JP2006160692A - Method for producing antimicrobial agent and antimicrobial agent - Google Patents

Method for producing antimicrobial agent and antimicrobial agent Download PDF

Info

Publication number
JP2006160692A
JP2006160692A JP2004356724A JP2004356724A JP2006160692A JP 2006160692 A JP2006160692 A JP 2006160692A JP 2004356724 A JP2004356724 A JP 2004356724A JP 2004356724 A JP2004356724 A JP 2004356724A JP 2006160692 A JP2006160692 A JP 2006160692A
Authority
JP
Japan
Prior art keywords
antibacterial agent
powder
antibacterial
tsm
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004356724A
Other languages
Japanese (ja)
Other versions
JP5172074B2 (en
Inventor
Masayoshi Mori
雅宜 森
Toichiro Izawa
登一郎 井澤
Kazuhito Koshiishi
一仁 輿石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004356724A priority Critical patent/JP5172074B2/en
Publication of JP2006160692A publication Critical patent/JP2006160692A/en
Application granted granted Critical
Publication of JP5172074B2 publication Critical patent/JP5172074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an antimicrobial agent composed of heavy metal ion-carrying tetrasilicon mica, in which a surely and inexpensively synthesizable starting raw material is used, a heavy metal ion-carrying antimicrobial agent having excellent antimicrobial activity is produced from the raw material by ion exchange and, if necessary, a product of porous sintered molding is produced from a powdery product having excellent antimicrobial activity and to obtain the antimicrobial agent. <P>SOLUTION: The method for producing an antimicrobial agent composed of heavy metal ion-carrying tetrasilicon mica comprises using a Na-tetrasilicon mica represented by rational formula NaMg<SB>2.5</SB>(Si<SB>4</SB>O<SB>10</SB>)-F<SB>2</SB>-xH<SB>2</SB>O (x is 1-3) as a raw material and subjecting its interlayer Na ion to ion exchange with Ag<SP>+</SP>or Cu<SP>2+</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銀イオン又は銅イオンを担持したフッ素雲母系の抗菌剤とその製造法に関する。   The present invention relates to a fluorine mica-based antibacterial agent carrying silver ions or copper ions and a method for producing the same.

従来、モンモリロナイトやテニオライトなどの粘土鉱物に重金属イオンを担持せしめた抗菌剤は公知である。例えば、銀イオンモンモリロナイトから成る抗菌剤については、石膏石灰学会発行「Gypsum & Lime No.239(1992)」P49〜P55に記載の「粘土鉱物を担体とする抗菌抗黴剤」と題する論文には、銀イオン担持モンモリロナイトは、銀イオン担持力が弱く、溶出し易く早期に抗菌性が失われる問題があることに鑑み、この問題を解消するため、銀イオンを強い抗黴性をもつ有機試剤でキレート化してからモンモリロナイトに担持させて成る抗菌性と抗黴性を有する各種の銀/キレート抗菌抗黴剤を開示している。
一方、特開平9−100116号公報には、従来の重金属担持ゼオライトは原材料費、製造工程の複雑さ等の点から、非常に高価な材料となるという問題と特公平7−68094号公報に開示のLi型テニオライトを出発物質とし、これに銀イオンを担持させた抗菌剤は、銀の溶出が非常に多いため不適であるという問題を解消した金属担持テニオライトの発明が開示されている。
石膏石灰学会発行「Gypsum & Lime」 No.239(1992)PP49〜55 特開平9−100116公報
Conventionally, antibacterial agents in which heavy metal ions are supported on clay minerals such as montmorillonite and teniolite are known. For example, as for an antibacterial agent composed of silver ion montmorillonite, a paper entitled “Antibacterial antifungal agent using clay mineral as a carrier” described in “Gypsum & Lime No. 239 (1992)” P49-P55 published by Gypsum Lime Society In view of the fact that silver ion-carrying montmorillonite has a weak silver ion-carrying ability and is easy to elute and loses antibacterial properties at an early stage, in order to solve this problem, silver ion is an organic reagent with strong anti-fouling property. Various silver / chelate antibacterial antifungal agents having antibacterial and antifungal properties that are chelated and then supported on montmorillonite are disclosed.
On the other hand, Japanese Patent Application Laid-Open No. 9-100116 discloses the problem that conventional heavy metal-supported zeolite becomes a very expensive material from the viewpoint of raw material costs, manufacturing process complexity, etc. and Japanese Patent Publication No. 7-68094. An invention of a metal-supported teniolite that solves the problem that an antibacterial agent having a Li-type teniolite as a starting material and supporting silver ions thereon is unsuitable due to a large amount of silver elution is disclosed.
“Gypsum & Lime” published by the Japan Gypsum Lime Society 239 (1992) PP49-55 Japanese Patent Laid-Open No. 9-100116

上記の非特許文献1に開示の銀イオンの易溶出性を防止した銀/キレート抗菌抗黴剤は、有機試剤を必要とすると共にキレート化の製造工程が加わり、且つ製造コストが増大し、高価な製品となる不都合を生ずる。
上記の特許文献1に開示の重金属イオン担持のテニオライトから成る抗菌剤の製造は、Na型テニオライト、その出発原料であるNa型テニオライトを合成しなければならない。その合成は、MgO、Li2Oなどの酸化物とフッ化物Na2SiF6を混合し、約1400℃の温度で加熱溶融することにより得られる筈であるが、目的とする合成品Na型テニオライトNaMg2Li(Si410)・F2・xH2Oのうち、特に、Mg2LiというMgに対するLiの特定の配合割合を確実に合成することが極めて難しく、製造ロスを生じ勝ちで、その合成Na型テニオライトの生産効率が悪い欠点がある。また、このNa型テニオライトを出発原料とし、イオン交換により製造した重金属イオン担持テニオライトは、粉末として得られるので、その運搬、使用時の取り扱いや使用範囲が限られる不利を生じる。
本発明は、製造工程が簡単で且つ安価に製造でき、而もNa型テニオライトの上記の課題を解消するべく、製造ロスなく合成し易いNa型四ケイ素雲母を出発原料とし、粉末状の他、所望の焼結成形体として使用時の取り扱いを便利にすると共に使用形態や範囲を拡大でき、而も金属イオン担持力が強く、優れた抗菌剤を安価に提供することを目的とする。
The silver / chelate antibacterial antifungal agent disclosed in Non-Patent Document 1 that prevents easy elution of silver ions requires an organic reagent, adds a chelation production process, increases production costs, and is expensive. Cause inconvenience to become a new product.
In the production of the antibacterial agent comprising the heavy metal ion-supported teniolite disclosed in Patent Document 1, Na-type teniolite and its starting material, Na-type teniolite, must be synthesized. Its synthesis should be obtained by mixing oxides such as MgO and Li 2 O and fluoride Na 2 SiF 6 and heating and melting them at a temperature of about 1400 ° C. The target synthetic product Na-type teniolite Among NaMg 2 Li (Si 4 O 10 ) · F 2 · xH 2 O, in particular, it is extremely difficult to reliably synthesize a specific mixing ratio of Li with respect to Mg as Mg 2 Li, which tends to cause production loss. There is a disadvantage that the production efficiency of the synthetic Na-type teniolite is poor. In addition, since heavy metal ion-supported teniolite produced by ion exchange using this Na-type teniolite as a starting material is obtained as a powder, there is a disadvantage in that the handling and the range of use during its transportation and use are limited.
The present invention has a simple manufacturing process and can be manufactured at low cost, and in order to solve the above problems of Na-type teniolite, Na-type tetrasilicon mica, which is easy to synthesize without manufacturing loss, is used as a starting material, in addition to powder, The purpose of the present invention is to provide an excellent antibacterial agent at a low cost because it can be easily handled as a desired sintered compact and can be used in a wide range of forms and ranges, has a strong metal ion carrying ability.

本発明は、請求項1に記載の通り、示性式NaMg2.5(Si410)・F2・xH2O(但、x=1〜3)で示されるNa−四ケイ素雲母を原料とし、その層間NaイオンをAg+,Cu+又はCu2+でイオン交換を行うことを特徴とする金属イオン担持四−ケイ素雲母から成る抗菌剤の製造法に存する。
更に本発明は、請求項2に記載の通り、請求項1に記載のイオン交換反応後、分取した湿潤したスラリー状の金属イオン担持四−ケイ素雲母を乾燥又は焼結処理することを特徴とする請求項1に記載の抗菌剤の製造法に存する。
更に本発明は、請求項3に記載の通り、請求項1又は2に記載の抗菌剤の粉体に無機結合剤粉体を添加混合し、これを加圧成形したものを400〜800℃で焼結し多孔質焼結成形体としたことを特徴とする抗菌剤の製造法に存する。
更に本発明は、請求項4に記載の通り、該無機結合剤は、カオリナイトとフッ化カリウムの混合物又はアルミナ架橋四ケイ素フッ素雲母である多孔質焼結体から成る抗菌剤に存する。
更に本発明は、請求項5に記載の通り、請求項1又は2に記載の抗菌剤の粉末20〜80重量%と無機結合剤80〜20重量%としてカオリナイトとケイフッ化カリウムの混合物の粉末又はアルミナ架橋フッ素雲母の粉末を80〜20重量%と混合し、これを成形したものを、400〜800℃で焼結したことを特徴とする請求項3又は4に記載の多孔質焼結成形体から成る抗菌剤の製造法に存する。
更に本発明は、請求項5に記載の通り、請求項1〜5のいずれか1つに記載の製造法で得られた抗菌剤に存する。
The present invention, as described in claim 1, rational formula NaMg 2.5 (Si 4 O 10) · F 2 · xH 2 O ( however, x = 1 to 3) the Na- tetrasilicic mica represented by a raw material In addition, the present invention resides in a method for producing an antibacterial agent comprising metal ion-supported 4-silicon mica, characterized in that the interlayer Na ions are ion exchanged with Ag + , Cu + or Cu 2+ .
Furthermore, the present invention is characterized in that, as described in claim 2, after the ion exchange reaction according to claim 1, the wet, slurry-like metal ion-carrying tetrasilicon mica supported by drying is dried or sintered. It exists in the manufacturing method of the antibacterial agent of Claim 1.
Further, according to the present invention, as described in claim 3, an inorganic binder powder is added to and mixed with the antibacterial agent powder according to claim 1 or 2, and this is pressure-molded at 400 to 800 ° C. The present invention resides in a method for producing an antibacterial agent, characterized by being sintered into a porous sintered compact.
Further, according to the present invention, as described in claim 4, the inorganic binder is an antibacterial agent comprising a porous sintered body which is a mixture of kaolinite and potassium fluoride or alumina cross-linked tetrasilicon fluorine mica.
Further, the present invention provides a powder of a mixture of kaolinite and potassium silicofluoride as 20 to 80% by weight of the antibacterial agent powder according to claim 1 or 2 and 80 to 20% by weight of an inorganic binder as described in claim 5. The porous sintered compact according to claim 3 or 4, wherein the powder of alumina cross-linked fluorinated mica is mixed with 80 to 20% by weight and the molded product is sintered at 400 to 800 ° C. An antibacterial agent comprising:
Furthermore, this invention exists in the antibacterial agent obtained by the manufacturing method as described in any one of Claims 1-5 as described in Claim 5.

