JPH10339479A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10339479A
JPH10339479A JP9151988A JP15198897A JPH10339479A JP H10339479 A JPH10339479 A JP H10339479A JP 9151988 A JP9151988 A JP 9151988A JP 15198897 A JP15198897 A JP 15198897A JP H10339479 A JPH10339479 A JP H10339479A
Authority
JP
Japan
Prior art keywords
control
heat source
indoor unit
throttle
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9151988A
Other languages
Japanese (ja)
Other versions
JP3856529B2 (en
Inventor
Yuusuke Uehara
祐亮 上原
Tatsuo Ono
達生 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15198897A priority Critical patent/JP3856529B2/en
Publication of JPH10339479A publication Critical patent/JPH10339479A/en
Application granted granted Critical
Publication of JP3856529B2 publication Critical patent/JP3856529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner in which the sound of refrigerant generated from within an indoor device kept under its non-heating operation is muffled during a heating operation, the refrigerant stayed in the indoor device is recovered to enable comfortable air conditioning and heating capability to be maintained. SOLUTION: This air conditioner comprises a refrigerant circuit in which an accumulator 6, a compressor 1, a four-way changing-over valve 2 and a heat source side heat exchanger 3 constituting a heat source machine A, throttle devices 4a to 4c having variable degree of openings constituting each of a plurality of indoor devices Ba to Bc connected in parallel in respect to the heat source machine A, and indoor side heat exchangers 5a to 5c are connected in sequence by pipings, wherein there are provided a remote controller 10 for individually setting either a heating operation or a stopping in operation of the indoor devices Ba to Bc for every indoor device, and a refrigerant flow rate restriction control setting switch 8 for selectively setting the throttle device to a degree of opening larger than a fully closed or a fully opened state in correspondence with the indoor device of the indoor devices Ba to Bc during the heating operation relating to a stopped state in operation set by the remote controller 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和装置の
暖房運転時において室内機からの冷媒音発生の防止およ
び室内機側熱交換器に滞留する冷媒の回収に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to prevention of generation of refrigerant noise from an indoor unit and recovery of refrigerant remaining in an indoor unit side heat exchanger during a heating operation of an air conditioner.

【0002】[0002]

【従来の技術】従来、停止、送風運転、サーモオフによ
る暖房運転などのように、通常の暖房運転を行っていな
い室内機側熱交換器の絞り装置は全閉にされていたが、
室内機側熱交換器の接続基数の増加により、運転パター
ンが多様になっている。そのため、多基接続された室内
機側熱交換器のうち、小容量の室内機側熱交換器1台の
みを暖房運転させるとともにその他の室内機側熱交換器
を暖房運転以外にした場合、絞り装置を全閉にした室内
機側熱交換器に冷媒が滞留し、空気調和装置の冷媒回路
において冷媒不足運転となる。そのため、暖房運転を行
っていない室内機側熱交換器の絞り装置を微小開度開け
ることにより、その室内機側熱交換器への冷媒の滞留を
防止するようにしている。しかしながら、絞り装置の開
度を開けることで冷媒が流れるため、室内機側から冷媒
の流動音が聞こえて耳障りになることがあった。
2. Description of the Related Art Conventionally, a throttle device of an indoor unit side heat exchanger which is not performing a normal heating operation, such as a stop operation, a blowing operation, and a heating operation using a thermo-off, has been fully closed.
Due to an increase in the number of connection units of the indoor unit-side heat exchangers, operation patterns have been diversified. Therefore, when only one small-capacity indoor-unit-side heat exchanger of the multi-unit connected indoor-unit-side heat exchangers is operated for heating and the other indoor-unit-side heat exchangers are set to other than the heating operation, the throttling is restricted. Refrigerant stays in the indoor unit side heat exchanger when the device is fully closed, and the refrigerant shortage operation occurs in the refrigerant circuit of the air conditioner. For this reason, the squeezing device of the indoor unit side heat exchanger that is not performing the heating operation is opened by a minute opening to prevent the refrigerant from staying in the indoor unit side heat exchanger. However, since the refrigerant flows by increasing the opening of the expansion device, the flow noise of the refrigerant may be heard from the indoor unit side, which may be annoying.

【0003】[0003]

【発明が解決しようとする課題】上記のように室内機側
熱交換器の絞り装置を全閉、あるいは微小開度だけ開け
る方法において、前者は室内機に冷媒が滞留するため、
冷媒の循環量低下による圧縮機吐出温度の上昇に陥りや
すい。これに対し、後者は絞り装置での流路が形成され
るので、運転パターンによっては室内機から冷媒音が発
生する問題点が残る。
As described above, in the method of fully closing or opening the expansion device of the indoor unit side heat exchanger by only a small opening degree, the former involves the refrigerant remaining in the indoor unit.
The compressor discharge temperature is likely to rise due to a decrease in the circulation amount of the refrigerant. On the other hand, in the latter, since a flow path in the expansion device is formed, a problem that refrigerant noise is generated from the indoor unit remains depending on the operation pattern.

【0004】この発明は上記のような問題点を解消する
ためになされたものであり、暖房運転時に非暖房運転の
室内機からの冷媒音を消音し、更には室内機に滞留して
いる冷媒を回収して、快適空調および暖房能力を維持で
きる空気調和装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. The present invention mutes a refrigerant sound from a non-heating indoor unit during a heating operation, and furthermore, a refrigerant staying in the indoor unit. To obtain an air conditioner that can maintain comfortable air conditioning and heating capacity.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、この発明は以下の手段を講じたものである。すな
わち、この発明の請求項1に係る空気調和装置は、熱源
機を構成するアキュムレータ、圧縮機、熱源機側熱交換
器と、熱源機に対し並列に接続される複数の室内機をそ
れぞれ構成する開度可変の絞り装置、室内機側熱交換器
とを順次配管接続してなる冷媒回路を備えた空気調和装
置において、複数の室内機の暖房運転または運転停止を
室内機毎に個別に設定するための運転設定手段と、暖房
運転にあたり複数の室内機のうち運転設定手段により設
定された運転停止に係る室内機に対応した絞り装置を全
閉または全閉よりも大きな開度に選択的に設定する非暖
房運転時絞り開度設定手段とを設けたものである。但
し、「運転停止」とは、広義には非暖房運転を意味し、
完全な「停止」、「送風」、「サーモオフ状態での暖
房」などを含む。そして、「開度可変の絞り装置」とし
ては、開度を連続的に変えられるリニア膨張弁のみなら
ず、例えば全閉と全開に択一的に変えられる電磁弁など
も含まれる。
In order to achieve the above object, the present invention employs the following means. That is, the air conditioner according to claim 1 of the present invention comprises an accumulator, a compressor, a heat source unit side heat exchanger that constitutes a heat source unit, and a plurality of indoor units connected in parallel to the heat source unit. In an air conditioner equipped with a refrigerant circuit in which a throttle device with a variable opening degree and an indoor unit side heat exchanger are sequentially connected by piping, a heating operation or a stop operation of a plurality of indoor units is individually set for each indoor unit. Setting means for selectively setting the throttle device corresponding to the indoor unit related to the operation stop set by the operation setting means among the plurality of indoor units in the heating operation to a fully closed state or an opening degree larger than the fully closed state. And a throttle opening setting means for non-heating operation. However, “operation stop” broadly means non-heating operation,
Includes complete "stop", "blowing", "heating in thermo-off", etc. The "throttle device having a variable opening degree" includes not only a linear expansion valve whose opening degree can be continuously changed, but also, for example, an electromagnetic valve which can be selectively changed between fully closed and fully opened.

【0006】また、この発明の請求項2に係る空気調和
装置は、請求項1の構成において、非暖房運転時絞り開
度設定手段が、複数の室内機の絞り装置を個別に開度設
定変更可能に構成されているものである。
According to a second aspect of the present invention, in the air conditioner according to the first aspect of the present invention, the non-heating-operation throttle opening setting means changes the opening settings of the throttle devices of the plurality of indoor units individually. It is configured to be possible.

【0007】そして、この発明の請求項3に係る空気調
和装置は、熱源機を構成するアキュムレータ、圧縮機、
熱源機側熱交換器と、熱源機に対し並列に接続される複
数の室内機をそれぞれ構成する開度可変の絞り装置、室
内機側熱交換器とを順次配管接続してなる冷媒回路を備
えた空気調和装置において、開度可変の補助絞り装置、
補助熱交換器を有し複数の室内機と並列に接続される補
助用熱源機と、複数の室内機のうち少なくとも1台以上
が暖房運転している場合に、暖房運転していない室内機
に対応した絞り装置を全閉にし、かつ、補助用熱源機の
補助絞り装置を全閉よりも大きな開度にする絞り開度併
合制御手段とを設けたものである。
An air conditioner according to a third aspect of the present invention includes an accumulator, a compressor,
A heat source unit side heat exchanger, a variable opening degree throttle device constituting each of a plurality of indoor units connected in parallel to the heat source unit, and a refrigerant circuit formed by sequentially connecting the indoor unit side heat exchanger with a pipe are provided. Auxiliary throttle device with variable opening,
An auxiliary heat source unit having an auxiliary heat exchanger and connected in parallel with the plurality of indoor units, and an indoor unit that is not performing the heating operation when at least one of the plurality of indoor units is performing the heating operation. A throttle opening combination control means for fully closing the corresponding expansion device and for setting the auxiliary expansion device of the auxiliary heat source unit to an opening degree larger than the full closing is provided.

【0008】更に、この発明の請求項4に係る空気調和
装置は、請求項3の構成において、圧縮機の吐出温度を
検知する吐出温度検知手段と、吐出温度検知手段により
検知された吐出温度が予め設定されている所定温度より
高くなった場合に、補助用熱源機の補助絞り装置を現在
の開度よりも大きくする補助絞り開度制御手段とを設け
たものである。
Further, the air conditioner according to a fourth aspect of the present invention is the air conditioner according to the third aspect, wherein a discharge temperature detecting means for detecting a discharge temperature of the compressor, and a discharge temperature detected by the discharge temperature detecting means. An auxiliary throttle opening control means is provided for increasing the auxiliary throttle device of the auxiliary heat source device to a value larger than the current opening when the temperature becomes higher than a predetermined temperature set in advance.

【0009】また、この発明の請求項5に係る空気調和
装置は、請求項3の構成において、補助絞り装置設置の
存否を設定する補助絞り装置設定手段と、暖房運転にあ
たり、補助絞り装置設定手段により補助絞り装置が存在
すると設定された場合には絞り開度併合制御手段による
制御を有効とし、補助絞り装置設定手段により補助絞り
装置が存在しないと設定された場合には複数の室内機の
うち運転停止に係る室内機に対応した絞り装置を個別に
全閉または全閉よりも大きな開度にする制御を有効とす
る制御切換手段とを設けたものである。
An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the third aspect, wherein the auxiliary throttle device setting means for setting whether or not the auxiliary throttle device is installed, and the auxiliary throttle device setting means for heating operation. When the auxiliary throttle device is set to be present, the control by the throttle opening consolidation control unit is enabled, and when the auxiliary throttle device is set to be absent by the auxiliary throttle device setting unit, among the plurality of indoor units, Control switching means for enabling control to individually or fully open the expansion devices corresponding to the indoor units to be stopped in operation, or to a degree larger than the fully closed state, is provided.

【0010】そして、この発明の請求項6に係る空気調
和装置は、熱源機を構成するアキュムレータ、圧縮機、
四方切換弁、熱源機側熱交換器と、熱源機に対し並列に
接続される複数の室内機をそれぞれ構成する開度可変の
絞り装置、室内機側熱交換器とを順次配管接続してなる
冷媒回路を備えた空気調和装置において、暖房運転中に
四方切換弁の冷媒流路を切り替えて除霜運転を行う除霜
運転制御手段と、除霜運転中に停止している室内機の絞
り装置を個別に全閉または全閉よりも大きな開度に設定
する除霜時絞り開度設定手段とを設けたものである。
An air conditioner according to a sixth aspect of the present invention includes an accumulator, a compressor,
A four-way switching valve, a heat source unit-side heat exchanger, a plurality of indoor units that are connected in parallel to the heat source unit, and a variable opening device that constitutes each of the indoor units, and an indoor unit-side heat exchanger are sequentially connected by piping. In an air conditioner equipped with a refrigerant circuit, a defrosting operation control means for performing a defrosting operation by switching a refrigerant flow path of a four-way switching valve during a heating operation, and a throttle device for an indoor unit stopped during the defrosting operation And a defrosting throttle opening setting means for individually setting the opening degree to a fully closed state or an opening degree larger than the fully closed state.

【0011】更に、この発明の請求項7に係る空気調和
装置は、熱源機を構成するアキュムレータ、圧縮機、四
方切換弁、熱源機側熱交換器と、熱源機に対し並列に接
続される複数の室内機をそれぞれ構成する開度可変の絞
り装置、室内機側熱交換器とを順次配管接続してなる冷
媒回路を備えた空気調和装置において、開度可変の補助
絞り装置、補助熱交換器を有し複数の室内機と並列に接
続される補助用熱源機と、暖房運転中に四方切換弁の冷
媒流路を切り替えて除霜運転を行う除霜運転制御手段
と、除霜運転中に複数の室内機の絞り装置を全閉とし、
かつ、補助用熱源機の補助絞り装置を全閉よりも大きな
開度にする除霜時絞り開度併合制御手段とを設けたもの
である。
Further, an air conditioner according to a seventh aspect of the present invention includes an accumulator, a compressor, a four-way switching valve, a heat source unit side heat exchanger constituting a heat source unit, and a plurality of heat exchangers connected in parallel to the heat source unit. In the air conditioner provided with a refrigerant circuit formed by sequentially connecting the indoor unit side heat exchanger and the variable opening degree throttle device constituting each indoor unit, the auxiliary opening unit with variable opening degree and the auxiliary heat exchanger An auxiliary heat source unit having a plurality of indoor units and connected in parallel, a defrosting operation control means for performing a defrosting operation by switching a refrigerant flow path of a four-way switching valve during a heating operation, and during a defrosting operation Fully close the throttle devices of multiple indoor units,
In addition, there is provided a defrosting throttle opening combination control means for setting the auxiliary throttle device of the auxiliary heat source unit to an opening larger than the fully closed state.

【0012】また、この発明の請求項8に係る空気調和
装置は、熱源機を構成するアキュムレータ、圧縮機、熱
源機側熱交換器と、熱源機に対し並列に接続される複数
の室内機をそれぞれ構成する開度可変の絞り装置、室内
機側熱交換器とを順次配管接続してなる冷媒回路を備え
た空気調和装置において、複数の室内機の暖房運転また
は運転停止を室内機毎に個別に設定するための運転設定
手段と、運転設定手段により設定された暖房運転に係る
室内機側熱交換器全ての総量を算出する熱交換器容量算
出手段と、熱交換器容量算出手段により算出された暖房
運転に係る室内機側熱交換器の総量に応じて、運転停止
に係る室内機に対応した絞り装置の開度を全閉または全
閉よりも大きな開度に選択的に設定する絞り開度設定手
段とを設けたものである。但し、「室内機側熱交換器の
総量」とは、室内機側熱交換器個々の熱交換容量を総和
した合計容量のみならず、室内機側熱交換器の合計台数
なども含んでいる。
An air conditioner according to claim 8 of the present invention comprises an accumulator, a compressor, a heat source unit side heat exchanger constituting a heat source unit, and a plurality of indoor units connected in parallel to the heat source unit. In an air conditioner equipped with a refrigerant circuit formed by sequentially connecting a variable opening degree expansion device and an indoor unit side heat exchanger which are respectively configured, a heating operation or a stop operation of a plurality of indoor units is individually performed for each indoor unit. The operation setting means for setting to, the heat exchanger capacity calculating means for calculating the total amount of all the indoor unit side heat exchangers related to the heating operation set by the operation setting means, and the heat exchanger capacity calculating means Throttle opening for selectively setting the opening degree of the expansion device corresponding to the indoor unit related to the operation stop to a fully closed state or an opening degree larger than the fully closed state according to the total amount of the indoor unit side heat exchangers related to the heating operation. With degree setting means A. However, the “total amount of the indoor unit-side heat exchangers” includes not only the total capacity of the heat exchange capacity of each of the indoor unit-side heat exchangers but also the total number of the indoor unit-side heat exchangers.

【0013】そして、この発明の請求項9に係る空気調
和装置は、熱源機を構成するアキュムレータ、圧縮機、
熱源機側熱交換器と、熱源機に対し並列に接続される複
数の室内機をそれぞれ構成する開度可変の絞り装置、室
内機側熱交換器とを順次配管接続してなる冷媒回路を備
えた空気調和装置において、開度可変の補助絞り装置、
補助熱交換器を有し複数の室内機と並列に接続される補
助用熱源機と、補助絞り装置の設置に係る存否を手動に
より設定可能な補助絞り装置手動設定手段と、補助絞り
装置手動設定手段により補助絞り装置が存在すると設定
された場合には補助絞り装置を現在の開度よりも大きく
する制御を有効とし、補助絞り装置手動設定手段により
補助絞り装置が存在しないと設定された場合には複数の
室内機のうち運転停止している室内機に対応した絞り装
置を個別に全閉または全閉よりも大きな開度にする制御
を有効とすると設定されたにもかかわらず、補助絞り装
置および室内機全ての絞り装置をいずれも全閉とする制
御しか存在しないと判断した場合には、圧縮機の起動を
禁止する圧縮機起動禁止手段とを設けてある。
An air conditioner according to a ninth aspect of the present invention provides an air conditioner comprising an accumulator, a compressor,
A heat source unit side heat exchanger, a variable opening degree throttle device constituting each of a plurality of indoor units connected in parallel to the heat source unit, and a refrigerant circuit formed by sequentially connecting the indoor unit side heat exchanger with a pipe are provided. Auxiliary throttle device with variable opening,
An auxiliary heat source unit having an auxiliary heat exchanger and connected in parallel with the plurality of indoor units, an auxiliary throttle device manual setting unit capable of manually setting the presence or absence of the installation of the auxiliary throttle device, and an auxiliary throttle device manual setting If the auxiliary throttle device is set to be present by the means, the control to make the auxiliary throttle device larger than the current opening is enabled, and if the auxiliary throttle device is set by the auxiliary throttle device manual setting means to be absent, Although the auxiliary throttle device is set to enable the control to individually close the throttle device corresponding to the stopped indoor unit among the plurality of indoor units individually or to an opening degree larger than the full close, If it is determined that there is only control to fully close all of the expansion devices of the indoor units, a compressor start prohibition unit that prohibits the start of the compressor is provided.

【0014】更に、この発明の請求項10に係る空気調
和装置は、熱源機を構成するアキュムレータ、圧縮機、
熱源機側熱交換器と、熱源機に対し並列に接続される複
数の室内機をそれぞれ構成する開度可変の絞り装置、室
内機側熱交換器とを順次配管接続してなる冷媒回路を備
えた空気調和装置において、複数の室内機の暖房運転ま
たは運転停止を室内機毎に個別に設定するための運転設
定手段と、複数の室内機のうち一部が暖房運転していな
い場合に、暖房運転していない室内機全てに対応した絞
り装置の開度を、全閉よりも大きな第1の所定開度とす
る第1の絞り開度制御手段と、暖房運転していない室内
機の少なくとも1台以上に対応した絞り装置の開度を全
閉または第1の所定開度よりも小さな第2の所定開度と
する第2の絞り開度制御手段と、第1の絞り開度制御手
段による制御と第2の絞り開度制御手段による制御とを
選択的に設定する制御選択手段と、暖房運転していない
室内機全ての絞り装置の開度を第1の所定開度および第
2の所定開度よりも大きな第3の所定開度とする第3の
絞り開度制御手段と、第3の絞り開度制御手段による制
御を実行しない最低時間間隔を、制御選択手段により第
1の絞り開度制御手段の制御が選択された場合は第1の
時間間隔とし、第2の絞り開度制御手段の制御が選択さ
れた場合は第1の時間間隔よりも短い第2の時間間隔と
する冷媒回収禁止制御手段とを設けたものである。
Further, an air conditioner according to a tenth aspect of the present invention is an air conditioner, comprising an accumulator, a compressor,
A heat source unit side heat exchanger, a variable opening degree throttle device constituting each of a plurality of indoor units connected in parallel to the heat source unit, and a refrigerant circuit formed by sequentially connecting the indoor unit side heat exchanger with a pipe are provided. Operation setting means for individually setting a heating operation or a shutdown of a plurality of indoor units for each indoor unit, and heating when a part of the plurality of indoor units is not performing a heating operation. First throttle opening control means for setting the opening of the expansion device corresponding to all the indoor units that are not operating to a first predetermined opening larger than the fully closed state; A second throttle opening control means for fully opening or a second predetermined opening smaller than the first predetermined opening; The control and the control by the second throttle opening control means are selectively set. Control means, and a third throttle opening for setting the opening of all of the expansion devices that are not in the heating operation to a third predetermined opening larger than the first predetermined opening and the second predetermined opening. The control unit and the minimum time interval during which the control by the third throttle opening control unit is not performed is set to the first time interval when the control of the first throttle opening control unit is selected by the control selection unit, and When the control of the second throttle opening control means is selected, a refrigerant recovery inhibition control means for setting a second time interval shorter than the first time interval is provided.

【0015】また、この発明の請求項11に係る空気調
和装置は、熱源機を構成するアキュムレータ、圧縮機、
熱源機側熱交換器と、熱源機に対し並列に接続される複
数の室内機をそれぞれ構成する開度可変の絞り装置、室
内機側熱交換器とを順次配管接続してなる冷媒回路を備
えた空気調和装置において、複数の室内機の暖房運転ま
たは運転停止を室内機毎に個別に設定するための運転設
定手段と、複数の室内機のうち一部が暖房運転していな
い場合に、暖房運転していない室内機全てに対応した絞
り装置の開度を全閉よりも大きな第1の所定開度とする
第1の絞り開度制御手段と、暖房運転していない室内機
の少なくとも1台以上に対応した絞り装置の開度を、全
閉または第1の所定開度よりも小さな第2の所定開度と
する第2の絞り開度制御手段と、暖房運転していない室
内機全ての絞り装置の開度を第1の所定開度および第2
の所定開度よりも大きな第3の所定開度とする第3の絞
り開度制御手段と、第1の絞り開度制御手段による制御
と第2の絞り開度制御手段による制御とを選択的に設定
する制御選択手段と、制御選択手段により第1の絞り開
度制御手段の制御が選択された場合は暖房運転していな
い室内機全てに対応した絞り装置を制御対象として設定
し、第2の絞り開度制御手段の制御が選択された場合は
暖房運転していない室内機に予め付与されている優先順
位に基づいて室内機毎の絞り装置を制御対象として設定
する制御対象設定手段と、第3の絞り開度制御手段によ
る制御を実行しない最低時間間隔を、制御選択手段によ
り第1の絞り開度制御手段の制御が選択された場合は第
1の時間間隔とし、第2の絞り開度制御手段の制御が選
択された場合は第1の時間間隔よりも短い第2の時間間
隔とする冷媒回収禁止制御手段とを設けたものである。
An air conditioner according to an eleventh aspect of the present invention includes an accumulator, a compressor and a heat source unit.
A heat source unit-side heat exchanger, a variable opening degree throttle device constituting each of a plurality of indoor units connected in parallel to the heat source unit, and a refrigerant circuit formed by sequentially pipe-connecting the indoor unit-side heat exchangers are provided. Operation setting means for individually setting the heating operation or the operation stop of the plurality of indoor units for each indoor unit, and heating when a part of the plurality of indoor units is not performing the heating operation. First throttle opening control means for setting the opening of the expansion device corresponding to all the indoor units that are not operating to a first predetermined opening larger than the fully closed state, and at least one of the indoor units that are not performing the heating operation A second throttle opening control means for setting the opening of the throttle device corresponding to the above to a fully closed or a second predetermined opening smaller than the first predetermined opening, and all the indoor units not performing the heating operation. The opening degree of the expansion device is set to the first predetermined opening degree and the second predetermined opening degree.
A third throttle opening control means for setting a third predetermined opening larger than a predetermined opening degree, and selectively controlling the first throttle opening control means and the second throttle opening control means. When the control of the first throttle opening control means is selected by the control selection means, the throttle devices corresponding to all the indoor units that are not performing the heating operation are set as control objects, and Control object setting means for setting a throttle device for each indoor unit as a control target based on a priority given in advance to an indoor unit that is not performing a heating operation when control of the throttle opening degree control means is selected, The minimum time interval during which the control by the third aperture control unit is not executed is the first time interval when the control of the first aperture control unit is selected by the control selection unit, and When the control of the degree control means is selected, It is provided with a refrigerant recovery prohibition control means for a short second time interval than the time interval.

