation of Positive Electrode> Lithium carbonate and cobalt carbonate were Li / C
o and mixed in a molar ratio of 1 in air.
A composite oxide as a positive electrode active material was synthesized by firing at 5 ° C. for 5 hours. X-ray diffraction measurement was performed on the composite oxide. As a result, it was in good agreement with LiCoO 2 of the JCPD card. Further, the sample composed of the composite oxide is decomposed with sulfuric acid, and the generated carbon dioxide is introduced into a solution of barium chloride and sodium hydroxide and absorbed, and then the carbon dioxide is quantified by titration with a standard sample. The amount of lithium carbonate in the composite oxide was determined by converting the amount of carbon dioxide. As a result, lithium carbonate was hardly detected. This composite oxide is pulverized in an automatic mortar to form LiCoO 2
I got

【0034】得られたLiCoO2 粉末(正極活物質)
95重量%と炭酸リチウム5重量%とからなる混合物9
1重量部、導電材としてのグラファイト6重量部、結着
剤としてのポリフッ化ビニリデン3重量部とを混合し、
これをN−メチル−2−ピロリドンに分散させて正極合
剤を調製した。この正極合剤をアルミニウム箔の両面に
塗布し、乾燥した後、ローラプレス機で加圧成形するこ
とによりシート状の正極を作製した。
Obtained LiCoO 2 powder (cathode active material)
Mixture 9 consisting of 95% by weight and 5% by weight of lithium carbonate
1 part by weight, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder,
This was dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode mixture. This positive electrode mixture was applied to both sides of an aluminum foil, dried, and then pressed with a roller press to produce a sheet-shaped positive electrode.

【0035】<負極の作製>石油ピッチに酸素架橋した
後、Arガス雰囲気中、1000℃で焼成してガラス状
炭素に近似した難黒鉛炭素材料を得た。この炭素材料に
ついて、X線回折測定を行った。その結果(002)面
の面間隔は3.76オングストロームであった。また、
前記難黒鉛炭素材料の真密度は1.58であった。
<Preparation of Negative Electrode> After oxygen cross-linking was performed on petroleum pitch, it was baked at 1000 ° C. in an Ar gas atmosphere to obtain a non-graphitic carbon material similar to glassy carbon. X-ray diffraction measurement was performed on the carbon material. As a result, the spacing between the (002) planes was 3.76 angstroms. Also,
The true density of the non-graphite carbon material was 1.58.

【0036】得られた炭素材料90重量部と結着剤とし
てのポリフッ化ビニリデン10重量部とを混合し、これ
をN−メチル−2−ピロリドンに分散させて負極合剤を
調製した。この負極合剤を銅箔の両面に塗布し、乾燥し
た後、ローラプレス機で加圧成形することによりシート
状の負極を作製した。
90 parts by weight of the obtained carbon material and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and this was dispersed in N-methyl-2-pyrrolidone to prepare a negative electrode mixture. This negative electrode mixture was applied to both sides of a copper foil, dried, and then pressed with a roller press to produce a sheet-shaped negative electrode.

【0037】<電極体の作製>前記シート状の正極、厚
さ25μmの微孔性ポリプロピレンフィルムからなるセ
パレータおよび前記負極をこの順序で積層し、この積層
物を前記負極が外側に位置するように渦巻状に巻回した
後、この巻回物を10kgf/cm2 の圧力で圧縮して
偏平状の電極体を作製した。
<Preparation of Electrode Assembly> The sheet-shaped positive electrode, the separator made of a microporous polypropylene film having a thickness of 25 μm, and the negative electrode are laminated in this order, and the laminate is placed so that the negative electrode is positioned outside. After being spirally wound, the wound product was compressed at a pressure of 10 kgf / cm 2 to produce a flat electrode body.