本発明は、上記の出発原料、Na−TSM、即ち、NaMg2.5(Si416)・F2・xH2Oは、Liを成分として含まないので、溶融法により合成し易く、製造ロスがない。該Na−TSMは自由膨潤性を有し、大きなイオン交換能を有するものが得られ、而して、次のイオン交換反応により層間Naイオンの一部又は全部を銀イオン又は銅イオンで置換し、銀イオン又は銅イオン担持のAg+−TSM、Cu2+−TSM又はCu2+−TSMから成る抗菌剤が得られる。銀イオン又は銅イオン担持の抗菌剤は、後述で明らかにするように、優れた抗菌力を有する。
また、本発明抗菌剤は、化学式・Na−TSMを出発原料とし、そのNaイオンを重金属イオンで交換した後、分取して得られる湿潤したスラリー状の重金属イオン担持TSMを凍結乾燥、自然乾燥、熱風乾燥などで乾燥処理したものは、粉体製品として得られるばかりでなく、また、高温で加熱焼結処理したものは常温に戻ると、空気中の湿気を吸い、もとの良好なイオン交換能を回復する。更に、本発明の抗菌剤と無機結合剤を添加混合したものを焼結し、多孔質の焼結体、或いは柱状、板状、容器状、ハニカム状など所望の形状の多孔質の焼結成形体として製品の形態を拡大し、優れた抗菌性を発揮し、粉体と異なり、取り扱いを容易にすると共に、飲料水の殺菌、食品製造用水など所望の産業、試験研究分野など使用分野の拡大をもたらす。
In the present invention, the above-mentioned starting material, Na-TSM, that is, NaMg 2.5 (Si 4 O 16 ) · F 2 · xH 2 O, does not contain Li as a component, so it is easy to synthesize by the melting method, resulting in a production loss. Absent. The Na-TSM has free swellability and has a large ion exchange capacity. Thus, a part or all of the interlayer Na ions are replaced with silver ions or copper ions by the following ion exchange reaction. Thus, an antibacterial agent comprising Ag + -TSM, Cu 2+ -TSM or Cu 2+ -TSM supporting silver ions or copper ions is obtained. The antibacterial agent carrying silver ions or copper ions has an excellent antibacterial power as will be described later.
In addition, the antibacterial agent of the present invention uses the chemical formula Na-TSM as a starting material, and after exchanging Na ions with heavy metal ions, the wet slurry-like heavy metal ion-carrying TSM obtained by fractionation is freeze-dried and air-dried. Those that have been dried by hot air drying, etc. are not only obtained as powder products, but those that have been heat-sintered at a high temperature will absorb moisture in the air and return to the original good ion Restore exchange ability. Further, the mixture of the antibacterial agent and the inorganic binder of the present invention is sintered, and the porous sintered body or a porous sintered molded body having a desired shape such as a columnar shape, a plate shape, a container shape, or a honeycomb shape is sintered. Expanding the form of products, exhibiting excellent antibacterial properties, and unlike powder, it is easy to handle and expands fields of use such as sterilization of drinking water, desired industries such as water for food production, test and research fields Bring.

本発明の抗菌剤の製造法の出発原料であるNa−4ケイ素雲母(以下、Na−TSMと称する)、即ち、Na−TSM化学式NaMg2.5(Si410)・F2で示されるNa−TSMの合成は、該化学式に見合った原料配合物、例えば、モル比で1/2MのNa2Oと1.5MのMgOと1MのMgF24と4MのiO2の各配合物を混合したものを電気炉で例えば、1380℃で6時間溶融した後、急冷することにより合成される。この塊状の合成物を粉砕して粉体とする。Na−TSMの合成は、Ni型テニオライトの場合と相異し、原料配合物としてLi配合物を配合する必要がないので、安価に且つ確実に合成できる利点を有する。 Na-4 mica is a starting material for the preparation of antibacterial agents of the present invention (hereinafter, referred to as Na-TSM), i.e., represented by Na-TSM formula NaMg 2.5 (Si 4 O 10) · F 2 Na- The synthesis of TSM was performed by mixing raw material blends corresponding to the chemical formula, for example, blends of ½M Na 2 O, 1.5M MgO, 1M MgF 2 4 and 4M iO 2 in a molar ratio. The product is synthesized by melting in an electric furnace, for example, at 1380 ° C. for 6 hours and then rapidly cooling. This massive composite is pulverized into a powder. Unlike the case of Ni-type teniolite, the synthesis of Na-TSM has the advantage that it can be synthesized inexpensively and reliably because it is not necessary to blend a Li blend as a raw material blend.

この合成品は、他の合成フッ素雲母とは異なる結晶構造や特有の物性を有する。
即ち、その結晶構造は層状構造であり、層間イオン−ケイ酸四面体(SiO4)−八面体(Mg2.5)−ケイ酸四面体(SiO4)が一単位となり、これが累積されている。層間イオンは、隣接する次の層との間にあって、ケイ酸四面体の酸素6個と6個の間に挟まれる形でイオン結合で配位している。層間イオンの成因は、八面体のMgイオンが、6席について1席空洞になっており、電荷が、プラス1イオン不足しており、それを補うため(チャージバランス)、Naイオンが1個イオン結合で配位されている。層間のNa+は、他の金属イオンと容易にイオン交換ができる。また、Na−TSMの膨潤特性は、一水層からゲルまでの自由膨潤性である。これに対し、Mg2Liの6配位イオンをもつ前記のNa型テニオライトの膨潤性は、二水層までの限定形である。更にまた、このように層間にNaイオンを配位したNa−TSMの特徴は、固体酸点はなく、中性であることである。これに対し、モンモリロナイト、ヘクトライト、Li−テニオライト、Na−テニオライトには、層間で水分子が金属イオンに配位しH2O+Mn+−→Hδ+…HOδ-・M2nのように固体酸点がある。Na−TSMは固体酸点がなく、中性であるということは、抗菌性金属イオンを担持した場合、温度に対する安定であり、抗菌性金属イオン担持力が向上し、溶出性を一層困難にし、抗菌寿命が延長するなどの好影響をもたらす。
This synthetic product has a crystal structure and unique physical properties different from those of other synthetic fluorine mica.
That is, the crystal structure is a layered structure, and interlayer ions-silicate tetrahedron (SiO 4 ) -octahedron (Mg 2.5 ) -silicate tetrahedron (SiO 4 ) is a unit, and this is accumulated. Interlayer ions are coordinated by ionic bonds in a form sandwiched between 6 and 6 oxygen atoms of a silicate tetrahedron between adjacent adjacent layers. The cause of the interlayer ions is that octahedral Mg ions are one-seat cavities for six seats, and the charge is insufficient by plus one ion. It is coordinated by a bond. Interlayer Na + can be easily ion-exchanged with other metal ions. Moreover, the swelling characteristic of Na-TSM is free swelling from one water layer to gel. On the other hand, the swellability of the Na-type teniolite having Mg 2 Li 6-coordinate ions is a limited form up to two water layers. Furthermore, the feature of Na-TSM in which Na ions are coordinated between layers as described above is that there is no solid acid point and it is neutral. On the other hand, in montmorillonite, hectorite, Li-teniolite, Na-teniolite, water molecules are coordinated to metal ions between the layers, and are solid like H 2 O + M n + − → H δ + ... HO δ− · M 2n There is an acid point. Na-TSM has no solid acid point and is neutral, meaning that when an antibacterial metal ion is supported, it is stable against temperature, the antibacterial metal ion supporting force is improved, and the elution is made more difficult. It has a positive effect such as extending the antibacterial life.

上記のように合成したNa−TSMに抗菌性金属イオンである銀イオン又は銅イオンを担持せしめるイオン交換反応を行うには、塊状で得られる該Na−TSMを粉砕機で粉砕して粉末とする。これを所望の濃度の銀イオン又は銅イオンが解離した水溶液に浸漬し、撹拌し乍ら陽イオン交換反応を行う。該陽イオン交換反応においては、水中で成分が十分解離している銀塩又は銅塩の水溶液が好ましい。一般には、夫々の硝酸塩又は硫酸塩水溶液が推奨される。その濃度は所望に選択される。陽イオン交換は、夫々の水溶液のpH値が3〜10の範囲で行う。pHが3より低いと各金属イオンよりも水素イオンがイオン交換し易くなる傾向がある。一方、pHが10より高いと銀イオンや銅イオンは塩基性塩として沈殿し易くなる傾向がある。イオン交換反応時間は少なくとも30分程度でよい。そのイオン交換反応時間を適当に選択することにより、層間Naイオンの一部又は殆ど全部を銀イオン又は銅イオンに交換するイオン交換量を調節できるが、イオン交換平衡に達するまで行うことが好ましい。Na−TSMの最大のイオン交換容量CECは、200〜220meq/100gである。
所望時間イオン交換反応を行った後、遠心分離機などにより固液分離し、固相として、銀イオン担持四ケイ素雲母Ag+Mg2.5(Si410)・F2・xH2O(以下Ag+−TSMと略称)、銅イオン担持四ケイ素雲母Cu+Mg2.5(Si410)・F2・xH2O又はCu2+Mg2.5(Si410)・F2・xH2O(以下Cu+−TSM又はCu2+−TSMと略称)から成る湿潤したスラリー状の重金属イオン担持の製品を得る。次いで、これを洗浄した後、凍結乾燥や50℃以上の範囲の温度で乾燥し、本発明の粉末状のAg+−TSMから成る抗菌剤、Cu+−TSM又はCu2+−TSMから成る粉状又は団塊状の乾燥製品を得る。団塊物はほぐして粉状とする。乾燥手段は、天日乾燥や熱風乾燥でもよい。
銀イオン及び銅イオンの担持量、即ち、イオン交換容量は、Na−TSM(分子量400.09)当たり一価の銀84.87gが理論的には最高であり、2.36mmol/gである。実際にはイオン交換平衡があり、銀イオン及び銅イオンの最大のイオン交換率は略100%、即ち、98〜99%である。しかし乍ら、実用上、銀イオンの交換率25%以上、銅イオン交換率30%以上で抗菌剤としての抗菌作用は支障なく行われる。
In order to carry out an ion exchange reaction in which silver ions or copper ions, which are antibacterial metal ions, are supported on the Na-TSM synthesized as described above, the Na-TSM obtained in a lump shape is pulverized with a pulverizer to form a powder. . This is immersed in an aqueous solution in which silver ions or copper ions having a desired concentration are dissociated, and the cation exchange reaction is performed while stirring. In the cation exchange reaction, an aqueous solution of silver salt or copper salt in which components are sufficiently dissociated in water is preferable. In general, each nitrate or sulfate solution is recommended. The concentration is selected as desired. The cation exchange is carried out in the range where the pH value of each aqueous solution is 3-10. When the pH is lower than 3, hydrogen ions tend to be ion-exchanged more easily than each metal ion. On the other hand, if the pH is higher than 10, silver ions and copper ions tend to precipitate as basic salts. The ion exchange reaction time may be at least about 30 minutes. By appropriately selecting the ion exchange reaction time, the amount of ion exchange for exchanging part or almost all of the interlayer Na ions with silver ions or copper ions can be adjusted. However, it is preferable to carry out until the ion exchange equilibrium is reached. The maximum ion exchange capacity CEC of Na-TSM is 200 to 220 meq / 100 g.
After an ion exchange reaction is performed for a desired time, solid-liquid separation is performed using a centrifugal separator or the like, and as a solid phase, silver ion-supported tetrasilicon mica Ag + Mg 2.5 (Si 4 O 10 ) · F 2 · xH 2 O (hereinafter Ag) + Abbreviated as TSM), copper ion-supported tetrasilicon mica Cu + Mg 2.5 (Si 4 O 10 ) · F 2 · xH 2 O or Cu 2+ Mg 2.5 (Si 4 O 10 ) · F 2 · xH 2 O ( A wet slurry-like heavy metal ion-supported product consisting of Cu + -TSM or Cu 2+ -TSM is hereinafter obtained. Next, after washing this, it is freeze-dried or dried at a temperature in the range of 50 ° C. or more, and the antibacterial agent comprising the powdery Ag + -TSM of the present invention, the powder comprising Cu + -TSM or Cu 2+ -TSM To obtain a dried product in the form of a cake or a nodule. Loosen the baby boom to powder. The drying means may be sun drying or hot air drying.
The supported amount of silver ions and copper ions, that is, the ion exchange capacity, is theoretically the highest at 84.87 g of monovalent silver per Na-TSM (molecular weight 400.09), and is 2.36 mmol / g. Actually, there is an ion exchange equilibrium, and the maximum ion exchange rate of silver ions and copper ions is approximately 100%, that is, 98 to 99%. However, practically, the antibacterial action as an antibacterial agent is performed without any trouble when the silver ion exchange rate is 25% or more and the copper ion exchange rate is 30% or more.