【0016】そして、この発明の請求項12に係る空気
調和装置は、請求項第11項の優先順位が、室内機が運
転停止している連続時間と、室内機毎に予め付与されて
いる室内機の背番号の順番とに基づいて決定されるもの
である。
[0016] In the air conditioner according to claim 12 of the present invention, the priority order in claim 11 is a continuous time during which the indoor unit is stopped, and the indoor unit is assigned in advance for each indoor unit. This is determined on the basis of the order of the machine number.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明による空気調和装置の実
施の形態を示すブロック構成図である。図1において、
1は圧縮機、2は四方切換弁、3は熱源機側熱交換器、
6はアキュムレータであり、これらを配管で接続して熱
源機Aが構成されている。Ba,Bb,Bcはそれぞれ
並列に配置された室内機である。4aは室内機Baに組
込まれた流量制御可能(開度可変)な絞り装置であり、
その流量特性は全閉の開度を60パルスに係る開度と
し、全開の開度を2000パルスに係る開度としてお
り、その間の開度と流量特性の関係は、図2に示すよう
にリニア(直線状)に変化する。4b,4cも室内機B
b,Bcにそれぞれ組込まれて絞り装置4aと同様の動
作をする絞り装置である。以下、絞り装置の開度はパル
ス数で表す。
Embodiment 1 FIG. FIG. 1 is a block diagram showing an embodiment of an air conditioner according to the present invention. In FIG.
1 is a compressor, 2 is a four-way switching valve, 3 is a heat source side heat exchanger,
Numeral 6 denotes an accumulator, which is connected by a pipe to constitute a heat source unit A. Ba, Bb, and Bc are indoor units arranged in parallel. Reference numeral 4a denotes a flow controllable (opening variable) throttle device incorporated in the indoor unit Ba,
In the flow characteristics, the fully-closed opening is defined as an opening related to 60 pulses, and the fully-opened opening is defined as an opening related to 2,000 pulses, and the relationship between the opening and the flow rate characteristic is linear as shown in FIG. (Linear). 4b, 4c also indoor unit B
This is a diaphragm device which is incorporated in b and Bc and performs the same operation as the diaphragm device 4a. Hereinafter, the opening degree of the throttle device is represented by the number of pulses.

【0018】5a,5b,5cはそれぞれ室内機Ba,
Bb,Bc内の室内機側熱交換器である。室内機Ba,
Bb,Bcは熱源機Aに対しそれぞれ並列で配管により
環状に接続して冷媒回路が構成されている。7は熱源機
Aに組込まれ、検知された温度や圧力などの入力データ
に基づいて圧縮機1や四方切換弁2の動作を制御する熱
源機側制御装置、8は熱源機Aに組込まれた冷媒流量抑
制制御設定スイッチ(当該スイッチのON/OFF状態
を以後SW1と呼ぶ)であり、SW1がONの場合は冷
媒流量抑制に係る制御の設定(以後、冷媒流量抑制制御
設定と呼ぶ)が有効であり、OFFの場合は冷媒流量抑
制制御設定が無効であることを意味する。
5a, 5b and 5c are indoor units Ba and
It is an indoor unit side heat exchanger in Bb and Bc. Indoor unit Ba,
Bb and Bc are connected in parallel to the heat source device A in a ring by piping to form a refrigerant circuit. Reference numeral 7 is incorporated in the heat source unit A, and is a heat source unit side control device that controls the operation of the compressor 1 and the four-way switching valve 2 based on input data such as the detected temperature and pressure, and 8 is incorporated in the heat source unit A. This is a refrigerant flow suppression control setting switch (the ON / OFF state of the switch is hereinafter referred to as SW1). When SW1 is ON, the setting of the refrigerant flow suppression control (hereinafter referred to as refrigerant flow suppression control setting) is effective. When OFF, it means that the refrigerant flow suppression control setting is invalid.

【0019】10は室内機Ba,Bb,Bcに対し冷
房,暖房,停止などの運転モードを要求するリモートコ
ントローラ(以後リモコンと略称する)、11aは室内
機Baに組込まれ、リモコン10からの運転要求に対応
して冷房運転,暖房運転,停止の運転パターンを決定
し、その要求を伝送線9を介して熱源機Aの熱源機側制
御装置7に伝える室内機側制御装置であり、11b,1
1cも室内機側制御装置11aと同様の動作をする室内
機側制御装置である。室内機側制御装置11a,11
b,11cは更に絞り装置4a,4b,4cの開度制御
も行う。14は圧縮機1の吐出側圧力を検知する高圧圧
力検知センサ、19は圧縮機1の吐出ガス温度を検知す
る吐出温度センサであり、高圧圧力検知センサ14の検
知圧力値(以後Pdと呼ぶ)と吐出温度センサ19の検
知温度値(以後Tdと呼ぶ)は、伝送線9を介して熱源
機側制御装置7に入力される。
Reference numeral 10 denotes a remote controller (hereinafter abbreviated as a remote controller) for requesting the indoor units Ba, Bb, and Bc to operate such as cooling, heating, and stop. Reference numeral 11a is incorporated in the indoor unit Ba and operates from the remote controller 10. An indoor unit-side control device that determines an operation pattern of a cooling operation, a heating operation, and a stop in response to the request, and transmits the request to the heat-source-unit-side control device 7 of the heat source unit A via the transmission line 9; 1
An indoor unit-side control device 1c performs the same operation as the indoor unit-side control device 11a. Indoor unit-side control devices 11a, 11
b and 11c also control the opening degree of the expansion devices 4a, 4b and 4c. Reference numeral 14 denotes a high-pressure pressure detection sensor that detects the discharge-side pressure of the compressor 1, and 19 denotes a discharge temperature sensor that detects the discharge gas temperature of the compressor 1, and a detection pressure value (hereinafter, referred to as Pd) of the high-pressure pressure detection sensor 14. And the temperature detected by the discharge temperature sensor 19 (hereinafter referred to as Td) are input to the heat source device side control device 7 via the transmission line 9.

【0020】ここで室内機側制御装置11a,11b,
11cによる絞り装置4a,4b,4cの開度制御につ
いて、室内機Baで代表して説明する。室内機Baに
は、絞り装置4aと室内機側熱交換器5aを結ぶ配管上
に設けられた配管温度センサ12aと、室内機側熱交換
器5aと四方切換弁2を結ぶ配管上でかつ室内機Baの
内部に設けられた配管温度センサ13aとが配備されて
いる。これらの配管温度センサ12a,13aにより検
知された温度は室内機側制御装置11aに入力される。
Here, the indoor unit side control devices 11a, 11b,
The control of the opening degree of the expansion devices 4a, 4b, 4c by 11c will be described using the indoor unit Ba as a representative. The indoor unit Ba includes a pipe temperature sensor 12a provided on a pipe connecting the expansion device 4a and the indoor unit side heat exchanger 5a, and a pipe connecting the indoor unit side heat exchanger 5a and the four-way switching valve 2 to the indoor unit Ba. A piping temperature sensor 13a provided inside the machine Ba is provided. The temperatures detected by these pipe temperature sensors 12a and 13a are input to the indoor unit-side control device 11a.

【0021】まず、冷房時について説明する。リモコン
10からの冷房運転指令が室内機側制御装置11aに送
られると、室内機側制御装置11aはまず全閉状態とな
っている絞り装置4aを所定の開度に開くとともに、熱
源機側制御装置7に対して冷房の運転要求を行う。熱源
機側制御装置7では運転要求が冷房である場合、四方切
換弁2を冷房サイクル用の流れ(図1中の点線矢印)と
なるように設定し、圧縮機1を起動させる。圧縮機1の
起動により冷媒が循環され、圧縮機1から出たガス冷媒
は熱源機側熱交換器3で液冷媒となり、運転している室
内機Baの絞り装置4aにより減圧され、二相冷媒とな
る。つまり、配管温度センサ12aは低圧の二相冷媒の
温度(蒸発時の低圧飽和温度TH2a)を検知する。二
相冷媒は室内機側熱交換器5aにより蒸発し、室内機側
熱交換器5aの出口では過熱ガス状態となる。つまり、
配管温度センサ13aは過熱ガスの温度(TH3a)を
検知することになる。これらの配管温度センサ12a,
13aによる検知温度を基に、室内機側制御装置11a
は過熱度SHa(=TH3a−TH2a)を算出し、過
熱度(以下SHaと呼ぶ)が所定値よりも大きい場合に
は冷媒流量が不足していると判断し、絞り装置4aを所
定開度だけ開方向に変化させる。反対に、SHaが所定
値より小さい場合には絞り装置4aの開度を所定開度だ
け閉方向に変化させる。このようにSHaを制御指数と
して絞り装置4aの制御が行われる。
First, the cooling operation will be described. When a cooling operation command from the remote controller 10 is sent to the indoor unit-side control device 11a, the indoor unit-side control device 11a first opens the throttle device 4a in the fully closed state to a predetermined opening degree, and controls the heat source unit-side control. A cooling operation request is issued to the device 7. When the operation request is for cooling, the heat source device-side control device 7 sets the four-way switching valve 2 so as to have a cooling cycle flow (dotted arrow in FIG. 1), and starts the compressor 1. The refrigerant is circulated by the activation of the compressor 1, and the gas refrigerant discharged from the compressor 1 becomes a liquid refrigerant in the heat source unit side heat exchanger 3, is decompressed by the expansion device 4 a of the operating indoor unit Ba, and is decompressed by the two-phase refrigerant. Becomes That is, the pipe temperature sensor 12a detects the temperature of the low-pressure two-phase refrigerant (the low-pressure saturation temperature TH2a at the time of evaporation). The two-phase refrigerant is evaporated by the indoor unit-side heat exchanger 5a, and enters a superheated gas state at the outlet of the indoor unit-side heat exchanger 5a. That is,
The pipe temperature sensor 13a detects the temperature of the superheated gas (TH3a). These pipe temperature sensors 12a,
13a based on the temperature detected by the indoor unit 13a.
Calculates the superheat degree SHA (= TH3a-TH2a). If the superheat degree (hereinafter referred to as SHA) is larger than a predetermined value, it is determined that the refrigerant flow rate is insufficient, and the expansion device 4a is moved by the predetermined opening degree. Change to open direction. Conversely, when the value of SHA is smaller than the predetermined value, the opening of the expansion device 4a is changed by the predetermined opening in the closing direction. In this way, the control of the expansion device 4a is performed using SHA as a control index.

【0022】次に、暖房時の制御について説明する。室
内機Ba,Bcの室内機側制御装置11b,11cには
停止要求のままで、リモコン10より室内機Baの室内
機側制御装置11aにのみ暖房運転要求が送信される
と、室内機側制御装置11aは、まず停止中は全閉状態
となっている絞り装置4aを所定の開度に開くととも
に、熱源機側制御装置7に対して暖房の運転要求を行
う。熱源機側制御装置7は暖房要求を受けると、四方切
換弁2の冷媒流路方向を暖房用(図1中の実線矢印)に
設定するとともに圧縮機1を起動させる。圧縮機1で圧
縮された高圧高温のガス冷媒は、四方切換弁2により室
内機Baに向けて流れ、室内機側熱交換器5aで凝縮さ
れて液冷媒に変化する。つまり、配管温度センサ12a
はこのとき液冷媒の温度を検知している。この液冷媒は
絞り装置4aによって低圧の二相冷媒となり室内機Ba
を出て熱源機Aに流れ、熱源機側熱交換器3でそのほと
んどが蒸発する。このように蒸発した冷媒は、四方切換
弁2を経てアキュムレータ6で気液分離され、気体部分
だけが圧縮機1へと戻る。室内機側制御装置11aは、
配管温度センサ12aで検知した液温TH2aと高圧飽
和温度(以後Tcと呼ぶ)との差SCa(=Tc−TH
2a)を過冷却度として推定する。ここで、熱源機Aの
圧縮機吐出側の高圧圧力検知センサ14によって検知し
た圧力Pdが熱源機側制御装置7に入力されてTcに換
算された後、所定時間間隔で室内機側制御装置11a,
11b,11cにTcが送信される。室内機側制御装置
11aは送信されたTcと配管温度センサ12aからの
TH2aを基にSCaを算出する。そこで、SCaが所
定値より大きい場合には冷媒流量が不足していると判断
し、絞り装置4aを所定開度だけ開方向に変化させ、反
対にSCaが所定値より小さい場合には絞り装置4aの
開度を所定開度だけ閉方向に変化させる。このようにし
て暖房時はSCaを制御指数として絞り装置4aの制御
が行われる。
Next, control during heating will be described. When a heating operation request is transmitted from the remote controller 10 to only the indoor unit-side control device 11a of the indoor unit Ba while the stop request is being sent to the indoor unit-side control devices 11b and 11c of the indoor units Ba and Bc, the indoor unit-side control is performed. First, the device 11a opens the expansion device 4a, which is in the fully closed state during the stop, to a predetermined opening degree, and requests the heat source device-side control device 7 to perform a heating operation. When receiving the heating request, the heat-source-unit-side control device 7 sets the refrigerant flow direction of the four-way switching valve 2 for heating (solid arrow in FIG. 1) and starts the compressor 1. The high-pressure and high-temperature gas refrigerant compressed by the compressor 1 flows toward the indoor unit Ba by the four-way switching valve 2, and is condensed by the indoor unit-side heat exchanger 5a to change into a liquid refrigerant. That is, the pipe temperature sensor 12a
At this time, the temperature of the liquid refrigerant is detected. This liquid refrigerant is turned into a low-pressure two-phase refrigerant by the expansion device 4a, and the indoor unit Ba
And flows to the heat source unit A, and most of the heat evaporates in the heat source unit side heat exchanger 3. The refrigerant evaporated in this way is separated into gas and liquid by the accumulator 6 via the four-way switching valve 2, and only the gas portion returns to the compressor 1. The indoor unit-side control device 11a includes:
Difference SCa (= Tc-TH) between liquid temperature TH2a detected by pipe temperature sensor 12a and high-pressure saturation temperature (hereinafter referred to as Tc).
2a) is estimated as the degree of supercooling. Here, after the pressure Pd detected by the high pressure detection sensor 14 on the compressor discharge side of the heat source unit A is input to the heat source unit side control device 7 and converted into Tc, the indoor unit side control device 11a is provided at predetermined time intervals. ,
Tc is transmitted to 11b and 11c. The indoor unit side control device 11a calculates SCa based on the transmitted Tc and TH2a from the pipe temperature sensor 12a. Therefore, when SCa is larger than the predetermined value, it is determined that the refrigerant flow rate is insufficient, and the expansion device 4a is changed in the opening direction by a predetermined opening. Conversely, when SCa is smaller than the predetermined value, the expansion device 4a Is changed in the closing direction by a predetermined opening. In this way, at the time of heating, the control of the expansion device 4a is performed using SCa as a control index.

【0023】暖房運転中の室内機Ba内での制御は以上
の通りであるが、停止中となっている室内機Bb,Bc
での絞り装置4b,4cの制御を説明する。暖房運転
時、停止中の室内機Bb,Bcでは絞り装置4b,4c
が閉じている場合でも、室内機側熱交換器5b,5cの
高圧側(圧縮機1の吐出側)は開いた回路となってい
る。一般に室内機の熱交換器は送風機(図示せず)によ
り風を送ることで空気との熱交換を行うが、風がない場
合でも自然放熱や自然対流の影響でわずかに放熱作用を
有している。このため、圧縮機1の吐出側に開放された
室内機側熱交換器5b,5c内では、わずかずつ冷媒の
凝縮作用が進み液冷媒が滞留しやすくなる。熱源機側制
御装置7はこのような液冷媒の滞留を防ぐため、冷媒流
量抑制制御設定が無効、つまりSW1がOFFの場合に
は、停止中の室内機Bb,Bcの室内機側制御装置11
b,11cに対しその絞り装置4b,4cの開度を全閉
(60パルス)より少し大きな開度である120パルス
に開くよう、要求を送る。室内機側制御装置11b,1
1cでは室内機Baの制御で説明した通り、停止時は絞
り装置4b,4cの開度は全閉とし、リモコン10の指
示により暖房運転する場合にはSCb(=Tc−TH2
b),SCc(=Tc−TH2c)という指標に基づい
て、絞り装置4b,4cの開閉制御を行う。ここで、T
H2b,TH2cはそれぞれ室内機Bb,Bcの絞り装
置4b,4cと室内機側熱交換器5b,5cとを結ぶ配
管上に設けられた配管温度センサ12b,12cによる
検知温度である。
The control in the indoor unit Ba during the heating operation is as described above, but the indoor units Bb and Bc which are stopped are described.
The control of the aperture devices 4b and 4c will be described. During the heating operation, the stop devices 4b and 4c are used in the stopped indoor units Bb and Bc.
Is closed, the high pressure side (the discharge side of the compressor 1) of the indoor unit side heat exchangers 5b, 5c is an open circuit. Generally, the heat exchanger of an indoor unit exchanges heat with air by sending air by a blower (not shown). However, even when there is no wind, it has a slight heat radiation effect due to natural heat radiation and natural convection. I have. For this reason, in the indoor unit side heat exchangers 5b and 5c opened to the discharge side of the compressor 1, the refrigerant condensing action progresses little by little, and the liquid refrigerant easily stays. In order to prevent the liquid refrigerant from staying, the heat source unit-side control device 7 disables the refrigerant flow suppression control setting, that is, when SW1 is OFF, the indoor unit-side control device 11 of the stopped indoor units Bb and Bc.
A request is sent to b, 11c to open the apertures of the expansion devices 4b, 4c to 120 pulses, which is slightly larger than the fully closed position (60 pulses). Indoor unit-side control device 11b, 1
In 1c, as described in the control of the indoor unit Ba, the opening degree of the expansion devices 4b and 4c is fully closed at the time of stop, and SCb (= Tc-TH2) when the heating operation is performed by the instruction of the remote controller 10.
b), opening / closing control of the aperture devices 4b and 4c is performed based on the index of SCc (= Tc-TH2c). Where T
H2b and TH2c are the temperatures detected by the pipe temperature sensors 12b and 12c provided on the pipes connecting the expansion devices 4b and 4c of the indoor units Bb and Bc and the indoor unit-side heat exchangers 5b and 5c, respectively.

【0024】この場合、熱源機側制御装置7から絞り装
置4b,4cの開度を所定開度に開くように要求がくる
と、SCbもしくはSCcを基に制御している開度より
も優先させて、熱源機側制御装置7からの要求開度に制
御する制御手段を持っている。このため、停止中であっ
ても熱源機側制御装置7から120パルスの開度要求が
あれば、絞り装置4b,4cの開度を120パルスに開
く。ただし、停止中に120パルスとなっていても、そ
の室内機が新たに運転を開始した場合には120パルス
の開度固定は一旦解除し、次に熱源機側制御装置7から
の要求開度が送信されてくるまでは、室内機のSCbま
たはSCcにより定まる制御で絞り装置4b,4cの開
度を開く。このようにして、停止中の室内機Bb,Bc
の絞り装置開度を全閉の60パルスより少し大きい12
0パルスという開度に開くことにより、停止中の室内機
側熱交換器5b,5c内に滞留しようとする冷媒を少し
ずつ熱源機A側に流すため、停止中の室内機Bb,Bc
内への冷媒滞留を防ぎ、運転中の室内機Ba側に流れる
べき冷媒が不足しないようにしている。ただし、冷媒流
量抑制制御設定が有効、つまりSW1をONにした場
合、停止に係る室内機側制御装置11b,11cには絞
り装置4b,4cの開度を開く要求は出さず、全閉のま
まとする。
In this case, when the heat source device-side control device 7 requests that the opening of the expansion devices 4b and 4c be opened to a predetermined opening, the opening is controlled over the opening controlled based on SCb or SCc. And a control means for controlling the opening degree required by the heat source device side control device 7. For this reason, even when the apparatus is stopped, if there is a request for the opening degree of 120 pulses from the heat source device side controller 7, the opening degree of the expansion devices 4b and 4c is opened to 120 pulses. However, if the indoor unit starts a new operation even if the number of pulses is 120 during the stop, the fixed opening of the 120 pulses is temporarily released, and then the required opening degree from the heat source unit side control device 7 is released. Until is transmitted, the apertures of the expansion devices 4b and 4c are opened under control determined by SCb or SCc of the indoor unit. Thus, the stopped indoor units Bb, Bc
Aperture of the throttle device is slightly larger than 60 pulses of fully closed 12
By opening to the opening degree of 0 pulse, the refrigerant that is going to stay in the stopped indoor unit heat exchangers 5b and 5c flows gradually to the heat source unit A side, so that the stopped indoor units Bb and Bc
This prevents the refrigerant from staying inside and prevents the shortage of the refrigerant that should flow to the indoor unit Ba during operation. However, when the refrigerant flow suppression control setting is valid, that is, when SW1 is turned ON, the indoor unit-side control devices 11b and 11c related to the stop do not request to open the openings of the expansion devices 4b and 4c, and remain fully closed. And

【0025】ここで、冷房時に熱源機Aから熱源機側熱
交換器3を出て室内機Baへ流れる冷媒は液冷媒であ
り、暖房時に同じ回路を流れる冷媒は二相冷媒である。
一方、冷房時に室内機から四方切換弁2を通って熱源機
Aに戻る冷媒はガス冷媒であり、暖房時に同じ回路を流
れる冷媒もガス冷媒である。つまり、室内機と熱源機を
結ぶ配管は2回路あるが、その室内機と四方切換弁2を
結ぶ回路は冷房と暖房によって相の異なる冷媒(液冷媒
および二相冷媒)が流通するためその密度が大きく異な
る。熱源機側熱交換器3と室内機の絞り装置を結ぶ回路
は冷房、暖房ともにガス冷媒であるため密度の差はそれ
ほど大きくない。従って、暖房時には室内機と熱源機A
を結ぶ配管の一方で発生した冷媒の密度差により冷房時
よりも少ない冷媒量で運転が可能となる。一般には冷房
運転を基準にして冷媒封入量が決定されていることか
ら、暖房時は冷房時と比べて余剰冷媒が発生しやすく、
通常これは液の状態でアキュムレータ6内に存在させて
いる。この余剰冷媒は熱源機Aと室内機Ba,Bb,B
cとを結ぶ配管が長いほど多量になる。そこで、余剰冷
媒量が十分に存在する場合には、SW1をONにして停
止中の室内機Bb,Bcの絞り装置4b,4cを全閉の
ままとし室内機側熱交換器5b,5cに冷媒が溜まって
も、まず余剰冷媒がアキュムレータ6から移動するた
め、冷媒滞留量<余剰冷媒量となる関係の範囲であれ
ば、暖房運転中の室内機Baで形成される冷凍サイクル
に悪影響を及ぼさない。すなわち、この実施の形態1に
おいて、冷媒流量抑制制御設定スイッチ8(非暖房運転
時絞り開度設定手段の例)は、暖房運転にあたり複数の
室内機Ba,Bb,Bcのうちリモコン10(運転設定
手段の例)により設定された運転停止に係る室内機B
b,Bcに対応した絞り装置4b,4cを全閉または全
閉よりも大きな開度に選択的に設定するようになってい
る。
Here, the refrigerant flowing out of the heat source unit heat exchanger 3 from the heat source unit A to the indoor unit Ba during cooling is a liquid refrigerant, and the refrigerant flowing through the same circuit during heating is a two-phase refrigerant.
On the other hand, the refrigerant that returns from the indoor unit to the heat source unit A through the four-way switching valve 2 during cooling is a gas refrigerant, and the refrigerant flowing in the same circuit during heating is also a gas refrigerant. In other words, although there are two circuits connecting the indoor unit and the heat source unit, the circuit connecting the indoor unit and the four-way switching valve 2 has different densities due to the flow of refrigerants (liquid refrigerant and two-phase refrigerant) having different phases due to cooling and heating. Are very different. Since the circuit connecting the heat source unit side heat exchanger 3 and the expansion device of the indoor unit is a gas refrigerant for both cooling and heating, the difference in density is not so large. Therefore, at the time of heating, the indoor unit and the heat source unit A
The operation can be performed with a smaller amount of refrigerant than during cooling due to the difference in density of the refrigerant generated in one of the pipes connecting the two. Generally, since the amount of refrigerant charged is determined based on cooling operation, excess refrigerant is more likely to be generated during heating than during cooling,
Usually this is present in the accumulator 6 in liquid form. The surplus refrigerant is supplied to the heat source unit A and the indoor units Ba, Bb, B
The longer the piping connecting to c, the larger the amount. Therefore, when the surplus refrigerant amount is sufficient, SW1 is turned ON, and the expansion devices 4b, 4c of the stopped indoor units Bb, Bc are kept fully closed, and the refrigerant is supplied to the indoor unit side heat exchangers 5b, 5c. Does not adversely affect the refrigeration cycle formed by the indoor unit Ba during the heating operation as long as the excess refrigerant moves from the accumulator 6 as long as the amount of refrigerant stays <the amount of excess refrigerant. . That is, in the first embodiment, the refrigerant flow rate suppression control setting switch 8 (an example of the throttle opening setting means during the non-heating operation) controls the remote controller 10 (operation setting) of the plurality of indoor units Ba, Bb, and Bc in the heating operation. Indoor unit B related to the operation stop set by the example of the means)
The aperture devices 4b and 4c corresponding to b and Bc are selectively set to a fully closed state or an opening degree larger than the fully closed state.

【0026】このように、冷媒流量抑制制御設定スイッ
チ8のSW1の設定によって停止(非暖房)中の室内機
の絞り装置の開度を開くか閉じるかを選択可能とするこ
とによって、暖房時に発生する余剰冷媒量が停止中の室
内機Bb,Bcに滞留する冷媒量より多い場合は、停止
中の室内機に冷媒が寝こむこと(液状態で滞留するこ
と)による冷凍サイクルへの悪影響を及ぼすことなく、
停止中の室内機で発生する冷媒音を消音できるため、空
気調和装置の快適性と信頼性をともに確保することが可
能となる。
As described above, it is possible to select whether to open or close the opening of the expansion device of the stopped indoor unit (non-heating) by setting the switch SW1 of the refrigerant flow suppression control setting switch 8, thereby generating the heating during the heating. When the surplus refrigerant amount to be retained is larger than the refrigerant amount remaining in the stopped indoor units Bb and Bc, the refrigerant lays down in the stopped indoor unit (remains in a liquid state), which adversely affects the refrigeration cycle. Without
Since the refrigerant noise generated in the stopped indoor unit can be silenced, both comfort and reliability of the air conditioner can be secured.

【0027】尚、停止室内機の絞り装置を全閉にできる
かどうかは、暖房時の余剰冷媒量で決まってくるが、製
品の設置方法(特に熱源機Aと室内機Ba,Bb,Bc
とを結ぶ配管の長さ)がユーザーによって一意でないよ
うな空気調和装置では、設置後の試運転時に、SW1を
ONさせて運転し、複数の室内機を停止させた状態で冷
凍サイクルに悪影響がでないかを観察した上で、全閉の
設定が可能かどうかを判断する。判断する基準は、例え
ば圧縮機1の吐出ガス温度を測定し、それが所定温度を
上回っていないかで判断できる。これは必要な冷媒が不
足した場合、圧縮機1の吸入ガス冷媒の乾き度が大きく
なり(冷媒密度が小さくなり)、圧縮機1の吐出温度に
影響が出てくるためである。もしくは、アキュムレータ
6内の冷媒量を測定して、まだ余剰冷媒がアキュムレー
タ6内に残っていれば、SW1をONしてもよいと判断
する方法がある。例えば、熱源機Aの中に圧縮機1の吐
出温度センサ19を取付け、検知温度出力を熱源機側制
御装置7に取り込むようにし、その検知温度が所定温度
を上回れば自動的にSW1の設定がOFFと同一である
と判断させる方法や、アキュムレータ6中の冷媒液面高
さを図3に示すような温度センサ16,17を用いた液
面検知手段で検知してSW1をONとした制御で問題な
いか自動的に熱源機側制御装置7で判断させる方法を採
用すれば、より簡単にSW1による冷媒流量抑制制御設
定有効の可否判断が可能となる。
Whether the expansion device of the stopped indoor unit can be fully closed or not depends on the amount of surplus refrigerant at the time of heating. However, the product installation method (particularly, the heat source unit A and the indoor units Ba, Bb, Bc)
In the air conditioner in which the length of the pipe connecting the refrigeration cycle and the user is not unique by the user, the refrigeration cycle is not adversely affected in the state where the SW1 is turned on and the plurality of indoor units are stopped during the test operation after installation. Then, it is determined whether or not it is possible to set fully closed. As a criterion for determination, for example, the temperature of the discharge gas of the compressor 1 is measured, and it can be determined whether the temperature is higher than a predetermined temperature. This is because if the required refrigerant is insufficient, the dryness of the suction gas refrigerant of the compressor 1 increases (the refrigerant density decreases), which affects the discharge temperature of the compressor 1. Alternatively, there is a method in which the amount of refrigerant in the accumulator 6 is measured, and if surplus refrigerant still remains in the accumulator 6, it is determined that the SW1 may be turned on. For example, the discharge temperature sensor 19 of the compressor 1 is mounted in the heat source device A, and the detected temperature output is taken into the heat source device side controller 7, and if the detected temperature exceeds a predetermined temperature, the setting of SW1 is automatically set. A method of judging it to be the same as OFF or a control of detecting the refrigerant liquid level in the accumulator 6 by liquid level detecting means using temperature sensors 16 and 17 as shown in FIG. If a method of automatically determining whether or not there is any problem by the heat source device side control device 7 is employed, it is possible to more easily determine whether the setting of the refrigerant flow suppression control by the SW1 is valid.

【0028】ここで、図3の液面高さ判定方法を説明す
る。15はアキュムレータ6の吸入配管に設置された低
圧圧力検知センサであり、この圧力値Psにおける飽和
温度をT(Ps)とする。16はアキュムレータ6の下
部より取り出したキャピラリ配管の温度を検知するアキ
ュムレータ下部液面検知温度センサ(以後TH3と呼
ぶ)、17はアキュムレータ6の上部より取り出したキ
ャピラリ配管の温度を検知するアキュムレータ上部液面
検知温度センサ(以後TH4と呼ぶ)、18はそれぞれ
冷媒を加熱するためのヒータである。ヒータ18の容量
は、ガス冷媒(比熱小)の温度は充分に上昇させるが液
冷媒(比熱大)の温度は上昇させない程度、つまり冷媒
を液のままで保持する程度に設定されている。ヒータ容
量の設定方法は、例えばTH4の温度が所定温度より高
いとヒータ容量を増加させ、低いと低減させるといった
ものが挙げられる。
Here, the method for determining the liquid level in FIG. 3 will be described. Reference numeral 15 denotes a low pressure detection sensor installed in the suction pipe of the accumulator 6, and the saturation temperature at this pressure value Ps is defined as T (Ps). 16 is an accumulator lower liquid level detection temperature sensor (hereinafter referred to as TH3) for detecting the temperature of the capillary pipe taken out from the lower part of the accumulator 6, and 17 is an accumulator upper liquid level for detecting the temperature of the capillary pipe taken out from the upper part of the accumulator 6. A detected temperature sensor (hereinafter referred to as TH4) and 18 are heaters for heating the refrigerant, respectively. The capacity of the heater 18 is set such that the temperature of the gas refrigerant (specific heat is small) is sufficiently increased, but the temperature of the liquid refrigerant (large specific heat) is not increased, that is, the refrigerant is maintained in a liquid state. As a method of setting the heater capacity, for example, there is a method of increasing the heater capacity when the temperature of the TH4 is higher than a predetermined temperature, and decreasing the heater capacity when the temperature of the TH4 is lower.

【0029】次に、図3中の判定表について説明する。
ヒータ18にて加熱された冷媒の温度がTH3で検知さ
れ、T(Ps)とTH3の温度差より、T(Ps)+5
℃よりTH3の検知温度が低ければ、この配管を流れる
冷媒は二相冷媒と判断され、配管入口では液冷媒である
と判定できる。逆にTH3が高ければ、この配管を流れ
る冷媒はガス冷媒と判断され、配管入口では二相あるい
はガス冷媒であると判定できる。一方、ヒータ18にて
加熱された冷媒の温度がTH4で検知され、T(Ps)
とTH4との温度差より、T(Ps)+5℃よりTH4
の検知温度が低ければ、この配管を流れる冷媒は二相冷
媒と判断され、配管入口では液冷媒であると判定でき
る。逆にTH4が高ければ、この配管を流れる冷媒はガ
ス冷媒と判断され、配管入口では二相あるいはガス冷媒
であると判定できる。また、TH3とTH4との温度差
によりアキュムレータ6内の液面高さが、取り出し配管
位置を基準に上下どちらにあるかを判定できる。これ
は、TH4がTH3+5℃より大きいとき、下部配管位
置までは液冷媒があるが上部配管位置では液冷媒がな
く、逆にTH4がTH3+5℃より小さいとき、下部配
管および上部配管位置まで液冷媒が存在することを判断
できる。これらの組み合わせが上記の表で示されてお
り、AL=0はアキュムレータ6内の液冷媒がほとんど
存在しないことを表し、AL=1はアキュムレータ6内
に通常量の液冷媒が存在することを表し、AL=2はア
キュムレータ6内の液冷媒が十分に存在することを表し
ている。
Next, the judgment table in FIG. 3 will be described.
The temperature of the refrigerant heated by the heater 18 is detected at TH3, and T (Ps) +5 is obtained from the temperature difference between T (Ps) and TH3.
If the detected temperature of TH3 is lower than ℃, the refrigerant flowing through this pipe is determined to be a two-phase refrigerant, and it can be determined at the pipe inlet that it is a liquid refrigerant. Conversely, if TH3 is high, the refrigerant flowing through this pipe is determined to be a gas refrigerant, and it can be determined at the pipe inlet that it is a two-phase or gas refrigerant. On the other hand, the temperature of the refrigerant heated by the heater 18 is detected at TH4, and T (Ps)
From the temperature difference between TH4 and TH4, TH (Ps) + 5 ° C and TH4
Is low, the refrigerant flowing through this pipe is determined to be a two-phase refrigerant, and it can be determined at the pipe inlet that it is a liquid refrigerant. Conversely, if TH4 is high, the refrigerant flowing through this pipe is determined to be a gas refrigerant, and it can be determined at the pipe inlet that it is a two-phase or gas refrigerant. Further, it is possible to determine whether the liquid level in the accumulator 6 is higher or lower based on the outlet pipe position based on the temperature difference between TH3 and TH4. This is because when TH4 is greater than TH3 + 5 ° C, there is liquid refrigerant up to the lower piping position but no liquid refrigerant at the upper piping position. Conversely, when TH4 is less than TH3 + 5 ° C, liquid refrigerant reaches the lower piping and upper piping position. You can determine that it exists. These combinations are shown in the table above, where AL = 0 indicates that there is almost no liquid refrigerant in accumulator 6 and AL = 1 indicates that there is a normal amount of liquid refrigerant in accumulator 6. , AL = 2 indicates that the liquid refrigerant in the accumulator 6 is sufficiently present.

【0030】このAL判定手法を用いて、アキュムレー
タ6内の余剰冷媒量を判定する。また、一般に絞り装置
が全閉の場合に室内機に溜まる冷媒量はその停止室内機
の室内機側熱交換器の容積によって上限が決まるため、
暖房時に発生する余剰冷媒量は熱源機Aと室内機Ba,
Bb,Bcとを結ぶ配管の長さを経験的な演算式に当て
はめることで予測される。そこで、停止室内機の台数と
その室内機側熱交換器の容積と予測した余剰冷媒量との
大小関係から、(予測した余剰冷媒量)>(停止してい
る室内機側熱交換器の容積から算出した寝こみ冷媒量×
安全率)を満足した場合に、SW1の設定を自動的にO
Nするような制御も冷媒流量抑制制御設定有効の可否判
断として有効な方法となる。
The surplus refrigerant amount in the accumulator 6 is determined by using this AL determination method. Also, in general, when the expansion device is fully closed, the amount of refrigerant accumulated in the indoor unit has an upper limit determined by the volume of the indoor unit side heat exchanger of the stopped indoor unit,
The amount of surplus refrigerant generated during heating is determined by the heat source unit A and the indoor unit Ba,
It is predicted by applying the length of the pipe connecting Bb and Bc to an empirical equation. Therefore, from the magnitude relationship between the number of stopped indoor units, the volume of the indoor unit side heat exchanger, and the predicted amount of surplus refrigerant, (predicted surplus refrigerant amount)> (volume of stopped indoor unit side heat exchanger) Laying refrigerant amount calculated from ×
When the safety factor is satisfied, the setting of SW1 is automatically set to O.
Control to perform N is also an effective method for determining whether the setting of the refrigerant flow suppression control is valid.

【0031】実施の形態2.図4は実施の形態2,3に
おける空気調和装置を示すブロック構成図、図5は実施
の形態2における冷媒流量抑制室内機設定有効時の開度
変更手順を示す制御フローチャートである。この実施の
形態2では、実施の形態1で説明した図1の空気調和装
置の構成および動作に加えて、室内機側制御装置11
a,11b,11cそれぞれに、ON/OFF設定切換
可能な冷媒流量抑制室内機設定有効時の開度変更スイッ
チ(以後室内機Ba,Bb,Bcにそれぞれ対応するも
のをSW2a,SW2b,SW2cと呼ぶ)を追加した
ものである。ここで、その時の暖房運転時の停止室内機
の絞り装置変更の関係を示す制御フローについて、図5
のフローチャートを用いて説明する。
Embodiment 2 FIG. 4 is a block diagram illustrating an air conditioner according to Embodiments 2 and 3, and FIG. 5 is a control flowchart illustrating an opening degree changing procedure when the refrigerant flow suppression indoor unit setting is enabled in Embodiment 2. In the second embodiment, in addition to the configuration and operation of the air-conditioning apparatus of FIG.
a, 11b, and 11c, each of which has an ON / OFF switchable refrigerant flow suppression opening unit change switch when the indoor unit setting is enabled (hereinafter, switches corresponding to the indoor units Ba, Bb, and Bc are referred to as SW2a, SW2b, and SW2c, respectively). ). Here, the control flow showing the relationship of the change of the throttle device of the stopped indoor unit at the time of the heating operation at that time is shown in FIG.
This will be described with reference to the flowchart of FIG.

【0032】図5において、Step1では暖房で圧縮
機1が起動したあと、Step2でSW1がOFFの場
合、Step3では通常制御、つまり停止室内機の絞り
装置を120パルスに開く制御を行う。SW1がON設
定有効の場合、まず存在する室内機Ba,Bb,Bcが
運転中か停止中かを判断する(Step4,8,1
2)。例えば、Step4で室内機Baが運転中である
と判断された場合に熱源機側制御装置7は特に何もしな
い。つまり、室内機Baの絞り装置4aの制御はSCa
に応じて室内機側制御装置11aが個別に開度設定変更
できるようになっている。一方、Step4で室内機B
aが停止中であると判断された場合には、Step5で
室内機側制御装置11aに入力されたSW2aの設定が
ONかOFFかを判断する。OFFの場合には、SW1
がOFFの場合と同様、Step6で室内機側制御装置
11aに対して絞り装置4aの開度を120パルスに開
くよう要求し、通常通りの冷媒寝こみ防止策を講じる。
SW2aがONの場合は、冷媒音の発生を避ける必要が
ある特殊な室内機であると判断し、Step7で熱源機
側制御装置7から室内機側制御装置11aに対して絞り
装置4aの開度を120パルスよりも小さな60パルス
にするよう要求し、室内機側制御装置11aはこれを受
けて絞り装置4aの開度を全閉(60パルス)に設定す
る。室内機Bb,BcについてのStep8,Step
12以降の制御動作(Step9〜11,13〜15)
も同様である。
In FIG. 5, after the compressor 1 is started by heating in Step 1, if the SW1 is turned off in Step 2, the normal control is performed in Step 3, ie, the control to open the throttle device of the stopped indoor unit to 120 pulses is performed. When the ON setting of SW1 is valid, it is first determined whether the existing indoor units Ba, Bb, Bc are operating or stopped (Steps 4, 8, 1).
2). For example, when it is determined in Step 4 that the indoor unit Ba is operating, the heat source unit-side control device 7 does nothing. That is, the control of the expansion device 4a of the indoor unit Ba is performed by SCa
, The indoor unit-side control device 11a can individually change the opening degree. On the other hand, indoor unit B in Step 4
If it is determined that “a” is stopped, it is determined in Step 5 whether the setting of SW2a input to the indoor unit side control device 11a is ON or OFF. When it is OFF, SW1
As in the case where is OFF, the indoor unit side control device 11a is requested to open the opening degree of the expansion device 4a to 120 pulses in Step 6, and a normal refrigerant stagnation prevention measure is taken.
When the SW2a is ON, it is determined that the special indoor unit needs to avoid the generation of the refrigerant noise, and in Step 7, the opening degree of the expansion device 4a from the heat source unit side control device 7 to the indoor unit side control device 11a is determined. Is requested to be 60 pulses smaller than 120 pulses, and the indoor unit-side control device 11a receives this and sets the opening degree of the expansion device 4a to fully closed (60 pulses). Step 8 and Step 8 for the indoor units Bb and Bc
Control operations after 12 (Steps 9 to 11, 13 to 15)
The same is true for

【0033】このように、一部に停止室内機の絞り装置
開度を全閉にすることによって、余剰冷媒量の範囲内
で、冷媒音抑制が必要な室内機に対して冷媒音を完全に
消音することができ、空気調和装置の快適性向上とな
る。
As described above, by partially closing the throttle device opening of the stopped indoor unit, the refrigerant sound can be completely eliminated from the indoor unit which needs to suppress the refrigerant noise within the range of the surplus refrigerant amount. The sound can be muted, and the comfort of the air conditioner can be improved.

【0034】実施の形態3.次に、図6は実施の形態3
における冷媒流量抑制室内機設定有効時の開度変更手順
を示す制御フローチャートである。この実施の形態3で
は、実施の形態2で説明した図4の空気調和装置の構成
に加えて、暖房運転時の停止室内機の絞り装置変更の機
能を備えている。図6のフローチャートにおいて、St
ep17で暖房で圧縮機1が起動したあと、Step1
8でSW1がOFFの場合、Step19では通常制
御、つまり停止室内機の絞り装置を120パルスに開く
制御を行う。SW1がON設定有効の場合、まず存在す
る室内機Ba,Bb,Bcが運転中か停止中かを判断す
る(Step20,24,28)。例えば、Step2
0で室内機Baが運転中の場合に熱源機側制御装置7は
特に何もしない。つまり、室内機Baの絞り装置4aの
制御はSCaに応じて室内機側制御装置11aが個別に
開度設定変更できるようになっている。一方、Step
20で室内機Baが停止中の場合には、Step21で
室内機側制御装置11aに入力されたSW2aの設定が
ONかOFFか判断する。OFFの場合には、SW1が
OFFの場合と同様、Step22で室内機側制御装置
11aに対して絞り装置4aの開度を120パルスに開
くよう要求し、通常通りの冷媒寝こみ防止策を講じる。
SW2aがONの場合は、冷媒音の発生を避ける必要が
ある特殊な室内機であると判断し、Step23で熱源
機側制御装置7から室内機側制御装置11aに対して絞
り装置4aの開度を120パルスよりも小さな80パル
スの開度にするように要求し、室内機側制御装置11a
はこれを受けて絞り装置4aの開度を全閉(60パル
ス)よりもわずかに開いた80パルスに設定する。室内
機Bb,BcにおけるStep24,Step28以降
の制御動作(Step25〜27,29〜31)も同様
である。
Embodiment 3 Next, FIG.
It is a control flowchart which shows the opening degree change procedure at the time of the refrigerant | coolant flow-suppression indoor unit setting in FIG. In the third embodiment, in addition to the configuration of the air conditioner of FIG. 4 described in the second embodiment, a function of changing the throttle device of the stopped indoor unit during the heating operation is provided. In the flowchart of FIG.
After the compressor 1 is started by heating at ep17, Step1
If SW1 is OFF in step 8, normal control is performed in step 19, that is, control for opening the stop device of the stopped indoor unit to 120 pulses. When the SW1 is set to the ON setting valid, first, it is determined whether the existing indoor units Ba, Bb, Bc are operating or stopped (Steps 20, 24, 28). For example, Step2
When the indoor unit Ba is operating at 0, the heat source unit-side control device 7 does nothing. That is, the control of the expansion device 4a of the indoor unit Ba can be changed individually by the indoor unit-side control device 11a according to SCa. On the other hand, Step
If the indoor unit Ba is stopped at 20, it is determined at Step 21 whether the setting of the SW 2 a input to the indoor unit side control device 11 a is ON or OFF. When the switch is OFF, as in the case where the SW1 is OFF, the indoor unit-side control device 11a is requested to open the opening of the expansion device 4a to 120 pulses in Step 22, and the refrigerant stagnation prevention measures are taken as usual. .
When SW2a is ON, it is determined that the indoor unit is a special indoor unit that needs to avoid the generation of refrigerant noise, and in Step 23, the opening degree of the expansion device 4a from the heat source unit-side control device 7 to the indoor unit-side control device 11a is determined. Is required to have an opening of 80 pulses smaller than 120 pulses, and the indoor unit side controller 11a
In response to this, the opening degree of the expansion device 4a is set to 80 pulses slightly opened from the fully closed state (60 pulses). The same applies to the control operations (Steps 25 to 27, 29 to 31) of Steps 24 and 28 in the indoor units Bb and Bc.

【0035】このように、ある特定の室内機のみ冷媒流
量抑制室内機設定有効可能にすることによって、余剰冷
媒が少ない場合でも冷媒音抑制を必要とする室内機が一
部にあれば、その特定の室内機のみ冷媒音抑制が可能と
なって、空気調和装置の快適性向上の自由度が増す。ま
た、冷媒音抑制の手段として、停止中の絞り装置の開度
を全閉ではなく、通常SW1がOFFの場合に開いてい
る120パルスよりも小さな80パルスとすることで、
停止中の室内機に溜まる冷媒の一部が流れ出るため、全
閉にするよりは室内機に寝こむ冷媒量が低減する。これ
により、同じ余剰冷媒量であっても冷媒流量抑制室内機
設定有効とできる室内機の台数が多くなる。更に、冷媒
流量は120パルスの場合よりも小さくなるため、完全
消音とまでいかなくても冷媒流動による音のレベルを低
下させることができる。
As described above, by enabling the setting of the refrigerant flow suppression indoor unit only for a specific indoor unit, even if the amount of surplus refrigerant is small, if some indoor units require refrigerant noise suppression, Only the indoor unit can suppress the refrigerant noise, and the degree of freedom of improving the comfort of the air conditioner increases. Also, as a means for suppressing the refrigerant noise, the opening degree of the throttle device while stopped is not completely closed, but is set to 80 pulses smaller than 120 pulses that are normally opened when the SW1 is OFF.
Since a part of the refrigerant accumulated in the stopped indoor unit flows out, the amount of the refrigerant laid in the indoor unit is reduced as compared with the case where the indoor unit is completely closed. This increases the number of indoor units for which the refrigerant flow suppression indoor unit setting can be made effective even with the same surplus refrigerant amount. Further, since the flow rate of the refrigerant is smaller than that in the case of 120 pulses, the sound level due to the flow of the refrigerant can be reduced even if the sound is not completely silenced.

【0036】図7は停止中の室内機の絞り装置開度と冷
媒流動による音のレベルとの関係を相対的に表現したも
のである。即ち、室内機設置位置と人間との距離が充分
離れていたり、消音作用のある壁が存在する使用環境の
場合、上記した関係のように停止中の室内機の絞り装置
開度を全閉にしないまでも小さく開けるだけで、実際に
耳に聞こえる音のレベル以下にすることが期待できる。
従って、全閉にすることと同じ消音効果を達成でき、快
適性向上となる。また、停止室内機の絞り装置は全閉に
されないため、室内機側熱交換器への冷媒寝こみ量が減
少するので、停止室内機への消音対策を広範囲に拡大で
きる。
FIG. 7 relatively expresses the relationship between the throttle device opening degree of the stopped indoor unit and the sound level due to the refrigerant flow. That is, in the use environment where the distance between the indoor unit installation position and the person is sufficiently large or there is a wall having a silencing effect, the throttle device opening of the stopped indoor unit is set to fully closed as described above. By opening it small, if not, you can expect it to be below the level of the sound you actually hear.
Therefore, the same silencing effect as that of fully closing can be achieved, and the comfort is improved. Further, since the expansion device of the stopped indoor unit is not fully closed, the amount of refrigerant sunk into the indoor unit side heat exchanger is reduced, so that the noise reduction measures for the stopped indoor unit can be expanded over a wide range.

【0037】このようにして、有効時の開度を通常の寝
こみ防止に採用される開度(120パルス)よりも小さ
な80パルスとすることで、冷媒音レベルを低下させ、
室内機の設定台数を増やすことができ、安定した運転を
維持しながら、快適空調を行うことができる。
In this way, by setting the opening when effective to 80 pulses smaller than the opening (120 pulses) used for normal sneezing prevention, the refrigerant sound level is reduced,
The set number of indoor units can be increased, and comfortable air conditioning can be performed while maintaining stable operation.

【0038】実施の形態4.図8は実施の形態4におけ
る暖房運転時で停止室内機の絞り装置開度を閉めた後の
寝こみ冷媒回収開始時間変更の手順を示す制御フローチ
ャートである。この実施の形態4では、実施の形態1で
説明した図1の空気調和装置の構成に加えて、室内機B
b,Bcが暖房運転している時の停止室内機Baの絞り
装置開度設定およびSW1による停止室内機Baの寝こ
み冷媒回収の時間短縮の機能を備えている。
Embodiment 4 FIG. FIG. 8 is a control flowchart showing a procedure of changing the lying refrigerant recovery start time after closing the expansion device opening of the stopped indoor unit during the heating operation in the fourth embodiment. In the fourth embodiment, in addition to the configuration of the air conditioner of FIG. 1 described in the first embodiment, indoor unit B
It has a function of setting the throttle device opening of the stopped indoor unit Ba when b and Bc are performing the heating operation and shortening the time for collecting the refrigerated refrigerant of the stopped indoor unit Ba by SW1.

【0039】図8のフローチャートにおいて、Step
34でリモコン10より室内機Bb,Bcに暖房運転要
求を送信した後、Step35で暖房にて圧縮機1をO
N後に、暖房運転する室内機Bb,Bcは室内機側制御
装置11b,11cより絞り装置4b,4cに所定開度
の送信後に、室内機Bbの絞り装置開度はSCb制御
が、室内機Bcの絞り装置開度はSCc制御が実行され
てそれぞれの開度が調整される。Step36では熱源
機側制御装置7(制御選択手段および冷媒回収禁止制御
手段の例)内のタイマTを0セットした後、再びカウン
トを開始する。Step37でSW1がOFFの場合、
Step42で冷媒回収禁止タイマT0を30分(第1
の時間間隔の例)に設定し、Step43で室内機Ba
の絞り装置4aをSa=120パルス(第1,第2の所
定開度の例)とする。SW1がONの場合はStep3
8で冷媒回収禁止タイマT0を15分(第2の時間間隔
の例)に設定し、Step39で室内機Baの室内機側
制御装置11a(ここでは第1,第2,第3の絞り開度
制御手段の例)に内蔵されている冷媒流量抑制室内機設
定スイッチSW2aがOFFの場合、即ち室内機Baを
冷媒流量抑制室内機として設定しない場合、Step4
1で熱源機側制御装置7より室内機側制御装置11aに
Sa=120を送信する。Step39でSW2aがO
Nの場合、即ち冷媒流量抑制室内機として設定した場
合、Step40で熱源機側制御装置7より室内機側制
御装置11aにSa=60(全閉)が送信される。
In the flowchart of FIG.
After transmitting a heating operation request from the remote controller 10 to the indoor units Bb and Bc at 34, the compressor 1 is turned on by heating at Step 35.
After N, the indoor units Bb and Bc performing the heating operation are controlled by the SCb control of the throttle device opening of the indoor unit Bb and transmitted to the indoor unit Bc after the predetermined opening is transmitted from the indoor unit side controllers 11b and 11c to the expansion devices 4b and 4c. The SCc control is executed for the opening degree of the expansion device, and each opening degree is adjusted. In Step 36, after the timer T in the heat source device side control device 7 (an example of the control selection means and the refrigerant collection prohibition control means) is set to 0, the counting is started again. When SW1 is OFF in Step 37,
In Step 42, the refrigerant collection inhibition timer T0 is set to 30 minutes (first
Example), and the indoor unit Ba is set in Step 43.
Of the aperture device 4a is set to Sa = 120 pulses (an example of the first and second predetermined opening degrees). Step 3 when SW1 is ON
In step 8, the refrigerant recovery inhibition timer T0 is set to 15 minutes (an example of the second time interval), and in step 39, the indoor unit-side controller 11a of the indoor unit Ba (here, the first, second, and third throttle opening degrees). If the refrigerant flow suppression indoor unit setting switch SW2a incorporated in the example of the control means) is OFF, that is, if the indoor unit Ba is not set as the refrigerant flow suppression indoor unit, Step4
In step 1, the heat source unit-side controller 7 transmits Sa = 120 to the indoor unit-side controller 11a. SW2a is O in Step39
In the case of N, that is, when it is set as the refrigerant flow suppression indoor unit, Sa = 60 (fully closed) is transmitted from the heat source unit side control device 7 to the indoor unit side control device 11a in Step 40.

【0040】このように停止室内機Baの絞り装置開度
を設定した後、Step44でタイマTをカウントし、
Step45でアキュムレータ6内の液面高さがAL=
0であるか判断し、AL=0以外であればStep44
を繰り返す。ALの判定は、図3で既述したように、ア
キュムレータ6の吸入配管に設置された低圧圧力検知セ
ンサ15からの検知圧力と上下部の取り出し配管に取り
付けられた温度センサ16,17からの検知温度とを基
に行われる。AL=0であってStep46で圧縮機1
の吐出温度Tdが120℃以下であればStep44へ
戻り、120℃を超えているとアキュムレータ6内の液
冷媒の低下により圧縮機1の吸入ガス密度が低下するた
め、吐出温度Tdが上昇したと判断する。Step47
ではStep38あるいは42で設定された冷媒回収禁
止タイマT0(15分あるいは30分)とタイマTの計
時時間とを比較し、タイマTの計時時間が短いとSte
p44へ戻り、T0よりも長いとStep48で停止室
内機Baの絞り装置4aに、熱源機側制御装置7より伝
送線9を介して15秒間だけ500パルス(第3の所定
開度の例)の送信をする。つまり、停止室内機Baの絞
り装置開度は、全閉あるいは全閉からわずか開けただけ
の開度であるため、室内機側熱交換器5aに冷媒が滞留
する。その滞留した冷媒を回収するために絞り装置4a
を開ける操作を行う。絞り装置4dが500パルスの開
度にされてから15秒後にStep36に戻り、タイマ
Tを0セットした後、SW1およびSW2aの設定状態
によって停止室内機Baの絞り装置開度を熱源機側制御
装置7より伝送線9を介して送信する。
After setting the throttle device opening of the stopped indoor unit Ba in this way, the timer T is counted in Step 44,
In Step 45, the liquid level in the accumulator 6 becomes AL =
It is determined whether it is 0 or not.
repeat. As described above with reference to FIG. 3, the determination of AL is made based on the detection pressure from the low pressure detection sensor 15 installed in the suction pipe of the accumulator 6 and the detection from the temperature sensors 16 and 17 attached to the upper and lower extraction pipes. This is done based on the temperature. AL = 0 and compressor 1 in Step 46
If the discharge temperature Td is lower than or equal to 120 ° C., the process returns to Step 44. If the discharge temperature Td exceeds 120 ° C., the liquid refrigerant in the accumulator 6 decreases, so that the suction gas density of the compressor 1 decreases. to decide. Step47
Then, the refrigerant recovery inhibition timer T0 (15 minutes or 30 minutes) set in Step 38 or 42 is compared with the time measured by the timer T, and if the time measured by the timer T is short, Step
Returning to p44, if it is longer than T0, the expansion device 4a of the stopped indoor unit Ba is supplied with 500 pulses (an example of the third predetermined opening degree) for 15 seconds via the transmission line 9 from the heat source unit side control device 7 through the transmission line 9 in Step 48. Send. That is, since the opening degree of the expansion device of the stopped indoor unit Ba is a fully closed state or an opening degree slightly opened from the fully closed state, the refrigerant stays in the indoor unit side heat exchanger 5a. A throttle device 4a for recovering the staying refrigerant
Perform the operation of opening. Fifteen seconds after the opening of the expansion device 4d is set to 500 pulses, the process returns to Step 36, sets the timer T to 0, and then stops the expansion device opening of the indoor unit Ba based on the setting state of SW1 and SW2a. 7 through a transmission line 9.

【0041】ここでは、室内機Baを停止室内機とし、
室内機Bb,Bcを暖房運転室内機と仮定して説明した
が、室内機Baが暖房運転(少なくとも1台以上)をし
ているときに、室内機BaあるいはBcが停止室内機に
設定されたら、室内機Baの停止中に制御フロー(St
ep36〜48)と同様の制御を行えばよい。
Here, the indoor unit Ba is a stopped indoor unit,
Although the indoor units Bb and Bc have been described as being assumed to be the heating operation indoor units, when the indoor unit Ba or Bc is set to the stop indoor unit when the indoor unit Ba is performing the heating operation (at least one or more). Control flow (St) while the indoor unit Ba is stopped.
Ep. 36 to 48) may be performed.

【0042】このように、停止室内機の絞り装置を全閉
(60パルス)にすると、限られた台数の室内機しか冷
媒流量抑制室内機設定有効にできないが、冷媒回収禁止
タイマT0の設定時間を変更可能にして、冷媒回収の頻
度を上げることで、停止室内機に寝こんだ冷媒を早いタ
イミングで熱源機Aに戻せるため、暖房運転している冷
凍サイクルに不具合が発生する前に冷媒不足を解消でき
るので、より多くの停止室内機を冷媒流量抑制室内機設
定有効とすることができ、消音対策を広範囲に拡大でき
る。
As described above, when the throttle device of the stopped indoor unit is fully closed (60 pulses), only a limited number of indoor units can enable the setting of the refrigerant flow suppression indoor unit, but the set time of the refrigerant recovery inhibition timer T0 Can be changed to increase the frequency of refrigerant recovery, so that the refrigerant laid down in the stopped indoor unit can be returned to the heat source unit A at an early timing, so that the refrigerant shortage occurs before a malfunction occurs in the refrigeration cycle during the heating operation. Therefore, more stopped indoor units can be set to the refrigerant flow suppression indoor unit setting valid, and noise reduction measures can be expanded to a wide range.

【0043】実施の形態5.図9は実施の形態5におけ
る空気調和装置を示すブロック構成図である。この実施
の形態5においては、実施の形態2で説明した図4の空
気調和装置の構成に加え、熱源機Aに組込まれた補助用
熱源機設定有効/無効手段スイッチ20と、室内機B
a,Bb,Bcと並列に接続された補助用熱源機Cとを
備えている。補助用熱源機設定有効/無効手段スイッチ
20は、そのON/OFF状態SW3がONの場合は補
助用熱源機設定が有効であり、OFFの場合は補助用熱
源機設定が無効であることを意味している。補助用熱源
機Cは室内機Ba,Bb,Bcと同じように熱交換器お
よび絞り装置を有し、屋外あるいは屋内(据付け場所は
設置環境により選択される)に設置可能となっている。
また、4dは補助用熱源機Cに組込まれている補助絞り
装置、5dは補助用熱源機Cに組込まれている補助熱交
換器、11dは補助用熱源機Cに組込まれリモコン10
からの運転要求に対応して冷房運転,暖房運転,停止の
運転パターンを決定し、その要求を伝送線9を介して熱
源機Aの熱源機側制御装置7(絞り開度併合制御手段お
よび制御切換手段の例)に伝える補助用熱源機側制御装
置(補助絞り開度制御手段の例)である。この補助用熱
源機側制御装置11dは更に補助絞り装置4dの開度制
御も行うようになっている。補助用熱源機側制御装置1
1dによる補助絞り装置4dの開度制御は室内機Baの
絞り装置4aと同様である。また、補助用熱源機側制御
装置11dは、外部よりON/OFF設定切換可能な補
助用熱源機設定スイッチ(以後SW2dと呼ぶ)を備え
ている。但し、SW2dがONかつSW3がONの場
合、即ち補助用熱源機Cを運転補助を目的に使用する場
合は、補助用熱源機Cは室内機Ba,Bb,Bcの制御
と異なり、リモコン10からの運転要求を受信しても停
止状態とされており、補助絞り装置4dは熱源機側制御
装置7より伝送線9を介して送信された開度にされる。
また、室内機Ba,Bb,Bcの室内機側制御装置11
b,11cおよび補助用熱源機Cの補助用熱源機側制御
装置11dに、それぞれ内蔵してある冷媒流量抑制室内
機設定有効/無効スイッチSW2a〜SW2cおよび補
助用熱源機設定スイッチSW2dの制御内容は、共通化
により同じにしているため、スイッチSW2a〜SW2
d(それぞれ補助絞り装置設定手段の例)のいずれかを
ONにすれば、ONにされたその室内機が補助用熱源機
として機能する。
Embodiment 5 FIG. FIG. 9 is a block diagram showing an air conditioner according to the fifth embodiment. In the fifth embodiment, in addition to the configuration of the air conditioner of FIG. 4 described in the second embodiment, an auxiliary heat source device setting enable / disable means switch 20 incorporated in the heat source device A, and an indoor unit B
a, Bb, Bc and an auxiliary heat source device C connected in parallel. The auxiliary heat source device setting valid / invalid means switch 20 means that when the ON / OFF state SW3 is ON, the auxiliary heat source device setting is valid, and when OFF, the auxiliary heat source device setting is invalid. doing. The auxiliary heat source device C has a heat exchanger and a throttle device similarly to the indoor units Ba, Bb, and Bc, and can be installed outdoors or indoors (the installation location is selected depending on the installation environment).
Further, 4d is an auxiliary throttle device incorporated in the auxiliary heat source device C, 5d is an auxiliary heat exchanger incorporated in the auxiliary heat source device C, and 11d is incorporated in the auxiliary heat source device C and has a remote controller 10
In response to the operation request from the controller, the operation pattern of the cooling operation, the heating operation, and the stop is determined, and the request is transmitted via the transmission line 9 to the heat source device side controller 7 of the heat source device A (throttle opening degree merging control means and control). 2 is an example of an auxiliary heat source device-side control device (an example of an auxiliary throttle opening control device) transmitted to an example of a switching device. The auxiliary heat source device-side control device 11d further controls the opening degree of the auxiliary throttle device 4d. Auxiliary heat source device side controller 1
The opening degree control of the auxiliary expansion device 4d by 1d is the same as that of the expansion device 4a of the indoor unit Ba. Further, the auxiliary heat source device-side control device 11d includes an auxiliary heat source device setting switch (hereinafter, referred to as SW2d) that can be switched ON / OFF from outside. However, when SW2d is ON and SW3 is ON, that is, when the auxiliary heat source unit C is used for the purpose of driving assistance, the auxiliary heat source unit C is different from the control of the indoor units Ba, Bb, and Bc. Is stopped even if the operation request is received, the auxiliary throttle device 4d is set to the opening transmitted from the heat source device side control device 7 via the transmission line 9.
Also, the indoor unit-side control device 11 of the indoor units Ba, Bb, and Bc.
The control contents of the refrigerant flow suppression indoor unit setting enable / disable switches SW2a to SW2c and the auxiliary heat source device setting switch SW2d, which are respectively built in the auxiliary heat source device side control device 11d of the auxiliary heat source device C, b. , The switches SW2a to SW2
If any one of d (an example of the auxiliary throttle device setting means) is turned on, the turned on indoor unit functions as an auxiliary heat source device.

【0044】ここで、この補助用熱源機Cの制御手順を
示す制御フローについて、図10のフローチャートを用
いて説明する。図10において、Step50でリモコ
ン10より室内機Bb,Bcに暖房運転要求を送信した
後、Step51で暖房にて圧縮機1をONした後に、
暖房運転する室内機Bb,Bcは室内機側制御装置11
b,11cより絞り装置4b,4cに所定開度指令を送
信し、室内機Bbの絞り装置開度はSCb制御を、室内
機Bcの絞り装置開度はSCc制御を行って開度調整を
する。Step52では熱源機側制御装置7内のタイマ
Tを0セットした後、カウントを開始する。Step5
3でSW1がOFFの場合、Step54で停止室内機
Baに熱源機側制御装置7より伝送線9を介して絞り装
置4aに120パルスを送信する(冷媒回収禁止タイマ
T0は30分設定)。Step53においてSW1がO
Nの場合、Step55で冷媒回収禁止タイマT0を1
5分に設定し、Step56で吐出温度上昇バックアッ
プ開始タイマT1を0セットした後カウントを開始す
る。Step57でSW3がOFFになっている場合
で、Step73で室内機BaのSW2aがOFFの場
合はStep75でSa=120パルスとする。SW2
aがONの場合、即ち冷媒流量抑制室内機設定にした場
合はStep74でSa=60パルスを熱源機側制御装
置7より伝送線9を介して送信する。Step76でタ
イマTをカウントし、Step77でアキュムレータ6
内の液面高さがAL=0かを判定し、AL=1あるいは
2の場合、Step57へ戻り、AL=0の場合、St
ep78で吐出温度センサ19(吐出温度検知手段の
例)により検知された圧縮機1の吐出温度Tdが120
℃以下ならばStep57へ戻り、120℃以上ならば
Step79へ移行し、タイマTの計時時間が冷媒回収
禁止タイマT0より短い場合、Step57へ戻り、長
ければ、Step80で停止室内機Baの絞り装置4a
を15秒間500パルスに開くように熱源機側制御装置
7から伝送線9を介して送信し、室内機側熱交換器5a
に滞留していた冷媒を回収する。冷媒回収開始より15
秒後、Step67でタイマTを0セットした後、St
ep57へ戻って繰り返し制御を行う。
Here, a control flow showing a control procedure of the auxiliary heat source device C will be described with reference to a flowchart of FIG. In FIG. 10, after transmitting a heating operation request to the indoor units Bb and Bc from the remote controller 10 in Step 50, the compressor 1 is turned on by heating in Step 51,
The indoor units Bb and Bc that perform the heating operation are controlled by the indoor unit-side control device 11.
A predetermined opening command is transmitted from b and 11c to the expansion devices 4b and 4c, and the expansion device opening of the indoor unit Bb is controlled by SCb control, and the expansion device opening of the indoor unit Bc is controlled by SCc control to adjust the opening. . In Step 52, after the timer T in the heat source device side control device 7 is set to 0, counting is started. Step5
When SW1 is OFF in Step 3, 120 pulses are transmitted from the heat source unit side control device 7 to the expansion device 4a via the transmission line 9 to the stopped indoor unit Ba in Step 54 (the refrigerant recovery inhibition timer T0 is set for 30 minutes). SW1 is O in Step53
In the case of N, the refrigerant collection prohibition timer T0 is set to 1 in Step 55.
The discharge temperature rise backup start timer T1 is set to 0 in Step 56, and then starts counting. If SW3 is OFF in Step 57, and if SW2a of the indoor unit Ba is OFF in Step 73, it is determined that Sa = 120 pulses in Step 75. SW2
When a is ON, that is, when the refrigerant flow suppression indoor unit is set, the heat source unit side controller 7 transmits Sa = 60 pulses via the transmission line 9 in Step 74. At step 76, the timer T is counted, and at step 77, the accumulator 6 is counted.
It is determined whether the liquid level inside is AL = 0, and if AL = 1 or 2, the flow returns to Step 57; if AL = 0, St
At ep78, the discharge temperature Td of the compressor 1 detected by the discharge temperature sensor 19 (an example of the discharge temperature detecting means) is 120.
If the temperature is lower than 120 ° C., the process returns to Step 57. If the temperature is 120 ° C. or higher, the process proceeds to Step 79. If the time measured by the timer T is shorter than the refrigerant recovery inhibition timer T0, the process returns to Step 57.
Is transmitted from the heat source unit side control device 7 via the transmission line 9 so as to open to 500 pulses for 15 seconds, and the indoor unit side heat exchanger 5a
The refrigerant staying in the tank is collected. 15 from the start of refrigerant collection
Seconds later, the timer T is set to 0 in Step 67, and then St
Returning to ep57, the control is repeated.

【0045】Step57でSW3がONの場合、補助
用熱源機Cの補助用熱源機側制御装置11dに設けてあ
る補助用熱源機設定スイッチSW2dがONであれば、
この補助用熱源機Cを補助用熱源機としてそのまま設定
し、SW2dがOFFであれば、実施の形態1で説明し
た絞り装置開度制御である冷房時のSHd制御および暖
房時のSCa制御を行う室内機として設定する。よって
SW3がONかつSW2dがOFFで補助用熱源機Cが
停止していればStep73の制御フローを実行する。
When SW3 is ON in Step 57, if the auxiliary heat source device setting switch SW2d provided in the auxiliary heat source device side controller 11d of the auxiliary heat source device C is ON,
The auxiliary heat source device C is set as it is as an auxiliary heat source device, and if SW2d is OFF, the SHd control during cooling and the SCa control during heating, which are the expansion device opening degree control described in the first embodiment, are performed. Set as an indoor unit. Therefore, if SW3 is ON and SW2d is OFF and the auxiliary heat source device C is stopped, the control flow of Step 73 is executed.

【0046】SW3がONかつSW2dがONの場合、
即ち補助用熱源機C(SW2dがON)が接続されてい
る場合はStep58で補助用熱源機Cの補助絞り装置
4dの開度を120パルスとし、Step59で室内機
Baの絞り装置4aの開度を全閉とするように熱源機側
制御装置7より送信する。Step60でタイマTをカ
ウントし、Step61で吐出温度上昇バックアップ開
始タイマT1をカウントし、Step62でAL=0以
外あるいはStep63で圧縮機1の吐出温度Tdが1
20℃以下あるいはStep64でタイマTの計時時間
が冷媒回収禁止タイマT0よりも短い場合、Step6
8でTdが130℃以下あるいはStep69で吐出温
度上昇バックアップ開始タイマT1が30分未満であれ
ばStep57へ戻る。
When SW3 is ON and SW2d is ON,
That is, when the auxiliary heat source unit C (SW2d is ON) is connected, the opening degree of the auxiliary expansion unit 4d of the auxiliary heat source unit C is set to 120 pulses in Step 58, and the opening degree of the expansion unit 4a of the indoor unit Ba is set in Step 59. Is transmitted from the heat-source-unit-side control device 7 so as to be fully closed. The timer T is counted in Step 60, the discharge temperature rise backup start timer T1 is counted in Step 61, and other than AL = 0 in Step 62 or the discharge temperature Td of the compressor 1 is 1 in Step 63.
If the measured time of the timer T is shorter than the refrigerant recovery prohibition timer T0 at 20 ° C. or less or in Step 64, Step 6
If Td is equal to or less than 130 ° C. in step 8 or if the discharge temperature rise backup start timer T1 is less than 30 minutes in step 69, the process returns to step 57.

【0047】Step68でTdが130℃を超え、か
つStep69で吐出温度上昇バックアップ開始タイマ
T1が30分以上であれば、Step70で補助用熱源
機Cの補助絞り装置4dの開度をSd=500とし、高
圧を低下させることでTd上昇を抑える。Step71
でTdが100℃以上であれば、Sd=500を繰返
し、100℃未満になればStep72で吐出温度上昇
バックアップ開始タイマT1を0セットし、Step5
7へ戻る。次に、Step62でAL=0かつStep
63で圧縮機1の吐出温度Tdが120℃超かつSte
p64でタイマTのカウントが冷媒回収禁止タイマT0
よりも計時時間が長い場合、Step65で絞り装置4
a,4dを15秒間500パルスに開き、15秒間50
0パルスに開くように熱源機側制御装置7から伝送線9
を介して送信し、室内機側熱交換器5aに滞留していた
冷媒を回収する。冷媒回収開始より15秒後、冷媒回収
により補助用熱源機Cの補助熱交換器5dに滞留した冷
媒が回収されたので、Step66で吐出温度上昇バッ
クアップ開始タイマT1を0セットし、Step67で
タイマTを0セットし、制御を繰り返す。ここでは室内
機Baを停止室内機とし、室内機Bb,Bcを暖房運転
室内機と仮定して説明したが、室内機Baが暖房運転
(少なくとも1台以上)をしているときに、室内機Bb
あるいはBcが停止室内機となったら、室内機Baの停
止中の制御フロー(Step52〜80)と同様の制御
を行う。
If Td exceeds 130 ° C. in Step 68 and if the discharge temperature rise backup start timer T1 is 30 minutes or more in Step 69, the opening degree of the auxiliary expansion device 4d of the auxiliary heat source device C is set to Sd = 500 in Step 70. The Td rise is suppressed by lowering the high pressure. Step71
If Td is equal to or higher than 100 ° C., Sd = 500 is repeated.
Return to 7. Next, in Step 62, AL = 0 and Step
At 63, the discharge temperature Td of the compressor 1 exceeds 120 ° C.
In p64, the count of the timer T reaches the refrigerant collection prohibition timer T0.
If the measured time is longer than
a, 4d are opened for 500 pulses for 15 seconds and 50 pulses for 15 seconds.
The transmission line 9 from the heat source device side control device 7 so as to open to 0 pulse
And collects the refrigerant remaining in the indoor unit side heat exchanger 5a. Fifteen seconds after the start of the refrigerant recovery, the refrigerant remaining in the auxiliary heat exchanger 5d of the auxiliary heat source device C was recovered by the refrigerant recovery. Therefore, the discharge temperature rise backup start timer T1 is set to 0 in Step 66, and the timer T is Is set to 0 and the control is repeated. Here, the indoor unit Ba has been described as a stopped indoor unit and the indoor units Bb and Bc have been assumed to be the heating operation indoor units. However, when the indoor unit Ba is performing the heating operation (at least one or more), Bb
Alternatively, when Bc becomes the stopped indoor unit, the same control as the control flow (Steps 52 to 80) during stoppage of the indoor unit Ba is performed.

【0048】このように、補助用熱源機Cを設け、補助
用熱源機Cの補助絞り装置4dの開度をバックアップと
して開くことで、補助熱交換器5dにて冷媒を凝縮さ
せ、凝縮温度の低下により高圧圧力が低下するため、吐
出温度が低下し、吐出温度上昇バックアップ制御手段と
して使用できる。また、圧縮機1のパフォーマンスよ
り、高圧低下による入力が低減できる。また、バックア
ップで吐出温度が回避できない範囲であっても冷媒回収
を実施することで、停止室内機に滞留した冷媒を回収で
き、吐出温度上昇を防止できる。
As described above, by providing the auxiliary heat source device C and opening the opening of the auxiliary expansion device 4d of the auxiliary heat source device C as a backup, the refrigerant is condensed in the auxiliary heat exchanger 5d, and the condensing temperature is reduced. Since the high pressure decreases due to the decrease, the discharge temperature decreases, and the discharge temperature rise can be used as backup control means. Further, the input due to a decrease in high pressure can be reduced from the performance of the compressor 1. In addition, by performing the refrigerant recovery even when the discharge temperature is in a range that cannot be avoided by the backup, the refrigerant that has accumulated in the stopped indoor unit can be recovered, and a rise in the discharge temperature can be prevented.

【0049】実施の形態6.この実施の形態6では、実
施の形態2で説明した図4の空気調和装置の構成に加
え、暖房運転時の除霜運転開始時における停止室内機の
絞り装置開度を制御する機能を備えている。図11,1
2は実施の形態6における暖房運転時で除霜運転開始時
の停止室内機の絞り装置開度制御の手順を示す制御フロ
ーチャートであり、このフローチャートを用いて説明す
る。図11,12において、Step82でリモコン1
0より室内機Bb,Bcに暖房運転要求を送信した後、
Step83で暖房にて圧縮機1をON後に、暖房運転
室内機Bb,Bcは室内機側制御装置11b,11cよ
り絞り装置4b,4cに所定開度を送信後に、室内機B
bの絞り装置開度はSCb制御、室内機Bcの絞り装置
開度はSCc制御を行ってそれぞれ開度調整をする。S
tep84でSW1がOFFの場合、Step98で停
止室内機Baの絞り装置開度をSa=120とし、St
ep99で室内機側制御装置11a,11b,11cが
熱源機側制御装置7より霜取信号を受信するまで、St
ep100で暖房運転を継続する。霜取信号を受信する
と、Step101で熱源機側制御装置7(除霜運転制
御手段の例)は四方切換弁2の冷媒流路を切換え、高圧
高温のガス冷媒を熱源機側熱交換器3に流すことで、熱
源機側熱交換器3および周辺の配管に付着した霜を溶か
す。このとき、蒸発器となる室内機側熱交換器の蒸発温
度を上昇させて除霜能力を上げるため、Step102
で停止室内機Baの絞り装置4aの開度Saを2000
パルスとする。Step103,104では暖房運転す
る室内機Bb,Bcの絞り装置4b,4cのSCb制
御,SCc制御を一旦中止し、それぞれを2000パル
スに開く。このように2000パルスに開く制御は、熱
源機側制御装置7より霜取信号と同じタイミングで室内
機側制御装置11a,11b,11cに送信される。S
tep105で霜取りが終了するまで、Step106
で除霜運転を継続させる。除霜が終了すると、熱源機側
制御装置7は、Step107で四方切換弁2の弁を切
換え、Step108で再び暖房運転を行う。このと
き、暖房運転室内機Bb,Bcの絞り装置4b,4cに
除霜運転終了時の所定開度、例えば500パルスを送信
後、更にその所定開度(500パルス)固定を解除する
信号を送信することで、それ以降絞り装置4b,4cは
室内機側制御装置11b,11cにより500パルスを
起点にSCb制御,SCc制御が行われる。その後、S
tep98へ戻り、同様の制御を繰り返す。
Embodiment 6 FIG. In the sixth embodiment, in addition to the configuration of the air-conditioning apparatus of FIG. 4 described in the second embodiment, a function of controlling the throttle device opening of the stopped indoor unit at the start of the defrosting operation during the heating operation is provided. I have. Figures 11 and 1
2 is a control flowchart showing a procedure for controlling the opening degree of the expansion device of the stopped indoor unit at the start of the defrosting operation in the heating operation in the sixth embodiment, which will be described with reference to this flowchart. 11 and 12, the remote controller 1 is set in Step 82.
After transmitting a heating operation request to the indoor units Bb and Bc from 0,
After the compressor 1 is turned on by heating in Step 83, the indoor units Bb and Bc of the heating operation indoor units Bb and Bc transmit a predetermined opening degree to the expansion devices 4b and 4c from the indoor unit side control devices 11b and 11c.
The throttle device opening of b is controlled by SCb control, and the throttle device opening of the indoor unit Bc is controlled by SCc control to adjust the opening. S
If SW1 is OFF at step 84, the throttle device opening of the stopped indoor unit Ba is set to Sa = 120 at step 98, and St is set to St.
Until ep99, the indoor unit-side control devices 11a, 11b, and 11c receive the defrost signal from the heat source unit-side control device 7, St.
At ep100, the heating operation is continued. When the defrost signal is received, the heat source device-side control device 7 (an example of the defrosting operation control means) switches the refrigerant flow path of the four-way switching valve 2 in Step 101 and sends the high-pressure and high-temperature gas refrigerant to the heat source device-side heat exchanger 3. By flowing, the frost adhering to the heat source device side heat exchanger 3 and the surrounding piping is melted. At this time, Step 102
And the opening degree Sa of the expansion device 4a of the stopped indoor unit Ba is set to 2000.
Pulse. In Steps 103 and 104, the SCb control and SCc control of the expansion devices 4b and 4c of the indoor units Bb and Bc that perform the heating operation are temporarily stopped, and each of them is opened to 2000 pulses. The control for opening to 2000 pulses is transmitted from the heat source unit-side control device 7 to the indoor unit-side control devices 11a, 11b, and 11c at the same timing as the defrost signal. S
Until the defrosting is completed in Step 105, Step 106
To continue the defrosting operation. When the defrosting is completed, the heat source device-side control device 7 switches the four-way switching valve 2 in Step 107, and performs the heating operation again in Step 108. At this time, after transmitting a predetermined opening degree, for example, 500 pulses at the end of the defrosting operation, to the expansion devices 4b, 4c of the heating operation indoor units Bb, Bc, a signal for releasing the fixed opening degree (500 pulses) is transmitted. By doing so, the SCb control and SCc control of the expansion devices 4b and 4c are thereafter performed by the indoor unit side control devices 11b and 11c starting from 500 pulses. Then, S
Returning to step 98, the same control is repeated.

【0050】Step84でSW1がONになっている
と、Step85でSW2aがOFFの場合はStep
87でSa=120とし、SW2aがONの場合はSt
ep86でSa=60とする。これらの開度は熱源機側
制御装置7から伝送線9を介して室内機側制御装置11
aに送信される。つまり、SW2aがONの場合には絞
り装置4aを全閉にし停止室内機Baへは冷媒を完全に
流さない。Step88では室内機側制御装置11a,
11b,11cが熱源機側制御装置7より霜取信号を受
信するまで、Step89で暖房運転を継続し、霜取信
号を受信すると、Step90で四方切換弁2の弁を切
換え、高圧高温のガス冷媒を熱源機側熱交換器3に流す
ことで、熱源機側熱交換器3および周辺の配管に付着し
た霜を溶かす。Step91でSW2aがOFFの場合
はStep93でSa=2000とし、SW2aがON
の場合、室内機側制御装置11a(除霜時絞り開度設定
手段の例)はStep94でSa=60とし、除霜運転
中に停止室内機Baへは冷媒を完全に流さない。Ste
p94で霜取終了信号を受信するまで、Step95で
除霜運転を継続させる。霜取信号を受信すると、Ste
p96で四方切換弁2の弁を切換え、Step97で再
び暖房運転を行う。暖房運転する室内機Bb,Bcの絞
り装置制御は、SW1の設定がON/OFFのどちらで
も暖房運転中はSCb制御,SCc制御を行い、除霜運
転中は絞り装置開度を2000パルスにして蒸発温度を
上昇させる制御を行う。すなわち、室内機側制御装置は
暖房運転中に四方切換弁の冷媒流路を切り替えて除霜運
転を行い、除霜運転中に停止している室内機の絞り装置
を個別に全閉に設定するようになっている。但し、全閉
に限らず、全閉からわずか開いた開度であってもよい。
If SW1 is ON in Step 84, and if SW2a is OFF in Step 85, Step 1 is executed.
87, Sa = 120, and when SW2a is ON, St
It is assumed that Sa = 60 in ep86. These opening degrees are transmitted from the heat source unit side controller 7 via the transmission line 9 to the indoor unit side controller 11.
a. That is, when the SW 2a is ON, the expansion device 4a is fully closed, and the refrigerant does not completely flow to the stopped indoor unit Ba. In Step 88, the indoor unit side control device 11a,
Until 11b and 11c receive the defrost signal from the heat source unit side control device 7, the heating operation is continued in Step 89, and when the defrost signal is received, the valve of the four-way switching valve 2 is switched in Step 90, and the high pressure and high temperature gas refrigerant Flows through the heat source unit side heat exchanger 3 to melt the frost adhering to the heat source unit side heat exchanger 3 and surrounding piping. If SW2a is OFF in Step 91, Sa = 2000 in Step 93, and SW2a is ON
In this case, the indoor unit controller 11a (an example of the defrosting throttle opening setting means) sets Sa = 60 in Step 94, and does not completely flow the refrigerant to the stopped indoor unit Ba during the defrosting operation. Ste
Until a defrosting end signal is received in p94, the defrosting operation is continued in Step 95. When receiving the defrost signal, Ste
The valve of the four-way switching valve 2 is switched at p96, and the heating operation is performed again at Step 97. The throttle device control of the indoor units Bb and Bc that perform the heating operation performs SCb control and SCc control during the heating operation regardless of whether the setting of SW1 is ON or OFF, and sets the throttle device opening to 2000 pulses during the defrosting operation. Control to increase the evaporation temperature is performed. That is, the indoor unit-side control device performs the defrosting operation by switching the refrigerant flow path of the four-way switching valve during the heating operation, and individually sets the expansion device of the indoor unit that is stopped during the defrosting operation to fully closed. It has become. However, the opening degree is not limited to the fully closed state, and may be a slightly opened degree from the fully closed state.

【0051】ここでは、室内機Baを停止室内機とし、
室内機Bb,Bcを暖房運転室内機と仮定して説明した
が、室内機Baが暖房運転(少なくとも1台以上)をし
ているときに、室内機BbあるいはBcが停止室内機と
なったら、室内機Baの停止中の制御フロー(Step
84,98〜108)と同様の制御を行う。
Here, the indoor unit Ba is a stopped indoor unit,
Although the indoor units Bb and Bc have been described as being assumed to be the heating operation indoor units, when the indoor unit Ba is performing the heating operation (at least one or more) and the indoor unit Bb or Bc becomes the stopped indoor unit, Control flow during stoppage of indoor unit Ba (Step
84, 98 to 108).

【0052】このようにして、熱源機Cが暖房運転ある
いは除霜運転を行う場合、冷媒流量抑制室内機設定スイ
ッチがONである停止室内機の絞り装置開度を全閉にで
きる選択スイッチを設けたことで、冷媒流量抑制設定の
室内機に冷媒が流れることを防ぎ、任意に選択した室内
機において冷媒音を消音することができる。
As described above, when the heat source unit C performs the heating operation or the defrosting operation, the selection switch that can fully close the expansion device opening of the stopped indoor unit whose refrigerant flow suppression indoor unit setting switch is ON is provided. Thus, the refrigerant can be prevented from flowing into the indoor unit of the refrigerant flow suppression setting, and the refrigerant sound can be muted in the arbitrarily selected indoor unit.

【0053】実施の形態7.この実施の形態7では、実
施の形態5で説明した図9の空気調和装置の構成に加
え、暖房運転時の除霜運転開始時における停止室内機お
よび補助用熱源機の絞り装置開度を制御する機能を備え
ている。図13,14,15は実施の形態7における暖
房運転時で除霜運転開始時に補助絞り装置開度制御と停
止室内機の絞り装置開度制御と除霜運転実施のために冷
媒流量抑制室内機設定無効室内機または補助用熱源機を
選択する制御の手順を示す制御フローチャートである。
図13,14,15において、Step110でリモコ
ン10より室内機Bb,Bcに暖房運転要求を送信した
後、Step111で暖房にて圧縮機1をON後に、暖
房運転室内機Bb,Bcは室内機側制御装置11b,1
1cより絞り装置4b,4cに所定開度の送信後に、室
内機Bbの絞り装置開度はSCb制御で、室内機Bcの
絞り装置開度はSCc制御で開度調整をする。Step
112でSW1がOFFの場合はStep127で停止
室内機Baの絞り装置開度をSa=120とし、Ste
p128で室内機側制御装置11a,11b,11cが
熱源機側制御装置7(除霜運転制御手段および除霜時絞
り開度併合制御手段の例)より霜取信号を受信するまで
Step129で暖房運転を継続し、霜取信号を受信す
ると、Step130で四方切換弁2の弁を切換え、高
圧高温のガス冷媒を熱源機側熱交換器3に流すことで、
熱源機側熱交換器3および周辺の配管に付着した霜を溶
かす。このとき、蒸発器となる室内機側熱交換器5aの
蒸発温度を上昇させて霜取能力を上げるため、Step
131で停止室内機Baの絞り装置4aの開度Saを2
000パルスとする。Step132,133では暖房
運転室内機Bb,Bcの絞り装置4b,4cのSCb制
御,SCc制御を一旦中止し、2000パルスに開く。
これら2000パルスに開く制御は、熱源機側制御装置
7より霜取信号と同じタイミングで室内機側制御装置1
1a,11b,11cに送信される。Step134で
除霜が終了するまで、Step135で除霜運転を継続
させる。除霜が終了すると、熱源機側制御装置7は、S
tep136で四方切換弁2の弁を切換え、Step1
37で再び暖房運転を行い、暖房運転室内機Bb,Bc
の絞り装置4b,4cに除霜運転終了時の所定開度、例
えば500パルスを送信後、更にその所定開度(500
パルス)固定を解除する信号を送信することで、それ以
降絞り装置4b,4cは室内機側制御装置11b,11
cにより500パルスを起点にSCb制御,SCc制御
される。その後、Step127へ戻って制御を繰り返
す。
Embodiment 7 FIG. In the seventh embodiment, in addition to the configuration of the air-conditioning apparatus of FIG. 9 described in the fifth embodiment, the throttle device opening of the stopped indoor unit and the auxiliary heat source unit at the start of the defrosting operation during the heating operation is controlled. It has the function to do. FIGS. 13, 14, and 15 show a refrigerant flow suppression indoor unit for controlling the opening of the auxiliary throttle device, the opening control of the throttle device for the stopped indoor unit, and the defrosting operation at the start of the defrosting operation in the heating operation in the seventh embodiment. It is a control flowchart which shows the procedure of the control which selects a setting invalid indoor unit or an auxiliary heat source unit.
13, 14, and 15, after transmitting a heating operation request to the indoor units Bb and Bc from the remote controller 10 in Step 110, after turning on the compressor 1 by heating in Step 111, the heating operation indoor units Bb and Bc are on the indoor unit side. Control device 11b, 1
After the transmission of the predetermined opening to the expansion devices 4b and 4c from 1c, the expansion device opening of the indoor unit Bb is adjusted by SCb control, and the expansion device opening of the indoor unit Bc is adjusted by SCc control. Step
If SW1 is OFF at 112, the throttle device opening of the stopped indoor unit Ba is set to Sa = 120 at Step 127, and
The heating operation is performed in Step 129 until the indoor unit-side control devices 11a, 11b, and 11c receive the defrosting signal from the heat source unit-side control device 7 (an example of the defrosting operation control means and the control unit for controlling the degree of aperture opening during defrosting) in p128. When the defrosting signal is received, the valve of the four-way switching valve 2 is switched in Step 130, and the high-pressure and high-temperature gas refrigerant flows through the heat source unit side heat exchanger 3,
Melts frost adhering to the heat source device side heat exchanger 3 and surrounding piping. At this time, in order to increase the evaporating temperature of the indoor unit side heat exchanger 5a, which is an evaporator, to increase the defrosting ability, Step
At 131, the opening degree Sa of the expansion device 4a of the stopped indoor unit Ba is set to 2
000 pulses. In Steps 132 and 133, the SCb control and SCc control of the expansion devices 4b and 4c of the heating operation indoor units Bb and Bc are temporarily stopped, and are opened to 2000 pulses.
The control to open to these 2000 pulses is performed by the heat source unit side controller 7 at the same timing as the defrost signal from the indoor unit side controller 1.
1a, 11b, and 11c. Until the defrost is completed in Step 134, the defrost operation is continued in Step 135. When the defrosting is completed, the heat source device-side control device 7
In step 136, the valve of the four-way switching valve 2 is switched, and in step 1
The heating operation is performed again at 37, and the heating operation indoor units Bb and Bc are performed.
After transmitting a predetermined opening, for example, 500 pulses, at the end of the defrosting operation to the expansion devices 4b and 4c, the predetermined opening (500
By transmitting a signal for releasing the (pulse) fixation, the expansion devices 4b and 4c thereafter control the indoor unit side control devices 11b and 11c.
SC controls the SCb and SCc starting from 500 pulses. Thereafter, the process returns to Step 127 to repeat the control.

【0054】一方、Step112においてSW1がO
NかつStep113でSW3がOFFの場合はSte
p138に移行する。Step138でSW2aがOF
Fの場合はStep140でSa=120とし、SW2
aがONの場合はStep139でSa=60とする。
これらの開度は熱源機側制御装置7から伝送線9を介し
て室内機側制御装置11aに送信される。つまり、SW
2aがONの場合には絞り装置4aを全閉にし停止室内
機Baへは冷媒を完全に流さない。Step141で室
内機側制御装置11a,11b,11cが熱源機側制御
装置7より霜取信号を受信するまで、Step142で
暖房運転を継続する。霜取信号を受信すると、Step
143で四方切換弁2の弁を切換え、高圧高温のガス冷
媒を熱源機側熱交換器3に流すことで、熱源機側熱交換
器3および周辺の配管に付着した霜を溶かす。Step
144でSW2aがOFFの場合はStep146でS
a=2000とし、SW2aがONの場合はStep1
45でSa=60とし除霜運転中に停止室内機Baへは
冷媒を完全に流さない。Step147で霜取終了信号
を受信するまで、Step148で除霜運転を継続させ
る。除霜が終了すると、Step149で四方切換弁2
の弁を切換え、Step150で再び暖房運転を行う。
暖房運転室内機Bb,Bcの絞り装置制御は、SW1の
設定がON/OFFのどちらでも暖房運転中はSCb制
御,SCc制御を行い、除霜運転中は絞り装置開度を2
000パルスにして蒸発温度を上昇させる制御を行う。
On the other hand, in Step 112, SW1 becomes O
N and Step 113 when SW3 is OFF in Step 113
It moves to p138. SW2a is OF in Step 138
In the case of F, Sa = 120 in Step 140 and SW2
If a is ON, Sa = 60 in Step 139.
These opening degrees are transmitted from the heat source unit-side control device 7 to the indoor unit-side control device 11a via the transmission line 9. That is, SW
When 2a is ON, the expansion device 4a is fully closed and the refrigerant does not completely flow to the stopped indoor unit Ba. Until the indoor unit-side control devices 11a, 11b, and 11c receive the defrost signal from the heat source unit-side control device 7 in Step 141, the heating operation is continued in Step 142. When receiving the defrost signal, Step
At 143, the valve of the four-way switching valve 2 is switched, and high-pressure and high-temperature gas refrigerant flows through the heat source unit side heat exchanger 3, thereby melting the frost adhering to the heat source unit side heat exchanger 3 and the peripheral piping. Step
When SW2a is OFF in 144, S is executed in Step 146.
a = 2000, and when SW2a is ON, Step1
At 45, Sa = 60 and the refrigerant is not completely flown to the stopped indoor unit Ba during the defrosting operation. Until a defrosting end signal is received in Step 147, the defrosting operation is continued in Step 148. When the defrosting is completed, in Step 149, the four-way switching valve 2
Are switched, and the heating operation is performed again in Step 150.
The throttle device control of the heating operation indoor units Bb and Bc performs SCb control and SCc control during the heating operation regardless of whether the setting of SW1 is ON or OFF, and sets the throttle device opening to 2 during the defrosting operation.
Control is performed to raise the evaporation temperature with 000 pulses.

【0055】他方、Step113でSW3がONで補
助用熱源機Cが接続されている場合、停止室内機Baに
冷媒を流さないため、Step114で室内機Baの絞
り装置開度を全閉(Sa=60)にする。Step11
5では補助熱交換器5dに滞留する冷媒を回収するた
め、補助絞り装置4dの開度を120パルスとする。S
tep116で室内機側制御装置11a,11b,11
cおよび補助用熱源機側制御装置11dが熱源機側制御
装置7より霜取信号を受信するまで、Step117で
暖房運転を継続し、霜取信号を受信すると、Step1
18で四方切換弁2の弁を切換え、高圧高温のガス冷媒
を熱源機側熱交換器3に流すことで、熱源機側熱交換器
3および周辺の配管に付着した霜を溶かす。この時、S
tep119においては冷媒流量抑制設定有効である停
止室内機Baの絞り装置4aの開度を全閉にして冷媒を
流さず、完全に冷媒音を消音する。また、Step12
0〜122では室内機Bb,Bcおよび補助用熱源機C
の絞り装置開度を2000パルスとし、除霜運転時に各
熱交換器で冷媒を蒸発させる蒸発器として蒸発温度を上
昇させ、除霜運転を早いタイミングで終了させる。St
ep123で霜取終了信号を受信するまで、Step1
24で除霜運転を継続させる。霜取信号を受信すると、
Step125で四方切換弁2の弁を切換え、Step
126で再び暖房運転を行い、暖房運転室内機Bb,B
cの絞り装置4b,4cに除霜運転終了時の所定開度を
送信後、SCb制御,SCc制御を実行させる。
On the other hand, when SW3 is ON and the auxiliary heat source unit C is connected in Step 113, the refrigerant is not allowed to flow to the stopped indoor unit Ba. 60). Step11
In 5, the opening degree of the auxiliary expansion device 4d is set to 120 pulses in order to recover the refrigerant remaining in the auxiliary heat exchanger 5d. S
In step 116, the indoor unit side control devices 11a, 11b, 11
Until c and the auxiliary heat source device-side control device 11d receive the defrost signal from the heat source device-side control device 7, the heating operation is continued in Step 117, and when the defrost signal is received, Step 1 is performed.
At 18, the valve of the four-way switching valve 2 is switched, and high-pressure and high-temperature gas refrigerant is caused to flow through the heat-source-unit-side heat exchanger 3, thereby melting frost adhering to the heat-source-unit-side heat exchanger 3 and peripheral piping. At this time, S
In step 119, the opening degree of the expansion device 4a of the stop indoor unit Ba, in which the refrigerant flow rate suppression setting is valid, is fully closed, so that the refrigerant does not flow and the refrigerant sound is completely muted. Also, Step12
At 0 to 122, the indoor units Bb and Bc and the auxiliary heat source unit C
The opening degree of the expansion device is set to 2000 pulses, the evaporation temperature is raised as an evaporator for evaporating the refrigerant in each heat exchanger during the defrosting operation, and the defrosting operation is terminated at an early timing. St
Step 1 until a defrosting end signal is received at ep123.
At 24, the defrosting operation is continued. When receiving the defrost signal,
In Step 125, the valve of the four-way switching valve 2 is switched, and
At 126, the heating operation is performed again, and the heating operation indoor units Bb and B are performed.
After transmitting the predetermined opening at the end of the defrosting operation to the expansion devices 4b and 4c of c, SCb control and SCc control are executed.

【0056】このようにして、補助用熱源機が接続され
ていて空気調和装置が暖房運転あるいは除霜運転を行う
場合、停止室内機の絞り装置開度を全閉可能にすること
で冷媒が流れることを防ぎ、冷媒音を消音することがで
きる。また、除霜運転時には補助用熱源機の絞り装置を
2000パルスの開度に開き、熱交換器を蒸発器として
使用するので、蒸発温度の低下を防ぎ、除霜効果を十分
に上げることができる。
As described above, when the auxiliary heat source unit is connected and the air conditioner performs the heating operation or the defrosting operation, the refrigerant flows by allowing the throttle device opening of the stopped indoor unit to be fully closed. That is, the refrigerant noise can be suppressed. In addition, during the defrosting operation, the expansion device of the auxiliary heat source device is opened to an opening of 2000 pulses, and the heat exchanger is used as an evaporator, so that the evaporation temperature can be prevented from lowering and the defrosting effect can be sufficiently improved. .