【0038】次いで、ステンレスからなる有底矩形筒状
の外装缶内に前記電極体を銅製の電極カバーで覆った状
態で収納し、プロピレンカーボネートとジメトキシエタ
ンとの混合溶媒(体積比率50:50)に六フッ化リン
酸リチウム(LiPF6 )を1モル/l溶解した電解液
を収容した。つづいて、中央に円形穴およびこの穴に隣
接した個所に矩形状の圧力開放用孔がそれぞれ開口され
たステンレスからなる矩形状の封口体の前記穴に正極端
子ピンをハーメティクシールし、さらに直線部およびこ
の両端をV字型にした形状を有する深さ35μmの切り
込み溝が形成された厚さ50μmのステンレス薄板を封
口体の下面に前記圧力開放用孔を塞ぐように、かつ前記
切り込み溝が前記封口体の前記圧力開放用孔の側に向く
ようにレーザ溶接した後、前記封口体の前記圧力開放用
孔内にシリコン樹脂溶液(東芝シリコン社製商品名;T
SE389−C)を塗布し、12時間乾燥させることに
より前記薄板上面を覆う厚さ3mmのゴム弾性を有する
高分子材料被膜を形成した。ひきつづき、前記封口体の
前記正極端子ピンの下端を前記外装缶内の正極とリード
を介して接続した後、前記封口体を前記外装缶の上端開
口部にレーザ溶接することにより前述した図1および図
2に示す構造の角型非水電解液二次電池を製造した。
Next, the electrode body was housed in a rectangular bottomed outer can made of stainless steel with the electrode body covered with a copper electrode cover, and a mixed solvent of propylene carbonate and dimethoxyethane (volume ratio: 50:50). An electrolyte in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / l was accommodated. Subsequently, a positive electrode terminal pin is hermetically sealed in the hole of the rectangular sealing body made of stainless steel in which a circular hole in the center and a rectangular pressure release hole are respectively opened at locations adjacent to the hole, and further, A 50 μm-thick stainless steel plate having a 35 μm deep cut groove having a straight portion and both ends formed in a V-shape is formed on the lower surface of the sealing body so as to cover the pressure release hole, and the cut groove is formed. Is laser-welded so as to face the pressure release hole side of the sealing body, and then a silicone resin solution (trade name; T;
SE389-C) was applied and dried for 12 hours to form a 3 mm-thick rubbery polymer film covering the upper surface of the thin plate. Subsequently, after the lower end of the positive electrode terminal pin of the sealing body is connected to the positive electrode in the outer can via a lead, the sealing body is laser-welded to the upper end opening of the outer can and FIG. A rectangular non-aqueous electrolyte secondary battery having the structure shown in FIG. 2 was manufactured.

【0039】(実施例2)前述した図3に示すように直
線部およびこの両端をV字型にした形状を有する深さ3
5μmの切り込み溝14が形成された厚さ50μmのス
テンレス薄板13を封口体9の下面にその圧力開放用孔
8を塞ぐように、かつ前記切り込み溝14が前記封口体
9の前記圧力開放用孔8と反対側に向くようにレーザ溶
接した後、前記封口体9の前記圧力開放用孔8内にシリ
コン樹脂溶液(東芝シリコン社製商品名;TSE389
−C)を塗布し、12時間乾燥させることにより前記薄
板13上面を覆う厚さ3mmのゴム弾性を有する高分子
材料被膜15を形成した以外、実施例1と同様な構成の
角型非水電解液二次電池を製造した。
Example 2 As shown in FIG. 3 described above, a straight part and a depth 3 having a V-shaped shape at both ends.
A 50 μm-thick stainless steel plate 13 having a 5 μm cut groove 14 is formed on the lower surface of the sealing body 9 so as to cover the pressure release hole 8, and the cut groove 14 is formed in the pressure release hole of the sealing body 9. After laser welding so as to face the side opposite to the side 8, a silicone resin solution (trade name: TSE389, manufactured by Toshiba Silicon Corporation) is placed in the pressure release hole 8 of the sealing body 9.
-C) was applied and dried for 12 hours to form a 3 mm-thick rubber elastic polymer material coating 15 covering the upper surface of the thin plate 13, except that a square nonaqueous electrolytic solution having the same configuration as in Example 1 was formed. A liquid secondary battery was manufactured.