上記のNa−TSMの層間Naイオンの上記の抗菌性金属イオンとの良好なイオン交換反応には、Na−TSMの自由膨潤性が寄与する。即ち、粉状のNa−TSMの吸水性は、空気中(20℃ RH=70%)では、層間に吸水して、1水層型(層間に水分を配位し、1分子当たり(12.34Å−9.56Å)膨れる現象)で、層間間隔値は12.34Åとなる。これを100℃以上で加熱すれば無水型(層間間隔値9.56Å)になる。また、粉状のNa−TSMを水中に浸漬すると、に水層型(層間間隔増大値d2=2.83Å)、三水層型(層間間隔増大値d3=3.19Å)を経て、無限膨順に達し最終的にはゾル体を形成する。かくして、自由膨潤性(一水層型〜ゾル)をもつNa−TSMは、上記の銀イオン又は銅イオンの解離した水溶液中で良好な層間Naイオンのイオン交換反応を示す。 The free swellability of Na-TSM contributes to the good ion exchange reaction of the Na ions of the Na-TSM with the antibacterial metal ions. That is, in the air (20 ° C. RH = 70%), the water absorption of the powdered Na-TSM absorbs water between the layers and forms a single water layer type (coordinating moisture between the layers and per molecule (12. 34Å-9.56Å), and the interlayer spacing value is 12.34Å. If this is heated at 100 ° C. or higher, it becomes an anhydrous type (interlayer spacing value 9.56 mm). Further, when powdered Na-TSM is immersed in water, it passes through an aqueous layer type (interlayer spacing increase value d 2 = 2.83 Å), a three water layer type (interlayer spacing increase value d 3 = 3.19 Å), It reaches the infinite swelling order and finally forms a sol body. Thus, Na-TSM having free swellability (one aqueous layer type to sol) exhibits a good ion exchange reaction of interlayer Na ions in the above-mentioned aqueous solution in which silver ions or copper ions are dissociated.

本発明者等は、かゝる銀イオン又は銅イオン担持の抗菌剤は、粉状であると、その運搬、取り扱いが面倒であり、殺菌するべき液体、例えば、水の殺菌浄化に使用するに当たり、その都度、その所定量を計量する必要があり、これを投入後は、水中に分散するので、爾後の濾過分離が必要であり、微多孔性の通水性容器に収容して使用しなければならないなどの不便を生じ、多量の無菌化処理水、食品加工における仕込水の無菌処理、食品などの洗浄水の無菌処理などを得る作業には非能率である。
そこで、この粉状の抗菌剤を無機結合剤を介し或いは介することなく焼結し、多孔質の焼結体とし、或いは板状、筒状、蜂の巣状など所望形状の多孔質の焼結成形体としても、良好な抗菌性を保持した抗菌剤が得られないかとの着想に立ち、その粉状抗菌剤を400℃以上の高温で加熱処理して多孔質の焼結体、或いは焼結成形体とし、これをX線回折法によりイオン交換性を測定したところ、400℃〜800℃の範囲の高温での加熱処理で、焼結前の粉状の抗菌剤と変わらない抗菌力を有していること、850℃位となるとNa−TSMのフッ素(F)成分が揮発してしまうことを知見した。
かゝる試験結果に徴し、本発明は、Na−TSMの抗菌剤は、その粉体をそのまゝ400〜800℃の高温で加熱処理し、多孔質の焼結体から成る抗菌剤に製造すること、或いはその粉体に、無機結合剤を適当配合し、その混合物を所望形状の金型などに収容し加圧成形し、その成形体を400〜800℃の焼結温度で加熱処理することにより、所望形状の多孔質焼結成形体から成る抗菌剤に製造することが好ましい。
かくして、これらの多孔質の焼結体は、親水性で表面に抗菌剤の銀イオン又は銅イオンが無数の気孔を介し殺菌するべき水と接触しイオン交換性を確保できる多孔質であり、且つ耐圧性で且つ機械的強度の大きい安定堅牢な組織から成るので、取り扱いが容易であり、例えば、菌で汚染された被処理水を無菌処理するに当たり、該多孔質焼結体を処理水に投入したり、濾材などとして使用することにより、無菌化処理水を効率良く得ることができる。
The present inventors have found that the antibacterial agent carrying silver ions or copper ions is in powder form and is troublesome to transport and handle and is used for sterilizing and purifying liquids to be sterilized, for example, water. Each time, it is necessary to weigh the predetermined amount, and after it is added, it will be dispersed in water, so filtration after separation is necessary, and it must be used in a microporous water-permeable container. It is inefficient for operations such as a large amount of sterilized treated water, aseptic processing of feed water in food processing, and aseptic processing of washing water for foods.
Therefore, this powdery antibacterial agent is sintered with or without an inorganic binder to form a porous sintered body, or as a porous sintered molded body having a desired shape such as a plate, cylinder, or honeycomb. However, based on the idea that an antibacterial agent having good antibacterial properties can be obtained, the powdered antibacterial agent is heat-treated at a high temperature of 400 ° C. or more to form a porous sintered body, or a sintered molded body. When this was measured for ion exchange by an X-ray diffraction method, it had an antibacterial power that was the same as that of a powdery antibacterial agent before sintering by heat treatment at a high temperature in the range of 400 ° C to 800 ° C. It has been found that the fluorine (F) component of Na-TSM volatilizes at about 850 ° C.
In view of such test results, the present invention is that an antibacterial agent of Na-TSM is manufactured to an antibacterial agent comprising a porous sintered body by heat-treating the powder as it is at a high temperature of 400 to 800 ° C. Or an inorganic binder is appropriately blended in the powder, the mixture is placed in a mold having a desired shape and subjected to pressure molding, and the compact is heat-treated at a sintering temperature of 400 to 800 ° C. Thus, it is preferable to produce an antibacterial agent composed of a porous sintered compact having a desired shape.
Thus, these porous sintered bodies are hydrophilic and porous on the surface so that silver ions or copper ions of the antibacterial agent can be brought into contact with water to be sterilized through countless pores to ensure ion exchange properties, and Because it consists of a stable and robust tissue with high pressure resistance and high mechanical strength, it is easy to handle. For example, when aseptically treating water to be treated contaminated with bacteria, the porous sintered body is put into the treated water. Or by using it as a filter medium or the like, sterilized treated water can be obtained efficiently.

次に、Na−TSM粉体を400℃以上に加熱処理し、多孔質の焼結体とした抗菌剤は、常温に冷えれば、焼結前の粉体のイオン交換能と変わりがないイオン交換能を示すことを明らかにする詳細な実施例につき説明する。
Ag+−TSMの粉体を加熱炉で、300℃、400℃、500℃、600℃、700℃、800℃、850℃で夫々各2時間加熱処理した後取り出し、常温になるまで放置した。これらの焼結体サンプルにつき、X線回折法によりイオン交換性を測定した。そのX線回折(001面)の結果を図1に示す。これから明らかなように、300℃〜700℃、2時間の加熱処理したサンプルのイオン交換性は、未加熱のAg+−TSMの粉体のイオン交換性と変わらないことが判る。800℃、2時間加熱処理したイオン交換性は、700℃、2時間のものと全く同じであるので、図面上省略した。850℃、2時間加熱処理のものは、分析の結果、フッ素が揮発消失し、その結晶構造が破壊されていた。
このように、800℃までの加熱処理したもので、その加熱処理で付着水が蒸発除去されても、放置により常温に戻ると、空気中の湿気を吸って一水層型(12.34Å)に復帰するため、加熱処理前の付着水を有する粉体と同様のイオン交換性を回復するからであることが判った。
尚、この場合、加熱減量については、未加熱の粉体を基準とし、300℃加熱体は1.48%減、400℃加熱体は1.56%減、500℃加熱体は2.8%減、600℃加熱体は2.85%減、700℃加熱体は2.88%減、800℃加熱体は3.0%減であった。
Next, when the antibacterial agent obtained by heat-treating the Na-TSM powder to 400 ° C. or more to form a porous sintered body is cooled to room temperature, the ion exchange capacity of the powder before sintering is the same as that of the powder. A detailed example that demonstrates the ability to exchange will be described.
The Ag + -TSM powder was heat-treated at 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., 800 ° C., and 850 ° C. for 2 hours, respectively, and then taken out and left to reach room temperature. About these sintered compact samples, ion exchange property was measured by the X-ray diffraction method. The result of the X-ray diffraction (001 plane) is shown in FIG. As is apparent from this, the ion exchange property of the sample heated at 300 ° C. to 700 ° C. for 2 hours is not different from the ion exchange property of the unheated Ag + -TSM powder. Since the ion exchange property after heat treatment at 800 ° C. for 2 hours is exactly the same as that at 700 ° C. for 2 hours, it is omitted in the drawing. As a result of the analysis, heat treatment at 850 ° C. for 2 hours revealed that fluorine was volatilized and its crystal structure was destroyed.
In this way, the heat treatment is performed up to 800 ° C., and even if the adhering water is evaporated and removed by the heat treatment, when it returns to room temperature by standing, it absorbs moisture in the air and is a single water layer type (12.34Å). Therefore, it was found that the same ion exchange property as that of the powder having adhering water before the heat treatment was recovered.
In this case, the weight loss by heating is based on unheated powder, with 1.48% reduction for 300 ° C. heating body, 1.56% reduction for 400 ° C. heating body, and 2.8% for 500 ° C. heating body. The 600 ° C. heating body decreased by 2.85%, the 700 ° C. heating body decreased by 2.88%, and the 800 ° C. heating body decreased by 3.0%.

また、Cu2+−TSM粉体について、段落0011のAg+−TSM粉体についてと同様の300℃〜800℃までの7種類の加熱処理を施し、同様に、これらにつき、常温に戻った段階で、X線回折法により、同様に測定した。その結果は、図1に示すと同様の結果を得た。 In addition, the Cu 2+ -TSM powder was subjected to the same seven types of heat treatment from 300 ° C. to 800 ° C. as in the case of the Ag + -TSM powder in paragraph 0011. Thus, the same measurement was performed by the X-ray diffraction method. The result was the same as shown in FIG.

更に本発明は、上記のように、Ag+−TSMの粉体又はCu2+−TSMの粉体は、800℃までの高温で加熱処理しても、もとの粉体と変わらないイオン交換性能を有することが判ったことに基づき、種々の用途に応じて、これに適した形状と大きさを持ち、且つ抗菌性を保持した焼結成形体から成る抗菌剤を得るため、有機質結合剤又は無機質結合剤をAg+−TSM粉体及びCu2+−TSM粉体の夫々に添加混合し、この混合物を、成形用金型に入れ、400℃〜800℃までの焼結温度で加熱して、多孔質の焼結成形体の製造を試みたところ、合成樹脂などの有機質の結合剤では、抗菌剤の表面露出部分が激減し、抗菌力が著しく低下したり、減量が著しいなどで、良好な抗菌剤製品は得られなかったが、無機結合剤は、かゝる不都合がなく、良好な多孔質焼結成形体が得られることが判明した。 Furthermore, as described above, the present invention provides an ion exchange in which Ag + -TSM powder or Cu 2+ -TSM powder does not change from the original powder even when heat-treated at a high temperature up to 800 ° C. In order to obtain an antibacterial agent comprising a sintered molded body having a shape and size suitable for various uses and having antibacterial properties, based on the fact that it has been found to have performance, an organic binder or An inorganic binder is added to and mixed with each of Ag + -TSM powder and Cu 2+ -TSM powder, and this mixture is placed in a molding die and heated at a sintering temperature of 400 ° C. to 800 ° C. In an attempt to produce a porous sintered compact, organic binders such as synthetic resins have reduced surface exposed portions of the antibacterial agent, resulting in a significant decrease in antibacterial activity and significant weight loss. Antibacterial products were not obtained, but inorganic binders are If there is no good porous sintered compact that can be obtained it has been found.