【0057】また、補助用熱源機設定有効/無効手段ス
イッチ20のSW3のON/OFF切換変更により、補
助用熱源機の設置が変更可能であるため、状況に応じて
冷媒流量抑制制御を行うことができる。例えば、接続す
る室内機の中で室内機Baが天井裏に取り付けられてお
り、天井板が遮断壁となることで冷媒音が人の耳に届き
にくくなるような場所であれば、補助用熱源機Cは追加
設置することなく、SW3をOFFとし、天井裏に取り
付けられた室内機BaのSW2aをOFFとし、残りの
室内機Bb,BcのSW2b,SW2cをONとするこ
とで、除霜時には天井裏に接続されている室内機Baの
絞り装置4aのみ2000パルスに開いて除霜運転を行
い、残りの室内機Bb,Bcは消音効果を得ることがで
きる。また、天井や天井裏に室内機が配置されておら
ず、除霜運転時に停止室内機から冷媒音を発生させない
場合は、補助用熱源機を配管接続した後、SW3をON
にし、室内機Ba,Bb,Bcでは除霜運転時に停止室
内機の絞り装置開度を全閉にし、冷媒流動音を消音す
る。このとき、補助用熱源機の補助絞り装置開度を20
00パルスにして補助熱交換器を蒸発器として使用する
ので、除霜能力も確保できる。
Since the setting of the auxiliary heat source unit can be changed by changing the ON / OFF switching of the switch 3 of the auxiliary heat source unit setting valid / invalid means switch 20, the refrigerant flow rate suppression control is performed according to the situation. Can be. For example, in a place where the indoor unit Ba is installed above the ceiling among the indoor units to be connected and the ceiling plate serves as a blocking wall so that the sound of the refrigerant does not easily reach human ears, the auxiliary heat source is used. The unit C is not installed, and the SW3 is turned off, the SW2a of the indoor unit Ba installed above the ceiling is turned off, and the SW2b and SW2c of the remaining indoor units Bb and Bc are turned on. Only the squeezing device 4a of the indoor unit Ba connected to the ceiling is opened at 2000 pulses to perform the defrosting operation, and the remaining indoor units Bb and Bc can obtain a noise reduction effect. If the indoor unit is not installed on the ceiling or behind the ceiling and the stopped indoor unit does not generate the refrigerant noise during the defrosting operation, after connecting the auxiliary heat source unit to the pipe, SW3 is turned on.
In the indoor units Ba, Bb, and Bc, the throttle device opening of the stopped indoor unit is completely closed during the defrosting operation, and the refrigerant flow noise is muted. At this time, the auxiliary throttle device opening of the auxiliary heat source device is set to 20 degrees.
Since the auxiliary heat exchanger is used as an evaporator with 00 pulses, the defrosting ability can be secured.

【0058】実施の形態8.この実施の形態8において
は、実施の形態1で説明した図1の空気調和装置の構成
に加え、SW1がONの場合に暖房運転室内機の熱交換
器合計容積(総量の一例)容積に基づいて決定される能
力コードの合計能力コード値により、停止室内機の絞り
装置開度を変更する機能を備えている。図16は実施の
形態8における暖房運転室内機の室内機側熱交換器の合
計容積に基づいて停止室内機の絞り装置開度を変更する
手順を示す制御フローチャートである。図16におい
て、Step151でSW1をON(冷媒流量抑制制御
設定有効)とし、Step152で室内機Baが暖房運
転している場合、熱源機側制御装置7(熱交換器容量算
出手段の例)は、Step153でQj=5とし、停止
していればStep154でQj=0とする。このQj
とは、予め熱交換器容積の大きさに応じて能力コードQ
jを決定し、室内機側制御装置11a(ここでは、絞り
開度設定手段の例)にて設定したものである。室内機B
b,Bcについても室内機Baと同様の制御(Step
155〜157,158〜160)を行う。Step1
61で暖房運転中の室内機の熱交換器合計容積ΣQjが
20以上であるか判定し、20未満であればStep1
63でSW2a〜SW2cがONの停止室内機の絞り装
置を80パルスとし、20以上であればStep162
でSW2a〜SW2cがONの停止室内機の絞り装置を
全閉(60パルス)とし、熱源機側制御装置7より伝送
線9を介して送信し、冷媒流量を調節し、冷媒を流さな
いようにする。
Embodiment 8 FIG. In the eighth embodiment, in addition to the configuration of the air conditioner of FIG. 1 described in the first embodiment, when SW1 is ON, the total volume of heat exchangers (an example of the total amount) of the indoor units in the heating operation is determined based on the volume. The function of changing the throttle device opening of the stopped indoor unit is provided according to the total capacity code value of the performance codes determined by the above. FIG. 16 is a control flowchart showing a procedure for changing the throttle device opening of the stopped indoor unit based on the total volume of the indoor unit side heat exchangers of the heating operation indoor unit in the eighth embodiment. In FIG. 16, when the SW1 is turned on in Step 151 (the refrigerant flow suppression control setting is enabled) and the indoor unit Ba is performing the heating operation in Step 152, the heat source unit-side control device 7 (an example of the heat exchanger capacity calculation unit) In step 153, Qj is set to 5, and if stopped, Qj is set to 0 in step 154. This Qj
Means the capacity code Q according to the size of the heat exchanger volume in advance.
j is determined and set by the indoor unit-side control device 11a (here, an example of the throttle opening setting means). Indoor unit B
Controls similar to those of the indoor unit Ba (Steps b and Bc) (Step
155 to 157, 158 to 160). Step1
At 61, it is determined whether or not the total heat exchanger volume ΣQj of the indoor unit during the heating operation is 20 or more.
At 63, the throttle device of the stopped indoor unit in which SW2a to SW2c are ON is set to 80 pulses, and if it is 20 or more, Step 162
When SW2a to SW2c are ON, the throttle device of the indoor unit is completely closed (60 pulses), transmitted from the heat source unit-side control device 7 via the transmission line 9, adjusts the refrigerant flow rate, and prevents the refrigerant from flowing. I do.

【0059】このように、暖房運転室内機の熱交換器容
積が大きい場合は、停止室内機の熱交換器合計容積が小
さくなるため、停止室内機の熱交換器に滞留する冷媒量
も低下する。余剰冷媒量は、実施の形態1で説明したよ
うに熱源機と室内機を結ぶ配管内の冷媒量の差であるた
め、暖房運転している室内機の熱交換器容積に依らない
ことから、停止している室内機の熱交換器容積が小さい
方が、仮に冷媒が滞留したとしても、余剰冷媒量<滞留
量となる可能性は低くなる。よって、暖房運転室内機の
熱交換器合計容積が大きいときは、停止室内機の絞り装
置開度を全閉にすることにより、冷媒音を完全に消音す
る範囲が広がる。また、暖房運転室内機の熱交換器合計
容積が小さい場合、停止室内機の絞り装置開度を全閉か
ら少し開いた80パルスにすることで、停止室内機の冷
媒音レベルを抑え、停止室内機の室内機側熱交換器に滞
留した冷媒をアキュムレータに戻すことができ、かつ、
停止室内機からの冷媒音レベルを低下させることで、快
適空調を行うことができる。
As described above, when the heat exchanger volume of the heating operation indoor unit is large, the total volume of the heat exchangers of the stopped indoor unit becomes small, so that the amount of refrigerant staying in the heat exchanger of the stopped indoor unit also decreases. . Since the surplus refrigerant amount is the difference in the refrigerant amount in the pipe connecting the heat source unit and the indoor unit as described in the first embodiment, since the surplus refrigerant amount does not depend on the heat exchanger volume of the indoor unit performing the heating operation, The smaller the heat exchanger volume of the stopped indoor unit, the lower the possibility that the surplus refrigerant amount <the retained amount, even if the refrigerant is retained. Therefore, when the total heat exchanger volume of the heating operation indoor unit is large, the range in which the refrigerant noise is completely silenced is widened by fully closing the expansion device opening of the stopped indoor unit. When the total volume of the heat exchangers of the heating indoor unit is small, the opening degree of the expansion device of the stopped indoor unit is set to 80 pulses slightly opened from the fully closed state, so that the refrigerant sound level of the stopped indoor unit is suppressed and the stopped indoor unit is stopped. Refrigerant accumulated in the indoor unit side heat exchanger of the unit can be returned to the accumulator, and
By lowering the refrigerant sound level from the stopped indoor unit, comfortable air conditioning can be performed.

【0060】実施の形態9.この実施の形態9において
は、実施の形態1で説明した図1の空気調和装置の構成
に加え、SW1がONの場合の暖房運転室内機の合計台
数(総量の別例)によって、停止室内機の絞り装置開度
を変更する機能を備えている。図17は実施の形態9に
おける暖房運転室内機の合計台数に基づいて停止室内機
の絞り装置開度を変更する手順を示す制御フローチャー
トである。図17において、Step164でSW1を
ON(冷媒流量抑制制御設定有効)とし、Step16
5で室内機Baが暖房運転している場合はStep16
6でn1=1とし、停止していればStep167でn
1=0とする。このn1とは、ni(iは室内機毎に予
め付与されているアドレス)より、対象となる室内機の
アドレスi(背番号)の順番に応じて決定する。ここで
は、室内機Ba,Bb,Bcのアドレスを1,2,3と
したため、n1,n2,n3となる。室内機Bb,Bc
についても室内機Baと同様の制御(Step168〜
170,171〜173)を行う。Step174で暖
房運転中の室内機の合計台数n(=n1+n2+n3)
が2台以上であるか判定し、2台未満であればStep
176でSW2a〜SW2cがONの停止室内機の絞り
装置を80パルスとする。2台以上であればStep1
75でSW2a〜SW2cがONの停止室内機の絞り装
置を全閉(60パルス)とし、熱源機側制御装置7より
伝送線9を介して送信し、冷媒流量を調節して冷媒を流
さないようにする。
Embodiment 9 In the ninth embodiment, in addition to the configuration of the air conditioner of FIG. 1 described in the first embodiment, the stop indoor unit is determined by the total number of heating operation indoor units when SW1 is ON (another example of the total amount). The function of changing the aperture of the throttle device is provided. FIG. 17 is a control flowchart showing a procedure for changing the throttle device opening of the stopped indoor unit based on the total number of heating operation indoor units in the ninth embodiment. In FIG. 17, in Step 164, SW1 is turned ON (refrigerant flow rate suppression control setting is enabled), and
If the indoor unit Ba is performing the heating operation in Step 5,
6, n1 = 1, and if stopped, n is determined in Step 167.
It is assumed that 1 = 0. The n1 is determined from ni (i is an address assigned in advance for each indoor unit) in accordance with the order of the address i (back number) of the target indoor unit. Here, since the addresses of the indoor units Ba, Bb, and Bc are 1, 2, and 3, they are n1, n2, and n3. Indoor units Bb, Bc
Also for the indoor unit Ba (Steps 168 to 168).
170, 171-173). Total number n of indoor units performing heating operation in Step 174 (= n1 + n2 + n3)
Is more than two, and if less than two, Step
At 176, the throttle device of the stopped indoor unit whose SW2a to SW2c are ON is set to 80 pulses. If two or more, Step1
At 75, the throttle device of the stopped indoor unit whose SW2a to SW2c is ON is fully closed (60 pulses), transmitted from the heat source unit side control device 7 via the transmission line 9, and the refrigerant flow is adjusted so that the refrigerant does not flow. To

【0061】このように、暖房運転室内機の台数が多い
場合は、停止室内機の台数が少なくなるため、停止室内
機の室内機側熱交換器に滞留する冷媒量も低下する。余
剰冷媒量は、実施の形態1で説明したように熱源機と室
内機を結ぶ配管内の冷媒量の差であるため、暖房運転し
ている室内機の台数に依らないことから、停止している
室内機の台数が少ない方が、仮に冷媒が滞留したとして
も、余剰冷媒量<滞留量となる可能性は低くなる。よっ
て、暖房運転室内機の台数が多いときは、停止室内機の
絞り装置開度を全閉とすることにより、冷媒音を完全に
消音する範囲が広がる。また、暖房運転室内機の合計台
数が少ない場合、停止室内機の絞り装置開度を全閉から
わずか開いた80パルスにすることで、停止室内機の冷
媒音レベルを抑え、停止室内機の室内機側熱交換器に滞
留した冷媒をアキュムレータに戻すことができ、かつ停
止室内機からの冷媒音レベルを低下させることで、快適
空調を行うことができる。
As described above, when the number of heating operation indoor units is large, the number of stopped indoor units is small, so that the amount of refrigerant stagnating in the indoor unit side heat exchanger of the stopped indoor unit is also reduced. Since the surplus refrigerant amount is the difference in the refrigerant amount in the pipe connecting the heat source unit and the indoor unit as described in the first embodiment, the surplus refrigerant amount does not depend on the number of indoor units performing the heating operation. The smaller the number of indoor units that are present, the lower the possibility that the surplus refrigerant amount <remaining amount, even if the refrigerant stays. Therefore, when the number of heating operation indoor units is large, the range in which the refrigerant sound is completely silenced is widened by fully closing the expansion device opening of the stopped indoor unit. Also, when the total number of heating operation indoor units is small, the refrigerant sound level of the stopped indoor unit is suppressed by setting the throttle device opening of the stopped indoor unit to 80 pulses slightly opened from fully closed, and the indoor room of the stopped indoor unit is reduced. Refrigerant staying in the unit-side heat exchanger can be returned to the accumulator, and comfortable air conditioning can be performed by lowering the refrigerant sound level from the stopped indoor unit.

【0062】実施の形態10.この実施の形態10で
は、実施の形態5で説明した図9の空気調和装置の構成
に加え、システム(熱源機と室内機を組み合せたものを
いう)の電源投入以降においてSW1,SW2a〜2
d,およびSW3の組合せによる制御を行う機能を備え
ている。また、補助用熱源機設定有効/無効手段スイッ
チ20(補助絞り装置手動設定手段の例)からの手動に
より補助絞り装置4dの設置に係る存否が設定可能に構
成されている。図18は実施の形態10における冷媒流
量抑制制御設定有効/無効に係る手順を示す制御フロー
チャートである。図18において、Step177でシ
ステムに電源を投入した後、熱源機側制御装置7(圧縮
機起動禁止手段の例)は、Step178でSW1がO
Nの場合、Step179で室内機Ba〜BcのSW2
a〜SW2cが全てONかつSW3がOFF(補助用熱
源機Cが接続されていない)、あるいはStep180
で室内機Ba〜BcのSW2a〜SW2cおよび補助用
熱源機CのSW2dが全てONかつSW3がON(補助
用熱源機が接続されている)の場合に、Step181
でシステムエラーとし、リモコン10の表示部にエラー
表示を出力して、冷媒回路の圧縮機1の運転を禁止させ
る。それ以外のスイッチ設定の場合(Step178,
180のNO)には、Step182でリモコン10か
ら送信される運転要求を待ち続けるようになっている。
Embodiment 10 FIG. In the tenth embodiment, in addition to the configuration of the air-conditioning apparatus of FIG. 9 described in the fifth embodiment, SW1, SW2a to SW2 after power-on of a system (which is a combination of a heat source unit and an indoor unit).
It has a function of performing control by a combination of d and SW3. Further, the presence or absence of the installation of the auxiliary throttle device 4d can be set manually by the auxiliary heat source device setting valid / invalid means switch 20 (an example of the auxiliary throttle device manual setting means). FIG. 18 is a control flowchart showing a procedure relating to validity / invalidity of the refrigerant flow suppression control setting in the tenth embodiment. In FIG. 18, after turning on the power supply to the system in Step 177, the heat source device side control device 7 (an example of a compressor start prohibiting unit) sets SW1 to O in Step 178.
In the case of N, SW2 of the indoor units Ba to Bc in Step 179
a to SW2c are all ON and SW3 is OFF (the auxiliary heat source device C is not connected), or Step 180
When all the SW2a to SW2c of the indoor units Ba to Bc and the SW2d of the auxiliary heat source unit C are ON and the SW3 is ON (the auxiliary heat source unit is connected), Step 181 is executed.
, A system error is generated, an error display is output on the display unit of the remote controller 10, and the operation of the compressor 1 in the refrigerant circuit is prohibited. For other switch settings (Step 178,
In the case of (NO at 180), the operation is continuously waited for an operation request transmitted from the remote controller 10 in Step 182.

【0063】このようにして、システムエラーの場合は
圧縮機1の運転を禁止させることで、全ての室内機を冷
媒流量抑制制御を行う室内機と設定したままにして、特
に運転状態から冷媒流量抑制制御の設定範囲の妥当性を
確認しないまま運転した場合に、停止室内機への寝こみ
冷媒量がアキュムレータ内の余剰冷媒量を超えて圧縮機
1の冷却効果が小さくなり、吐出温度上昇する運転を繰
り返すといったことを未然に防止できる。従って、空気
調和装置の信頼性を向上できる。
As described above, in the case of a system error, the operation of the compressor 1 is prohibited, so that all the indoor units are set as the indoor units for performing the refrigerant flow suppression control, and particularly, the operation of the compressor 1 is changed from the operating state. When the operation is performed without confirming the validity of the setting range of the suppression control, the amount of refrigerant sunk into the stopped indoor unit exceeds the amount of surplus refrigerant in the accumulator, and the cooling effect of the compressor 1 decreases, and the discharge temperature increases. Repeated driving can be prevented. Therefore, the reliability of the air conditioner can be improved.

【0064】実施の形態11.この実施の形態11で
は、実施の形態2で説明した図4の空気調和装置の構成
に加え、室内機冷媒回収タイマ完了フラグを利用する機
能を備えている。図19,20は実施の形態11におけ
る暖房運転時の室内機個別による冷媒回収の手順を示す
制御フローチャートである。なお、図19のみ図中にお
いて「Step」を「S]と略記している。この制御フ
ローチャートにおいて、Faは室内機Baの室内機側制
御装置11aに内蔵されている室内機冷媒回収タイマ完
了フラグであり、運転モードが暖房時に、室内機Baが
停止しているときにタイマをカウントし、室内機冷媒回
収禁止タイマが60分をカウントするとFaは0から1
になり、完了フラグが立つ。室内機Bb,Bcに関して
も同様の室内機冷媒回収タイマ完了フラグFb,Fcを
持っている。SW1をONとした場合に、冷媒音発生は
防止できるが、より広い範囲で冷媒流量抑制制御を行わ
せるために、停止室内機寝こんだ冷媒を回収する方法と
して、室内機個別で冷媒回収を行わせる。そこで、冷媒
流量抑制制御中、即ち停止室内機の絞り装置が60パル
スに閉じている場合は、図19,20の制御フローを実
行する。
Embodiment 11 FIG. In the eleventh embodiment, in addition to the configuration of the air conditioner of FIG. 4 described in the second embodiment, a function of using an indoor unit refrigerant recovery timer completion flag is provided. FIGS. 19 and 20 are control flowcharts showing a procedure of recovering refrigerant by each indoor unit during the heating operation in the eleventh embodiment. 19, “Step” is abbreviated as “S.” In this control flowchart, Fa is an indoor unit refrigerant recovery timer completion flag built in the indoor unit side control device 11a of the indoor unit Ba. When the operation mode is heating and the indoor unit Ba is stopped, the timer is counted, and when the indoor unit refrigerant recovery inhibition timer counts 60 minutes, Fa becomes 0 to 1
And a completion flag is set. The indoor units Bb and Bc also have similar indoor unit refrigerant recovery timer completion flags Fb and Fc. When the SW1 is turned ON, the generation of the refrigerant noise can be prevented. However, in order to perform the refrigerant flow suppression control in a wider range, the refrigerant recovery in the stopped indoor units is performed by collecting the refrigerant individually in the indoor units. Let it do. Therefore, during the refrigerant flow suppression control, that is, when the throttle device of the stopped indoor unit is closed for 60 pulses, the control flow of FIGS. 19 and 20 is executed.

【0065】そこで、この制御フローの動作を順に説明
する。Step183で暖房運転で圧縮機1のON後
に、Step184で室内機Ba,Bb,Bcの全てが
リモコン10より暖房運転要求を受信したら、Step
185で室内機Ba,Bb,Bcの絞り装置開度を実施
の形態1で説明したSCa,SCb,SCc制御で調整
する。少なくとも1台以上の停止室内機が存在するとき
Step186でSW1がONの場合、Step187
で熱源機側制御装置7(制御対象設定手段,制御選択手
段,および冷媒回収禁止制御手段の例)により制御して
いる室内機個別冷媒回収タイマT2を0セットした後カ
ウントを開始する。Step188では停止室内機Ba
の室内機冷媒回収タイマ完了フラグFaを0セットに
し、Step189で室内機Baの室内機側制御装置1
1aで制御している室内機冷媒回収タイマT3aを0セ
ットする。Step194でタイマT2をカウントし、
連続時間を計時する。Step195で室内機Baが停
止している場合、Step197でタイマT3aをカウ
ントし、Step198でタイマT3aが連続60分以
上カウントしたら、Step199でFa=1として室
内機冷媒回収タイマ完了フラグFaを立てる。タイマT
3aが60分未満であれば、Faは0のままとする。
The operation of this control flow will be described in order. After all of the indoor units Ba, Bb, and Bc receive the heating operation request from the remote controller 10 in Step 184 after the compressor 1 is turned on in the heating operation in Step 183, Step
At 185, the throttle device openings of the indoor units Ba, Bb, and Bc are adjusted by the SCa, SCb, and SCc controls described in the first embodiment. If SW1 is ON in Step 186 when there is at least one or more stopped indoor units, Step 187
Then, the indoor unit individual refrigerant recovery timer T2 controlled by the heat source unit side control device 7 (an example of the control target setting means, the control selection means, and the refrigerant recovery inhibition control means) is set to 0, and then the counting is started. In Step 188, the stopped indoor unit Ba
The indoor unit refrigerant recovery timer completion flag Fa is set to 0, and in Step 189, the indoor unit-side control device 1 of the indoor unit Ba is set.
The indoor unit refrigerant recovery timer T3a controlled by 1a is set to 0. In step 194, the timer T2 is counted.
Clock a continuous time. If the indoor unit Ba is stopped in Step 195, the timer T3a is counted in Step 197, and if the timer T3a has counted continuously for 60 minutes or more in Step 198, Fa = 1 is set in Step 199 to set the indoor unit refrigerant recovery timer completion flag Fa. Timer T
If 3a is less than 60 minutes, Fa remains 0.

【0066】一方、Step195で室内機Baが暖房
運転していれば、暖房運転することによって絞り装置4
aが開き、停止中に室内機側熱交換器5aに滞留した冷
媒を回収するため、Step196でFa=0およびタ
イマT3a=0にセットし、事実上、室内機冷媒回収を
無効とする。室内機Bb,Bcについても室内機Baと
同様の制御(Step190,191,200〜20
4,192,193,205〜209)を行う。Ste
p210ではALレベルを判定し、AL=1または2の
場合はStep194へ戻る。AL=0のときはSte
p211で室内機個別冷媒回収タイマT2の計時時間が
5分経過していない場合、Step194へ戻り、計時
時間が5分経過していると熱源機側制御装置7で制御し
ている室内機個別冷媒回収開始条件が成立する。Ste
p212でFa=0の場合、Step218でSW2a
がOFFならStep220でSa=120パルスと
し、SW2aがONならStep219で全閉(Sa=
60)パルスとする。
On the other hand, if the indoor unit Ba is performing the heating operation in Step 195, the heating device performs
In step 196, Fa = 0 and the timer T3a = 0 are set in step 196 to collect the refrigerant that has accumulated in the indoor unit-side heat exchanger 5a during the stop of the operation, and the indoor unit refrigerant collection is effectively disabled. The same control as that of the indoor unit Ba is performed for the indoor units Bb and Bc (Steps 190, 191, 200 to 20).
4, 192, 193, 205 to 209). Ste
At p210, the AL level is determined, and if AL = 1 or 2, the process returns to Step 194. Steal when AL = 0
If the time measured by the indoor unit individual refrigerant recovery timer T2 has not elapsed 5 minutes in p211, the process returns to Step 194, and if the measured time has elapsed 5 minutes, the indoor unit individual refrigerant controlled by the heat source unit side control device 7 The collection start condition is satisfied. Ste
If Fa = 0 in p212, SW2a in Step 218
If OFF is set to Sa = 120 pulses in Step 220, and if SW2a is ON, fully closed in Step 219 (Sa =
60) Pulse.

