JPH10338356A - Bulk material stack shape measuring method and bulk material stack storage quantity computing method - Google Patents

Bulk material stack shape measuring method and bulk material stack storage quantity computing method

Info

Publication number
JPH10338356A
JPH10338356A JP15254897A JP15254897A JPH10338356A JP H10338356 A JPH10338356 A JP H10338356A JP 15254897 A JP15254897 A JP 15254897A JP 15254897 A JP15254897 A JP 15254897A JP H10338356 A JPH10338356 A JP H10338356A
Authority
JP
Japan
Prior art keywords
bulk
pile
shape
bulk material
reclaimer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15254897A
Other languages
Japanese (ja)
Inventor
Hiroto Masuda
洋人 増田
Hideyuki Suwa
秀行 諏訪
Shuzo Uno
修三 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP15254897A priority Critical patent/JPH10338356A/en
Publication of JPH10338356A publication Critical patent/JPH10338356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bulk material stack shape measuring method and a bulk material stack storage quantity computing method that can indexing the shape of a bulk material stack in a storage yard in order to completely automate the operation of a reclaimer for digging and delivery bulk material and can measure the storage quantity of bulk material for a cargo handling plan, stock-taking, and the like with high accuracy, at high speed and at low cost. SOLUTION: A distance measuring device 90 provided with vertical oscillating mechanism is installed at the tip of a boom 36 of a reclaimer 34 used to dig a bulk material stack stacked in a storage yard. The boom 36 of the reclaimer 34 is put in turning action in an opposed position to the dug face 80 of the bulk material stack 10 after digging, and the distance measuring device is put in vertically oscillating action to measure the distance to the dug face 80. The three-dimensional shape of the dug face 80 is then measured on the basis of the measured distance to the dug face 80. The three-dimensional shape of the dug face 80 can therefore be measured with high accuracy, and a digging start spot and dug face shape are detected from the shape of the dug face 80 so as to be able to completely automate the operation of the reclaimer 34. The whole shape can be detected using the initial data of the stack.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はばら物積山形状測定
方法及びばら物積山貯蓄量算出方法に係り、特に、石
炭、工業塩、石灰石等のばら物の貯蔵ヤードに積み付け
られたばら物積山の形状及び貯蓄量を測定算出するばら
物積山形状測定方法及びばら物積山貯蓄量算出方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the shape of a pile of bulk materials and a method for calculating a stored amount of bulk piles, and more particularly to a bulk pile piled up in a storage yard for bulk materials such as coal, industrial salt and limestone. The present invention relates to a bulk pile shape measuring method for measuring and calculating a shape and a saving amount of a pile, and a bulk pile saving amount calculating method.

【0002】[0002]

【従来の技術】従来、石炭、工業塩、石灰石等のばら物
の貯蔵ヤードに積み上げられたばら物を払い出しするリ
クレーマは、レール上を走行する本体と、旋回部分から
構成され、旋回部分はブームと先端部のばら物かき込装
置からなる。ばら物かき込装置として例えば多数のバケ
ツをもつホイール式(バケットホイール)が使用されて
おり、貯蔵ヤードに積み上げられたばら物は、バケット
ホイールでブーム内部を通るベルトコンベヤに載せら
れ、本体のシュートを経て地上に設置されたベルトコン
ベヤで運ばれる。
2. Description of the Related Art Conventionally, a reclaimer for dispensing bulk materials piled up in a storage yard for bulk materials such as coal, industrial salt, limestone and the like is composed of a main body running on rails and a turning portion, and the turning portion is a boom. And a bulking device at the tip. For example, a wheel type (bucket wheel) having a large number of buckets is used as a bulking device, and bulk materials stacked in a storage yard are placed on a belt conveyor that passes through the inside of a boom by a bucket wheel, and a chute of a main body is taken. And transported by a belt conveyor installed on the ground.

【0003】従来、貯蔵ヤードに積み上げられたばら物
の上記リクレーマによる払い出し作業は、ITV(産業
用テレビジョン)を使用した運転員の目視による遠隔手
動操作により行われていた。その操作手順を説明する
と、まず、ばら物積山の初期状態から手動によりばら物
積山の頂点付近の掘削開始地点にリクレーマのバケット
ホイールを移動着地させる。そして、ブームの旋回、反
転操作を行いながら掘削を行っていく。掘削を継続して
いくと、リクレーマのブームがばら物積山の稜線に接触
してバケットホイールがばら物に着地できなくなるた
め、段替え操作によりブームを下げてバケットホイール
の掘削地点を下げ、次ぎの掘削開始地点から更に掘削を
継続していく。
Conventionally, the work of dispensing the bulk materials piled up in the storage yard by the above-mentioned reclaimer has been carried out by remote manual operation by an operator visually using an ITV (industrial television). The operation procedure will be described. First, the bucket wheel of the reclaimer is moved and landed from the initial state of the bulk pile to the excavation start point near the top of the bulk pile. Then, excavation is performed while performing turning and reversing operations of the boom. As the excavation continues, the boom of the reclaimer comes into contact with the ridgeline of the bulk pile and the bucket wheel cannot land on the bulk, so the step change operation lowers the boom and lowers the excavation point of the bucket wheel. Excavation is continued from the excavation start point.

【0004】現在、これらの一連の掘削操作の内、ブー
ムの旋回、反転、段替え操作に関しては、バケットホイ
ールの負荷電流の検出、バケットホイールの移動軌跡の
算出、距離測定センサの補助的な使用等により遠隔操作
による運転自動化が達成されている。また、リクレーマ
の荷役計画は、その日に使用する払い出し量に応じて、
ばら物の種類及びその備蓄量、また備蓄期間等を考慮し
て行っている。
At present, among these series of excavating operations, regarding the turning, reversing, and step-changing operations of the boom, detection of the load current of the bucket wheel, calculation of the movement locus of the bucket wheel, and auxiliary use of the distance measuring sensor are performed. Thus, automation of driving by remote control has been achieved. In addition, the reclaimer's cargo handling plan depends on the amount of payment used on that day,
This is done in consideration of the types of bulk materials, their storage amount, and the storage period.