無機結合剤としては、Ag+−TSM粉体又はCu2+−TSM粉体の800℃までの焼結温度において、変質しないで焼結作用を有し、多孔質を形成するものが好ましい。その1つは、400〜800℃の加熱で白雲母系セラミックスができる天然又は合成のカオリナイト〔Al2Si25(OH)4〕とケイフッ化カリウム(K2SiF6)の混合物、例えば、(カオリナイト1.5molとケイフッ化カリウム0.5〜1.0molとの配合混合物である。)カオリナイトとしては、粘土学会標準品であるSiO246wt.%とAl2339.52wt.%、灼熱減量13.98wt.%が好ましい。この混合物をAg+−TSM粉体又はCu2+−TSM粉体に添加混合したものを加熱焼結することにより、多孔質焼結成形体から成る抗菌剤が夫々得られる。
他の1つは、アルミナ架橋フッ素雲母である。このものは、膨潤性フッ素雲母の水性懸濁液に多核ヒドロキソアルミニウムを添加し、該フッ素雲母の層間(約17Å)にインターカレーションにより多核ヒドロアルミニウムイオンを挿入して得られる。該アルミナ架橋フッ素雲母をAg+−TSM粉体又はCu2+−TSM粉体に添加混合したものを、加熱焼結することにより、多孔質焼結成形体から成る抗菌剤が夫々得られる。
As the inorganic binder, an Ag + -TSM powder or Cu 2+ -TSM powder having a sintering action without changing its quality at a sintering temperature up to 800 ° C. and forming a porous material is preferable. One of them is a mixture of natural or synthetic kaolinite [Al 2 Si 2 O 5 (OH) 4 ] and potassium silicofluoride (K 2 SiF 6 ) that can produce muscovite ceramics by heating at 400 to 800 ° C., for example, (It is a blended mixture of 1.5 mol of kaolinite and 0.5 to 1.0 mol of potassium silicofluoride.) As kaolinite, SiO 2 46 wt. % And Al 2 O 3 39.52 wt. %, Loss on ignition 13.98 wt. % Is preferred. An antibacterial agent composed of a porous sintered compact can be obtained by heating and sintering a mixture obtained by adding this mixture to Ag + -TSM powder or Cu 2+ -TSM powder.
The other is alumina cross-linked fluoromica. This is obtained by adding polynuclear hydroxoaluminum to an aqueous suspension of swellable fluorinated mica and intercalating polynuclear hydroaluminum ions between the layers of the fluorinated mica (about 17 cm). An antibacterial agent composed of a porous sintered compact can be obtained by heating and sintering the alumina cross-linked fluoromica added to and mixed with Ag + -TSM powder or Cu 2+ -TSM powder.

Ag+−TSM又はCu2+−TSMから成る本発明の抗菌剤粉体と前記の混合物又はアルミナ架橋フッ素雲母から成る無機結合剤粉体との配合割合は、20〜80wt.%対80〜20wt.%が好ましい。かゝる配合割合で混合したものを所望の形状に成形したものを500〜800℃で加熱処理することにより、抗菌剤粉体の有するイオン交換能を保持すると共に、多孔質でその無数の連通気孔から成る多孔質で而も大きな抗圧強度を有する焼結成形体から成る抗菌剤が得られる。Na−TSM(84.87g)の金属イオン交換理論量2.36mmol/gの少なくとも30%以上のイオン交換率30%をAg+又はCu2+で担持された抗菌剤粉体を最小20wt.%を配合していれば、上記の無機結合剤粉体を最大80wt。%配合しても、無機結合剤により、該抗菌剤の有する抗菌作用を低下することなく、多孔質焼結成形体を製造できる。一方、該無機結合剤粉体を最小20wt.%配合すれば、該抗菌剤の比重2.3〜2.8、無機結合剤の比重1.87〜2.04と略等しいので、80wt.%の抗菌剤粉体を均一に結着できると共に、少なくとも抗圧100Kg/cm2を保持した水崩壊性のない多孔質焼結成形体を製造できる。 The blending ratio of the antibacterial powder of the present invention composed of Ag + -TSM or Cu 2+ -TSM and the inorganic binder powder composed of the above mixture or alumina-crosslinked fluoromica is 20-80 wt. % Vs. 80-20 wt. % Is preferred. What is mixed in such a blending ratio and formed into a desired shape is heat-treated at 500 to 800 ° C., so that the ion exchange ability of the antibacterial powder is maintained and the countless communication is porous. An antibacterial agent composed of a sintered compact having a porous structure composed of pores and having a high compressive strength can be obtained. An antibacterial powder loaded with Ag + or Cu 2+ with an ion exchange rate of 30%, which is at least 30% of the theoretical amount of metal ion exchange of Na-TSM (84.87 g) of 2.36 mmol / g, is 20 wt. % Of the above inorganic binder powder up to 80 wt%. %, The porous sintered compact can be produced by the inorganic binder without reducing the antibacterial action of the antibacterial agent. On the other hand, the inorganic binder powder has a minimum of 20 wt. %, The antibacterial agent has a specific gravity of 2.3 to 2.8 and an inorganic binder has a specific gravity of 1.87 to 2.04. % Antibacterial agent powder can be uniformly bound, and a porous sintered compact having no water disintegration and at least a coercive pressure of 100 kg / cm 2 can be produced.

実施例1
以下本発明を実施例により説明する。
Na−TSMの示性式NaMg2.5(Si410)・F2に見合った原料配合物、例えば、モル比NaF0.5MgF22.0MgO・4SiOで配合した原料を白金箔で封蔵したものを、電気炉中で1400℃で2時間、加熱溶融した後、取り出して放冷して結晶塊を得た。該結晶をほぐした粉末を各20g脱イオン水2000ml中に浸漬しゾル化を行い、その浮遊物を採取し、乾燥し、抗菌剤の出発原料Na−TSM粉体を得た。このものはフレーク状粒子で平均粒子径2〜3μm、比表面積は29.5m2/gであった。
このようにして得られたNa−TSM各10gをビーカー内の10mmolの硝酸銀水溶液4000mlに投入したものを5個用意し、これらを25℃の恒温槽内で、撹拌しながらイオン交換反応を1時間、2時間、3時間、4時間、5時間に分けて行った後、遠心分離機により固液分離し、その各固形分を蒸留水で洗浄し、60℃で乾燥して夫々の銀イオン担持抗菌剤(Ag+−TSM)粉体を製造した。これらの抗菌剤につき、Agのイオン交換率を測定したところ、イオン交換反応1時間の抗菌剤Aは90%、同2時間の抗菌剤Bは95%、同3時間の抗菌剤Cは97%、同4時間の抗菌剤Dは98%、同5時間の抗菌剤Eは98%であった。
Example 1
Hereinafter, the present invention will be described by way of examples.
A raw material blend suitable for the Na-TSM formula NaMg 2.5 (Si 4 O 10 ) · F 2 , for example, a raw material blended in a molar ratio of NaF 0.5 MgF 2 · 2.0 MgO · 4 SiO was enclosed in platinum foil. The product was heated and melted in an electric furnace at 1400 ° C. for 2 hours, then taken out and allowed to cool to obtain a crystal lump. The crystal loosened powder was immersed in 2000 g of 20 g of deionized water to form a sol, and the suspended matter was collected and dried to obtain an antibacterial starting material Na-TSM powder. This was flaky particles having an average particle diameter of 2 to 3 μm and a specific surface area of 29.5 m 2 / g.
5 pieces of each 10 g of the Na-TSM obtained in this manner were put into 4000 ml of 10 mmol silver nitrate aqueous solution in a beaker, and these were subjected to ion exchange reaction for 1 hour while stirring in a constant temperature bath at 25 ° C. After being divided into 2 hours, 3 hours, 4 hours and 5 hours, solid-liquid separation is performed with a centrifuge, and each solid content is washed with distilled water and dried at 60 ° C. to carry each silver ion. Antibacterial agent (Ag + -TSM) powder was produced. When the ion exchange rate of Ag + was measured for these antibacterial agents, antibacterial agent A for 1 hour of ion exchange reaction was 90%, antibacterial agent B for 2 hours was 95%, and antibacterial agent C for 3 hours was 97. %, Antibacterial agent D for 4 hours was 98%, and antibacterial agent E for 5 hours was 98%.

実施例2
実施例1に使用した10mmol濃度の硫酸銀水溶液に代え、10mmolの硫酸銅水溶液を用いた以外は、実施例1と同様に実施して、夫々の銅イオン担持抗菌剤(Cu2+−TSM)粉体を製造した。これらの抗菌剤につき、Cu2+のイオン交換率を測定したところ、イオン交換反応1時間の抗菌剤Fは30%、同2時間の抗菌剤Gは40%、同3時間の抗菌剤Hは50%、同4時間の抗菌剤Iは60%、同5時間の抗菌剤Jは60%であった。
Example 2
Each copper ion-supporting antibacterial agent (Cu 2+ -TSM) was carried out in the same manner as in Example 1 except that a 10 mmol aqueous solution of copper sulfate was used instead of the 10 mmol aqueous solution of silver sulfate used in Example 1. A powder was produced. When the ion exchange rate of Cu 2+ was measured for these antibacterial agents, antibacterial agent F for 1 hour of ion exchange reaction was 30%, antibacterial agent G for 2 hours was 40%, and antibacterial agent H for 3 hours was The antibacterial agent I for 50% and 4 hours was 60%, and the antibacterial agent J for 5 hours was 60%.

抗菌力テストI:
次に、上記実施例1で製造した抗菌剤A〜Eの各抗菌剤につき、大腸菌に対する抗菌力試験を次のように行い、その菌発育阻止濃度(MIC)を求めた。
a)感受性測定用培地の調製:
各L字管に、培地としてマラー ヒントン培養液(ディフコ),Muller Hinton Broth(Difco)を10ml入れ、その各培地に、実施例1で製造した本発明の抗菌剤を180℃で120時間乾熱殺菌したものを検体とし、この検体32,16,8,4,2,1及び0.5mgを夫々添加し,7種類の感受性測定用培地を調製した。
b)試験用菌液(接種用菌液)の調製:
大腸菌、エシエリキア コリ IFO 3972(Escherichia coli IFO 3972)を試験菌とし、これを、栄研株式会社製の普通寒天培地に接種し、36℃±1℃、24時間培養した後、その増殖した菌体をマラー ヒントン培養液(ディフコ)に接種し、36℃±1℃、16〜24時間培養した後、菌数が1.0〜5.0×104/mlとなるように前記の増菌用培地で希釈し、接種用菌液を調製した。
c)前記の調製した7種類の各感受性測定用培地に、前記の接種用菌液0.1mlを添加、混合した後、36℃±1℃、24時間振とう培養(150γ/min)した。
d)判定:
前記の培養後、抗技協2003年度版の「抗菌剤の抗菌力評価試験法最小発育阻止濃度測定法」により検体の大腸菌に対する検体のMIC(最小発育阻止濃度)を測定した。
e)判定結果:
上記の抗菌力テストを上記の抗菌剤A〜Eにつき行った結果、最小イオン交換率の抗菌剤AでもMICは60μg/ml、最大のイオン交換率の抗菌剤EのMICは50μg/mlの結果を得た。従って、Ag+−TSMから成る抗菌剤A〜Eの全ては、優れた抗菌力を有することが確認された。また、多くの銀イオン交換率の異なるAg+−TSMの抗菌剤につき、抗菌力テストを測定したところ、イオン交換率10%でもMIC80μg/mlという抗菌力を有するものが得られた。
尚、比較のため、Ag+−TSMの抗菌剤を添加しない、接種用菌液を36℃±1℃で振とう培養した場合は、大腸菌の生菌数は2.4×106に増殖していた。
Antibacterial test I:
Next, the antibacterial activity test against Escherichia coli was performed as follows for each of the antibacterial agents A to E produced in Example 1 to determine the bacterial growth inhibitory concentration (MIC).
a) Preparation of sensitivity measurement medium:
In each L-shaped tube, 10 ml of Malin Hinton broth (Difco) and Muller Hinton Broth (Difco) are added as a medium, and the antibacterial agent of the present invention produced in Example 1 is dry-heated at 180 ° C. for 120 hours. The sterilized samples were used as specimens, and the specimens 32, 16, 8, 4, 2, 1 and 0.5 mg were added to prepare seven types of sensitivity measuring media.
b) Preparation of test liquid (inoculum):
Escherichia coli, Escherichia coli IFO 3972 (Escherichia coli IFO 3972) was used as a test bacterium, and this was inoculated into a normal agar medium manufactured by Eiken Co., Ltd. Is inoculated into Malar Hinton culture solution (Difco), cultured at 36 ° C. ± 1 ° C. for 16-24 hours, and then enriched so that the number of bacteria becomes 1.0-5.0 × 10 4 / ml Dilution with a medium was carried out to prepare a bacterial solution for inoculation.
c) 0.1 ml of the above-mentioned bacterial solution for inoculation was added to and mixed with each of the seven types of susceptibility measuring media prepared above, followed by shaking culture (150γ / min) at 36 ° C. ± 1 ° C. for 24 hours.
d) Judgment:
After the culture, the MIC (minimum growth inhibitory concentration) of the specimen against Escherichia coli of the specimen was measured by the Anti-Technology Co., Ltd. 2003 version “Method of measuring the minimum inhibitory concentration of antibacterial agents”.
e) Judgment result:
As a result of performing the above-mentioned antibacterial activity test for the above-mentioned antibacterial agents A to E, the MIC of the antibacterial agent A having the minimum ion exchange rate is 60 μg / ml, and the MIC of the antibacterial agent E having the maximum ion exchange rate is 50 μg / ml. Got. Therefore, it was confirmed that all of the antibacterial agents A to E composed of Ag + -TSM have excellent antibacterial power. Further, when antibacterial activity test was performed on many antibacterial agents of Ag + -TSM having different silver ion exchange rates, an antibacterial activity of MIC 80 μg / ml was obtained even at an ion exchange rate of 10%.
For comparison, when the bacterial solution for inoculation without shaking of the Ag + -TSM antibacterial agent is cultured at 36 ° C ± 1 ° C with shaking, the viable count of E. coli grows to 2.4 x 10 6. It was.