【0040】(実施例3)前述した図4および図5に示
すように直線部およびこの両端をV字型にした形状を有
する深さ35μmの切り込み溝14が形成された厚さ5
0μmのステンレス薄板13を封口体9の上面にその圧
力開放用孔8を塞ぐように、かつ前記切り込み溝14が
前記封口体9の前記圧力開放用孔8と反対側に向くよう
にレーザ溶接した後、前記薄板13を含む封口体9の上
面にシリコン樹脂溶液(東芝シリコン社製商品名;TS
E389−C)を塗布し、12時間乾燥させることによ
り前記薄板13上面を覆う厚さ0.5mmのゴム弾性を
有する高分子材料被膜16を形成した以外、実施例1と
同様な構成の角型非水電解液二次電池を製造した。
(Example 3) As shown in FIGS. 4 and 5 described above, a linear portion and a thickness 5 having a V-shaped cut-off groove 14 with a depth of 35 μm are formed.
A 0 μm thin stainless plate 13 was laser-welded on the upper surface of the sealing body 9 so as to cover the pressure releasing hole 8 and the cut groove 14 was directed to the opposite side of the sealing body 9 from the pressure releasing hole 8. Then, a silicon resin solution (trade name; TS, manufactured by Toshiba Silicon Corp.)
E389-C) was applied and dried for 12 hours to form a 0.5 mm-thick rubber-elastic polymer material film 16 covering the upper surface of the thin plate 13, except that the square shape was the same as in Example 1. A non-aqueous electrolyte secondary battery was manufactured.

【0041】(実施例4)前述した図6に示すように直
線部およびこの両端をV字型にした形状を有する深さ3
5μmの切り込み溝14が形成された厚さ50μmのス
テンレス薄板13を封口体9の上面にその圧力開放用孔
を塞ぐように、かつ前記切り込み溝14が前記封口体9
の前記圧力開放用孔の側に向くようにレーザ溶接した
後、前記薄板13を含む封口体9の上面にシリコン樹脂
溶液(東芝シリコン社製商品名;TSE389−C)を
塗布し、12時間乾燥させることにより前記薄板13上
面を覆う厚さ0.5mmのゴム弾性を有する高分子材料
被膜16を形成した以外、実施例1と同様な構成の角型
非水電解液二次電池を製造した。
(Embodiment 4) As shown in FIG. 6 described above, a straight portion and a depth 3 having a V-shaped shape at both ends.
A 50 μm-thick stainless steel plate 13 having a 5 μm cut groove 14 is formed on the upper surface of the sealing body 9 so as to cover the pressure release hole, and the cut groove 14 is formed in the sealing body 9.
After laser welding so as to face the pressure release hole side, a silicon resin solution (trade name: TSE389-C, manufactured by Toshiba Silicon Corporation) is applied to the upper surface of the sealing body 9 including the thin plate 13 and dried for 12 hours. A rectangular non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was manufactured except that a 0.5 mm thick polymer film 16 having a rubber elasticity covering the upper surface of the thin plate 13 was formed.

【0042】(実施例5)前述した図1および図2に示
すように直線部およびこの両端をV字型にした形状を有
する深さ35μmの切り込み溝14が形成された厚さ5
0μmのステンレス薄板13を封口体9の下面にその圧
力開放用孔8を塞ぐように、かつ前記切り込み溝14が
前記封口体9の前記圧力開放用孔8の側に向くようにレ
ーザ溶接した後、前記封口体の前記圧力開放用孔内にフ
ッ素樹脂溶液(旭硝子社製商品名;LF−100)を塗
布し、12時間乾燥させることにより前記薄板13上面
を覆う厚さ3mmのゴム弾性を有する高分子材料被膜1
5を形成した以外、実施例1と同様な構成の角型非水電
解液二次電池を製造した。
(Example 5) As shown in FIGS. 1 and 2 described above, a linear portion and a cut-out groove 14 having a depth of 35 μm having a V-shaped shape at both ends are formed.
After laser welding a 0 μm thin stainless steel plate 13 on the lower surface of the sealing body 9 so as to cover the pressure releasing hole 8 and the cut groove 14 is directed toward the pressure releasing hole 8 of the sealing body 9. A fluororesin solution (trade name: LF-100, manufactured by Asahi Glass Co., Ltd.) is applied to the inside of the pressure release hole of the sealing body, and is dried for 12 hours to have a rubber elasticity of 3 mm in thickness covering the upper surface of the thin plate 13. Polymer material coating 1
A prismatic nonaqueous electrolyte secondary battery having the same configuration as that of Example 1 except that No. 5 was formed was manufactured.