【0067】また、Step212でFa=1の場合、
Step213で熱源機側制御装置7より伝送線9を介
して室内機側制御装置11a(ここでは第1,第2,第
3の絞り開度制御手段の例)にSa=500パルスを送
信し、Step214で絞り装置開度を500パルスに
開けたタイミングでカウントを開始する冷媒回収タイマ
T4が、30秒経過するまでSa=500パルスの状態
とし、この間に室内機Baの室内機側熱交換器5aに滞
留した冷媒を回収する。30秒後にStep215でF
a=0セット、Step216でT3a=0セット、S
tep217でT2=0セットした後、Step194
へ戻る。室内機Baの絞り装置4aの開度(500パル
ス)を、熱源機側制御装置7より伝送線9を介して室内
機側制御装置11aに開度固定解除指令の送信後、所定
の開度に変更する。室内機Bbについては、Step2
21で室内機BaのフラグFaが0のときに室内機Bb
の室内機冷媒回収を許可し(Step222〜22
7)、室内機Bcについては、Step231かつSt
ep232で室内機Ba,BbのフラグFa,Fbが0
のときに室内機Bcの室内機冷媒回収を回収している
(Step233〜241)。これは、室内機のフラグ
が同時に完了(Fa=Fb=1など)した場合でも、室
内機に予め付与されているアドレス(背番号)の順番が
若い方を優先して個別に室内機の冷媒回収を行うためで
ある。
When Fa = 1 in Step 212,
In Step 213, the heat source unit-side control device 7 transmits Sa = 500 pulses to the indoor unit-side control device 11a (here, examples of first, second, and third throttle opening control units) via the transmission line 9; The refrigerant recovery timer T4, which starts counting at the timing when the throttle device opening is opened to 500 pulses in Step 214, sets the state of Sa = 500 pulses until 30 seconds elapse, and during this time, the indoor unit-side heat exchanger 5a of the indoor unit Ba The refrigerant that has accumulated in the tank is recovered. 30 seconds later, in Step 215, F
a = 0 set, T3a = 0 set in Step 216, S
After setting T2 = 0 in step 217, step 194
Return to After the opening degree (500 pulses) of the expansion device 4a of the indoor unit Ba is transmitted to the indoor unit side control device 11a from the heat source unit side control device 7 to the indoor unit side control device 11a via the transmission line 9, the opening degree is released to a predetermined opening degree. change. For the indoor unit Bb, Step 2
When the flag Fa of the indoor unit Ba is 0 at 21, the indoor unit Bb
Of the indoor unit refrigerant is allowed (Steps 222 to 22).
7) For the indoor unit Bc, Step 231 and St
At Ep232, the flags Fa and Fb of the indoor units Ba and Bb are set to 0.
At this time, the indoor unit refrigerant recovery of the indoor unit Bc is collected (Steps 233 to 241). This is because even if the flags of the indoor units are simultaneously completed (Fa = Fb = 1, etc.), the refrigerants of the indoor units are individually given priority in order of the address (small number) given in advance to the indoor units. This is for collecting.

【0068】他方、Step186でSW1がOFFの
場合、Step242で冷媒回収禁止タイマT0を30
分にセットし、Step243でタイマTを0セットし
た後、Step244でタイマTをカウントする。St
ep245では室内機Baが暖房運転していれば、St
ep246で補助絞り装置4dの開度を実施の形態1で
説明したSCa制御で調整する。室内機Baが停止して
いると熱源機側制御装置7から送信される所定開度(S
a=120パルス)に開く。室内機Bb,Bcも室内機
Baと同じ制御を行う(Step248〜250,25
1〜253)。Step254でAL=0かつStep
255でタイマTが30分以上経過した場合に、Ste
p257では室内機Baが暖房運転していれば、Ste
p258でSCa制御を継続させてStep244へ戻
る。室内機Baが停止していればStep259で補助
絞り装置4dの開度を、熱源機側制御装置7から送信さ
れる所定開度(Sa=500パルス)に開く。更に、S
tep266では絞り装置開度を500パルスに開けた
タイミングでカウントを開始する冷媒回収タイマT4
が、30秒経過するまでSa=500パルスの状態と
し、この間に停止室内機Baの室内機側熱交換器5aに
滞留した冷媒を回収する。30秒経過すると、Step
267でタイマTを0セットしてStep244へ戻
る。室内機Bb,Bcも室内機Baと同じ制御を行う
(Step260〜262,263〜265)。Ste
p254でAL=1または2、あるいはStep255
でタイマTが30分未満である場合はStep244へ
戻る。このStep242以降の制御は、停止室内機の
絞り装置開度を一括して開き、冷媒回収を行うものであ
る。
On the other hand, if SW1 is OFF in Step 186, the refrigerant recovery inhibition timer T0 is set to 30 in Step 242.
After the timer T is set to 0 and the timer T is set to 0 in Step 243, the timer T is counted in Step 244. St
In ep245, if the indoor unit Ba is performing the heating operation, St
At ep246, the opening degree of the auxiliary throttle device 4d is adjusted by the SCa control described in the first embodiment. When the indoor unit Ba is stopped, the predetermined opening (S
a = 120 pulses). The indoor units Bb and Bc also perform the same control as the indoor unit Ba (Steps 248 to 250, 25
1-253). AL = 0 and Step at Step 254
If the timer T has elapsed for 30 minutes or more at 255,
In p257, if the indoor unit Ba is performing the heating operation, Ste
In step p258, the SCa control is continued, and the flow returns to step 244. If the indoor unit Ba is stopped, the opening degree of the auxiliary expansion device 4d is opened to a predetermined opening degree (Sa = 500 pulses) transmitted from the heat source unit control device 7 in Step 259. Furthermore, S
In step 266, the refrigerant recovery timer T4 starts counting at the timing when the throttle device opening is opened to 500 pulses.
However, the state of Sa = 500 pulses is maintained until 30 seconds elapse, and during this time, the refrigerant that has accumulated in the indoor unit side heat exchanger 5a of the stopped indoor unit Ba is recovered. After 30 seconds, Step
At 267, the timer T is set to 0, and the process returns to Step 244. The indoor units Bb and Bc also perform the same control as the indoor unit Ba (Steps 260 to 262, 263 to 265). Ste
AL = 1 or 2 in p254, or Step255
If the timer T is less than 30 minutes, the process returns to Step 244. The control after Step 242 is to collectively open the throttle device opening of the stopped indoor unit and collect the refrigerant.

【0069】このようにして、冷媒流量抑制制御(SW
1がON)中に停止室内機をそれぞれ個別に冷媒回収制
御を行うことで、急激な高圧圧力の低下を防ぐことで能
力低下防止および安定運転の確保ができ、また冷媒回収
の頻度が上がることで広範囲に停止室内機の冷媒音発生
を防止できるとともに、圧縮機1の吐出温度上昇をも防
止できる。よって、冷媒音発生解消による快適空調およ
び安定運転確保になる。
In this way, the refrigerant flow suppression control (SW
By performing refrigerant recovery control individually for each stopped indoor unit while 1 is ON), it is possible to prevent a sudden drop in high-pressure pressure, prevent a decrease in capacity and ensure stable operation, and increase the frequency of refrigerant recovery. Thus, it is possible to prevent the generation of the refrigerant noise of the stopped indoor unit in a wide range and also prevent the discharge temperature of the compressor 1 from rising. Therefore, comfortable air conditioning and stable operation can be ensured by eliminating the generation of refrigerant noise.

【0070】[0070]

【発明の効果】以上説明したように、請求項1の発明に
係る空気調和装置においては、非暖房運転時絞り開度設
定手段(例えば、外部スイッチ)の設定により暖房停止
中の室内機の絞り装置の開度を開くか閉じるかを選択可
能とすることができる。これにより、暖房時に発生する
余剰冷媒量が多い場合でも停止中の室内機に余剰冷媒分
が寝こむことによる冷媒回路への悪影響を及ぼすことが
なく、停止室内機で発生する冷媒音を消音できるため、
空気調和装置の快適性と信頼性をともに確保することが
可能となる。
As described above, in the air conditioner according to the first aspect of the present invention, the throttle of the indoor unit while heating is stopped by the setting of the throttle opening setting means (for example, an external switch) during the non-heating operation. It can be made selectable to open or close the opening of the device. Accordingly, even when the amount of surplus refrigerant generated during heating is large, the refrigerant noise generated in the stopped indoor unit can be silenced without adversely affecting the refrigerant circuit due to the surplus refrigerant lying in the stopped indoor unit. For,
It is possible to ensure both comfort and reliability of the air conditioner.

【0071】また、請求項2の発明に係る空気調和装置
においては、非暖房運転時絞り開度設定手段により複数
の室内機の絞り装置を個別に開度設定変更することがで
きる。従って、例えば停止室内機のうち冷媒音が大きな
ものは絞り装置の開度を小さくするといったこともでき
る。
In the air conditioner according to the second aspect of the present invention, the throttle setting of a plurality of indoor units can be individually changed by the throttle opening setting means during the non-heating operation. Therefore, for example, among the stopped indoor units, those having a large refrigerant noise can reduce the opening degree of the expansion device.

【0072】そして、請求項3の発明に係る空気調和装
置においては、補助用熱源機を設け、停止室内機の絞り
装置は全閉にするとともに補助用熱源機の絞り装置は開
くようにしてあるので、停止室内機における冷媒音の発
生をなくすことができるのはもとより、補助用熱源機の
補助熱交換器にて冷媒を凝縮させ、凝縮温度の低下によ
り高圧圧力を低下させることができる。これにより、吐
出温度が低下し、吐出温度上昇バックアップのための手
段として使用することができる。また、前述のバックア
ップでは吐出温度の上昇を回避できない範囲において
も、停止室内機に滞留した冷媒を回収することで、吐出
温度上昇を防止できる。
In the air conditioner according to the third aspect of the present invention, an auxiliary heat source unit is provided, the expansion unit of the stopped indoor unit is fully closed, and the expansion unit of the auxiliary heat source unit is opened. Therefore, not only can the generation of the refrigerant noise in the stopped indoor unit be eliminated, but also the refrigerant can be condensed by the auxiliary heat exchanger of the auxiliary heat source unit, and the high pressure can be reduced by lowering the condensation temperature. As a result, the discharge temperature is lowered, and the discharge temperature can be increased. Further, even in a range where the rise of the discharge temperature cannot be avoided by the above-mentioned backup, the rise of the discharge temperature can be prevented by recovering the refrigerant retained in the stopped indoor unit.

【0073】更に、請求項4の発明に係る空気調和装置
においては、検知された圧縮機の吐出温度が所定温度以
上になると、補助絞り装置を現在の開度よりも大きくす
るようにしてあるので、吐出温度の上昇防止を一層確実
に行えるうえ、停止室内機に滞留した冷媒を回収するこ
ともできる。
Further, in the air conditioner according to the fourth aspect of the present invention, when the detected discharge temperature of the compressor is equal to or higher than a predetermined temperature, the auxiliary throttle device is made larger than the current opening degree. In addition, it is possible to more reliably prevent the discharge temperature from rising, and it is possible to collect the refrigerant remaining in the stopped indoor unit.

【0074】また、請求項5の発明に係る空気調和装置
においては、補助絞り装置設定手段により補助絞り装置
が存在すると設定された場合には停止室内機の絞り装置
を全閉にし、かつ、補助用熱源機の補助絞り装置を全閉
よりも大きな開度にする制御を有効とし、補助絞り装置
が存在しないと設定された場合には停止室内機の絞り装
置を個別に全閉または全閉よりも大きな開度にする制御
を有効とするようにしたので、補助用熱源機の補助熱交
換器にて冷媒を凝縮させ、凝縮温度の低下により高圧圧
力を低下させることができる。これにより、吐出温度が
低下し、吐出温度上昇バックアップのための手段として
使用することができる。また、前述のバックアップでは
吐出温度の上昇を回避できない範囲においても、停止室
内機に滞留した冷媒を回収することで、吐出温度上昇を
防止できる。
In the air conditioner according to the fifth aspect of the invention, when the auxiliary throttle device is set by the auxiliary throttle device setting means, the throttle device of the stopped indoor unit is fully closed and the auxiliary throttle device is closed. The control to make the auxiliary throttle device of the heat source unit for the opening degree larger than fully closed is enabled, and when it is set that the auxiliary throttle device does not exist, the throttle devices of the stopped indoor units are individually closed or fully closed Since the control for increasing the opening degree is made effective, the refrigerant can be condensed in the auxiliary heat exchanger of the auxiliary heat source device, and the high pressure can be reduced by lowering the condensing temperature. As a result, the discharge temperature is lowered, and the discharge temperature can be increased. Further, even in a range where the rise of the discharge temperature cannot be avoided by the above-mentioned backup, the rise of the discharge temperature can be prevented by recovering the refrigerant retained in the stopped indoor unit.

【0075】そして、請求項6の発明に係る空気調和装
置においては、四方切換弁の切換により暖房運転あるい
は除霜運転を行う場合、停止室内機の絞り装置を除霜時
絞り開度設定手段により個別に全閉にできるようにした
ことで、これらの停止室内機に冷媒が流れることを防
ぎ、任意に選択設定した停止室内機において冷媒音を消
音することができる。
In the air conditioner according to the sixth aspect of the invention, when the heating operation or the defrosting operation is performed by switching the four-way switching valve, the expansion device of the stopped indoor unit is operated by the defrosting throttle opening setting means. By being able to be fully closed individually, it is possible to prevent the refrigerant from flowing into these stopped indoor units, and to muffle the refrigerant noise in the arbitrarily selected and set stopped indoor units.

【0076】更に、請求項7の発明に係る空気調和装置
においては、補助用熱源機が接続されていて四方切換弁
の切換により暖房運転あるいは除霜運転を行う場合、停
止室内機の絞り装置開度を全閉にすることで冷媒が流れ
ることを防ぎ、冷媒音を消音することができる。また、
除霜運転時には補助用熱源機の補助絞り装置を開き補助
熱交換器を蒸発器として使用するので、蒸発温度の低下
を防ぐことができ、除霜効果を十分に上げることができ
る。
Further, in the air conditioner according to the invention of claim 7, when the heating operation or the defrosting operation is performed by switching the four-way switching valve and the auxiliary heat source device is connected, the expansion device of the stopped indoor unit is opened. By fully closing the degree, the refrigerant can be prevented from flowing, and the noise of the refrigerant can be reduced. Also,
During the defrosting operation, the auxiliary expansion device of the auxiliary heat source unit is opened and the auxiliary heat exchanger is used as an evaporator, so that the evaporation temperature can be prevented from lowering and the defrosting effect can be sufficiently improved.

【0077】また、請求項8の発明に係る空気調和装置
においては、暖房運転室内機の熱交換器総量が大きい場
合は必然的に停止室内機の熱交換器総量が小さくなるた
め、停止室内機の室内機側熱交換器に滞留する冷媒量も
低下する。従って、暖房運転室内機の熱交換器総量が大
きいときは、停止室内機の絞り装置開度を全閉にするこ
とで、冷媒音を完全に消音する範囲が広がる。一方、暖
房運転室内機の熱交換器総量が小さい場合、停止室内機
の絞り装置開度を全閉から僅かに開くことで、停止室内
機の冷媒音レベルを抑えて快適空調を行うことができ、
停止室内機の室内機側熱交換器に滞留した冷媒をアキュ
ムレータに戻すことができる。
Further, in the air conditioner according to the invention of claim 8, when the total heat exchanger of the heating operation indoor unit is large, the total heat exchanger of the stopped indoor unit necessarily becomes small. The amount of refrigerant staying in the indoor unit side heat exchanger also decreases. Therefore, when the total amount of heat exchangers of the indoor unit for heating operation is large, the range in which the refrigerant noise is completely silenced is widened by fully closing the expansion device opening of the indoor unit for stop operation. On the other hand, when the total heat exchanger of the heating operation indoor unit is small, by slightly opening the throttle device opening of the stopped indoor unit from fully closed, the refrigerant sound level of the stopped indoor unit can be suppressed and comfortable air conditioning can be performed. ,
The refrigerant accumulated in the indoor heat exchanger on the stopped indoor unit can be returned to the accumulator.

【0078】そして、請求項9の発明に係る空気調和装
置においては、運転に先立ち、仮に全ての停止室内機の
絞り装置を全閉とする設定をしたままで運転した場合で
あって、補助用熱源機の補助絞り装置および室内機全て
の絞り装置をいずれも全閉にする制御しか存在しないと
判断した場合には、圧縮機の起動は禁止するようにして
あるので、停止室内機への寝こみ冷媒量がアキュムレー
タ内の余剰冷媒量を超えたりすることにより圧縮機の冷
却効果が小さくなり吐出温度を上昇させる運転を繰り返
すといった不具合を未然に防止でき、空気調和装置の信
頼性を向上させることができる。
In the air conditioner according to the ninth aspect of the present invention, prior to the operation, if the operation is performed with the throttle devices of all the stopped indoor units being set to the fully closed state, If it is determined that there is only control to fully close the auxiliary throttle device of the heat source unit and all the throttle devices of the indoor unit, the start of the compressor is prohibited. To improve the reliability of the air-conditioning apparatus by preventing the problem that the cooling effect of the compressor is reduced and the operation of increasing the discharge temperature is repeated due to the refrigerant amount exceeding the surplus refrigerant amount in the accumulator. Can be.

【0079】更に、請求項10の発明に係る空気調和装
置においては、限られた台数の停止室内機しか絞り開度
を全閉にすることができないが、冷媒回収禁止時間間隔
を変更可能にして、冷媒回収の頻度を上げることで、停
止室内機に寝こんだ冷媒を早いタイミングで熱源機に戻
せるため、暖房運転している冷媒回路に不具合が発生す
る前に回路内の冷媒不足を解消できる。従って、より多
くの停止室内機の絞り装置を全閉にすることができ、消
音対策を広範囲に拡大できる。
Furthermore, in the air conditioner according to the tenth aspect of the present invention, only a limited number of stopped indoor units can fully close the throttle opening, but the refrigerant collection prohibition time interval can be changed. By increasing the frequency of refrigerant recovery, the refrigerant laid down in the stopped indoor unit can be returned to the heat source unit at an early timing, so that the refrigerant shortage in the refrigerant circuit during the heating operation can be resolved before a malfunction occurs in the refrigerant circuit. . Therefore, the throttle devices of more stopped indoor units can be fully closed, and the noise reduction measures can be expanded over a wide range.

【0080】また、請求項11の発明に係る空気調和装
置においては、冷媒回収のために冷媒回収禁止時間間隔
を変更可能とするにあたり、停止室内機全てを第1の絞
り開度制御手段の制御対象とするか、または室内機毎に
付与されている優先順位に基づいて各室内機を個別に第
2の絞り開度制御手段の制御対象とするかを制御対象設
定手段で設定するようにしたので、一層きめ細やかに冷
媒回路内の冷媒不足を解消でき、消音対策をより広範囲
に拡大できる。
Further, in the air conditioner according to the eleventh aspect of the present invention, when the refrigerant collection prohibition time interval can be changed for refrigerant recovery, all the stopped indoor units are controlled by the first throttle opening control means. The control target setting means sets whether the target is to be controlled or whether each indoor unit is individually controlled by the second throttle opening control means based on the priority given to each indoor unit. Therefore, the shortage of the refrigerant in the refrigerant circuit can be more finely resolved, and the noise reduction measures can be expanded over a wider range.

【0081】そして、請求項12の発明に係る空気調和
装置においては、室内機毎に付与される優先順位を、室
内機が運転停止している連続時間と、室内機毎に予め付
与されている室内機の背番号の順番とに基づいて決定す
るようにしたので、優先順位の妥当性が高く、優先順位
を容易に得ることができる。
In the air conditioner according to the twelfth aspect of the present invention, the priority given to each indoor unit is given in advance to the continuous time during which the indoor unit is stopped and to each indoor unit. Since the determination is made based on the order of the indoor unit number, the priority is highly valid and the priority can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明による空気調和装置の実施の形態を
示すブロック構成図である。
FIG. 1 is a block diagram showing an embodiment of an air conditioner according to the present invention.

【図2】 実施の形態1における室内機の絞り装置開度
と流量特性の関係を表した説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a throttle device opening degree of an indoor unit and a flow rate characteristic in the first embodiment.

【図3】 実施の形態1におけるアキュムレータ内の液
面高さを温度センサにより検知する態様を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a mode in which a liquid level in an accumulator is detected by a temperature sensor in the first embodiment.

【図4】 実施の形態2,3における空気調和装置を示
すブロック構成図である。
FIG. 4 is a block diagram showing an air conditioner according to Embodiments 2 and 3.

【図5】 実施の形態2における冷媒流量抑制室内機設
定有効時の開度変更手順を示す制御フローチャートであ
る。
FIG. 5 is a control flowchart showing an opening degree changing procedure when a refrigerant flow suppression indoor unit setting is enabled according to the second embodiment.

【図6】 実施の形態3における冷媒流量抑制室内機設
定有効時の開度変更手順を示す制御フローチャートであ
る。
FIG. 6 is a control flow chart showing a procedure for changing an opening degree when a refrigerant flow suppression indoor unit setting is enabled in a third embodiment.

【図7】 実施の形態3における絞り装置開度と消音レ
ベル特性の関係を表した説明図である。
FIG. 7 is an explanatory diagram showing a relationship between a diaphragm device opening and a muffling level characteristic according to a third embodiment.

【図8】 実施の形態4における暖房運転時で停止室内
機の絞り装置開度を閉めた後の寝こみ冷媒回収開始時間
変更の手順を示す制御フローチャートである。
FIG. 8 is a control flowchart showing a procedure of changing a laying-down refrigerant recovery start time after closing a throttle device opening of a stopped indoor unit during a heating operation in the fourth embodiment.

【図9】 実施の形態5における空気調和装置を示すブ
ロック構成図である。
FIG. 9 is a block diagram showing an air conditioner according to Embodiment 5.

【図10】 実施の形態5における補助用熱源機を接続
したときの補助絞り装置開度制御と冷媒回収制御とバッ
クアップ制御の手順を示す制御フローチャートである。
FIG. 10 is a control flowchart showing a procedure of an auxiliary throttle device opening control, a refrigerant recovery control, and a backup control when an auxiliary heat source device according to the fifth embodiment is connected.

【図11】 実施の形態6における暖房運転時で除霜運
転開始時の停止室内機の絞り装置開度制御の手順を示す
制御フローチャートである。
FIG. 11 is a control flowchart showing a procedure of controlling a throttle device opening of a stopped indoor unit when a defrosting operation is started during a heating operation according to a sixth embodiment.

【図12】 実施の形態6における暖房運転時で除霜運
転開始時の停止室内機の絞り装置開度制御の手順を示す
制御フローチャートである。
FIG. 12 is a control flowchart showing a procedure of controlling a throttle device opening of a stopped indoor unit at the start of a defrosting operation during a heating operation in the sixth embodiment.

【図13】 実施の形態7における暖房運転時で除霜運
転開始時に補助絞り装置開度制御と停止室内機の絞り装
置開度制御と除霜運転実施のために冷媒流量抑制室内機
設定無効室内機または補助用熱源機を選択する制御の手
順を示す制御フローチャートである。
FIG. 13 is a diagram illustrating an auxiliary throttle device opening control and a throttle device opening control of a stopped indoor unit at the start of a defrosting operation in a heating operation and a refrigerant flow suppression indoor unit setting invalid room for performing a defrosting operation in the seventh embodiment. It is a control flowchart which shows the procedure of the control which selects a machine or an auxiliary heat source machine.

【図14】 実施の形態7における暖房運転時で除霜運
転開始時に補助絞り装置開度制御と停止室内機の絞り装
置開度制御と除霜運転実施のために冷媒流量抑制室内機
設定無効室内機または補助用熱源機を選択する制御の手
順を示す制御フローチャートである。
FIG. 14 is a diagram showing an auxiliary throttle device opening control, a throttle device opening control of a stopped indoor unit, and a refrigerant flow suppression indoor unit invalid room for performing defrosting operation at the start of defrosting operation in the seventh embodiment. It is a control flowchart which shows the procedure of the control which selects a machine or an auxiliary heat source machine.

【図15】 実施の形態7における暖房運転時で除霜運
転開始時に補助絞り装置開度制御と停止室内機の絞り装
置開度制御と除霜運転実施のために冷媒流量抑制室内機
設定無効室内機または補助用熱源機を選択する制御の手
順を示す制御フローチャートである。
FIG. 15 is a diagram showing an auxiliary throttle device opening control and a throttle device opening control of a stopped indoor unit at the start of a defrosting operation in a heating operation and a refrigerant flow suppression indoor unit setting invalid room for performing a defrosting operation in the seventh embodiment. It is a control flowchart which shows the procedure of the control which selects a machine or an auxiliary heat source machine.

【図16】 実施の形態8における暖房運転室内機の室
内機側熱交換器の合計容積に基づいて停止室内機の絞り
装置開度を変更する手順を示す制御フローチャートであ
る。
FIG. 16 is a control flowchart showing a procedure for changing a throttle device opening degree of a stopped indoor unit based on a total volume of an indoor unit side heat exchanger of a heating operation indoor unit in the eighth embodiment.

【図17】 実施の形態9における暖房運転室内機の合
計台数に基づいて停止室内機の絞り装置開度を変更する
手順を示す制御フローチャートである。
FIG. 17 is a control flowchart showing a procedure for changing the throttle device opening of a stopped indoor unit based on the total number of heating operation indoor units in the ninth embodiment.

【図18】 実施の形態10における冷媒流量抑制制御
設定有効/無効に係る手順を示す制御フローチャートで
ある。
FIG. 18 is a control flowchart showing a procedure relating to a refrigerant flow suppression control setting valid / invalid in the tenth embodiment.

【図19】 実施の形態11における暖房運転時の室内
機個別による冷媒回収の手順を示す制御フローチャート
である。
FIG. 19 is a control flowchart showing a procedure of recovering refrigerant by individual indoor units during a heating operation in Embodiment 11.

【図20】 実施の形態11における暖房運転時の室内
機個別による冷媒回収の手順を示す制御フローチャート
である。
FIG. 20 is a control flowchart showing a procedure of recovering refrigerant by an individual indoor unit during a heating operation in Embodiment 11.

【符号の説明】[Explanation of symbols]

A 熱源機 Ba 室内機 Bb 室内機 Bc 室内機 C 補助用熱源機 1 圧縮機 2 四方切換弁 3 熱源機側熱交換器 4a 絞り装置 4b 絞り装置 4c 絞り装置 4d 補助絞り装置 5a 室内機側熱交換器 5b 室内機側熱交換器 5c 室内機側熱交換器 5d 補助熱交換器 6 アキュムレータ 7 熱源機側制御装置 8 冷媒流量抑制制御設定スイッチ 10 リモートコントローラ 11a 室内機側制御装置 11b 室内機側制御装置 11c 室内機側制御装置 11d 補助用熱源機側制御装置 19 吐出温度センサ 20 補助用熱源機設定有効/無効手段スイッチ SW2a 冷媒流量抑制室内機設定スイッチ SW2b 冷媒流量抑制室内機設定スイッチ SW2c 冷媒流量抑制室内機設定スイッチ SW2d 補助用熱源機設定スイッチ T0 時間間隔 i アドレス A heat source unit Ba indoor unit Bb indoor unit Bc indoor unit C auxiliary heat source unit 1 compressor 2 four-way switching valve 3 heat source unit side heat exchanger 4a expansion unit 4b expansion unit 4c expansion unit 4d auxiliary expansion unit 5a indoor unit side heat exchange Unit 5b Indoor unit side heat exchanger 5c Indoor unit side heat exchanger 5d Auxiliary heat exchanger 6 Accumulator 7 Heat source unit side control unit 8 Refrigerant flow rate suppression control setting switch 10 Remote controller 11a Indoor unit side control unit 11b Indoor unit side control unit 11c Indoor unit side control unit 11d Auxiliary heat source unit side control unit 19 Discharge temperature sensor 20 Auxiliary heat source unit setting enable / disable means switch SW2a Refrigerant flow suppression indoor unit setting switch SW2b Refrigerant flow suppression indoor unit setting switch SW2c Refrigerant flow suppression room Unit setting switch SW2d Auxiliary heat source unit setting switch T0 Time interval i Add Scan

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 熱源機を構成するアキュムレータ、圧縮
機、熱源機側熱交換器と、前記熱源機に対し並列に接続
される複数の室内機をそれぞれ構成する開度可変の絞り
装置、室内機側熱交換器とを順次配管接続してなる冷媒
回路を備えた空気調和装置において、前記複数の室内機
の暖房運転または運転停止を前記室内機毎に個別に設定
するための運転設定手段と、暖房運転にあたり前記複数
の室内機のうち前記運転設定手段により設定された運転
停止に係る前記室内機に対応した前記絞り装置を全閉ま
たは全閉よりも大きな開度に選択的に設定する非暖房運
転時絞り開度設定手段とを設けたことを特徴とする空気
調和装置。
1. An accumulator, a compressor, and a heat source unit-side heat exchanger that constitute a heat source unit, and a variable opening degree throttle unit that constitutes a plurality of indoor units connected in parallel to the heat source unit, and an indoor unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting pipes to the side heat exchanger, operation setting means for individually setting the heating operation or the operation stop of the plurality of indoor units for each of the indoor units, Non-heating in which, in the heating operation, the throttle device corresponding to the indoor unit related to the operation stop set by the operation setting unit among the plurality of indoor units is selectively set to a fully closed state or an opening degree larger than the fully closed state. An air conditioner comprising: an operating throttle opening setting means.
【請求項2】 非暖房運転時絞り開度設定手段は、複数
の室内機の絞り装置を個別に開度設定変更可能に構成さ
れていることを特徴とする請求項第1項に記載の空気調
和装置。
2. The air according to claim 1, wherein the throttle opening setting means at the time of the non-heating operation is configured to be capable of individually changing the opening of the throttle devices of the plurality of indoor units. Harmony equipment.
【請求項3】 熱源機を構成するアキュムレータ、圧縮
機、熱源機側熱交換器と、前記熱源機に対し並列に接続
される複数の室内機をそれぞれ構成する開度可変の絞り
装置、室内機側熱交換器とを順次配管接続してなる冷媒
回路を備えた空気調和装置において、開度可変の補助絞
り装置、補助熱交換器を有し前記複数の室内機と並列に
接続される補助用熱源機と、前記複数の室内機のうち少
なくとも1台以上が暖房運転している場合に、暖房運転
していない前記室内機に対応した前記絞り装置を全閉に
し、かつ、前記補助用熱源機の前記補助絞り装置を全閉
よりも大きな開度にする絞り開度併合制御手段とを設け
たことを特徴とする空気調和装置。
3. An accumulator, a compressor, and a heat source unit-side heat exchanger that constitute a heat source unit, and a throttle device with a variable opening degree that constitutes a plurality of indoor units connected in parallel to the heat source unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting pipes to a side heat exchanger, an auxiliary throttle device having a variable opening degree, an auxiliary heat exchanger having an auxiliary heat exchanger, and being connected in parallel with the plurality of indoor units. A heat source unit, when at least one or more of the plurality of indoor units are performing a heating operation, fully closing the expansion device corresponding to the indoor unit that is not performing the heating operation, and the auxiliary heat source device And a throttle opening combination control means for setting the auxiliary throttle device to an opening larger than the fully closed state.
【請求項4】 圧縮機の吐出温度を検知する吐出温度検
知手段と、前記吐出温度検知手段により検知された吐出
温度が予め設定されている所定温度より高くなった場合
に、補助用熱源機の補助絞り装置を現在の開度よりも大
きくする補助絞り開度制御手段とを設けたことを特徴と
する請求項第3項に記載の空気調和装置。
4. A discharge temperature detecting means for detecting a discharge temperature of a compressor, and an auxiliary heat source device when a discharge temperature detected by said discharge temperature detecting means becomes higher than a predetermined temperature set in advance. 4. The air conditioner according to claim 3, further comprising an auxiliary throttle opening control means for making the auxiliary throttle device larger than the current opening.
【請求項5】 補助絞り装置設置の存否を設定する補助
絞り装置設定手段と、暖房運転にあたり、前記補助絞り
装置設定手段により前記補助絞り装置が存在すると設定
された場合には絞り開度併合制御手段による制御を有効
とし、前記補助絞り装置設定手段により前記補助絞り装
置が存在しないと設定された場合には複数の室内機のう
ち運転停止に係る前記室内機に対応した絞り装置を個別
に全閉または全閉よりも大きな開度にする制御を有効と
する制御切換手段とを設けたことを特徴とする請求項第
3項に記載の空気調和装置。
5. An auxiliary throttle device setting means for setting whether or not an auxiliary throttle device is installed, and, in a heating operation, when the auxiliary throttle device setting means determines that the auxiliary throttle device is present, control of aperture opening combination. When the auxiliary throttle device setting unit sets that the auxiliary throttle device does not exist, the control by the means is effective, and among the plurality of indoor units, the throttle devices corresponding to the indoor units related to the operation stop are individually individually controlled. 4. The air conditioner according to claim 3, further comprising control switching means for enabling control to make the opening degree larger than the closed state or the fully closed state.
【請求項6】 熱源機を構成するアキュムレータ、圧縮
機、四方切換弁、熱源機側熱交換器と、前記熱源機に対
し並列に接続される複数の室内機をそれぞれ構成する開
度可変の絞り装置、室内機側熱交換器とを順次配管接続
してなる冷媒回路を備えた空気調和装置において、暖房
運転中に前記四方切換弁の冷媒流路を切り替えて除霜運
転を行う除霜運転制御手段と、前記除霜運転中に停止し
ている前記室内機の前記絞り装置を個別に全閉または全
閉よりも大きな開度に設定する除霜時絞り開度設定手段
とを設けたことを特徴とする空気調和装置。
6. An accumulator, a compressor, a four-way switching valve, a heat source unit-side heat exchanger that constitutes a heat source unit, and a variable opening throttle that constitutes a plurality of indoor units connected in parallel to the heat source unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting a device and an indoor unit-side heat exchanger with pipes, a defrosting operation control for switching a refrigerant flow path of the four-way switching valve to perform a defrosting operation during a heating operation. Means, and defrosting throttle opening setting means for individually setting the throttling device of the indoor unit stopped during the defrosting operation to a full opening or an opening larger than the full closing is provided. An air conditioner characterized by:
【請求項7】 熱源機を構成するアキュムレータ、圧縮
機、四方切換弁、熱源機側熱交換器と、前記熱源機に対
し並列に接続される複数の室内機をそれぞれ構成する開
度可変の絞り装置、室内機側熱交換器とを順次配管接続
してなる冷媒回路を備えた空気調和装置において、開度
可変の補助絞り装置、補助熱交換器を有し前記複数の室
内機と並列に接続される補助用熱源機と、暖房運転中に
前記四方切換弁の冷媒流路を切り替えて除霜運転を行う
除霜運転制御手段と、前記除霜運転中に前記複数の室内
機の絞り装置を全閉とし、かつ、前記補助用熱源機の前
記補助絞り装置を全閉よりも大きな開度にする除霜時絞
り開度併合制御手段とを設けたことを特徴とする空気調
和装置。
7. An accumulator, a compressor, a four-way switching valve, a heat source unit-side heat exchanger constituting a heat source unit, and a variable opening throttle which constitutes a plurality of indoor units connected in parallel to the heat source unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting a device and an indoor unit-side heat exchanger with a pipe, the air conditioner includes an auxiliary expansion device having a variable opening degree and an auxiliary heat exchanger, and is connected in parallel with the plurality of indoor units. An auxiliary heat source unit, a defrosting operation control unit that performs a defrosting operation by switching a refrigerant flow path of the four-way switching valve during a heating operation, and a throttling device for the plurality of indoor units during the defrosting operation. An air conditioner, comprising: a defrosting throttle opening combination control means for fully closing and for setting the auxiliary throttle device of the auxiliary heat source unit to an opening larger than the full closing.
【請求項8】 熱源機を構成するアキュムレータ、圧縮
機、熱源機側熱交換器と、前記熱源機に対し並列に接続
される複数の室内機をそれぞれ構成する開度可変の絞り
装置、室内機側熱交換器とを順次配管接続してなる冷媒
回路を備えた空気調和装置において、前記複数の室内機
の暖房運転または運転停止を前記室内機毎に個別に設定
するための運転設定手段と、前記運転設定手段により設
定された暖房運転に係る室内機側熱交換器全ての総量を
算出する熱交換器容量算出手段と、前記熱交換器容量算
出手段により算出された暖房運転に係る前記室内機側熱
交換器の総量に応じて、運転停止に係る前記室内機に対
応した前記絞り装置の開度を全閉または全閉よりも大き
な開度に選択的に設定する絞り開度設定手段とを設けた
ことを特徴とする空気調和装置。
8. An accumulator, a compressor, and a heat source unit-side heat exchanger constituting a heat source unit, and a variable opening degree throttle unit and an indoor unit each constituting a plurality of indoor units connected in parallel to the heat source unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting pipes to the side heat exchanger, operation setting means for individually setting the heating operation or the operation stop of the plurality of indoor units for each of the indoor units, Heat exchanger capacity calculation means for calculating the total amount of all the indoor unit side heat exchangers related to the heating operation set by the operation setting means, and the indoor unit related to the heating operation calculated by the heat exchanger capacity calculation means Throttle opening setting means for selectively setting an opening of the expansion device corresponding to the indoor unit to be stopped to a fully closed or an opening larger than the fully closed according to a total amount of the side heat exchangers. The sky characterized by being provided Air conditioner.
【請求項9】 熱源機を構成するアキュムレータ、圧縮
機、熱源機側熱交換器と、前記熱源機に対し並列に接続
される複数の室内機をそれぞれ構成する開度可変の絞り
装置、室内機側熱交換器とを順次配管接続してなる冷媒
回路を備えた空気調和装置において、開度可変の補助絞
り装置、補助熱交換器を有し前記複数の室内機と並列に
接続される補助用熱源機と、前記補助絞り装置の設置に
係る存否を手動により設定可能な補助絞り装置手動設定
手段と、前記補助絞り装置手動設定手段により前記補助
絞り装置が存在すると設定された場合には前記補助絞り
装置を現在の開度よりも大きくする制御を有効とし、前
記補助絞り装置手動設定手段により前記補助絞り装置が
存在しないと設定された場合には複数の室内機のうち運
転停止している前記室内機に対応した絞り装置を個別に
全閉または全閉よりも大きな開度にする制御を有効とす
ると設定されたにもかかわらず、前記補助絞り装置およ
び前記室内機全ての前記絞り装置をいずれも全閉とする
制御しか存在しないと判断した場合には、圧縮機の起動
を禁止する圧縮機起動禁止手段とを設けたことを特徴と
する空気調和装置。
9. An accumulator, a compressor, a heat source unit side heat exchanger that constitutes a heat source unit, a variable opening degree throttle unit that constitutes a plurality of indoor units connected in parallel to the heat source unit, and an indoor unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting pipes to a side heat exchanger, an auxiliary throttle device having a variable opening degree and an auxiliary heat exchanger having an auxiliary heat exchanger and connected in parallel with the plurality of indoor units are provided. A heat source unit, auxiliary throttle device manual setting means capable of manually setting the presence or absence of the installation of the auxiliary throttle device, and the auxiliary device when the auxiliary throttle device is set by the auxiliary throttle device manual setting device. The control to make the expansion device larger than the current opening degree is enabled, and when the auxiliary expansion device is set to be absent by the auxiliary expansion device manual setting means, the operation of the plurality of indoor units is stopped. Despite the setting that the control to individually or fully open the expansion devices corresponding to the indoor units is set to be effective, the auxiliary expansion device and the expansion devices of all the indoor units are set to be effective. An air conditioner provided with compressor start prohibition means for prohibiting the start of the compressor when it is determined that there is only control to completely close the compressor.
【請求項10】 熱源機を構成するアキュムレータ、圧
縮機、熱源機側熱交換器と、前記熱源機に対し並列に接
続される複数の室内機をそれぞれ構成する開度可変の絞
り装置、室内機側熱交換器とを順次配管接続してなる冷
媒回路を備えた空気調和装置において、前記複数の室内
機の暖房運転または運転停止を前記室内機毎に個別に設
定するための運転設定手段と、前記複数の室内機のうち
一部が暖房運転していない場合に、暖房運転していない
前記室内機全てに対応した前記絞り装置の開度を、全閉
よりも大きな第1の所定開度とする第1の絞り開度制御
手段と、前記暖房運転していない室内機の少なくとも1
台以上に対応した前記絞り装置の開度を全閉または前記
第1の所定開度よりも小さな第2の所定開度とする第2
の絞り開度制御手段と、前記第1の絞り開度制御手段に
よる制御と前記第2の絞り開度制御手段による制御とを
選択的に設定する制御選択手段と、暖房運転していない
前記室内機全ての前記絞り装置の開度を前記第1の所定
開度および前記第2の所定開度よりも大きな第3の所定
開度とする第3の絞り開度制御手段と、前記第3の絞り
開度制御手段による制御を実行しない最低時間間隔を、
前記制御選択手段により前記第1の絞り開度制御手段の
制御が選択された場合は第1の時間間隔とし、前記第2
の絞り開度制御手段の制御が選択された場合は前記第1
の時間間隔よりも短い第2の時間間隔とする冷媒回収禁
止制御手段とを設けたことを特徴とする空気調和装置。
10. An accumulator, a compressor, and a heat source unit-side heat exchanger that constitute a heat source unit, and a variable opening degree throttle device that constitutes a plurality of indoor units connected in parallel to the heat source unit, and an indoor unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting pipes to the side heat exchanger, operation setting means for individually setting heating operation or operation stop of the plurality of indoor units for each of the indoor units, When a part of the plurality of indoor units is not performing the heating operation, the opening degree of the expansion device corresponding to all the indoor units that are not performing the heating operation is a first predetermined opening degree that is larger than the fully closed state. First throttle opening control means for performing at least one of the indoor units not performing the heating operation.
A second predetermined opening degree smaller than the first predetermined opening degree, wherein the opening degree of the expansion device corresponding to more than one opening is fully closed;
A throttle opening control means, a control selection means for selectively setting control by the first throttle opening control means and control by the second throttle opening control means, and Third throttle opening control means for setting the openings of all the throttle devices to a third predetermined opening larger than the first predetermined opening and the second predetermined opening; and The minimum time interval during which control by the throttle opening control means is not executed is
When the control of the first throttle opening control means is selected by the control selection means, the first time interval is set and the second time interval is set.
If the control of the throttle opening control means is selected, the first
And a refrigerant collection prohibition control means for setting a second time interval shorter than the above time interval.
【請求項11】 熱源機を構成するアキュムレータ、圧
縮機、熱源機側熱交換器と、前記熱源機に対し並列に接
続される複数の室内機をそれぞれ構成する開度可変の絞
り装置、室内機側熱交換器とを順次配管接続してなる冷
媒回路を備えた空気調和装置において、前記複数の室内
機の暖房運転または運転停止を前記室内機毎に個別に設
定するための運転設定手段と、前記複数の室内機のうち
一部が暖房運転していない場合に、暖房運転していない
前記室内機全てに対応した前記絞り装置の開度を全閉よ
りも大きな第1の所定開度とする第1の絞り開度制御手
段と、前記暖房運転していない室内機の少なくとも1台
以上に対応した前記絞り装置の開度を、全閉または前記
第1の所定開度よりも小さな第2の所定開度とする第2
の絞り開度制御手段と、暖房運転していない前記室内機
全ての前記絞り装置の開度を前記第1の所定開度および
前記第2の所定開度よりも大きな第3の所定開度とする
第3の絞り開度制御手段と、前記第1の絞り開度制御手
段による制御と前記第2の絞り開度制御手段による制御
とを選択的に設定する制御選択手段と、前記制御選択手
段により前記第1の絞り開度制御手段の制御が選択され
た場合は暖房運転していない前記室内機全てに対応した
前記絞り装置を制御対象として設定し、前記第2の絞り
開度制御手段の制御が選択された場合は暖房運転してい
ない前記室内機に予め付与されている優先順位に基づい
て前記室内機毎の前記絞り装置を制御対象として設定す
る制御対象設定手段と、前記第3の絞り開度制御手段に
よる制御を実行しない最低時間間隔を、前記制御選択手
段により前記第1の絞り開度制御手段の制御が選択され
た場合は第1の時間間隔とし、前記第2の絞り開度制御
手段の制御が選択された場合は前記第1の時間間隔より
も短い第2の時間間隔とする冷媒回収禁止制御手段とを
設けたことを特徴とする空気調和装置。
11. An accumulator, a compressor, and a heat source unit-side heat exchanger that constitute a heat source unit, and a variable opening degree throttle device that constitutes a plurality of indoor units connected in parallel to the heat source unit, and an indoor unit. In an air conditioner provided with a refrigerant circuit formed by sequentially connecting pipes to the side heat exchanger, operation setting means for individually setting heating operation or operation stop of the plurality of indoor units for each of the indoor units, When a part of the plurality of indoor units is not performing the heating operation, the opening degrees of the expansion devices corresponding to all the indoor units that are not performing the heating operation are set to a first predetermined opening degree that is larger than the fully closed state. A first throttle opening control unit, and a second throttle smaller than the first predetermined opening, wherein the opening of the throttle device corresponding to at least one or more of the indoor units that are not performing the heating operation is smaller than the first predetermined opening. 2nd with predetermined opening
And a third predetermined opening that is larger than the first predetermined opening and the second predetermined opening. Third throttle opening control means, control selection means for selectively setting control by the first throttle opening control means and control by the second throttle opening control means, and the control selection means When the control of the first throttle opening control means is selected, the throttle devices corresponding to all the indoor units not performing the heating operation are set as control targets, and the control of the second throttle opening control means is performed. A control target setting unit configured to set the expansion device for each indoor unit as a control target based on a priority order previously assigned to the indoor unit that is not performing the heating operation when the control is selected; and Execute the control by the throttle opening control means When the control of the first throttle opening control means is selected by the control selection means, the minimum time interval is set to the first time interval, and the control of the second throttle opening control means is selected. An air conditioner comprising: a refrigerant collection prohibition control unit that sets a second time interval shorter than the first time interval in the case.
【請求項12】 優先順位は、室内機が運転停止してい
る連続時間と、前記室内機毎に予め付与されている前記
室内機の背番号の順番とに基づいて決定されることを特
徴とする請求項第11項に記載の空気調和装置。
12. The priority order is determined based on a continuous time during which the operation of the indoor unit is stopped and an order of the indoor unit number given to the indoor unit in advance. The air conditioner according to claim 11, wherein
JP15198897A 1997-06-10 1997-06-10 Air conditioner Expired - Lifetime JP3856529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15198897A JP3856529B2 (en) 1997-06-10 1997-06-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15198897A JP3856529B2 (en) 1997-06-10 1997-06-10 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10339479A true JPH10339479A (en) 1998-12-22
JP3856529B2 JP3856529B2 (en) 2006-12-13

Family

ID=15530615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15198897A Expired - Lifetime JP3856529B2 (en) 1997-06-10 1997-06-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP3856529B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127775A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Air conditioner
JP2012229893A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioning device
JP2014085080A (en) * 2012-10-26 2014-05-12 Hitachi Appliances Inc Air conditioner
WO2016189626A1 (en) * 2015-05-25 2016-12-01 三菱電機株式会社 Air conditioning device
JP2018071893A (en) * 2016-10-31 2018-05-10 株式会社富士通ゼネラル Air conditioner
WO2020065731A1 (en) * 2018-09-25 2020-04-02 東芝キヤリア株式会社 Air conditioning device
CN111426015A (en) * 2020-04-29 2020-07-17 珠海格力电器股份有限公司 Health degree monitoring method and device for air conditioning unit and air conditioning unit
EP3957925A4 (en) * 2019-04-18 2022-04-06 Mitsubishi Electric Corporation Air conditioner control device, outdoor unit, relay device, heat source unit, and air conditioner
CN114754467A (en) * 2022-02-28 2022-07-15 青岛海尔空调电子有限公司 Control method of multi-split system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102169282B1 (en) * 2013-07-16 2020-10-23 삼성전자주식회사 Heat pump multi air conditioner and control method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127775A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Air conditioner
JP2012229893A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioning device
JP2014085080A (en) * 2012-10-26 2014-05-12 Hitachi Appliances Inc Air conditioner
GB2555255B (en) * 2015-05-25 2020-08-12 Mitsubishi Electric Corp Air conditioning apparatus
WO2016189626A1 (en) * 2015-05-25 2016-12-01 三菱電機株式会社 Air conditioning device
GB2555255A (en) * 2015-05-25 2018-04-25 Mitsubishi Electric Corp Air conditioning device
JP2018071893A (en) * 2016-10-31 2018-05-10 株式会社富士通ゼネラル Air conditioner
WO2020065731A1 (en) * 2018-09-25 2020-04-02 東芝キヤリア株式会社 Air conditioning device
JPWO2020065731A1 (en) * 2018-09-25 2021-08-30 東芝キヤリア株式会社 Air conditioner
EP3957925A4 (en) * 2019-04-18 2022-04-06 Mitsubishi Electric Corporation Air conditioner control device, outdoor unit, relay device, heat source unit, and air conditioner
CN111426015A (en) * 2020-04-29 2020-07-17 珠海格力电器股份有限公司 Health degree monitoring method and device for air conditioning unit and air conditioning unit
CN111426015B (en) * 2020-04-29 2021-06-01 珠海格力电器股份有限公司 Health degree monitoring method and device for air conditioning unit and air conditioning unit
CN114754467A (en) * 2022-02-28 2022-07-15 青岛海尔空调电子有限公司 Control method of multi-split system
CN114754467B (en) * 2022-02-28 2024-05-10 青岛海尔空调电子有限公司 Control method of multi-split system

Also Published As

Publication number Publication date
JP3856529B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
CN102095279B (en) Water circulation apparatus associated with refrigerant system
JP6109307B2 (en) Air conditioner
JPH10339479A (en) Air conditioner
JP7134265B2 (en) Control devices for air conditioners, outdoor units, repeaters, heat source units, and air conditioners
US20040098992A1 (en) Method for controlling noise reduction of air conditioner
JP4167083B2 (en) Air conditioner and method for controlling defrost of air conditioner
JPH0448140A (en) Air conditioner
JP3785893B2 (en) Air conditioner
JPH06337174A (en) Operation controller for air-conditioner
EP3889522A1 (en) Air conditioning device
US11852367B2 (en) Control device for air conditioning apparatus, air conditioning system, control method for air conditioning apparatus, and program
CN114893867B (en) Air conditioner control method and air conditioner
JP2011085269A (en) Air conditioner
JP2000018777A (en) Cooler/heater
WO2019159621A1 (en) Air-conditioning apparatus
JP3075978B2 (en) Air conditioner operation control method
JPH0755236A (en) Air conditioner
JP2020085317A (en) Heat pump device, air conditioner and water heating unit
JP2947254B1 (en) Multi-room air conditioner
JP6627900B2 (en) Air conditioner
JP6627899B2 (en) Air conditioner
JP3075979B2 (en) Air conditioner
JP2839066B2 (en) Heat pump defrost system
JPH0996469A (en) Air conditioner
JP2022131190A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term