上記の抗菌力テストを、上記のCu2+−TSM抗菌剤F〜Jにつき行ったところ、イオン交換率最小の30%の抗菌剤FのMICは250μg/ml、抗菌剤GのMICは240μg/ml、抗菌剤HのMICは200μg/ml、イオン交換率が最大の60%の抗菌剤JのMICは200μg/mlの判定結果を得た。 When the above antibacterial activity test was performed on the Cu 2+ -TSM antibacterial agents F to J, the MIC of the antibacterial agent F having a minimum ion exchange rate of 30% was 250 μg / ml, and the MIC of the antibacterial agent G was 240 μg / ml. The MIC of antibacterial agent H was 200 μg / ml, and the MIC of antibacterial agent J having the maximum ion exchange rate of 60% was 200 μg / ml.

実施例3
また、上記の粉状のAg+−TSMから成る抗菌剤A〜E及びCu2+−TSMから成る抗菌剤F〜Jにつき、夫々800℃に加熱し焼結したものを作製し、その夫々につき、上記の抗菌力テストを行い、その夫々のMIC値を測定したところ、粉末のときとほゞ同じ値を得た。この試験結果から、粉状の抗菌剤を500〜800℃の高温に加熱し焼結体としても、抗菌力に悪影響を与えないことが判明した。焼結体は、常温まで温度が下がると、空気中の湿気を吸い、付着水が付与されるので、粉体と同様の抗菌力をもたらすことが判った。
Example 3
In addition, antibacterial agents A to E composed of the above powdery Ag + -TSM and antibacterial agents F to J composed of Cu 2+ -TSM were prepared by heating to 800 ° C. and sintered, respectively. When the above-mentioned antibacterial activity test was carried out and the MIC value of each was measured, the same value as that of powder was obtained. From this test result, it was found that even when the powdered antibacterial agent was heated to a high temperature of 500 to 800 ° C. to obtain a sintered body, the antibacterial activity was not adversely affected. It has been found that when the sintered body is cooled down to room temperature, the sintered body absorbs moisture in the air and is provided with adhering water.

実施例4
無機結合剤として、粘土学会標準品である白雲母系カオリナイト1.5molとケイフッ化カリウムK2SiF6 0.6mmolを良く混合したものを560℃で3時間加熱焼結して、白雲母に形成し、次いでこれを粉砕して白雲母の焼結粉体を用意した。
実施例1で製造したAg+−TSM抗菌剤Eの粉体と上記の白雲母の焼結粉体から成る無機結合剤とを下記表1に示すように配合割合を異にして7種類の配合物(試料No.1〜No.7)を調製し、その各配合物につき、ボールミルで2時間結合し微細に粉砕した。この混合物にPVAの1〜10%水溶液を少量添加し、粘稠な混合物としたものを、孔径5mm、深さ7mmの円柱状の成形用キャビティーを多数固配設した鉄製鋳型内の各キャビティー内に充填し、成形圧37.5MPaで加圧成形した後、径5mm、厚さ7mmの各成形品を100℃で1時間乾燥し、次いで、これらの乾燥成形品を、ムライト製の耐火物から成る載置板上に載置した後、これをマッフル式電気炉に装入し、毎時150℃上昇の昇温速度で加熱し、600〜700℃の範囲で2〜1時間焼結処理を行って、7種類の多孔質焼結成形体から成る抗菌剤試料No.1〜No.7を製造した。
Example 4
As an inorganic binder, a mixture of 1.5 mol of muscovite kaolinite, a standard product of the Japan Clay Society, and 0.6 mmol of potassium silicofluoride K 2 SiF 6 is heated and sintered at 560 ° C. for 3 hours to form muscovite. Then, this was pulverized to prepare a sintered powder of muscovite.
As shown in Table 1 below, seven types of blends of the powder of Ag + -TSM antibacterial agent E produced in Example 1 and the inorganic binder composed of the sintered powder of muscovite described above are used. (Samples No. 1 to No. 7) were prepared, and each of the blends was combined with a ball mill for 2 hours and finely pulverized. A small amount of a 1-10% aqueous solution of PVA was added to this mixture to make a viscous mixture. Each mold in an iron mold in which a large number of cylindrical molding cavities having a hole diameter of 5 mm and a depth of 7 mm were arranged solidly. After filling into the tee and press-molding at a molding pressure of 37.5 MPa, each molded product having a diameter of 5 mm and a thickness of 7 mm is dried at 100 ° C. for 1 hour, and then these dried molded products are refractory made by Mullite. After being placed on a mounting plate made of a product, this was placed in a muffle electric furnace, heated at a rate of temperature increase of 150 ° C. per hour, and sintered at a temperature of 600 to 700 ° C. for 2 to 1 hour. And antibacterial agent sample No. 7 comprising 7 types of porous sintered compacts. 1-No. 7 was produced.

Figure 2006160692
Figure 2006160692

上記の実施例4で製造された表1に示す夫々の配合割合の混合物を用いて製造された配合物試料No.1〜No.7に対応する多孔質のAg+−TSM焼結成形体から成る抗菌剤試料No.1〜No.7の物性は下記表2に示す通りであった。これから明らかなように、良好な物性を有することが判る。また、これら抗菌剤試料No.1〜No.7は、常温で空気中の湿気を吸収し、一水層型を示していた。また、一般に、抗菌剤20〜80%と無機結合剤20〜80%の配合混合物を600〜700℃で加熱処理することにより、良好な機械的強度、吸水性を有し且つ軽量な多孔質焼結成形体の抗菌剤が得られることが判る。 Formulation sample No. manufactured using the mixture of each mixing ratio shown in Table 1 manufactured in Example 4 above. 1-No. Antibacterial agent sample No. 7 comprising a porous Ag + -TSM sintered compact corresponding to No. 7 1-No. The physical properties of 7 were as shown in Table 2 below. As is apparent from this, it can be seen that it has good physical properties. These antibacterial agent samples No. 1-No. 7 absorbed moisture in the air at room temperature and showed a single water layer type. In general, a mixture of antibacterial agent 20 to 80% and inorganic binder 20 to 80% is heat-treated at 600 to 700 ° C., so that it has good mechanical strength, water absorption, and lightweight porous firing. It can be seen that an antibacterial agent for the compact is obtained.

Figure 2006160692
Figure 2006160692

実施例1で製造したイオン交換率の異なる5種類のAg+−TSM抗菌剤A〜Eの各粉体につき、抗菌剤30wt.%と前記の白雲母焼結から成る無機結合剤粉体70wt.%とを混合し、ボールミルで微粉砕とした混合粉を少量のPVA水溶液で混練したものを成形用鋳型に充填し、加圧成形した後、120℃で加熱し、乾燥した成形品の夫々を、マッフル式電気炉に装入し、750℃で1時間焼結処理を行って、5種類の多孔質成形体から成る抗菌剤試料A′〜E′を製造した。これらの抗菌剤A′〜E′を検体とし、前記の段落0018に記載の大腸菌に対する抗菌力テストと同様にして抗菌力テストを行った。その結果、これら抗菌剤A′〜E′の夫々のMIC値は、乾燥粉末の抗菌剤A〜Eの夫々対応するMIC値と略同じ値を示した。これにより、焼結成形体は、粉体の抗菌剤と同様の抗菌力を有することが確認された。 For each powder of five types of Ag + -TSM antibacterial agents A to E having different ion exchange rates produced in Example 1, an antibacterial agent of 30 wt. % And inorganic binder powder 70 wt. % And mixed with a small amount of PVA aqueous solution mixed with a small amount of PVA aqueous solution, filled into a mold for molding, press-molded, heated at 120 ° C, and dried The sample was placed in a muffle electric furnace and sintered at 750 ° C. for 1 hour to prepare antibacterial agent samples A ′ to E ′ composed of five types of porous molded bodies. Using these antibacterial agents A ′ to E ′ as samples, an antibacterial activity test was conducted in the same manner as the antibacterial activity test against E. coli described in the above paragraph 0018. As a result, the MIC values of these antibacterial agents A ′ to E ′ were substantially the same as the corresponding MIC values of the dry powder antibacterial agents A to E, respectively. Thereby, it was confirmed that the sintered compact has the same antibacterial power as the powder antibacterial agent.

実施例5
無機結合剤として、膨潤性フッ素雲母の懸濁液に、OH/Al比が1.5以上の多核ヒドロキソアルミニウムの水溶液に添加し、撹拌して、室温で2時間インターカレーションを行い、該フッ素雲母の層間にアルミナが挿入されたアルミナ架橋フッ素雲母を生成せしめた後、固液分離し、取得したアルミナ架橋フッ素雲母を洗浄し、次いで700℃で3時間加熱し、次いでこれを粉砕して得られたアルミナ架橋フッ素雲母の焼結剤を用意した。
実施例1で製造したAg+−TSM抗菌剤Eの粉体と上記のアルミナ架橋フッ素雲母の焼結粉体から成る無機結合剤とを下記表3に示すように配合割合を異にして7種類の配合物試料No.8〜No.14を調製し、その各配合物につき、ボールミルで2時間結合し微細に粉砕した。この混合物にPVAの1〜10%水溶液を少量添加し、粘稠な混合物としたものを、孔径5mm、深さ7mmの円柱状の成形用キャビティーを多数固配設した鉄製鋳型内の各キャビティー内に充填し、成形圧37.5MPaで加圧成形した後、径5mm、厚さ7mmの各成形品を100℃で1時間乾燥し、次いで、これらの乾燥成形品を、ムライト製の耐火物から成る載置板上に載置した後、これをマッフル式電気炉に装入し、毎時150℃上昇の昇温速度で加熱し、600〜700℃の範囲で2〜1時間焼結処理を行って、7種類の多孔質焼結成形体から成る抗菌剤試料No.8〜No.14を製造した。
Example 5
As an inorganic binder, added to an aqueous solution of polynuclear hydroxoaluminum having an OH / Al ratio of 1.5 or more to a suspension of swellable fluorinated mica, stirred, and intercalated at room temperature for 2 hours. After forming alumina-crosslinked fluoromica with alumina inserted between mica layers, solid-liquid separation was performed, and the obtained alumina-crosslinked fluoromica was washed, then heated at 700 ° C. for 3 hours, and then pulverized. A sintering agent for the obtained alumina-crosslinked fluoromica was prepared.
Seven types of powders of Ag + -TSM antibacterial agent E produced in Example 1 and inorganic binders composed of the above sintered powder of alumina-crosslinked fluoromica were used in different proportions as shown in Table 3 below. The formulation sample No. 8-No. No. 14 was prepared, and each of the blends was combined with a ball mill for 2 hours and finely pulverized. A small amount of a 1-10% aqueous solution of PVA was added to this mixture to make a viscous mixture. Each mold in an iron mold in which a large number of cylindrical molding cavities having a hole diameter of 5 mm and a depth of 7 mm were arranged solidly. After filling into the tee and press-molding at a molding pressure of 37.5 MPa, each molded product having a diameter of 5 mm and a thickness of 7 mm is dried at 100 ° C. for 1 hour, and then these dried molded products are refractory made by Mullite. After being placed on a mounting plate made of a product, this was placed in a muffle electric furnace, heated at a rate of temperature increase of 150 ° C. per hour, and sintered at a temperature of 600 to 700 ° C. for 2 to 1 hour. And antibacterial agent sample No. 7 comprising 7 types of porous sintered compacts. 8-No. 14 was produced.