【0043】(比較例1)直線部およびこの両端をV字
型にした形状を有する深さ35μmの切り込み溝が形成
された厚さ50μmのステンレス薄板を封口体の下面に
その圧力開放用孔を塞ぐように、かつ前記切り込み溝が
前記封口体の前記圧力開放用孔の側に向くようにレーザ
溶接し、前記圧力開放用孔内へのゴム弾性を有する高分
子材料被膜の形成を行わない以外、実施例1と同様な構
成の角型非水電解液二次電池を製造した。
(Comparative Example 1) A 50 μm-thick stainless steel plate having a straight portion and a V-shaped end formed with a cut groove having a depth of 35 μm was formed with a pressure releasing hole on the lower surface of the sealing body. Laser welding so as to close and the cut groove faces the pressure release hole side of the sealing body, except that a polymer material film having rubber elasticity is not formed in the pressure release hole. A prismatic nonaqueous electrolyte secondary battery having the same configuration as that of Example 1 was manufactured.

【0044】得られた実施例1〜5および比較例1の各
二次電池100個について、電流1A、電圧4.2V、
3時間の条件で充電し、それら充電状態の電池を1m、
1.2mおよび1.8mの高さから樫の木上に前記電池
の封口体の面が直接当たるように10回それぞれ落下さ
せ、これら落下試験後の前記薄板(切り込み溝部分)の
破裂による非水電解液の漏洩状況を調べた。その結果を
下記表1に示す。
For each of the 100 secondary batteries of Examples 1 to 5 and Comparative Example 1, a current of 1 A, a voltage of 4.2 V,
Charged under the condition of 3 hours, the charged battery was 1 m,
The battery was dropped 10 times from the height of 1.2 m and 1.8 m onto the oak tree so that the surface of the sealing body of the battery would directly hit the oak tree. The state of leakage of the water electrolyte was examined. The results are shown in Table 1 below.

【0045】[0045]

【表1】 [Table 1]

【0046】表1から明らかなように実施例1〜5の二
次電池では落下高さが1.8mと高くした場合でも前記
薄板の切り込み溝部分の破裂による非水電解液の漏洩が
防止されることがわかる。これに対し、比較例1の二次
電池では、落下高さが低い場合でも前記切り込み溝部分
の破裂による非水電解液の漏洩が生じることがわかる。
As is clear from Table 1, in the secondary batteries of Examples 1 to 5, even when the drop height is as high as 1.8 m, leakage of the nonaqueous electrolyte due to the rupture of the cut groove portion of the thin plate is prevented. You can see that On the other hand, in the secondary battery of Comparative Example 1, even when the drop height is low, the nonaqueous electrolyte leaks due to the rupture of the cut groove portion.

【0047】また、実施例1〜5および比較例1の各二
次電池100個について、電流1A、電圧4.2V、3
時間の条件で充電し、それら充電状態の電池を1m、
1.2mおよび1.8mの高さからコンクリート上に前
記電池の封口体の面が直接当たるように10回それぞれ
落下させ、これら落下試験後の前記薄板(切り込み溝部
分)の破裂による非水電解液の漏洩状況を調べた。その
結果を下記表2に示す。
Further, for each of the 100 secondary batteries of Examples 1 to 5 and Comparative Example 1, a current of 1 A, a voltage of 4.2 V,
The battery is charged under the condition of time, and the charged battery is 1 m,
The battery was dropped 10 times from a height of 1.2 m and 1.8 m onto concrete so that the surface of the sealing body of the battery directly hit, and the non-aqueous electrolysis by rupture of the thin plate (cut groove portion) after these drop tests. The state of liquid leakage was examined. The results are shown in Table 2 below.

【0048】[0048]

【表2】 [Table 2]

【0049】表2から明らかなように実施例1〜5の二
次電池では衝撃度合が前記樫の木より過酷なコンクリー
ト上に落下された場合でも前記薄板の切り込み溝部分の
破裂による非水電解液の漏洩が防止されることがわか
る。
As is apparent from Table 2, in the secondary batteries of Examples 1 to 5, non-aqueous electrolysis due to the rupture of the cut groove portion of the thin plate even when the impact degree was dropped on the concrete which was more severe than the oak tree. It can be seen that liquid leakage is prevented.