【0005】従来、その払い出し量は、リクレーマによ
り払い出されたばら物を搬送するコンベヤに取り付けら
れたロードセルを時間で積算することで算出していた。
Conventionally, the payout amount has been calculated by integrating the load cells attached to the conveyor for transporting the bulk materials paid out by the reclaimer with time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たリクレーマによるばら物の払い出し作業において、ブ
ームの旋回、反転及び段替え操作については運転自動化
を実現しているが、バケットホイールの着地操作につい
ては、掘削開始地点の正確な3次元位置座標、掘削面形
状を検知する有効な方法が考案されていないため、現在
も運転員の目視により遠隔手動操作で行われており、完
全運転自動化には至っていない。このため、運転員の省
力化を達成できないという問題があった。
However, in the above-described work of dispensing bulk materials by the reclaimer, the operation automation is realized for the turning, reversing, and step changing operations of the boom, but for the landing operation of the bucket wheel, Since an effective method for detecting the exact three-dimensional position coordinates of the excavation start point and the shape of the excavation surface has not been devised, the operation is still performed manually by remote operation visually by the operator, and has not yet been fully automated. . Therefore, there is a problem that labor saving of the operator cannot be achieved.

【0007】また、例えば特開平6−305580号公
報には、リクレーマのブーム上に首振り機構を備えた距
離センサを設置し、リクレーマを走行させながらこの距
離センサにより積山全体の形状を測定する方法が提案さ
れているが、この方法では全長数100mにもおよぶ積
山形状を測定するのに長時間を要してしまい、また掘削
後の面形状を測定する際、その面と計測方向が平行に近
くなるため、運転自動化に最も必要とされる掘削面形状
が精度よく測定できないという問題がある。
[0007] For example, Japanese Patent Application Laid-Open No. 6-305580 discloses a method in which a distance sensor having a swing mechanism is installed on a boom of a reclaimer, and the shape of the entire pile is measured by the distance sensor while the reclaimer is running. However, in this method, it takes a long time to measure the pile shape having a total length of several hundred meters, and when measuring the surface shape after excavation, the surface and the measurement direction are parallel. Therefore, there is a problem that the shape of the excavated surface, which is most necessary for automation of operation, cannot be accurately measured.

【0008】また、上述したようにリクレーマの荷役計
画において、ばら物の払い出し量の算出はコンベヤに取
り付けたロードセルを用いていたが、コンベヤの送り速
度は100m/min以上の高速であり、精度が悪く、
またそれが積算されていくことで総備蓄量の誤差が大き
くなるという問題がある。このため、荷役計画にあた
り、荷受け入れの綿密な計画ができず、また効率の悪い
備蓄となるため広大なヤード設備によるイニシャルコス
トの増大等の問題があった。
Further, as described above, in the cargo handling plan of the reclaimer, the amount of loose materials to be paid out is calculated using a load cell attached to a conveyor. However, the conveyor has a high speed of 100 m / min or more, and the accuracy is high. Bad
In addition, there is a problem that an error in the total storage amount increases due to the integration. For this reason, in the cargo handling plan, it was not possible to make a detailed plan for receiving the cargo, and there was a problem such as an increase in initial cost due to a vast yard facility because of inefficient stockpiling.

【0009】また、このために、一年に一度棚卸しを行
い、積山形状を台形の形にそろえ、計測会社に依頼し、
正確な寸法計測を行い、現状の備蓄量の補正を行わせる
等、膨大な費用を費やしていた。本発明はこのような事
情に鑑みてなされたもので、ばら物を掘削し払い出しを
行うリクレーマの完全運転自動化を図るための貯蔵ヤー
ドにおけるばら物の積山形状の割り出し、及び、荷役計
画、棚卸し等を行うためのばら物貯蓄量の測定を、高精
度、高速及び省コストで行うことができるばら物積山形
状測定方法及びばら物積山貯蓄量算出方法を提供するこ
とを目的とする。
[0009] For this purpose, an inventory is taken once a year, the shape of the pile is adjusted to a trapezoidal shape, and a measurement company is requested.
Huge costs were spent, such as performing accurate dimensional measurements and correcting the current stockpile. The present invention has been made in view of such circumstances, and determines the pile shape of bulk materials in a storage yard for achieving full operation automation of a reclaimer that excavates and discharges bulk materials, and also performs a cargo handling plan, an inventory, and the like. It is an object of the present invention to provide a bulk material pile shape measuring method and a bulk material pile storage amount calculating method, which can measure the bulk material storage amount for performing the method with high accuracy, high speed, and low cost.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、貯蔵ヤードに積み付けられたばら物積山の
掘削に使用するリクレーマのブーム先端に鉛直方向の首
振り機構を備えた距離計測装置を設置し、前記ばら物積
山の掘削後の掘削面に対向する位置で、前記リクレーマ
のブームを旋回動作させるとともに、前記距離計測装置
を鉛直方向に首振り動作させて前記掘削面までの距離を
測定し、該測定した掘削面までの距離に基づいて前記掘
削面の3次元形状を測定することを特徴としている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a reclaimer used for excavating bulk piles piled in a storage yard, which is provided with a vertical swing mechanism at the tip of a boom. A measuring device is installed, and at a position facing the excavated surface after excavation of the bulk pile, the boom of the reclaimer is turned, and the distance measuring device is swung vertically to reach the excavated surface. The method is characterized in that a distance is measured, and a three-dimensional shape of the excavated surface is measured based on the measured distance to the excavated surface.

【0011】本発明によれば、ばら物積山の掘削面まで
の距離をリクレーマのブーム先端に設置した距離計測装
置によって測定することにより、掘削面の3次元形状
(3次元座標)を測定することができ、測定した掘削面
の3次元座標に基づいて掘削開始地点や掘削面形状を正
確に検知することができる。これにより、リクレーマの
完全運転自動化が可能となる。
According to the present invention, the three-dimensional shape (three-dimensional coordinates) of the excavated surface is measured by measuring the distance to the excavated surface of the bulk pile by the distance measuring device installed at the tip of the boom of the reclaimer. The excavation start point and the excavation surface shape can be accurately detected based on the measured three-dimensional coordinates of the excavation surface. Thereby, complete operation automation of the reclaimer becomes possible.