Figure 2006160692
Figure 2006160692

上記の実施例5で製造された表3に示す夫々の配合割合の混合物を用いて製造された配合物試料No.8〜No.14に対応する多孔質のAg+−TSM焼結成形体から成る抗菌剤試料No.8〜No.14の物性は下記表4に示す通りであった。これから明らかなように、良好な物性を有することが判る。また、これら抗菌剤試料No.8〜No.14は、常温で空気中の湿気を吸収し、一水層型を示していた。また、一般に、抗菌剤20〜80wt.%と無機結合剤20〜80wt.%の配合混合物を600〜700℃で加熱処理することにより、良好な機械的強度、吸水性を有し且つ軽量な多孔質焼結成形体から成る抗菌剤が得られることが判る。 Formulation sample No. manufactured using the mixture of each mixing ratio shown in Table 3 manufactured in Example 5 above. 8-No. No. 14 antibacterial agent sample No. 14 comprising a porous Ag + -TSM sintered compact. 8-No. The physical properties of 14 were as shown in Table 4 below. As is apparent from this, it can be seen that it has good physical properties. These antibacterial agent samples No. 8-No. No. 14 absorbed moisture in the air at room temperature and showed a single water layer type. In general, the antibacterial agent 20-80 wt. % And inorganic binder 20-80 wt. It can be seen that an antibacterial agent composed of a porous sintered compact having good mechanical strength, water absorption, and light weight can be obtained by heat-treating the blended composition of 100% at 600 to 700 ° C.

Figure 2006160692
Figure 2006160692

実施例1で製造したAg+−TSM抗菌剤A〜E粉体の夫々を抗菌剤30wt.%と前記のアルミナ架橋焼結から成る無機結合剤粉体70wt.%とを混合し、ボールミルで微粉砕とした混合粉を少量のPVA水溶液で混練したものを成形用鋳型に充填し、加圧成形した後、120℃で加熱し、乾燥した成形品の夫々を、マッフル式電気炉に装入し、750℃で1時間焼結処理を行って、7種類の多孔質性形態から成る抗菌剤試料A″〜E″を製造した。これらの抗菌剤A″〜E″を検体とし、前記の段落0018に記載の大腸菌に対する抗菌テストの容量で抗菌テストを行った。その結果、これら抗菌剤A″〜E″の夫々のMIC値は、乾燥粉末の抗菌剤A〜Eの夫々対応するMIC値と略同じ値を示した。 Each of the Ag + -TSM antibacterial agents A to E produced in Example 1 was treated with 30 wt. % And inorganic binder powder 70 wt. % And mixed with a small amount of PVA aqueous solution mixed with a small amount of PVA aqueous solution, filled into a mold for molding, press-molded, heated at 120 ° C, and dried The sample was placed in a muffle electric furnace and sintered at 750 ° C. for 1 hour to prepare antibacterial agent samples A ″ to E ″ having seven kinds of porous forms. Using these antibacterial agents A ″ to E ″ as specimens, the antibacterial test was performed with the capacity of the antibacterial test against Escherichia coli described in paragraph 0018 above. As a result, the MIC values of these antibacterial agents A ″ to E ″ were substantially the same as the corresponding MIC values of the dry powder antibacterial agents A to E, respectively.

実施例6
無機結合剤として、実施例4で用意した白雲母の焼結粉体と実施例2で製造したCu2+−TSM抗菌剤J粉体とを下記表5に示すように配合割合を異にして7種類の配合物(試料No.15〜No.21)を調製し、その各配合物につき、実施例4と同じ要領で加圧成形、焼結処理を行って、7種類の多孔質焼結成形体から成る抗菌剤試料No.15〜No.21を製造した。
Example 6
As an inorganic binder, the muscovite sintered powder prepared in Example 4 and the Cu 2+ -TSM antibacterial agent J powder prepared in Example 2 were mixed in different proportions as shown in Table 5 below. Seven types of blends (samples No. 15 to No. 21) were prepared, and each of the blends was subjected to pressure molding and sintering treatment in the same manner as in Example 4 to obtain seven types of porous sintered products. Antibacterial sample No. 15-No. 21 was produced.

Figure 2006160692
Figure 2006160692

上記の実施例6で製造された表5に示す夫々の配合割合の混合物を用いて製造された配合物試料No.15〜No.21に対応する多孔質のCu2+−TSM焼結成形体から成る抗菌剤試料No.15〜No.21の物性は下記表6に示す通りであった。これから明らかなように、良好な物性を有することが判る。また、これら抗菌剤試料No.15〜No.21は、加熱後冷却され、常温になったとき、空気中の湿気を吸収し、一水層型を示していた。また、一般に、抗菌剤20〜80%と無機結合剤20〜80%の配合混合物を600〜700℃で加熱処理することにより、良好な機械的強度、吸水性を有し且つ軽量な多孔質焼結成形体の抗菌剤が得られることが判る。 Formulation sample No. manufactured using the mixture of each mixing ratio shown in Table 5 manufactured in Example 6 above. 15-No. Antibacterial sample No. 1 comprising a porous Cu 2+ -TSM sintered compact corresponding to No. 21 15-No. The physical properties of 21 were as shown in Table 6 below. As is apparent from this, it can be seen that it has good physical properties. These antibacterial agent samples No. 15-No. No. 21 was cooled after heating and when it reached room temperature, it absorbed moisture in the air and exhibited a single water layer type. In general, a mixture of antibacterial agent 20 to 80% and inorganic binder 20 to 80% is heat-treated at 600 to 700 ° C., so that it has good mechanical strength, water absorption, and lightweight porous firing. It can be seen that an antibacterial agent for the compact is obtained.

Figure 2006160692
Figure 2006160692

実施例2で製造したイオン交換率の異なる5種類のCu2+−TSM抗菌剤F〜J粉体の夫々を抗菌剤30wt.%と前記の白雲母焼結から成る無機結合剤粉体70wt.%とを混合し、ボールミルで微粉砕とした混合粉を少量のPVA水溶液で混練したものを成形用鋳型に充填し、加圧成形した後、120℃で加熱し、乾燥した成形品の夫々を、マッフル式電気炉に装入し、750℃で1時間焼結処理を行って、5種類の多孔質成形体から成る抗菌剤試料F′〜J′を製造した。これらの抗菌剤F′〜J′を検体とし、前記の段落0018に記載の大腸菌に対する抗菌テストの要領で抗菌テストを行った。その結果、これら抗菌剤F′〜J′の夫々のMIC値は、乾燥粉末の抗菌剤F〜Jの夫々対応するMIC値と略同じ値を示した。 Each of the five types of Cu 2+ -TSM antibacterial agents F to J powders having different ion exchange rates produced in Example 2 was added to the antibacterial agent 30 wt. % And inorganic binder powder 70 wt. % And mixed with a small amount of PVA aqueous solution mixed with a small amount of PVA aqueous solution, filled into a mold for molding, press-molded, heated at 120 ° C, and dried The sample was placed in a muffle type electric furnace and sintered at 750 ° C. for 1 hour to produce antibacterial agent samples F ′ to J ′ comprising five kinds of porous molded bodies. Using these antibacterial agents F ′ to J ′ as samples, an antibacterial test was performed in the same manner as the antibacterial test against Escherichia coli described in paragraph 0018 above. As a result, the MIC values of the antibacterial agents F ′ to J ′ were substantially the same as the corresponding MIC values of the dry powder antibacterial agents F to J, respectively.

実施例7
実施例2で製造したCu2+−TSM抗菌剤Jの粉体と実施例5で製造したアルミナ架橋フッ素雲母の焼結粉体から成る無機結合剤とを下記表7に示すように配合割合を異にして7種類の配合物試料No.22〜No.28を調製し、その各配合物につき、ボールミルで2時間結合し微細に粉砕した。この混合物にPVAの1〜10%水溶液を少量添加し、粘稠な混合物としたものを、孔径5mm、深さ7mmの円柱状の成形用キャビティーを多数固配設した鉄製鋳型内の各キャビティー内に充填し、成形圧37.5MPaで加圧成形した後、径5mm、厚さ7mmの各成形品を100℃で1時間乾燥し、次いで、これらの乾燥成形品を、ムライト製の耐火物から成る載置板上に載置した後、これをマッフル式電気炉に装入し、毎時150℃上昇の昇温速度で加熱し、600〜700℃の範囲で2〜1時間焼結処理を行って、7種類の多孔質焼結成形体から成る抗菌剤試料No.22〜No.28を製造した。
Example 7
The compounding ratio of the Cu 2+ -TSM antibacterial agent J powder produced in Example 2 and the inorganic binder composed of the sintered powder of alumina-crosslinked fluoromica produced in Example 5 is shown in Table 7 below. Differently, seven kinds of compound sample Nos. 22-No. 28 was prepared, and each of the blends was combined with a ball mill for 2 hours and finely pulverized. A small amount of a 1-10% aqueous solution of PVA was added to this mixture to make a viscous mixture. Each mold in an iron mold in which a large number of cylindrical molding cavities having a hole diameter of 5 mm and a depth of 7 mm were arranged solidly. After filling into the tee and press-molding at a molding pressure of 37.5 MPa, each molded product having a diameter of 5 mm and a thickness of 7 mm is dried at 100 ° C. for 1 hour, and then these dried molded products are refractory made by Mullite. After being placed on a mounting plate made of a product, this was placed in a muffle electric furnace, heated at a rate of temperature increase of 150 ° C. per hour, and sintered at a temperature of 600 to 700 ° C. for 2 to 1 hour. And antibacterial agent sample No. 7 comprising 7 types of porous sintered compacts. 22-No. 28 was produced.

Figure 2006160692
Figure 2006160692

上記の実施例7で製造された表7に示す夫々の配合割合の混合物を用いて製造された配合物試料No.22〜No.28に対応する多孔質のCu+−TSM焼結成形体から成る抗菌剤試料No.22〜No.28の物性は下記表8に示す通りであった。これから明らかなように、良好な物性を有することが判る。また、これら抗菌剤試料No.22〜No.28は、常温で空気中の湿気を吸収し、一水層型を示していた。また、一般に、抗菌剤20〜80wt.%と無機結合剤20〜80wt.%の配合混合物を600〜700℃で加熱処理することにより、良好な機械的強度、吸水性を有し且つ軽量な多孔質焼結成形体から成る抗菌剤が得られることが判る。 Formulation sample No. manufactured using the mixture of each mixing ratio shown in Table 7 manufactured in Example 7 above. 22-No. Antibacterial agent sample No. 28 comprising a porous Cu + -TSM sintered compact corresponding to No. 28. 22-No. The physical properties of 28 were as shown in Table 8 below. As is apparent from this, it can be seen that it has good physical properties. These antibacterial agent samples No. 22-No. No. 28 absorbed moisture in the air at room temperature and was a single water layer type. In general, the antibacterial agent 20-80 wt. % And inorganic binder 20-80 wt. It can be seen that an antibacterial agent composed of a porous sintered compact having good mechanical strength, water absorption, and light weight can be obtained by heat-treating the blended composition of 100% at 600 to 700 ° C.

Figure 2006160692
Figure 2006160692

実施例2で製造したCu2+−TSM抗菌剤F〜J粉体各粉体につき、抗菌剤30wt.%と前記のアルミナ架橋フッ素雲母焼結から成る無機結合剤粉体70wt.%とを混合し、ボールミルで微粉砕とした混合粉を少量のPVA水溶液で混練したものを成形用鋳型に充填し、加圧成形した後、120℃で加熱し、乾燥した成形品の夫々を、マッフル式電気炉に装入し、750℃で1時間焼結処理を行って、7種類の多孔質性形態から成る抗菌剤試料F″〜J″を製造した。これらの抗菌剤を検体とし、前記の段落0018に記載の大腸菌に対する抗菌テストの容量で抗菌テストを行った。その結果、これら抗菌剤F″〜J″の夫々のMIC値は、乾燥粉末の抗菌剤F〜Jの夫々対応するMIC値と略同じ値を示した。 For each powder of Cu 2+ -TSM antibacterial agent F to J produced in Example 2, an antibacterial agent 30 wt. % And inorganic binder powder 70 wt. % And mixed with a small amount of PVA aqueous solution mixed with a small amount of PVA aqueous solution, filled into a mold for molding, press-molded, heated at 120 ° C, and dried The sample was placed in a muffle electric furnace and sintered at 750 ° C. for 1 hour to produce antibacterial agent samples F ″ to J ″ having seven kinds of porous forms. Using these antibacterial agents as specimens, antibacterial tests were conducted with the antibacterial test capacity against E. coli described in paragraph 0018 above. As a result, the MIC values of these antibacterial agents F ″ to J ″ were substantially the same as the corresponding MIC values of the dry powder antibacterial agents F to J, respectively.

実施例8
次に、一価の銅イオン担持TSM(以下、Cu+−TSMと略称)と無機結合剤との混合物の多孔質焼結成形体の製造法の実施例を示す。
密栓し得るビン内にCuO2gを約25%の塩酸HCl25mlに加え、更に、これに約2gのCu粉を加え、更に、ビンの底からビンの首に達する螺旋状に巻いたCu線を挿入した後、密栓し、3日間放置して内容物が無色となるまで3日間放置して一価の銅イオン溶液入りのビンを5個用意した。
その各ビンを開栓し、その夫々にNa−TSM粉末10gを添加し、再び密栓した後、これらのビンを常温で1時間、2時間、3時間、4時間、5時間と反応時間を異にして、イオン交換反応を行った後、開栓し、その各ビン内の反応液を濾過し、各固形分を分取し、その夫々を蒸留水で洗浄した後、60℃で乾燥してイオン交換反応時間の異なる5種類の銅イオン担持抗菌剤(Cu+−TSM)粉体を製造した。これらの抗菌剤につき、Cuのイオン交換率を測定したところ、イオン交換反応1時間の抗菌剤Kは32%、同2時間の抗菌剤Lは45%、同3時間の抗菌剤Mは55%、同4時間の抗菌剤Nは65%、同5時間の抗菌剤Oは65%であった。
Example 8
Next, an example of a method for producing a porous sintered compact of a mixture of a monovalent copper ion-supporting TSM (hereinafter abbreviated as Cu + -TSM) and an inorganic binder will be described.
In a bottle that can be sealed, 2 g of CuO was added to 25 ml of HCl of about 25% hydrochloric acid. Further, about 2 g of Cu powder was added thereto, and a spirally wound Cu wire was inserted from the bottom of the bottle to the neck of the bottle. Thereafter, the bottle was sealed and allowed to stand for 3 days until the contents became colorless, and 5 bottles containing a monovalent copper ion solution were prepared.
Each bottle was opened, 10 g of Na-TSM powder was added to each bottle, the bottle was sealed again, and these bottles were allowed to react for 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours at room temperature. After carrying out the ion exchange reaction, the bottle was opened, the reaction solution in each bottle was filtered, each solid was separated, each was washed with distilled water, and then dried at 60 ° C. Five types of copper ion-supporting antibacterial agent (Cu + -TSM) powders having different ion exchange reaction times were produced. When the ion exchange rate of Cu + was measured for these antibacterial agents, the antibacterial agent K for 1 hour of ion exchange reaction was 32%, the antibacterial agent L for 2 hours was 45%, and the antibacterial agent M for 3 hours was 55. %, The antibacterial agent N for 4 hours was 65%, and the antibacterial agent O for 5 hours was 65%.

実施例9
次いで、上記のCu+担持抗菌剤(Cu+−TSM)Oの粉体と無機結合剤として、実施例4で製造した白雲母焼結粉体とを下記表9に示すように配合割合を異にして混合して7種類の配合物試料No.29〜No.35を調製し、その各配合物試料につき、ボールミルで2時間結合し微細に粉砕した。この混合物にPVAの1〜10%水溶液を少量添加し、粘稠な混合物としたものを、孔径5mm、深さ7mmの円柱状の成形用キャビティーを多数固配設した鉄製鋳型内の各キャビティー内に充填し、成形圧37.5MPaで加圧成形した後、径5mm、厚さ7mmの各成形品を100℃で1時間乾燥し、次いで、これらの乾燥成形品を、ムライト製の耐火物から成る載置板上に載置した後、これをマッフル式電気炉に装入し、毎時150℃上昇の昇温速度で加熱し、700℃で1時間焼結処理を行って、7種類の多孔質焼結成形体から成る抗菌剤試料No.29〜No.35を製造した。
Example 9
Next, as shown in Table 9 below, the blending ratios of the Cu + supported antibacterial agent (Cu + -TSM) O powder and the muscovite sintered powder produced in Example 4 as the inorganic binder are different. 7 kinds of compound sample Nos. 29-No. 35 were prepared, and each of the blended samples was combined with a ball mill for 2 hours and finely pulverized. A small amount of a 1-10% aqueous solution of PVA was added to this mixture to make a viscous mixture. Each mold in an iron mold in which a large number of cylindrical molding cavities having a hole diameter of 5 mm and a depth of 7 mm were arranged solidly. After filling into the tee and press-molding at a molding pressure of 37.5 MPa, each molded product having a diameter of 5 mm and a thickness of 7 mm is dried at 100 ° C. for 1 hour, and then these dried molded products are refractory made by Mullite. After placing on a mounting plate made of a product, it was placed in a muffle electric furnace, heated at a rate of temperature increase of 150 ° C. per hour, and subjected to sintering treatment at 700 ° C. for 1 hour. Antibacterial agent sample No. consisting of a porous sintered compact of 29-No. 35 was produced.

Figure 2006160692
Figure 2006160692

上記の実施例9で製造された表9に示す夫々の配合割合の混合物を用いて製造された配合物試料No.29〜No.35に対応する多孔質のCu+−TSM焼結成形体から成る抗菌剤試料No.29〜No.35の物性は下記表10に示す通りであった。これから明らかなように、良好な物性を有することが判る。また、これら抗菌剤試料No.29〜No.35は、常温で空気中の湿気を吸収し、一水層型を示していた。また、一般に、抗菌剤20〜80%と無機結合剤20〜80%の配合混合物を600〜700℃で加熱処理することにより、良好な機械的強度、吸水性を有し且つ軽量な多孔質焼結成形体の抗菌剤が得られることが判る。 Formulation sample No. manufactured using the mixture of each mixing ratio shown in Table 9 manufactured in Example 9 above. 29-No. Antibacterial agent sample No. 35 comprising a porous Cu + -TSM sintered compact corresponding to No. 35. 29-No. The physical properties of 35 were as shown in Table 10 below. As is apparent from this, it can be seen that it has good physical properties. These antibacterial agent samples No. 29-No. No. 35 absorbed moisture in the air at room temperature, and showed a single water layer type. In general, a mixture of antibacterial agent 20 to 80% and inorganic binder 20 to 80% is heat-treated at 600 to 700 ° C., so that it has good mechanical strength, water absorption, and lightweight porous firing. It can be seen that an antibacterial agent for the compact is obtained.

Figure 2006160692
Figure 2006160692

抗菌テストII:
次に、上記実施例9で製造したCu+担持抗菌剤試料No.29〜35の各試料につき、下記の抗菌テストを行った。
黄色ブドウ状球菌(Staphylococcus Aureus IFO 12732)を通常の培地に接種し、37℃、20時間培養した後、これを1/500普通培液に懸濁させ、且つリン酸緩衝液(pH7)を注入し、菌数を2.0×105/mlの菌液を調製した。
一方、U字管(管径10mm、直立部200mm、底部10mm)を7本用意し、その各U字管にNo.29〜35の各試料をそのU字管の底部に堰として装填し、上記に調製した菌液を各該U字管の一方の口より注入し、該堰を透過させ、該U字管の他方の口より1分間に2ml排出するようにし、10分間行い、その排出する試験液をビーカーに採取し、更に、該ビーカーに採取した試験液を再び該U字管の入り口より注入し、同様にして出口より排出する試験液をビーカーに採取し、1回透過液と2回透過液について、夫々180回/分振とう培養し、1時間後、試験液中の菌数を、混釈平板培養法により求めた。その結果は、表11に示す通りであった。
Antibacterial test II:
Next, the Cu + -supported antibacterial agent sample No. 1 manufactured in Example 9 above was used. The following antibacterial tests were performed on each of the samples 29 to 35.
Staphylococcus aureus IFO 12732 is inoculated into a normal medium, cultured at 37 ° C. for 20 hours, suspended in 1/500 normal medium, and injected with a phosphate buffer (pH 7). Then, a bacterial solution having a bacterial count of 2.0 × 10 5 / ml was prepared.
On the other hand, seven U-shaped tubes (tube diameter 10 mm, upright portion 200 mm, bottom portion 10 mm) were prepared. Each sample of 29 to 35 is loaded as a weir at the bottom of the U-shaped tube, the bacterial solution prepared above is injected from one port of each U-shaped tube, and the weir is permeated. 2 ml is discharged from the other mouth per minute for 10 minutes, the discharged test solution is collected in a beaker, and the test solution collected in the beaker is again injected from the entrance of the U-shaped tube. The test solution discharged from the outlet was collected in a beaker, and the 1st permeate and the 2nd permeate were each cultured with shaking at 180 times / minute, and after 1 hour, the number of bacteria in the test solution was determined by mixing the plate. It was determined by a culture method. The results were as shown in Table 11.

Figure 2006160692
Figure 2006160692

表7から明らかなように、菌数2.0×105個を含む当初の試験液を抗菌剤No.29〜No.35を1回透過させると、ブドウ状球菌は殆ど除菌され、2回透過させると無菌液となる優れた除菌効果をもたらす。
比較のため、上記の抗菌剤無添加のコントロール試料である当初の試験液に含有する菌数2.0×105個は、1回目の透過作業を終了した時点では、菌数2.1×105個と菌が増殖しており、2回透過作業経過作業を終了した時点では、2.7×105個と増殖していた。
As is apparent from Table 7, the initial test solution containing 2.0 × 10 5 bacteria was assigned to the antibacterial agent No. 29-No. When 35 is permeated once, staphylococci are almost sterilized, and when permeated twice, an excellent sterilizing effect is obtained which becomes a sterile solution.
For comparison, the number of bacteria 2.0 × 10 5 contained in the original test solution, which is the above-mentioned control sample without addition of the antibacterial agent, is 2.1 × 10 5 bacteria were growing, and when the work of passing through the second permeation work was completed, it was growing to 2.7 × 10 5 .

実施例9で使用したCu+−TSM抗菌剤Oに代え、Cu+−TSM抗菌剤K〜Nの各粉体につき、実施例9と同様に処理して7種類の多孔質焼結成形体試料を製造し、次いで、これらを上記の抗菌力テストを行った結果、表10に示すと同様の物性が得られると共に、表11に示すと略同じ除菌効果を示した。 Instead of the Cu + -TSM antibacterial agent O used in Example 9, each powder of Cu + -TSM antibacterial agents K to N was treated in the same manner as in Example 9 to prepare seven types of porous sintered compact samples. These were then subjected to the antibacterial activity test described above. As a result, the same physical properties as shown in Table 10 were obtained, and the same sterilizing effect as shown in Table 11 was exhibited.

実施例10
上記のCu+−TSM粉体と無機結合剤としてアルミナ架橋粉体とをCu+−TSM粉体20wt.%〜80wt.%とアルミナ架橋粉体80wt.%〜20wt.%の範囲で、表7に示すと同様の配合割合で配合し、7種類の配合試料を調製した後、その各試料につき、前記と同様に加圧成形し、500〜800℃で焼結して抗菌剤No.36〜42を製造した。この各試料につき、抗菌力テストを上記の抗菌力テストIIと同様に行った。その結果を下記表12に示す。上記の実施例9で示す白雲母粉体を配合した焼結成形体の抗菌剤と略と同様の除菌効果が得られた。
Example 10
The above Cu + -TSM powder and the alumina crosslinked powder Cu + -TSM powder 20wt as an inorganic binder. % To 80 wt. % And alumina crosslinked powder 80 wt. % To 20 wt. % In the range shown in Table 7, and after preparing seven kinds of blended samples, each sample was pressure-molded in the same manner as described above and sintered at 500 to 800 ° C. Antibacterial agent No. 36-42 were produced. For each of these samples, an antibacterial activity test was performed in the same manner as the above-mentioned antibacterial activity test II. The results are shown in Table 12 below. A disinfection effect similar to that of the antibacterial agent of the sintered compact containing the muscovite powder shown in Example 9 was obtained.

Figure 2006160692
Figure 2006160692

実施例11
前記の実施例4で製造したAg+−TSM抗菌剤Eの粉体と白雲母粉体との径5mm、厚さ7mmの焼結成形体から成る7種類の抗菌剤試料につき、上記の抗菌力テストIIの要領で抗菌力テストを行った。その結果は、表13に示す通りであった。
Example 11
The above-mentioned antibacterial activity test was conducted on seven types of antibacterial agent samples made of a sintered compact having a diameter of 5 mm and a thickness of 7 mm of the Ag + -TSM antibacterial agent E powder and the muscovite powder produced in Example 4 above. Antibacterial activity test was conducted as described in II. The results were as shown in Table 13.

Figure 2006160692
Figure 2006160692

表13から明らかなように、Ag+−TSMの焼結成形体を抗菌剤No.1〜No.7の場合は、1回目の透過で無菌液となるCu+−TSMに比し、優れた除菌効果が認められた。 As is clear from Table 13, the sintered compact of Ag + -TSM was antimicrobial agent No. 1-No. In the case of 7, excellent sterilization effect was recognized as compared with Cu + -TSM which became a sterile solution by the first permeation.

実施例4で製造したAg+−TSM抗菌剤粉体A〜Dの各粉体と白雲母との焼結成形体から成る7種類の抗菌剤につき、抗菌力テストIIの要領で抗菌力テストを行ったところ、夫々表13に示すと同様の結果を得た。 Antibacterial activity test was conducted in the same manner as the antibacterial activity test II for 7 types of antibacterial agents composed of sintered compacts of each powder of Ag + -TSM antibacterial agent powders A to D produced in Example 4 and muscovite. As a result, the same results as shown in Table 13 were obtained.

また、更なる多くの試験研究の結果、Ag+−TSM、Cu2+−TSM、Cu+−TSMの夫々の理論量に対するイオン交換率が銀イオンの場合はイオン交換率約30%以上、銅イオンの場合は40%以上あれば、実用的な抗菌性を有することが認められた。 Further, as a result of many further researches, when the ion exchange rate with respect to the respective theoretical amounts of Ag + -TSM, Cu 2+ -TSM and Cu + -TSM is silver ions, the ion exchange rate is about 30% or more. In the case of ions, 40% or more was found to have practical antibacterial properties.

尚、本発明の上記の各種抗菌剤は、多くの抗菌力テストの結果、芽胞生成菌、ジフテリヤ菌、黄色ブドウ状球菌などのグラム陽性菌、大腸菌、淋菌等のグラム陰性菌などの細菌、藻菌類、担子菌類、黒コウジカビなどの黴類等の真菌、動植物の病原菌ウイルスなどに有効である。   The above-mentioned various antibacterial agents of the present invention are the result of many antibacterial activity tests. It is effective for fungi such as fungi, basidiomycetes, fungi such as Aspergillus oryzae, and pathogenic viruses of animals and plants.

加熱処理後のAg+TSMのX線回折グラフを示す。An X-ray diffraction graph of Ag + TSM after heat treatment is shown. 加熱処理後のAg+TSMの水湿潤下でのX線回折グラフを示す。An X-ray diffraction graph of Ag + TSM after heat treatment under water wet condition is shown.

Claims (6)

示性式NaMg2.5(Si410)・F2・xH2O(但、x=1〜3)で示されるNa−四ケイ素雲母を原料とし、その層間NaイオンをAg+,Cu+又はCu2+でイオン交換を行うことを特徴とする金属イオン担持四−ケイ素雲母から成る抗菌剤の製造法。 Na-tetrasilicon mica represented by the formula NaMg 2.5 (Si 4 O 10 ) · F 2 · xH 2 O (x = 1 to 3) is used as a raw material, and its interlayer Na ions are converted to Ag + , Cu + or A method for producing an antibacterial agent comprising metal ion-supported 4-silicon mica, characterized by performing ion exchange with Cu 2+ . 請求項1に記載のイオン交換反応後、分取した湿潤したスラリー状の金属イオン担持四−ケイ素雲母を乾燥又は焼結処理することを特徴とする請求項1に記載の抗菌剤の製造法。   The method for producing an antibacterial agent according to claim 1, wherein after the ion exchange reaction according to claim 1, the wet slurry-like metal ion-carrying 4-silicon mica loaded with a slurry is dried or sintered. 請求項1又は2に記載の抗菌剤の粉体に無機結合剤粉体を添加混合し、これを加圧成形したものを400〜800℃で焼結し多孔質焼結成形体としたことを特徴とする抗菌剤の製造法。   An inorganic binder powder is added to and mixed with the antibacterial agent powder according to claim 1, and a pressure-molded product is sintered at 400 to 800 ° C. to form a porous sintered compact. Manufacturing method of antibacterial agent. 該無機結合剤は、カオリナイトとフッ化カリウムの混合物又はアルミナ架橋四ケイ素フッ素雲母である多孔質焼結体から成る抗菌剤。   The inorganic binder is an antibacterial agent comprising a porous sintered body which is a mixture of kaolinite and potassium fluoride or alumina-crosslinked tetrasilicon fluorine mica. 請求項1又は2に記載の抗菌剤の粉末20〜80重量%と無機結合剤80〜20重量%としてカオリナイトとケイフッ化カリウムの混合物の粉末又はアルミナ架橋フッ素雲母の粉末を80〜20重量%と混合し、これを成形したものを、400〜800℃で焼結したことを特徴とする請求項3又は4に記載の多孔質焼結成形体から成る抗菌剤の製造法。   The powder of a mixture of kaolinite and potassium silicofluoride or the powder of alumina cross-linked fluoromica is 80 to 20% by weight as 20 to 80% by weight of the antibacterial agent powder according to claim 1 or 2 and 80 to 20% by weight of an inorganic binder. A method for producing an antibacterial agent comprising a porous sintered molded article according to claim 3 or 4, wherein the mixture obtained by mixing with said product and sintered at 400 to 800 ° C. 請求項1〜5のいずれか1つに記載の製造法で得られた抗菌剤。   The antibacterial agent obtained by the manufacturing method as described in any one of Claims 1-5.
JP2004356724A 2004-12-09 2004-12-09 Antibacterial agent manufacturing method and antibacterial agent Active JP5172074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356724A JP5172074B2 (en) 2004-12-09 2004-12-09 Antibacterial agent manufacturing method and antibacterial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356724A JP5172074B2 (en) 2004-12-09 2004-12-09 Antibacterial agent manufacturing method and antibacterial agent

Publications (2)

Publication Number Publication Date
JP2006160692A true JP2006160692A (en) 2006-06-22
JP5172074B2 JP5172074B2 (en) 2013-03-27

Family

ID=36663108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356724A Active JP5172074B2 (en) 2004-12-09 2004-12-09 Antibacterial agent manufacturing method and antibacterial agent

Country Status (1)

Country Link
JP (1) JP5172074B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178720A (en) * 2010-03-01 2011-09-15 Nbc Meshtec Inc Inorganic antiviral agent and antiviral member containing the inorganic antiviral agent
JP2011190192A (en) * 2010-03-12 2011-09-29 Univ Of Tokyo Microorganism-inactivating agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250309A (en) * 1987-04-07 1988-10-18 Shiseido Co Ltd Antibacterial agent
JPH10337469A (en) * 1997-06-05 1998-12-22 Ootake Seramu Kk Adsorptive porous sintered compact and its production
JPH11171704A (en) * 1997-12-10 1999-06-29 Co-Op Chem Co Ltd Antimicrobial antifungal agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250309A (en) * 1987-04-07 1988-10-18 Shiseido Co Ltd Antibacterial agent
JPH10337469A (en) * 1997-06-05 1998-12-22 Ootake Seramu Kk Adsorptive porous sintered compact and its production
JPH11171704A (en) * 1997-12-10 1999-06-29 Co-Op Chem Co Ltd Antimicrobial antifungal agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178720A (en) * 2010-03-01 2011-09-15 Nbc Meshtec Inc Inorganic antiviral agent and antiviral member containing the inorganic antiviral agent
JP2011190192A (en) * 2010-03-12 2011-09-29 Univ Of Tokyo Microorganism-inactivating agent

Also Published As

Publication number Publication date
JP5172074B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
Liao et al. Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
JPS60181002A (en) Antimicrobial composition containing zeolite as carrier and production thereof
Pourabolghasem et al. Antibacterial Activity of Copper-doped Montmorillonite Nanocomposites Prepared by Alkaline Ion Exchange Method.
CN1884047A (en) General method for preparing spherical porous metal oxide
JP2885584B2 (en) Zeolite molding composition, zeolite molded product and fired product, and method for producing the same
KR100886170B1 (en) Preparation method of solid composition comprising ceramic and silver ion for bactericide
JPS6270221A (en) Amorphous aluminosilicate having antimicrobial and/or germicidal action
Youssef et al. Preparation and characterization of micronized zeolite Na-A: cytotoxic activity of silver exchanged form
US20170151550A1 (en) Method of Preparing Adsorbent for Phosphorus Adsorption and Adsorbent Prepared by the Same
Okada et al. In situ zeolite Na–X coating on glass fibers by soft solution process
JP5172074B2 (en) Antibacterial agent manufacturing method and antibacterial agent
KR100929402B1 (en) Antimicrobial Porous Beads and Manufacturing Method Thereof
Eisinas et al. Synthesis of antibacterially active wollastonite by using dense calcium silicate hydrate samples
CN1557728A (en) Antimicrobial compound for anion water purifying and activating, its pelletized product and preparation method
CN110790338A (en) Dual-functional material for water sterilization and purification and preparation method and application thereof
JP6926521B2 (en) Silver-supported zeolite molded product
KR101102429B1 (en) Sericite exchanged metal ion having anti-bacteria and preparing methods for thereof
WO1993017964A1 (en) Silver-bearing tobermorite
JP4793863B2 (en) Method for producing interlayer cross-linked clay porous body
Ariyapala et al. Antimicrobial and Ion-exchange Properties of Layered KHSi2O5 Compounds Prepared Using Amorphous Silicon Dioxide (a-SiO2) Blocks
JPH09175819A (en) Anionic silver complex ion-containing hydrotalcite compound and antimicrobial agent
Coleman et al. Zn 2+-exchange kinetics and antimicrobial properties of synthetic zirconium umbite (K 2 ZrSi 3 O 9· H 2 O)
Saleh et al. Fabrication of Ag nanoparticles coated leonardite basalt ceramic membrane with improved antimicrobial properties for DNA cleavage, E. coli removal and antibiofilm effects
JP3541201B2 (en) Silver-containing zonotolite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20120515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250