【0050】さらに、得られた実施例1〜5および比較
例1の各二次電池20個について電流を2.0Aに設定
し、電源電圧を15V、20V、30Vに変化させて過
充電を行い、発火、破裂を生じる電池および薄板(切り
込み溝部分)の破断が生じた電池の発生率を調べた。そ
の結果を下記表3に示す。
Further, the current was set to 2.0 A for each of the obtained 20 rechargeable batteries of Examples 1 to 5 and Comparative Example 1, and the power supply voltage was changed to 15 V, 20 V and 30 V to perform overcharging. The rate of occurrence of batteries that caused ignition, rupture, and rupture of thin plates (cut grooves) was examined. The results are shown in Table 3 below.

【0051】[0051]

【表3】 [Table 3]

【0052】前記表2から明らかなように実施例1〜5
および比較例1のいずれの二次電池においても、電源電
圧が15Vと低い場合は薄板の切り込み溝部分の破断が
生じない。しかしながら、電源電圧を高くすると、弁膜
の破断が生じる頻度が高くなる。ただし、所定の動作圧
での薄板の切り込み溝部分の破断が確実に行われてお
り、電池の破裂、発火を確実に防止できることがわか
る。なお、前記実施例では角形の非水電解液電池に適用
した例を説明したが、円筒形など各種の形状の非水電解
液二次電池にも同様に適用することができる。
As apparent from Table 2 above, Examples 1 to 5
Also, in any of the secondary batteries of Comparative Example 1, when the power supply voltage is as low as 15 V, the cut grooves of the thin plate do not break. However, when the power supply voltage is increased, the frequency of rupture of the valve membrane increases. However, it can be seen that the cut groove portion of the thin plate is reliably broken at a predetermined operating pressure, and the burst and ignition of the battery can be reliably prevented. In the above embodiment, an example in which the present invention is applied to a rectangular non-aqueous electrolyte battery is described. However, the present invention can be similarly applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape.

【0053】[0053]

【発明の効果】以上詳述しように、本発明によれば所定
の作動圧で確実に破断され、かつ落下衝撃に対して良好
な強度を保持した安全弁機構を備えた信頼性の高い非水
電解液二次電池を提供できる。
As described above in detail, according to the present invention, a highly reliable non-aqueous electrolysis provided with a safety valve mechanism which is reliably broken at a predetermined operating pressure and has good strength against a drop impact. A liquid secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる角形非水電解液二次電池を示す
要部斜視図。
FIG. 1 is a perspective view of a main part showing a prismatic nonaqueous electrolyte secondary battery according to the present invention.

【図2】図1の角形非水電解液二次電池を示す断面図。FIG. 2 is a sectional view showing the prismatic nonaqueous electrolyte secondary battery of FIG. 1;

【図3】本発明に係わる別の角形非水電解液二次電池を
示す要部斜視図。
FIG. 3 is a perspective view of a main part showing another prismatic nonaqueous electrolyte secondary battery according to the present invention.

【図4】本発明に係わるさらに別の角形非水電解液二次
電池を示す要部斜視図。
FIG. 4 is an essential part perspective view showing still another prismatic nonaqueous electrolyte secondary battery according to the present invention.

【図5】図4の角形非水電解液二次電池を示す断面図。FIG. 5 is a sectional view showing the prismatic nonaqueous electrolyte secondary battery of FIG. 4;