【0012】また、請求項2に記載の発明によれば、ば
ら物積山の積み付け初期における3次元形状を測定し、
ばら物積山の積み付け初期における3次元形状と、前記
測定した掘削面の3次元形状とに基づいて現在のばら物
積山の全体形状を算出する。これにより、ばら物積山の
全体形状を検知する毎に積山全体の形状を測定すること
なく、掘削面の3次元形状を測定するのみでばら物積山
全体の形状を検知することができる。このため、短時
間、低コストでばら物積山形状を測定することができ
る。
According to the second aspect of the invention, the three-dimensional shape of the bulk pile is measured at the initial stage of stacking.
The present overall shape of the bulk pile is calculated based on the three-dimensional shape of the bulk pile at the initial stage of stacking and the measured three-dimensional shape of the excavated surface. Thus, the shape of the entire bulk pile can be detected only by measuring the three-dimensional shape of the excavated surface without measuring the shape of the entire pile every time the entire shape of the bulk pile is detected. For this reason, the pile shape of bulk materials can be measured in a short time and at low cost.

【0013】また、請求項4に記載の発明によれば、上
記求めたばら物積山形状からばら物の容積を求めること
ができ、これに積付け期間、含水率を考慮した嵩密度を
掛けることでばら物貯蓄量を正確に算出することがで
き、棚卸しによる貯蓄量の測定等の手間や費用を削減す
ることができる。
According to the fourth aspect of the present invention, the volume of the bulk material can be obtained from the obtained bulk shape of the bulk material, and the volume of the bulk material is multiplied by the bulk density in consideration of the storage period and the water content. Thus, it is possible to accurately calculate the amount of saved bulk material, and it is possible to reduce the labor and cost of measuring the amount of saved material by stocktaking.

【0014】[0014]

【発明の実施の形態】以下添付図面に従って本発明に係
るばら物積山形状測定方法及びばら物積山貯蓄量算出方
法の好ましい実施の形態について詳説する。図1は、石
炭、工業縁、石灰石等のばら物貯蔵ヤードにスタッカに
よって積み上げられたばら物積山の形状を示した図であ
る。同図に示すばら物積山10はスタッカによって複数
の地点で略等間隔に円錐状の積山の積み上げが行われ、
複数の円錐状の積山が裾の部分で交差した形状を有して
いる。このような積山10の積み上げが行われた場合
に、まずこの積山の形状を把握するデータ(以下、積山
形状元データと称す。)を測定する。同図に示す積山形
状の場合、積山形状元データとして以下に示すデータを
測定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for measuring the shape of a pile of bulk materials and the method for calculating the amount of stored bulk of bulk materials according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram illustrating the shape of a pile of bulk materials piled up by a stacker in a bulk storage yard such as coal, industrial rim, limestone, and the like. In the bulk pile 10 shown in the figure, conical piles are stacked at substantially equal intervals at a plurality of points by a stacker,
It has a shape in which a plurality of conical piles intersect at the hem. When the piles 10 are stacked as described above, first, data for grasping the shape of the pile (hereinafter, referred to as original pile shape data) is measured. In the case of the pile shape shown in the figure, the following data is measured as the pile shape original data.

【0015】まず、図1に示すように、貯蔵ヤードに基
準位置とする原点Oを設定し、例えば、スタッカ及びリ
クレーマの走行するレール33の方向をX軸方向、これ
に垂直な地面内の方向をY軸方向、地面に垂直な方向を
Z軸方向と設定する。そして、原点Oを基準として寸法
線12及び寸法線14で示す各積山頂点16、18、1
8、…、20のY軸方向及びZ軸方向の位置(座標)、
寸法線22及び寸法線24で示す初期積山頂点16及び
最終積山頂点20までのX軸方向の位置、積山頂点1
6、18、18、…、20の数、寸法線26で示す積山
頂点間の距離、ばら物の種類及び粒径により決まる角度
寸法線28で示す安息角αを測定する。
First, as shown in FIG. 1, an origin O as a reference position is set in a storage yard. For example, the direction of a rail 33 on which a stacker and a reclaimer travel is defined as an X-axis direction, and a direction in the ground perpendicular to the X-axis direction. Is set as the Y-axis direction, and the direction perpendicular to the ground is set as the Z-axis direction. Then, the pile vertices 16, 18, 1 and 1 indicated by the dimension line 12 and the dimension line 14 based on the origin O
8, ..., 20 positions (coordinates) in the Y-axis direction and the Z-axis direction,
Position in the X-axis direction up to the initial pile peak 16 and the final pile peak 20 indicated by the dimension line 22 and the dimension line 24, the pile peak 1
The number of 6, 18, 18,..., 20, the distance between the peaks of the piles indicated by the dimension line 26, the angle of repose α indicated by the angle dimension line 28 determined by the type and the particle size of the loose objects are measured.

【0016】これらの測定によって得られた積山形状元
データからばら物積み上げ初期における積山10の3次
元形状及びばら物蓄積量を算出する。次に、上述のよう
に貯蔵ヤードに積み上げられたばら物積山10からリク
レーマにより掘削し、払い出しする場合について説明す
る。まず、図2(a)乃至(d)を用いてリクレーマの
一般的な運転手順について説明する。図2(a)に示す
ように積山30がある場合(ここでは同図に示すように
台形の積山30で説明するがこれと異なる上記図1に示
したような積山形状の場合でも運転手順は同じであ
る。)、オペレータはレール33上に設置されたリクレ
ーマ34のブーム36先端のバケットホイール38を積
山30の掘削開始地点32に移動させ着地させる。その
着地においては、図3に示すようにバケットホイール3
8の切り込み高さ50と切り込み深さ52を調整する。
そして、ブーム36を矢印54に示す方向に旋回させ荷
役を開始する。
From the original data of the pile shape obtained by these measurements, the three-dimensional shape of the pile 10 and the accumulation amount of the pile in the initial stage of the bulk accumulation are calculated. Next, a case will be described in which excavation is performed by a reclaimer from the bulk pile 10 piled up in the storage yard as described above, and the pile is paid out. First, a general operation procedure of the reclaimer will be described with reference to FIGS. As shown in FIG. 2A, when there is a pile 30 (here, a trapezoidal pile 30 as shown in FIG. 2 will be used, but even in the case of a pile shape shown in FIG. The operator moves the bucket wheel 38 at the tip of the boom 36 of the reclaimer 34 installed on the rail 33 to the excavation start point 32 of the pile 30 and makes it land. At the landing, as shown in FIG.
The cutting height 50 and the cutting depth 52 are adjusted.
Then, the boom 36 is turned in the direction indicated by the arrow 54 to start cargo handling.

【0017】次いで図2(b)に示すようにブーム36
を矢印40(図2矢印54)の方向に旋回させていき、
荷が切れた地点42に到達すると、この地点42でブー
ム36の旋回方向を反転させ、且つリクレーマ34を図
3で示した切り込み深さ52だけ矢印44で示す方向に
走行させ荷役を繰り返す。以降この荷切れを判断し、反
転、走行を繰り返し、第1テラス46を掘削する。尚、
このときの掘削パターンを図4の軌跡線60に示す。同
図の62で示す軌跡線の位置がブーム36の反転操作が
行われる位置である。
Next, as shown in FIG.
Is turned in the direction of arrow 40 (arrow 54 in FIG. 2),
When reaching the point 42 where the load has run out, the turning direction of the boom 36 is reversed at this point 42, and the reclaimer 34 travels in the direction indicated by the arrow 44 by the cutting depth 52 shown in FIG. Thereafter, this unloading is determined, the inversion and the traveling are repeated, and the first terrace 46 is excavated. still,
The excavation pattern at this time is shown by a locus line 60 in FIG. The position of the trajectory line indicated by 62 in the same figure is the position where the boom 36 is reversed.

【0018】この後、このままブーム36を水平方向に
移動させて掘削を継続していくと、図2(c)に示すよ
うに、ブーム36と積山30の稜線48が接触する。こ
のため、バケットホイール38の軌道線66で示すよう
に第2テラス68に段替えを行い、第2テラス68の掘
削開始地点70から第1テラスと同様荷役を開始する。
そして、図2(d)に示すように第2テラス68の荷役
を行う。
Thereafter, when the excavation is continued by moving the boom 36 in the horizontal direction, the boom 36 and the ridge line 48 of the pile 30 contact as shown in FIG. 2C. For this reason, as shown by the orbit line 66 of the bucket wheel 38, the step is changed to the second terrace 68, and the cargo handling starts from the excavation start point 70 of the second terrace 68 in the same manner as the first terrace.
Then, as shown in FIG. 2D, the second terrace 68 is unloaded.

【0019】以下、ブーム36と積山30の接触を避
け、着地段替え、反転操作を行いながら第2テラス6
8、第3テラス72と順に荷役を行っていく。以上に示
したリクレーマ34の掘削払い出し作業において、予め
ばら物積山形状を測定し、予めこのばら物積山形状を知
っておくことは、各テラスの掘削開始地点、ブーム36
の段替え位置、反転位置等を予め決めておくことがで
き、これにより、リクレーマ34の完全自動運転が可能
となる。
In the following, the contact between the boom 36 and the pile 30 is avoided, and the landing terrace is changed and the reversing operation is performed.
8. Cargo handling is performed in the order of the third terrace 72. In the excavation and dispensing work of the reclaimer 34 described above, measuring the bulk pile shape in advance and knowing this bulk pile shape in advance is necessary for the excavation start point and the boom 36 of each terrace.
The step change position, the reversal position, and the like of the reclaimer 34 can be determined in advance, thereby enabling the fully automatic operation of the reclaimer 34.

【0020】上述したように、ばら物積山が積み上げら
れた初期の段階では積山形状元データにより積山形状を
得ているため、リクレーマ34の完全自動運転が可能で
ある。一方、このような作業により上記図1に示したば
ら物積山10は、図5に示すように掘削面80が段とな
って複雑な形状を有することとなる。これにより、この
状態から次の払い出し作業を自動で行う場合には、再度
積山形状を測定し、各テラスの掘削開始地点82を知る
必要がある。
As described above, since the pile shape is obtained from the pile shape original data at the initial stage when the bulk piles are piled up, the reclaimer 34 can be operated completely automatically. On the other hand, due to such an operation, the bulk pile 10 shown in FIG. 1 has a complicated shape with the excavation surface 80 as a step as shown in FIG. Accordingly, when the next payout operation is automatically performed from this state, it is necessary to measure the pile shape again to know the excavation start point 82 of each terrace.

【0021】そこで、この払い出し作業後、あるいは次
回の払い出し作業前に積山10の掘削面80の形状を測
定する。図6は、その測定の様子を示した図である。同
図に示すように、リクレーマ34のブーム36の先端に
鉛直方向首振り機能を備えた自動距離計測装置90が設
置される。この自動距離計測装置90は図7に示すよう
に、ブーム36に固定されるベース部材92に距離計測
器94が両側の軸96によって支持されている。この距
離計測器94は、例えば光学式のものが使用され、前面
からレーザ光を出射してその反射光を受光するまでの時
間により前方の対象物までの距離を測定する。尚、距離
計測器は、光学式のものに限らず例えば、超音波を使用
したものを用いてもよい。
Therefore, the shape of the excavated surface 80 of the pile 10 is measured after the dispensing operation or before the next dispensing operation. FIG. 6 is a diagram showing a state of the measurement. As shown in the figure, an automatic distance measuring device 90 having a vertical swing function is installed at the tip of the boom 36 of the reclaimer 34. As shown in FIG. 7, in the automatic distance measuring device 90, a distance measuring device 94 is supported by shafts 96 on both sides of a base member 92 fixed to the boom 36. The distance measuring device 94 is, for example, an optical type, and measures the distance to the object ahead in accordance with the time from when the laser light is emitted from the front surface to when the reflected light is received. The distance measuring device is not limited to the optical type, and for example, a device using ultrasonic waves may be used.

【0022】また、この距離計測器94を支持する軸9
6は駆動モータ98により回転するプーリ100、10
2とリンク部材104を介して連結されている。あるい
は距離計測器94を指示する軸96に直接駆動モータを
連結させてもよい。従って、駆動モータ98が回転する
と、距離計測器94は同図106で示す鉛直方向の範囲
で首振り動作する。これにより、ブーム36を固定した
状態でこの駆動モータ98を回転させることにより、こ
の首振り範囲の対象物の距離を測定することができる。
The shaft 9 supporting the distance measuring device 94
6 is a pulley 100, 10 which is rotated by a drive motor 98.
2 and a link member 104. Alternatively, a drive motor may be directly connected to a shaft 96 that indicates the distance measuring device 94. Accordingly, when the drive motor 98 rotates, the distance measuring device 94 swings in the vertical range shown in FIG. Thus, by rotating the drive motor 98 with the boom 36 fixed, the distance of the object within the swing range can be measured.

【0023】さて、このような鉛直方向首振り機能を備
えた自動距離計測装置90によって掘削面80の測定を
開始する場合、図6に示すようにまずこの自動距離計測
装置90を搭載したリクレーマ34をレール33上で走
行させ適切な位置に停止させる。このリクレーマ34の
停止位置は、自動距離計測装置90がその首振り動作に
よって掘削面80の高さ方向の範囲92を走査できる位
置とする。そして、自動距離計測装置90によって同図
94で示す方向に首振り動作を行いながら掘削面80ま
での距離を鉛直方向の所定角度毎に測定する。また、同
時に掘削面80の横方向の範囲98を走査できる範囲で
ブーム36を同図96で示す横方向に所定角度づつ旋回
させて、掘削面80の全範囲の距離の測定を行う。
When the measurement of the excavated surface 80 is started by the automatic distance measuring device 90 having such a vertical swing function, first, as shown in FIG. 6, a reclaimer 34 equipped with the automatic distance measuring device 90 is mounted. Is run on the rail 33 and stopped at an appropriate position. The stop position of the reclaimer 34 is a position where the automatic distance measuring device 90 can scan the range 92 in the height direction of the excavation surface 80 by the swinging operation. Then, the distance to the excavation surface 80 is measured for each predetermined angle in the vertical direction while the automatic distance measuring device 90 performs the swinging operation in the direction shown in FIG. 94. At the same time, the boom 36 is turned by a predetermined angle in the horizontal direction shown in FIG. 96 within a range in which the horizontal range 98 of the excavation surface 80 can be scanned, and the distance of the entire range of the excavation surface 80 is measured.

【0024】また、上記測定と同時に、各測定点を測定
時に自動距離計測装置90の首振り角度、原点Oに対す
るブーム36の起伏100の中心位置102、ブーム3
6の旋回角度及び起伏角度104を把握する。これによ
り、上記自動距離計測装置90によって測定した測定結
果から掘削面80の3次元位置座標を算出することがで
きる。また、この掘削面80の3次元位置座標のデータ
に基づいて、図5に示した各テラスの掘削開始地点82
を知ることができ、次の掘削払い出し作業を完全に自動
で行うことが可能となる。
Simultaneously with the above measurement, when measuring each measurement point, the swing angle of the automatic distance measuring device 90, the center position 102 of the undulation 100 of the boom 36 with respect to the origin O, and the boom 3
6 is grasped. Thereby, the three-dimensional position coordinates of the digging surface 80 can be calculated from the measurement result measured by the automatic distance measuring device 90. Further, based on the data of the three-dimensional position coordinates of the excavation surface 80, the excavation start point 82 of each terrace shown in FIG.
, And the next excavation and payout operation can be performed completely automatically.

【0025】以上の掘削面80形状の測定を実施した
後、次にこの測定によって得られた掘削面80の3次元
位置座標のデータ(以下、掘削面形状データと称す。)
と、上記積山形状元データを用い、これらの掘削面形状
データと積山形状元データとを合成して積山形状の全体
を把握する。これにより、積山に残留しているばら物蓄
積量を算出する。
After the measurement of the shape of the digging surface 80 described above, the data of the three-dimensional position coordinates of the digging surface 80 obtained by the measurement (hereinafter, referred to as digging surface shape data).
And the original pile shape data, the excavated surface shape data and the original pile shape data are combined to grasp the entire pile shape. Thus, the amount of accumulated bulk material remaining in the pile is calculated.

【0026】以下、積山形状の合成方法について説明す
る。図8、図9は、それぞれ上記図5に示したばら物積
山10の全体形状を示した平面図、正面図である。ここ
では、図8に示す掘削面80とその周辺部の斜線で示さ
れた範囲110が上記自動距離計測装置90により掘削
面形状データが得られた部分とする。図9に示すように
積山の正面図が三角形状となるような場合、この正面図
で示す最高ポイント112(Z軸方向の最高ポイント)
は、図8に示す掘削面80のX軸方向最大位置115と
はならない。また、掘削面80の周辺部は崩落等による
型崩れを起こしている場合も考えられる。このため、最
高ポイント115の位置からX軸方向に同図114で示
す数m先の位置を積山段面116として定義し、この積
山断面116より−方向の範囲118では掘削面形状デ
ータを使用することとする。図10にこの範囲118の
積山掘削面形状データを3次元表示した場合の概略図を
示す。また、実際の石炭積山を対象に測定した掘削面形
状の測定例を図11に示す。
Hereinafter, a method of synthesizing the pile shape will be described. 8 and 9 are a plan view and a front view, respectively, showing the overall shape of the bulk pile 10 shown in FIG. 5. Here, it is assumed that the excavated surface 80 shown in FIG. 8 and a range 110 indicated by hatching around the excavated surface 80 are portions where the excavated surface shape data is obtained by the automatic distance measuring device 90. When the front view of the pile is triangular as shown in FIG. 9, the highest point 112 (the highest point in the Z-axis direction) shown in this front view
Does not become the maximum position 115 of the excavation surface 80 in the X-axis direction shown in FIG. It is also conceivable that the peripheral portion of the excavation surface 80 is out of shape due to collapse or the like. For this reason, a position several meters ahead in the X-axis direction from the position of the highest point 115 as shown in FIG. 114 is defined as a piled step surface 116, and the excavation surface shape data is used in a range 118 in the − direction from the piled section 116. It shall be. FIG. 10 is a schematic diagram showing a case where the piled digging surface shape data in the range 118 is three-dimensionally displayed. FIG. 11 shows a measurement example of an excavated surface shape measured on an actual coal pile.

【0027】一方、図9において、積山断面116を境
にX軸方向に+側の範囲120では、積山形状元データ
を使用する。図12にこの範囲120の積山形状元デー
タを3次元表示した場合の概略図を示す。そして、これ
らの範囲118の積山掘削面形状データで示される積山
3次元形状と、範囲120の積山形状元データで示され
る積山3次元形状とを合わせるとことで、図13に示す
ように積山三次元形状の全体形状を割り出すことができ
る。
On the other hand, in FIG. 9, the original data of the pile shape is used in a range 120 on the + side in the X-axis direction with respect to the pile cross section 116. FIG. 12 is a schematic diagram showing a case where the stacked mountain shape original data in the range 120 is three-dimensionally displayed. Then, by combining the three-dimensional shape of the pile shown by the pile excavation surface shape data of these ranges 118 with the three-dimensional shape of the pile shown by the original data of the pile shape of the range 120, the three-dimensional shape of the pile is obtained as shown in FIG. The entire shape of the original shape can be determined.

【0028】そして、以上のように合成した積山形状に
より積山の容積を算出することができ、これに嵩比重を
掛け合わせることで積山10に残留するばら物蓄積量を
算出することができる。尚、嵩比重は積付け期間、含水
率を考慮して決定する。尚、仮に積山正面図の形状が台
形である場合の掘削面形状データと積山形状データの境
目となる積山断面の定義方法を図14の平面図と図15
の正面図を用いて説明する。図15の正面図において、
積山の掘削面の上底130とブームの旋回半径中心側の
斜辺132との交点134の位置は、図14に示すよう
に掘削面のX軸方向最大位置134となるが、この場合
も崩落等の型崩れを考慮して、このX軸方向最大位置1
34からX軸方向に同図136で示す数m先となる積山
断面138を境とする。
The volume of the pile can be calculated from the pile shape synthesized as described above, and by multiplying the volume by the bulk specific gravity, the amount of accumulated bulk material remaining in the pile 10 can be calculated. The bulk specific gravity is determined in consideration of the stowage period and the water content. It is to be noted that a method of defining a pile section which is a boundary between excavation surface shape data and pile shape data in the case where the shape of the pile front view is a trapezoid is shown in the plan view of FIG.
This will be described with reference to the front view of FIG. In the front view of FIG.
The position of the intersection 134 between the upper bottom 130 of the excavation surface of the pile and the oblique side 132 on the center side of the turning radius of the boom is the maximum position 134 in the X-axis direction of the excavation surface as shown in FIG. The maximum position 1 in the X-axis direction in consideration of
A boundary is a pile section 138 which is several meters ahead in FIG.

【0029】尚、上記掘削面形状データと積山形状元デ
ータの合成方法は上記実施の形態に限らず、例えば、掘
削面形状データが得られた範囲以外の部分に積山形状元
データを使用するようにしてもよい。また、掘削面以外
の部分に積山形状元データを使用するようにしてもよ
い。また、積山は、積み付け期間や含水率等の影響因子
によっても変化するため、これらの影響因子を考慮して
積山形状元データを算出するようにしてもよい。
The method of synthesizing the excavated surface shape data and the original pile shape data is not limited to the above embodiment. For example, the original pile shape data may be used in a portion other than the range where the excavated surface shape data is obtained. It may be. Alternatively, the original pile shape data may be used for a portion other than the excavated surface. Further, since the pile varies depending on the influence factors such as the stacking period and the water content, the pile shape original data may be calculated in consideration of these influence factors.

【0030】[0030]

【発明の効果】以上説明したように本発明に係るばら物
積山形状測定方法及びばら物積山貯蓄量算出方法によれ
ば、貯蔵ヤードに積み付けられたばら物積山の掘削に使
用するリクレーマのブーム先端に鉛直方向の首振り機構
を備えた距離計測装置を設置し、前記ばら物積山の掘削
後の掘削面に対向する位置で、前記リクレーマのブーム
を旋回動作させるとともに、前記距離計測装置を鉛直方
向に首振り動作させて前記掘削面までの距離を測定し、
該測定した掘削面までの距離に基づいて前記掘削面の3
次元形状を測定する。これにより、測定した掘削面の3
次元座標に基づいて掘削開始地点や掘削面形状を高速、
高精度、省コストで検知することができ、リクレーマの
完全運転自動化が可能となりリクレーマ運転員の省力化
が図れる。また、本発明によれば、測定方向と対象面と
の角度が垂直に近いことから従来に比べて高精度で掘削
面を測定することができる。
As described above, according to the bulk pile shape measuring method and the bulk pile storage amount calculation method according to the present invention, a boom of a reclaimer used for excavating bulk bulk piles stacked in a storage yard. A distance measuring device equipped with a vertical swing mechanism at the tip is installed, and at a position facing the excavated surface after excavation of the bulk pile, the boom of the reclaimer is turned and the distance measuring device is vertically moved. Measure the distance to the excavation surface by swinging in the direction,
Based on the measured distance to the excavated surface, 3
Measure the dimensional shape. As a result, 3 of the measured excavated surface
The excavation start point and excavation surface shape can be set at high speed based on the dimensional coordinates.
The detection can be performed with high accuracy and at low cost, and the complete operation of the reclaimer can be automated, so that the labor of the reclaimer operator can be reduced. Further, according to the present invention, since the angle between the measurement direction and the target surface is nearly perpendicular, it is possible to measure the excavated surface with higher accuracy than before.

【0031】また、請求項2に記載の発明によれば、ば
ら物積山の積み付け初期における3次元形状を測定し、
ばら物積山の積み付け初期における3次元形状と、前記
測定した掘削面の3次元形状とに基づいて現在のばら物
積山の全体形状を算出する。これにより、ばら物積山の
全体形状を検知する毎に積山全体の形状を測定すること
なく、掘削面の3次元形状を測定するのみでばら物積山
全体の形状を検知することができる。このため、短時
間、低コストでばら物積山形状を測定することができ
る。
According to the second aspect of the present invention, the three-dimensional shape in the initial stage of stacking bulk materials is measured,
The present overall shape of the bulk pile is calculated based on the three-dimensional shape of the bulk pile at the initial stage of stacking and the measured three-dimensional shape of the excavated surface. Thus, the shape of the entire bulk pile can be detected only by measuring the three-dimensional shape of the excavated surface without measuring the shape of the entire pile every time the entire shape of the bulk pile is detected. For this reason, the pile shape of bulk materials can be measured in a short time and at low cost.

【0032】また、請求項4に記載の発明によれば、上
記求めたばら物積山形状からばら物の容積を求めること
ができ、これに積付け期間、含水率を考慮した嵩密度を
掛けることでばら物蓄積量を正確に算出することがで
き、リクレーマの荷役計画、棚卸し等の手間や費用を削
減することができる。
According to the fourth aspect of the present invention, the volume of the bulk material can be obtained from the obtained bulk shape of the bulk material, and the volume of the bulk material is multiplied by the bulk density in consideration of the storage period and the water content. Thus, the accumulated amount of bulk materials can be accurately calculated, and the labor and cost of the reclaimer's cargo handling plan and inventory can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、石炭、工業縁、石灰石等のばら物貯蔵
ヤードにスタッカによって積み上げられたばら物積山の
形状を示した図である。
FIG. 1 is a view showing the shape of a pile of bulk materials piled up by a stacker in a bulk storage yard such as coal, industrial rim, limestone, and the like.

【図2】図2は、リクレーマの一般的な運転手順の説明
に使用した説明図である。
FIG. 2 is an explanatory diagram used for explaining a general operation procedure of the reclaimer.

【図3】図3は、バケットホイールの切り込み高さと切
り込み深さを説明した説明図である。
FIG. 3 is an explanatory diagram illustrating a cutting height and a cutting depth of a bucket wheel.

【図4】図4は、掘削パターンをを示した図である。FIG. 4 is a diagram showing an excavation pattern.

【図5】図5は、ばら物積山の掘削面の形状を示した図
である。
FIG. 5 is a diagram illustrating a shape of an excavated surface of a pile of bulk materials;

【図6】図6は、ばら物積山の掘削面の測定の様子を示
した図である。
FIG. 6 is a diagram showing a state of measurement of an excavated surface of a bulk pile of bulk materials.

【図7】図7は、自動距離計測装置の構成を示した図で
ある。
FIG. 7 is a diagram illustrating a configuration of an automatic distance measurement device.

【図8】図8は、ばら物積山の全体形状を示した平面図
である。
FIG. 8 is a plan view showing the overall shape of a pile of bulk materials;

【図9】図9は、ばら物積山の正面図である。FIG. 9 is a front view of a bulk pile;

【図10】図10は、掘削面形状データを3次元表示し
た場合の概略図である。
FIG. 10 is a schematic diagram of a case where excavation surface shape data is displayed three-dimensionally.

【図11】図11は、実際の石炭積山を対象に測定した
掘削面形状の測定例を示した図である。
FIG. 11 is a diagram illustrating an example of measurement of an excavation surface shape measured on an actual coal pile.

【図12】図12は、積山形状元データを3次元表示し
た場合の概略図である。
FIG. 12 is a schematic diagram when three-dimensionally displaying original pile shape data;

【図13】図13は、積山三次元形状の全体形状を示し
た図である。
FIG. 13 is a diagram illustrating the overall shape of a three-dimensional stacked mountain shape.

【図14】図14は、積山正面の形状が台形である場合
の積山の平面図である。
FIG. 14 is a plan view of the pile when the front of the pile is trapezoidal.

【図15】図15は、積山正面の形状が台形である場合
の積山の正面図である。
FIG. 15 is a front view of the pile when the front of the pile is trapezoidal.

【符号の説明】[Explanation of symbols]

10、30…ばら物積山 33…レール 34…リクレーマ 36…ブーム 38…バケットホイール 80…掘削面 90…自動距離計測装置 10, 30: Bulk pile 33: Rail 34: Reclaimer 36: Boom 38: Bucket wheel 80: Excavation surface 90: Automatic distance measuring device

フロントページの続き (51)Int.Cl.6 識別記号 FI G01C 15/00 G01C 15/00 Z Continued on the front page (51) Int.Cl. 6 Identification code FI G01C 15/00 G01C 15/00 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 貯蔵ヤードに積み付けられたばら物積山
の掘削に使用するリクレーマのブーム先端に鉛直方向の
首振り機構を備えた距離計測装置を設置し、前記ばら物
積山の掘削後の掘削面に対向する位置で、前記リクレー
マのブームを旋回動作させるとともに、前記距離計測装
置を鉛直方向に首振り動作させて前記掘削面までの距離
を測定し、該測定した掘削面までの距離に基づいて前記
掘削面の3次元形状を測定することを特徴とするばら物
積山形状測定方法。
1. A distance measuring device having a vertical swing mechanism is installed at the end of a boom of a reclaimer used for excavating bulk piles stacked in a storage yard, and excavation of the bulk pile after excavation. At the position opposing the surface, the boom of the reclaimer is swiveled, and the distance measuring device is swung vertically to measure the distance to the excavation surface, based on the measured distance to the excavation surface. Measuring the three-dimensional shape of the excavated surface by using the method.
【請求項2】 前記ばら物積山の積み付け初期における
3次元形状を測定し、該ばら物積山の積み付け初期にお
ける3次元形状と、前記測定した掘削面の3次元形状と
に基づいて現在のばら物積山の全体形状を算出すること
を特徴とする請求項1のばら物積山形状測定方法。
2. The three-dimensional shape of the bulk pile at the initial stage of stacking is measured, and the current three-dimensional shape of the bulk pile at the initial stage of stacking and the measured three-dimensional shape of the excavated surface are measured. 2. The method according to claim 1, wherein an overall shape of the bulk pile is calculated.
【請求項3】 前記ばら物積山の積み付け初期における
3次元形状は、前記ばら物積山の積み付け高さを測定
し、該積み付け高さ、ばら物の種類により決まる安息
角、積み付け期間、含水率等の影響因子を考慮して算出
することを特徴とする請求項2のばら物積山形状測定方
法。
3. The three-dimensional shape of the bulk pile at the initial stage of stacking is determined by measuring the stack height of the bulk pile, the angle of repose determined by the stack height, the type of bulk, and the stacking period. 3. The method of measuring the shape of a pile of bulk materials according to claim 2, wherein the calculation is performed in consideration of an influence factor such as a water content.
【請求項4】 前記請求項2のばら物積山形状測定方法
によって算出したばら物積山の全体形状から該ばら物積
山の容積を求め、該求めた容積に積付け期間、含水率を
考慮した嵩密度をかけて、前記ばら物積山のばら物貯蓄
量を算出することを特徴とするばら物積山貯蓄量算出方
法。
4. The volume of the bulk material pile is calculated from the entire shape of the bulk material bulk calculated by the method for measuring the shape of bulk material bulk according to claim 2, and the volume obtained by taking into account the piling period and the water content in the obtained volume. A method for calculating the amount of stored bulk material in bulk, wherein the amount of stored bulk material in bulk is calculated by multiplying density.
JP15254897A 1997-06-10 1997-06-10 Bulk material stack shape measuring method and bulk material stack storage quantity computing method Pending JPH10338356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15254897A JPH10338356A (en) 1997-06-10 1997-06-10 Bulk material stack shape measuring method and bulk material stack storage quantity computing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15254897A JPH10338356A (en) 1997-06-10 1997-06-10 Bulk material stack shape measuring method and bulk material stack storage quantity computing method

Publications (1)

Publication Number Publication Date
JPH10338356A true JPH10338356A (en) 1998-12-22

Family

ID=15542879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15254897A Pending JPH10338356A (en) 1997-06-10 1997-06-10 Bulk material stack shape measuring method and bulk material stack storage quantity computing method

Country Status (1)

Country Link
JP (1) JPH10338356A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210771A (en) * 2006-02-10 2007-08-23 Nippon Steel Corp Three-dimensional control device of raw material heap in raw material yard
KR101015350B1 (en) * 2008-12-26 2011-02-16 주식회사 포스코 Estimation method for raw materials stock
JP2012082033A (en) * 2010-10-07 2012-04-26 Nittetsu Hokkaido Control Systems Corp Three-dimensional management method of raw material yard
CN104401743A (en) * 2014-12-17 2015-03-11 天津港远航矿石码头有限公司 Stacking method of trapezoid stacks
CN105564999A (en) * 2015-12-31 2016-05-11 中国神华能源股份有限公司 Automatic material taking system and method
JP2022536794A (en) * 2019-06-17 2022-08-18 セーフ エーアイ,インコーポレイテッド Techniques for volume estimation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210771A (en) * 2006-02-10 2007-08-23 Nippon Steel Corp Three-dimensional control device of raw material heap in raw material yard
JP4512046B2 (en) * 2006-02-10 2010-07-28 新日本製鐵株式会社 Three-dimensional management equipment for raw material pile in raw material yard
KR101015350B1 (en) * 2008-12-26 2011-02-16 주식회사 포스코 Estimation method for raw materials stock
JP2012082033A (en) * 2010-10-07 2012-04-26 Nittetsu Hokkaido Control Systems Corp Three-dimensional management method of raw material yard
CN104401743A (en) * 2014-12-17 2015-03-11 天津港远航矿石码头有限公司 Stacking method of trapezoid stacks
CN104401743B (en) * 2014-12-17 2016-08-24 天津港远航矿石码头有限公司 A kind of trapezoidal buttress clamp method
CN105564999A (en) * 2015-12-31 2016-05-11 中国神华能源股份有限公司 Automatic material taking system and method
JP2022536794A (en) * 2019-06-17 2022-08-18 セーフ エーアイ,インコーポレイテッド Techniques for volume estimation

Similar Documents

Publication Publication Date Title
CN103090791B (en) Measurement system, method and device of scattered materials and material piling and taking control system
US6247538B1 (en) Automatic excavator, automatic excavation method and automatic loading method
WO2022012116A1 (en) Reclaiming system and method
CN104838072B (en) Reclaimer three-D volumes rate control device and its control method
JP2711612B2 (en) Automatic transport system for earthworks
CN106044253A (en) Material taking method
CN108147147B (en) Automatic intelligent material piling and taking system
CN108557500A (en) A kind of bar shaped stock ground automatic operating system
JP5847409B2 (en) Raw material yard management system, raw material yard management method, and computer program
CN207361377U (en) A kind of stack collapse detection device in reclaiming process
CN108182715A (en) A kind of material stacking and fetching system with statistics rickyard material information
CN108033279A (en) A kind of automatic material stacking and fetching system
JPH10338356A (en) Bulk material stack shape measuring method and bulk material stack storage quantity computing method
WO2022028016A1 (en) Material pile stocktaking system and method for raw material yard
CN111792396B (en) Material taking system and method for circular stock ground
JP2002277222A (en) Method and system for measuring amount of earth removal in shield excavation
CN211946952U (en) Automatic vinasse lifting equipment
CN113291854A (en) Material piling method and material piling device
JP2002249229A (en) Generating system for yard map
JPH01242322A (en) Method for remote automatic operation of reclaimer
JPH062980Y2 (en) Reclaimer's load detection device
JP2555686B2 (en) Reclaimer automatic payout control system
JPS6127837A (en) Positioning of continuous unloader
JPS6017729B2 (en) How to move the stacker to the loading position
KR100328082B1 (en) Method for automating material unloader by using shape detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060316