JPH10338578A - Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle - Google Patents

Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle

Info

Publication number
JPH10338578A
JPH10338578A JP9164981A JP16498197A JPH10338578A JP H10338578 A JPH10338578 A JP H10338578A JP 9164981 A JP9164981 A JP 9164981A JP 16498197 A JP16498197 A JP 16498197A JP H10338578 A JPH10338578 A JP H10338578A
Authority
JP
Japan
Prior art keywords
particle size
ramming material
immersion nozzle
ramming
size range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9164981A
Other languages
Japanese (ja)
Inventor
Tomohito Kuroki
智史 黒木
Jishichi Washio
治七 鷲尾
Masataka Kato
正孝 加藤
Isao Imai
功 今井
Nobuhiro Hasebe
悦弘 長谷部
Makoto Ebina
誠 蝦名
Hisahiro Teranishi
久広 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP9164981A priority Critical patent/JPH10338578A/en
Publication of JPH10338578A publication Critical patent/JPH10338578A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6309Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ramming material excellent in corrosion resistance and packing property by preparing a refractory source material comprising one or more kinds of alumina, mullite and spinel with specified grain size according to the cloled packing grain size curve in such a manner that grains in a specified range of grain size are solid grains having a high shape coefft. SOLUTION: When the solid grains having a high shape coefft. are controlled to the range between >0.1 mm and <=3.0 mm grain size, this is effective to obtain high packing property due to decrease in rolling friction and increase in fluidity. An aluminum phosphate powder is used as a hardening agent, while a basic source powder such as a magnesia powder is used as a hardening accelerating agent. Water glass or the like is used as a binder. By controlling the grain size distribution of the refractory material to 0 to 20 wt.% of the grains having >3.0 mm grain size, 35 to 45 wt.% of the grains having <=3.0 mm and >0.1 mm grain size, and 20 to 25 wt.% of the grains having <=1.0 mm and >0.1 mm grain size, and 20 to 25 wt.% of the grains having <=0.1 mm grain size, a material according to the closed packing density curve can be obtd. The preferable shape coefft. is >=0.75.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼及び非鉄金属
の溶解に用いられる誘導炉の内張り等に用いるアルミナ
等からなるラミング材、それを用いて固定した内挿式浸
漬ノズル及びそれを用いる内挿式浸漬ノズルの固定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ramming material made of alumina or the like used for lining of an induction furnace used for melting iron and steel and non-ferrous metal, an insertion type immersion nozzle fixed using the ramming material, and an inner immersion nozzle using the same. The present invention relates to a method for fixing an insertion type immersion nozzle.

【0002】[0002]

【従来の技術】従来、この種のラミング材としては、特
公平7−42173号公報記載の誘導炉用乾式ラミング
材及び特公昭57−20268号公報記載の誘導炉用耐
火材が知られており、いずれも低周波、高周波誘導炉に
おける炉体の内張りとして用いられている。前者のラミ
ング材は、アルミナ質材料とマグネシア質材料からなる
耐火物原料、及び造粒処理した電融アルミナ中空粒を含
有するものであり、又、後者のラミング材は、粗粒、中
粒及び微粉からなるマグネシアの各粒域にアルミナを配
合し、一体に混合したものである。一方、上記従来のラ
ミング材は、充填性が低いため連続鋳造用タンディッシ
ュのノズル受けれんがに直接取り付けられる内挿式浸漬
ノズルの固定には用いられず、この内挿式浸漬ノズルの
固定は、以下のようにモルタルを用いて行われている。
すなわち、図4に示すように、ダンディッシュ31のノ
ズル受けれんが32の溶湯注出孔33の内周面にモルタ
ル34を塗布した後、図5に示すように、溶湯注出孔3
3のテーパ形状に頭部35aを合わせた内挿式浸漬ノズ
ル35をタンディッシュ31の上側よりノズル受けれん
が32の溶湯注出孔33に挿入し、図6に示すように、
モルタル34を介し頭部35aをノズル受けれんが32
に接合して固定している。なお、図4〜図6において3
6はタンディッシュ31の外殻鉄皮である。
2. Description of the Related Art Conventionally, as this type of ramming material, a dry ramming material for an induction furnace described in Japanese Patent Publication No. 7-42173 and a refractory material for an induction furnace described in Japanese Patent Publication No. 57-20268 are known. Both are used as a lining of a furnace body in a low-frequency and high-frequency induction furnace. The former ramming material contains a refractory raw material composed of an alumina material and a magnesia material, and granulated electrofused alumina hollow particles, and the latter ramming material has coarse particles, medium particles and Alumina is blended in each grain region of magnesia composed of fine powder and mixed together. On the other hand, the conventional ramming material is not used for fixing the insertion type immersion nozzle directly attached to the nozzle brick of the continuous casting tundish because of low filling property. It is performed using mortar as follows.
That is, as shown in FIG. 4, after applying the mortar 34 to the inner peripheral surface of the molten metal pouring hole 33 of the nozzle brick 32 of the dundish 31, as shown in FIG.
3 is inserted into the molten metal pouring hole 33 of the nozzle brick 32 from the upper side of the tundish 31 by inserting the insertion type immersion nozzle 35 having the head 35a in the tapered shape of FIG.
Nozzle brick 32 with head 35a through mortar 34
And fixed to it. 4 to FIG.
Reference numeral 6 denotes an outer shell of the tundish 31.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のラミン
グ材における前者の造粒処理した電融アルミナ中空粒を
用いるもので、電融アルミナ粒が中空であるために断熱
性の向上が認められ、かつ造粒処理しないものよりも耐
食性の向上が認められるものの、依然として耐食性が低
く、かつ充填性が低いという不具合がある。又、後者の
マグネシア粒とアルミナ粒からなるものでは、充填効率
が低く、所定の充填密度を得るために長時間の振動充填
を必要とする不具合がある。一方、モルタルを用いて固
定したいずれの内挿式浸漬ノズルでも、損耗した内挿式
浸漬ノズルを新たなものと交換する場合、新たなものを
所要位置に保持するため、ノズル受けれんがの溶湯注出
孔の内周面に焼き付いて付着し易いモルタルを完全に除
去する必要があるという不具合がある。モルタルを用い
る内挿式浸漬ノズルの固定方法では、塗布するモルタル
の量を一定にすることが困難であると共に、モルタル量
が異なると固定したノズルの高さ方向の位置がずれると
いう不具合があり、特に、内挿式浸漬ノズルのみを交換
し、ノズル受けれんがの多数回の使用が行われる場合、
ノズル受けれんがの損傷が進行し、内挿式浸漬ノズルと
ノズル受けれんがのテーパが合わなくなるにつれて上記
位置ずれが大きくなる傾向がある。そこで、本発明は、
耐食性と充填性に優れたラミング材、それを用いて固定
した内挿式浸漬ノズル及びそれを用いる内挿式浸漬ノズ
ルの固定方法を提供することを目的とする。
However, the former granulated alumina fused hollow particles in the conventional ramming material are used, and since the fused alumina particles are hollow, the heat insulating property is improved. Further, although an improvement in corrosion resistance is observed as compared with the case where no granulation treatment is performed, there is still a problem that the corrosion resistance is low and the filling property is low. Further, the latter, which is composed of magnesia grains and alumina grains, has a low filling efficiency and requires a long-time vibration filling to obtain a predetermined filling density. On the other hand, when replacing the worn-out interpolation type immersion nozzle with a new one using any of the insertion type immersion nozzles fixed using mortar, in order to hold the new one in the required position, the nozzle There is a problem that it is necessary to completely remove the mortar which easily sticks to the inner peripheral surface of the outlet. In the fixing method of the interpolation type immersion nozzle using mortar, it is difficult to make the amount of mortar to be applied constant, and there is a problem that the position of the fixed nozzle in the height direction is shifted when the mortar amount is different, In particular, when only the interpolation type immersion nozzle is replaced and the nozzle brick is used many times,
As the damage to the nozzle brick progresses and the taper between the insertion type immersion nozzle and the nozzle brick does not match, the above-described positional shift tends to increase. Therefore, the present invention
It is an object of the present invention to provide a ramming material excellent in corrosion resistance and filling property, an interpolation type immersion nozzle fixed using the same, and a method for fixing an interpolation type immersion nozzle using the same.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の第1のラミング材は、最密充填粒度曲線に
沿うように粒度調整されたアルミナ、ムライト及びスピ
ネルの一種以上からなる耐火物原料の3.0mm以下0.
1mmを超える粒度範囲を高形状係数の中実粒としたこと
を特徴とする。第2のラミング材は、第1のものにおい
て、硬化剤及び/又は硬化促進剤を添加したことを特徴
とする。第3のラミング材は、第1又は第2のものにお
いて、結合剤を添加したことを特徴とする。第4のラミ
ング材は、第1、第2又は第3のものにおいて、前記耐
火物原料の粒度分布が、3.0mm以下0.1mmを超える
粒度範囲20〜60wt%、0.1mm以下の粒度範囲残部
であることを特徴とする。第5のラミング材は、第1、
第2、第3又は第4のものにおいて、前記耐火物原料の
粒度分布が、3.0mmを超える粒度範囲0〜20wt%、
3.0mm以下1.0mmを超える粒度範囲35〜45wt
%、1.0mm以下0.1mmを超える粒度範囲20〜25
wt%、0.1mm以下の粒度範囲20〜25wt%であるこ
とを特徴とする。第6のラミング材は、第1、第2、第
3、第4又は第5のものにおいて、前記形状係数が、
0.7以上であることを特徴とする。第7のラミング材
は、第1、第2、第3、第4、第5又は第6のものにお
いて、前記中実粒が、球状アルミナであることを特徴と
する。又、第8のラミング材は、30〜40wt%が最密
充填粒度曲線に沿うように粒度調整されたアルミナ、ム
ライト及びスピネルの一種以上からなる耐火物原料の
3.0mm以下0.1mmを超える粒度範囲の高形状係数の
中実粒、残部が上記耐火物原料の0.1mm以下の粒度範
囲、リン酸アルミニウム粉末及びマグネシア粉末からな
ることを特徴とする。一方、ラミング材を用いて固定し
た内挿式浸漬ノズルは、タンディッシュのノズル受けれ
んがの溶湯注出孔の所要位置に頭部を挿入した連続鋳造
用の内挿式浸漬ノズルを、第2、第3、第4、第5、第
6、第7又は第8のラミング材を介してノズル受けれん
がと接合したことを特徴とする。他方、ラミング材を用
いる内挿式浸漬ノズルの固定方法は、タンディッシュの
ノズル受けれんがの溶湯注出孔に頭部を挿入して所要位
置に保持し、溶湯注出孔の下端部を2分割の鍔付きリン
グ金物で閉鎖した後、溶湯注出孔に第2、第3、第4、
第5、第6、第7又は第8のラミング材を充填すること
を特徴とする。
In order to solve the above-mentioned problems, a first ramming material of the present invention comprises a refractory material comprising at least one of alumina, mullite, and spinel whose particle size has been adjusted along a close-packed particle size curve. 3.0 mm or less of the raw material
It is characterized in that a particle size range exceeding 1 mm is a solid particle having a high shape factor. The second ramming material is characterized in that, in the first material, a curing agent and / or a curing accelerator is added. The third ramming material is characterized in that a binder is added to the first or second material. The fourth ramming material may be any one of the first, second and third refractory materials, wherein the refractory raw material has a particle size distribution of 20 to 60 wt% in a particle size range of 3.0 mm or more and more than 0.1 mm, and a particle size of 0.1 mm or less. The remaining part of the range is characterized. The fifth ramming material is the first,
In the second, third or fourth embodiment, the particle size distribution of the refractory raw material is from 0 to 20% by weight in a particle size range exceeding 3.0 mm,
Particle size range 35 to 45 wt.
%, Particle size range of 20 to 25, not more than 1.0 mm and more than 0.1 mm
It is characterized by a particle size range of 20 to 25% by weight of 0.1% or less. The sixth ramming material is the first, second, third, fourth or fifth material, wherein the shape factor is:
0.7 or more. The seventh ramming material is the first, second, third, fourth, fifth or sixth material, wherein the solid grains are spherical alumina. Further, the eighth ramming material is a refractory material composed of at least one of alumina, mullite and spinel whose particle size has been adjusted so that 30 to 40% by weight is along the closest packed particle size curve. It is characterized in that solid particles having a high shape factor in the particle size range, and the remainder comprises a particle size range of 0.1 mm or less of the refractory raw material, aluminum phosphate powder and magnesia powder. On the other hand, the insertion type immersion nozzle fixed by using a ramming material is an insertion type immersion nozzle for continuous casting in which a head is inserted at a required position of a molten metal pouring hole of a nozzle receptacle of a tundish, a second, It is characterized in that it is joined to the nozzle receiving brick via a third, fourth, fifth, sixth, seventh or eighth ramming material. On the other hand, the method of fixing the insertion type immersion nozzle using the ramming material is to insert the head into the melt pouring hole of the nozzle brick of the tundish, hold it at a required position, and divide the lower end of the melt pouring hole into two parts. After closing with the flanged ring hardware, the second, third, fourth,
It is characterized in that a fifth, sixth, seventh or eighth ramming material is filled.

【0005】高形状係数の中実粒を3.0mm以下0.1
mmを超える粒度範囲に用いることによって、転がり抵抗
の軽減による流動性の向上により、高充填性を得るため
に最も有効であり、この粒度範囲外に高形状係数の中実
粒を用いても高充填性を得ることは困難である。硬化剤
としては、リン酸アルミニウム粉末が用いられ、又、硬
化促進剤としては、マグネシア(MgO)粉末等の塩基
性原料粉末が用いられる。結合剤としては、水ガラス
(けい酸ソーダ)等が用いられる。耐火物原料の粒度分
布を、3.0mm以下0.1mmを超える粒度範囲20〜6
0wt%、0.1mm以下の粒度範囲残部とすることによ
り、必要十分な充填密度を得ることができる。上各粒度
範囲の配合比より外れると、所定の充填密度を得ること
ができなくなる。耐火物原料の粒度分布を、3.0mmを
超える粒度範囲0〜20wt%、3.0mm以下1.0mmを
超える粒度範囲35〜45wt%、1.0mm以下0.1mm
を超える粒度範囲20〜25wt%、0.1mm以下の粒度
範囲20〜25wt%とすることにより、Furnasらが提唱
する最密充填密度曲線に沿うようになり、上記各粒度範
囲の配合比より外れると、充填性の悪化が生じる。中実
粒の形状係数(比表面積形状係数)が0.7未満である
と、転がり抵抗が増大してラミング材の初期充填密度が
小さくなり、長時間の振動充填を必要とする。好ましい
形状係数は、0.75以上である。30〜40wt%が最
密充填粒度曲線に沿うように粒度調整されたアルミナ、
ムライト及びスピネルの一種以上からなる耐火物原料の
3.0mm以下0.1mmを超える粒度範囲の高形状係数の
中実粒、残部が上記耐火物原料の0.1mm以下の粒度範
囲、リン酸アルミニウム粉末及びマグネシア粉末からな
るようにすることにより、必要十分な充填密度を得るこ
とができる。上記配合比から外れると、充填性の悪化が
生じる。ラミング材を用いる内挿式浸漬ノズルの固定に
際しては、溶湯注出孔にラミング材を充填した後、11
0℃以上の温度で加熱することが好ましい。より好まし
い加熱温度は、200℃である。
[0005] Solid grains having a high shape factor of 3.0 mm or less
It is most effective to obtain high filling properties by using a particle size range exceeding mm to improve the flowability by reducing the rolling resistance. It is difficult to obtain fillability. Aluminum phosphate powder is used as a curing agent, and basic raw material powder such as magnesia (MgO) powder is used as a curing accelerator. Water glass (sodium silicate) or the like is used as the binder. The particle size distribution of the refractory raw material is from 3.0 mm to 0.1 mm, and the particle size range is 20 to 6 mm.
By setting 0 wt% and the remainder of the particle size range of 0.1 mm or less, a necessary and sufficient packing density can be obtained. If the ratio is out of the above range, it becomes impossible to obtain a predetermined packing density. The particle size distribution of the refractory raw material is 0 to 20 wt% in a particle size range exceeding 3.0 mm, 35 to 45 wt% in a particle size range exceeding 3.0 mm or less and 1.0 mm or less and 0.1 mm or less.
A particle size range of 20 to 25 wt% exceeding 0.1 mm and a particle size range of 20 to 25 wt% of 0.1 mm or less allows the powder to conform to the closest packing density curve proposed by Furnas et al. Then, the filling property deteriorates. When the shape factor (specific surface area shape factor) of the solid grains is less than 0.7, the rolling resistance increases, the initial packing density of the ramming material decreases, and long-time vibration filling is required. A preferred shape factor is 0.75 or more. Alumina whose particle size has been adjusted so that 30 to 40% by weight is along a close-packed particle size curve,
Solid particles having a high shape factor in the particle size range of 3.0 mm or less and 0.1 mm or more of refractory raw material composed of at least one of mullite and spinel, and the remainder being the particle size range of 0.1 mm or less of the refractory raw material, aluminum phosphate By using powder and magnesia powder, a necessary and sufficient packing density can be obtained. If the ratio is out of the above range, the filling property is deteriorated. When fixing the insertion type immersion nozzle using the ramming material, after filling the molten metal pouring hole with the ramming material,
It is preferable to heat at a temperature of 0 ° C. or higher. A more preferred heating temperature is 200 ° C.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て具体的な実施例、比較例及び図表等を参照して説明す
る。表1、2に示す各粒度範囲に、高形状係数の中実粒
として形状係数0.75の球状アルミナを用いると共
に、通常の中実粒として形状係数0.65の焼結アルミ
ナを用いてアルミナ耐火物原料からなる各ラミング材を
得た。表1、2において、5−3mmは5mm以下3mmを超
える粒度範囲、3−1mmは3mm以下1mmを超える粒度範
囲、1−0.1mmは1mm以下0.1mmを超える粒度範
囲、0.1mm−は0.1mm以下の粒度範囲を表わす。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to specific examples, comparative examples, figures and tables. In each of the particle size ranges shown in Tables 1 and 2, a spherical alumina having a shape coefficient of 0.75 was used as solid particles having a high shape coefficient, and a sintered alumina having a shape coefficient of 0.65 was used as ordinary solid particles. Each ramming material consisting of refractory raw materials was obtained. In Tables 1 and 2, 5-3 mm is a particle size range of 5 mm or more and more than 3 mm, 3-1 mm is a particle size range of 3 mm or more and more than 1 mm, 1-0.1 mm is a particle size range of 1 mm or less and more than 0.1 mm, 0.1 mm− Represents a particle size range of 0.1 mm or less.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【表2】 [Table 2]

【0009】得られた各ラミング材について、JIS−
R2574によりワーカビリティー評価を行い、初期充
填密度、振動充填10回後の充填密度及び振動充填10
0回後の充填密度に係る充填性について評価したとこ
ろ、表1、2に示すようになった。表1、2から、本発
明に係るラミング材は、従来例や比較例のものに較べて
著しく充填密度が向上していることがわかる。又、本発
明品を500kg高周波誘導炉の内張りとして用い、S4
5Cの溶解を行う実機試験に供したところ、表3に示す
ように、従来品が150chの使用において損耗が激し
く、耐用不能になったのに対し、250chの使用が可能
であった。
[0009] For each of the obtained ramming materials, JIS-
Workability was evaluated by R2574, and the initial packing density, the packing density after 10 times of vibration filling, and the vibration filling 10
Tables 1 and 2 show the results of evaluation of the packing property relating to the packing density after 0 times. From Tables 1 and 2, it can be seen that the packing density of the ramming material according to the present invention is remarkably improved as compared with those of the conventional example and the comparative example. The product of the present invention was used as a lining for a 500 kg high frequency induction furnace,
When subjected to an actual machine test for dissolving 5C, as shown in Table 3, the conventional product was severely abraded when used in 150 channels and became unusable, whereas 250 channels could be used.

【0010】[0010]

【表3】 [Table 3]

【0011】図1は本発明に係るラミング材を用いて固
定した内挿式浸漬ノズルの実施の形態の一例を示す断面
図である。連続鋳造に用いられる内挿式浸漬ノズル1
は、タンディッシュ2におけるノズル受けれんが3の溶
湯注出孔4の所要位置に挿入した頭部1aを、その外周
面と溶湯注出孔4の内周面との間に充填したラミング材
5を介してノズル受けれんが3と接合して固定されてい
る。ラミング材5は、前述したように最密充填粒度曲線
に沿うように粒度調整されたアルミナ耐火物原料の3.
0mm以下0.1mmを超える粒度範囲を形状係数0.75
の中実の球状アルミナとした実施例1のものに、硬化剤
としてリン酸アルミニウム粉末を適量添加し、かつ室温
から必要な強度を発現できるように、硬化促進剤として
マグネシア粉末を適量添加したものである。図1におい
て6はタンディッシュ2の外殻鉄皮、7は溶湯注出孔4
の下端部を閉鎖した2分割の鍔付きリング金物である。
しかして、ラミング材5を用いて内挿式浸漬ノズル1を
タンディッシュ2に固定するには、内挿式浸漬ノズル1
の吐出部(図示せず)の外径寸法がタンディッシュ2の
ノズル受けれんが3の溶湯注出孔4の内径より大きい場
合、図2に示すように、タンディッシュ2の下側よりノ
ズル受けれんが3の溶湯注出孔4に、内挿式浸漬ノズル
1の頭部1aを挿入して所要位置に保持し、かつ図3に
示すように、溶湯注出孔4の下端部を2分割の鍔付きリ
ング金物7で閉鎖した後、図1に示すように、内挿式浸
漬ノズル1の頭部1aとノズル受けれんが3との間の溶
湯注出孔4にラミング材5を充填し、突き棒(図示せ
ず)で軽く突き固めることによってなされる。なお、内
挿式浸漬ノズル1の吐出部の外径寸法がノズル受けれん
が3の溶湯注出孔4の内径寸法と同等以下で、吐出部の
テーパを溶湯注出孔4のテーパに合わせた場合は、内挿
式浸漬ノズル1をタンディッシュ2の上側からノズル受
けれんが3の溶湯注出孔4に挿入し、その頭部1aを所
要位置に保持してラミング材5で同様に固定するもので
ある。上述したように、ラミング材5を用いて固定した
内挿式浸漬ノズル1を熱風で200℃の温度まで加熱し
た後、内挿式浸漬ノズル1の頭部1aに、ストッパー
(図示せず)を押し当てて80kg/cm2の荷重を掛け、内
挿式浸漬ノズル1の吐出部(図示せず)の変位を測定し
たところ、殆ど変化しないことを確認した。比較のた
め、最密充填粒度曲線に沿うように粒度調整されたアル
ミナ耐火物原料の3.0mm以下0.1mmを超える粒度範
囲を形状係数0.65の中実の電融アルミナとした比較
例1のものに、リン酸アルミニウム粉末とマグネシア粉
末を添加したラミング材を用いて内挿式浸漬ノズルを同
様に固定し、かつ同様に熱風で加熱した後、同様にスト
ッパーで荷重を掛けたところ、内挿式浸漬ノズルの吐出
部の下方へのズレと横方向へのズレが確認された。又、
比較のため、リン酸アルミニウム粉末とマグネシア粉末
を添加することなく、実施例のラミング材を用いて内挿
式浸漬ノズルを同様に固定し、かつ同様に熱風で加熱し
た後、同様にストッパーで荷重を掛けたところ、内挿式
浸漬ノズルの吐出部の下方へのズレと横方向へのズレが
確認された。したがって、内挿式浸漬ノズル1の固定に
用いるラミング材としては、最密充填粒度曲線に沿うよ
うに粒度調整されたアルミナ耐火物原料の3.0mm以下
0.1mmを超える粒度範囲を高形状係数の球状アルミナ
とし、かつこれに硬化剤及び硬化促進剤を添加したもの
が好ましいことがわかる。
FIG. 1 is a sectional view showing an example of an embodiment of an insertion type immersion nozzle fixed using a ramming material according to the present invention. Interpolated immersion nozzle 1 used for continuous casting
Is a ramming material 5 in which a head 1a inserted into a required position of a molten metal pouring hole 4 of a nozzle brick 3 in a tundish 2 is filled between an outer peripheral surface thereof and an inner peripheral surface of the molten metal pouring hole 4. The nozzle brick is joined and fixed via the nozzle brick 3. The ramming material 5 is an alumina refractory raw material whose particle size has been adjusted to conform to the close-packed particle size curve as described above.
A shape factor of 0.75 for a particle size range of 0 mm or more and more than 0.1 mm
In Example 1, a solid spherical alumina was added with an appropriate amount of aluminum phosphate powder as a hardening agent, and an appropriate amount of magnesia powder was added as a hardening accelerator so that the required strength could be exhibited from room temperature. It is. In FIG. 1, reference numeral 6 denotes an outer shell of the tundish 2 and 7 denotes a molten metal pouring hole 4.
Is a two-piece flanged ring hardware with its lower end closed.
In order to fix the interpolation type immersion nozzle 1 to the tundish 2 using the ramming material 5, the interpolation type immersion nozzle 1
In the case where the outer diameter of the discharge portion (not shown) of the tundish 2 is larger than the inner diameter of the melt pouring hole 4 of the tundish 2, as shown in FIG. 3, the head 1a of the insertion type immersion nozzle 1 is inserted and held at a required position, and the lower end of the melt pouring hole 4 is divided into two parts as shown in FIG. After closing with a metal ring 7, as shown in FIG. 1, a ramming material 5 is filled into a molten metal pouring hole 4 between a head 1a of an insertion type immersion nozzle 1 and a nozzle receiver 3, and (Not shown) by lightly tamping. In addition, when the outer diameter of the discharge part of the insertion type immersion nozzle 1 is equal to or less than the inner diameter of the molten metal discharge hole 4 of the nozzle brick 3 and the taper of the discharge part is adjusted to the taper of the molten metal discharge hole 4. Is a method in which an insertion type immersion nozzle 1 is inserted into a molten metal pouring hole 4 of a nozzle brick 3 from above a tundish 2, and its head 1a is held at a required position and similarly fixed with a ramming material 5. is there. As described above, after the insertion type immersion nozzle 1 fixed using the ramming material 5 is heated to a temperature of 200 ° C. by hot air, a stopper (not shown) is attached to the head 1 a of the insertion type immersion nozzle 1. When a load of 80 kg / cm 2 was applied by pressing and the displacement of the discharge section (not shown) of the intercalating immersion nozzle 1 was measured, it was confirmed that there was almost no change. For comparison, a comparative example in which a particle size range of 3.0 mm or less and more than 0.1 mm of the alumina refractory raw material whose particle size was adjusted to conform to the close-packed particle size curve was a solid fused alumina having a shape factor of 0.65. 1 was fixed in the same way by using a ramming material to which aluminum phosphate powder and magnesia powder were added, and after being heated by hot air in the same manner and then similarly loaded with a stopper, A downward displacement and a lateral displacement of the discharge part of the interpolating immersion nozzle were confirmed. or,
For comparison, without adding aluminum phosphate powder and magnesia powder, fix the insertion type immersion nozzle in the same way using the ramming material of the example, and also heat it with hot air, then load it with the stopper in the same way. As a result, a downward displacement and a lateral displacement of the discharge portion of the interpolating immersion nozzle were confirmed. Therefore, as a ramming material used for fixing the interpolation type immersion nozzle 1, a particle size range of 3.0 mm or less and 0.1 mm or more of the alumina refractory raw material whose particle size has been adjusted along the close-packed particle size curve is set to a high shape factor. It can be seen that the spherical alumina of the above, and a curing agent and a curing accelerator added thereto are preferable.

【0012】なお、上述した実施の形態においては、耐
火物原料をアルミナとする場合について説明したが、こ
れに限定されるものではない、アルミナ成分を含有する
ムライトやスピネル等の場合も同様の効果が得られる。
又、耐火物原料に硬化剤と硬化促進剤の両方を含有させ
る場合に限らず、いずれか一方が含有されていてもよ
く、かつ硬化剤及び/又は硬化促進剤に加えて水ガラス
等の結合剤を添加してもよい。
In the above-described embodiment, the case where alumina is used as the refractory material has been described. However, the present invention is not limited to this, and the same effect can be obtained when mullite or spinel containing an alumina component is used. Is obtained.
Further, the present invention is not limited to the case where both the curing agent and the curing accelerator are contained in the refractory raw material, and either one of them may be contained and, in addition to the curing agent and / or the curing accelerator, the bonding of water glass or the like. An agent may be added.

【0013】[0013]

【発明の効果】以上説明したように、本発明の第1のラ
ミング材によれば、耐火物原料の全てが中実粒であるの
で、従来に比べて耐食性を高めることができると共に、
耐火物原料の3.0mm以下0.1mmを超える粒度範囲の
転がり抵抗が極めて小さくなるので、従来に比べて初期
充填密度が格段に高まり、充填性を大幅に高めることが
できる。第2のラミング材によれば、第1のものの作用
効果の他、室温から必要な強度を発現することができ、
又、加熱後は十分な硬化強度を得ることができ、ひいて
は内挿式浸漬ノズルを短時間で正確な位置に固定するこ
とができる。第3のラミング材によれば、第1又は第2
のものの作用効果の他、硬化強度を一層高めることがで
きる。第4のラミング材によれば、第1、第2又は第3
のものの作用効果の他、3.0mmを超える粒度範囲の耐
火物原料を含まないので、幅の狭い処への充填を行うこ
とができる。第5のラミング材によれば、第1、第2、
第3又は第4のものの作用効果の他、3.0mmを超える
粒度範囲の耐火物原料をも含むので、比較的厚いライニ
ング若しくは幅の広い処への充填を行うことができる。
第6のラミング材によれば、第1、第2、第3、第4又
は第5のものの作用効果の他、初期充填密度を従来の1
5〜20%増とすることができる。第7のラミング材に
よれば、第1、第2、第3、第4、第5又は第6のもの
の作用効果の他、耐食性を一層高めることができる。
又、第8のラミング材によれば、内挿式浸漬ノズルの固
定を短時間で正確に行うことができる。一方、本発明の
ラミング材を用いて固定した内挿式浸漬ノズルによれ
ば、使用後に新たな内挿式浸漬ノズルを固定する場合に
も、多少モルタルが付着していても、そのままでは所要
位置に正確に固定できる。他方、本発明のラミング材を
用いる内挿式浸漬ノズルの固定方法によれば、ラミング
材が充填性と硬化性に優れているので、ランマー等の突
き固め装置を必要とすることなく、容易かつ正確に位置
決め固定できると共に、室温から必要な強度を発現する
ので、短時間に固定することができる。
As described above, according to the first ramming material of the present invention, since all of the refractory raw materials are solid grains, the corrosion resistance can be improved as compared with the prior art, and
Since the rolling resistance of the refractory raw material in the particle size range of 3.0 mm or more and more than 0.1 mm is extremely small, the initial packing density is remarkably increased as compared with the related art, and the filling property can be greatly improved. According to the second ramming material, in addition to the function and effect of the first ramming material, necessary strength can be expressed from room temperature,
In addition, a sufficient curing strength can be obtained after heating, and thus the insertion type immersion nozzle can be fixed at an accurate position in a short time. According to the third ramming material, the first or the second
In addition to the effects of the above, the curing strength can be further increased. According to the fourth ramming material, the first, second, or third
In addition to the functions and effects of the above, since it does not contain a refractory raw material having a particle size range exceeding 3.0 mm, it can be filled in a narrow place. According to the fifth ramming material, the first, second,
In addition to the effects of the third and fourth aspects, since refractory raw materials having a particle size range of more than 3.0 mm are also included, relatively thick lining or filling in a wide area can be performed.
According to the sixth ramming material, in addition to the effects of the first, second, third, fourth, or fifth materials, the initial packing density can be reduced by the conventional one.
It can be increased by 5 to 20%. According to the seventh ramming material, the corrosion resistance can be further enhanced in addition to the effects of the first, second, third, fourth, fifth, or sixth materials.
Further, according to the eighth ramming material, it is possible to accurately fix the insertion type immersion nozzle in a short time. On the other hand, according to the interpolation type immersion nozzle fixed by using the ramming material of the present invention, even when a new interpolation type immersion nozzle is fixed after use, even if mortar is slightly adhered, the required position is maintained as it is. Can be fixed accurately. On the other hand, according to the method of fixing the insertion type immersion nozzle using the ramming material of the present invention, since the ramming material is excellent in fillability and curability, it is easy and easy to use without the need for a ramming device such as a rammer. Since it can be accurately positioned and fixed and develops the required strength from room temperature, it can be fixed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るラミング材を用いて固定した内挿
式浸漬ノズルの実施の形態の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of an insertion type immersion nozzle fixed using a ramming material according to the present invention.

【図2】本発明に係るラミング材を用いる内挿式浸漬ノ
ズルの固定方法の実施の形態の一例を示す第1工程の断
面図である。
FIG. 2 is a sectional view of a first step showing an example of an embodiment of a method for fixing an insertion type immersion nozzle using a ramming material according to the present invention.

【図3】本発明に係るラミング材を用いる内挿式浸漬ノ
ズルの固定方法の実施の形態の一例を示す第2工程の断
面図である。
FIG. 3 is a sectional view of a second step showing an example of an embodiment of a method of fixing an insertion type immersion nozzle using a ramming material according to the present invention.

【図4】従来の内挿式浸漬ノズルの固定方法の第1工程
の断面図である。
FIG. 4 is a cross-sectional view of a first step of a conventional method of fixing an insertion type immersion nozzle.

【図5】従来の内挿式浸漬ノズルの固定方法の第2工程
の断面図である。
FIG. 5 is a cross-sectional view of a second step of a conventional method of fixing an insertion type immersion nozzle.

【図6】従来の内挿式浸漬ノズルの固定方法の第3工程
の断面図である。
FIG. 6 is a cross-sectional view of a third step in a conventional method of fixing an insertion type immersion nozzle.

【符号の説明】[Explanation of symbols]

1 内挿式浸漬ノズル 1a 頭部 2 タンディッシュ 3 ノズル受けれんが 4 溶湯注出孔 5 ラミング材 DESCRIPTION OF SYMBOLS 1 Internal immersion nozzle 1a Head 2 Tundish 3 Nozzle brick 4 Melt pouring hole 5 Ramming material

フロントページの続き (72)発明者 今井 功 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 (72)発明者 長谷部 悦弘 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 (72)発明者 蝦名 誠 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 (72)発明者 寺西 久広 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内Continued on the front page (72) Inventor Isao Imai 1 Minami Fuji, Ogakie-cho, Kariya City, Aichi Prefecture Toshiba Ceramics Co., Ltd. (72) Inventor Etsuhiro Hasebe 1 Minami Fuji, Ogakie-cho, Kariya City, Aichi Prefecture Ceramics Kariya Works Co., Ltd. (72) Inventor Makoto Ebina 1 Minami Fuji, Ogakie-cho, Kariya City, Aichi Prefecture Toshiba Ceramics Co., Ltd. Kariya Works Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 最密充填粒度曲線に沿うように粒度調整
されたアルミナ、ムライト及びスピネルの一種以上から
なる耐火物原料の3.0mm以下0.1mmを超える粒度範
囲を高形状係数の中実粒としたことを特徴とするラミン
グ材。
1. A refractory raw material comprising at least one of alumina, mullite, and spinel whose particle size has been adjusted to conform to a close-packed particle size curve. A ramming material characterized by being granulated.
【請求項2】 硬化剤及び/又は硬化促進剤を添加した
ことを特徴とする請求項1記載のラミング材。
2. The ramming material according to claim 1, wherein a curing agent and / or a curing accelerator is added.
【請求項3】 結合剤を添加したことを特徴とする請求
項1又は2記載のラミング材。
3. The ramming material according to claim 1, further comprising a binder.
【請求項4】 前記耐火物原料の粒度分布が、3.0mm
以下0.1mmを超える粒度範囲20〜60wt%、0.1
mm以下の粒度範囲残部であることを特徴とする請求項
1、2又は3記載のラミング材。
4. The refractory raw material has a particle size distribution of 3.0 mm.
The particle size range of 20 to 60 wt% exceeding 0.1 mm below, 0.1
The ramming material according to claim 1, 2 or 3, wherein the remainder is a particle size range of not more than mm.
【請求項5】 前記耐火物原料の粒度分布が、3.0mm
を超える粒度範囲0〜20wt%、3.0mm以下1.0mm
を超える粒度範囲35〜45wt%、1.0mm以下0.1
mmを超える粒度範囲20〜25wt%、0.1mm以下の粒
度範囲20〜25wt%であることを特徴とする請求項
1、2、3又は4記載のラミング材。
5. The refractory raw material has a particle size distribution of 3.0 mm.
Particle size range of 0 to 20 wt%, 3.0 mm or less 1.0 mm
Particle size range 35 to 45 wt%, 1.0 mm or less 0.1
5. The ramming material according to claim 1, wherein the ramming material has a particle size range of 20 to 25 wt% exceeding 0.1 mm and a particle size range of 20 to 25 wt% of 0.1 mm or less.
【請求項6】 前記形状係数が、0.7以上であること
を特徴とする請求項1、2、3、4又は5記載のラミン
グ材。
6. The ramming material according to claim 1, wherein the shape factor is 0.7 or more.
【請求項7】 前記中実粒が、球状アルミナであること
を特徴とする請求項1、2、3、4、5又は6記載のラ
ミング材。
7. The ramming material according to claim 1, wherein the solid particles are spherical alumina.
【請求項8】 30〜40wt%が最密充填粒度曲線に沿
うように粒度調整されたアルミナ、ムライト及びスピネ
ルの一種以上からなる耐火物原料の3.0mm以下0.1
mmを超える粒度範囲の高形状係数の中実粒、残部が上記
耐火物原料の0.1mm以下の粒度範囲、リン酸アルミニ
ウム粉末及びマグネシア粉末からなることを特徴とする
ラミング材。
8. A refractory raw material comprising at least 30% by weight of one or more of alumina, mullite and spinel whose particle size has been adjusted to conform to a close-packed particle size curve.
A ramming material characterized by a solid grain having a high shape factor having a particle size range of more than 1 mm, and a balance comprising a particle size range of 0.1 mm or less of the refractory raw material, aluminum phosphate powder and magnesia powder.
【請求項9】 タンディッシュのノズル受けれんがの溶
湯注出孔の所要位置に頭部を挿入した連続鋳造用の内挿
式浸漬ノズルを、請求項2、3、4、5、6、7又は8
記載のラミング材を介してノズル受けれんがと接合した
ことを特徴とするラミング材を用いて固定した内挿式浸
漬ノズル。
9. An insertion type immersion nozzle for continuous casting, wherein a head is inserted at a required position of a molten metal pouring hole of a tundish nozzle receiving brick. 8
An insertion type immersion nozzle fixed by using a ramming material, which is joined to a nozzle receiving brick via the ramming material described.
【請求項10】 タンディッシュのノズル受けれんがの
溶湯注出孔に連続鋳造用の内挿式浸漬ノズルの頭部を挿
入して所要位置に保持し、溶湯注出孔の下端部を2分割
の鍔付きリング金物で閉鎖した後、溶湯注出孔に請求項
2、3、4、5、6、7又は8記載のラミング材を充填
することを特徴とするラミング材を用いる内挿式浸漬ノ
ズルの固定方法。
10. The head of an insertion type immersion nozzle for continuous casting is inserted into the molten metal pouring hole of the nozzle brick of the tundish and held at a required position, and the lower end of the molten metal pouring hole is divided into two parts. An injection type immersion nozzle using a ramming material, characterized by filling the molten metal pouring hole with the ramming material according to claim 2, after closing with a flanged ring hardware. How to fix.
JP9164981A 1997-06-06 1997-06-06 Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle Pending JPH10338578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9164981A JPH10338578A (en) 1997-06-06 1997-06-06 Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9164981A JPH10338578A (en) 1997-06-06 1997-06-06 Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle

Publications (1)

Publication Number Publication Date
JPH10338578A true JPH10338578A (en) 1998-12-22

Family

ID=15803573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9164981A Pending JPH10338578A (en) 1997-06-06 1997-06-06 Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle

Country Status (1)

Country Link
JP (1) JPH10338578A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8366990B2 (en) 2009-01-15 2013-02-05 Indref Oy Repairable slide shutter plate and/or bottom nozzle brick and methods for the manufacture and repair of a repairable slide shutter plate and/or bottom nozzle brick
CN105436495A (en) * 2015-11-26 2016-03-30 武汉钢铁(集团)公司 Tundish and tundish water gap impervious steel installing method
CN109834252A (en) * 2019-04-01 2019-06-04 山东钢铁集团日照有限公司 A method of improving ladle upper nozzle service life
JP2019171401A (en) * 2018-03-27 2019-10-10 黒崎播磨株式会社 Interior body and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8366990B2 (en) 2009-01-15 2013-02-05 Indref Oy Repairable slide shutter plate and/or bottom nozzle brick and methods for the manufacture and repair of a repairable slide shutter plate and/or bottom nozzle brick
CN105436495A (en) * 2015-11-26 2016-03-30 武汉钢铁(集团)公司 Tundish and tundish water gap impervious steel installing method
JP2019171401A (en) * 2018-03-27 2019-10-10 黒崎播磨株式会社 Interior body and method for producing the same
CN109834252A (en) * 2019-04-01 2019-06-04 山东钢铁集团日照有限公司 A method of improving ladle upper nozzle service life

Similar Documents

Publication Publication Date Title
JP3200378B2 (en) Nozzle for continuous casting of aluminum killed steel
JPH10338578A (en) Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle
EP0051910A1 (en) A vessel for molten metal
EP0434421B1 (en) Protective layer for linings in metallurgical furnaces and the like
CA1269405A (en) Refractory compositions
WO1993017983A1 (en) Vibratable refractory composition
JP2556786B2 (en) Bake repair material and kiln furnace bake repair method using the bake repair material
JPH08175878A (en) Alumina-magnesia-based casting material
JPH05178675A (en) Castable refractory
JPH0587469B2 (en)
JPH07267745A (en) Refractory for flowed-in forming
JPS63311081A (en) Dry type ramming material for crucible type induction furnace
JPH0952169A (en) Refractory for tuyere of molten steel container
JP2704249B2 (en) Basic amorphous refractories for induction furnaces
JPH086230Y2 (en) Crucible induction furnace for melting cast iron and special steel
JPS5915115B2 (en) Alumina-chromium vibration molding material
JPS608988B2 (en) Immersion nozzle composition for casting
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JPH0680477A (en) Monolithic refractory for laying on ladle
JPS62182156A (en) Refractory composition for sliding nozzle and formation thereof
JPH072573A (en) Alumina-magnesia amorphous refractory
JP2000119061A (en) Nonburnt high-alumina-based brick for high-alloy metal ingotting use
JPH05124873A (en) Castable refractories
JP2019210180A (en) Fireproof material for low melting point nonferrous metal