【図6】本発明に係わるさらに別の角形非水電解液二次
電池を示す要部斜視図。
FIG. 6 is a main part perspective view showing still another prismatic nonaqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…外装缶、 2…電極体、 3…正極、 5…負極、 8…圧力開放用孔、 9…封口体、 13…薄板、 14…切り込み溝、 15、16…ゴム弾性を有する高分子材料被膜。 DESCRIPTION OF SYMBOLS 1 ... Outer can, 2 ... Electrode body, 3 ... Positive electrode, 5 ... Negative electrode, 8 ... Hole for pressure release, 9 ... Sealing body, 13 ... Thin plate, 14 ... Cut groove, 15, 16 ... High polymer material having rubber elasticity Coating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大崎 隆久 神奈川県川崎市幸区堀川町72番地 株式 会社東芝川崎事業所内 (72)発明者 小里 建一郎 神奈川県川崎市川崎区日進町7番地1 東芝電子エンジニアリング株式会社内 (56)参考文献 特開 平5−41204(JP,A) 特開 平7−169452(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/12 101 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takahisa Osaki 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Kawasaki Office Co., Ltd. (56) References JP-A-5-41204 (JP, A) JP-A-7-169452 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 2 / 12 101 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有底筒状の外装缶と、 前記外装缶内に収納され、正極、セパレータおよび負極
を渦巻き状に巻回した電極体と、 前記外装缶内に収容された非水電解液と、 前記外装缶の上端開口部に設けられ、圧力開放用孔が開
口された封口体と、 前記封口体に前記圧力開放用孔を塞ぐように取り付けら
れ、切り込み溝が形成された薄板と、 前記封口体に前記薄板上面を覆うように取り付けられた
ゴム弾性を有する高分子材料被膜とを具備したことを特
徴とする非水電解液二次電池。
1. A bottomed cylindrical outer can, an electrode body housed in the outer can, in which a positive electrode, a separator, and a negative electrode are spirally wound, and a non-aqueous electrolyte housed in the outer can. A sealing body provided at the upper end opening of the outer can and having an opening for pressure release, a thin plate attached to the sealing body so as to close the opening for pressure release, and having a cut groove formed therein, A non-aqueous electrolyte secondary battery, comprising: a polymer material film having rubber elasticity attached to the sealing member so as to cover an upper surface of the thin plate.
JP05476896A 1996-03-12 1996-03-12 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3272937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05476896A JP3272937B2 (en) 1996-03-12 1996-03-12 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05476896A JP3272937B2 (en) 1996-03-12 1996-03-12 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09245837A JPH09245837A (en) 1997-09-19
JP3272937B2 true JP3272937B2 (en) 2002-04-08

Family

ID=12979957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05476896A Expired - Fee Related JP3272937B2 (en) 1996-03-12 1996-03-12 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3272937B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190798B1 (en) 1998-01-09 2001-02-20 Kabushiki Kaisha Toshiba Sealed battery and method of manufacturing the same
JP3902322B2 (en) * 1998-03-10 2007-04-04 三洋電機株式会社 Non-aqueous electrolyte battery
JP5114063B2 (en) * 2007-02-02 2013-01-09 Necエナジーデバイス株式会社 Sealed battery
KR102019682B1 (en) 2017-12-08 2019-09-09 주식회사 엘지화학 Secondary Battery Case Having Vent Filled with Thermoplastic Resin

Also Published As

Publication number Publication date
JPH09245837A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
JP4986009B2 (en) Secondary battery
US8071233B2 (en) Integrated current-interrupt device for lithium-ion cells
US11081737B2 (en) Getter for use with electrochemical cells, devices including the getter, and method of forming same
EP1119060B1 (en) Nonaqueous electrolyte solution secondary battery
KR101606520B1 (en) Prismatic storage battery or cell with flexible recessed portion
TWI445236B (en) Lithium-ion secondary battery
US7687188B2 (en) Sealed cell having non-resealable safety valve
US20090291330A1 (en) Battery with enhanced safety
JPH04328278A (en) Nonaqueous electrolyte secondary battery
TWI509863B (en) Prismatic storage battery or cell with flexible recessed portion
JPH11185714A (en) Nonaqueous electrolyte secondary battery
JP2005011540A (en) Nonaqueous electrolyte secondary battery
JP3677845B2 (en) Sealed nonaqueous electrolyte prismatic secondary battery
JP2000285892A (en) Nonaqueous electrolyte secondary battery
JP3272937B2 (en) Non-aqueous electrolyte secondary battery
JP2002151020A (en) Electrochemical device
JPH09245759A (en) Non-aqueous electrolyte secondary battery
JP3713361B2 (en) Square non-aqueous electrolyte battery and method for manufacturing the same
JP2000357536A (en) Nonaqueous electrolyte battery
JPH11219692A (en) Nonaqueous electrolyte secondary battery
JPH10144277A (en) Cleavage type safety valve and battery using this safety valve
JP2000277067A (en) Sealed battery
JP2000294202A (en) Thin battery
JP2001052672A (en) Sealed battery
JPH06196138A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees